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Abstract

Neural architecture search (NAS) finds high performing networks for a given task.
Yet the results of NAS are fairly prosaic; they did not e.g. create a shift from convolu-
tional structures to transformers. This is not least because the search spaces in NAS
often aren’t diverse enough to include such transformations a priori. Instead, for NAS
to provide greater potential for fundamental design shifts, we need a novel expressive
search space design which is built from more fundamental operations. To this end, we
introduce einspace, a search space based on a parameterised probabilistic context-
free grammar. Our space is versatile, supporting architectures of various sizes and
complexities, while also containing diverse network operations which allow it to
model convolutions, attention components and more. It contains many existing com-
petitive architectures, and provides flexibility for discovering new ones. Using this
search space, we perform experiments to find novel architectures as well as improve-
ments on existing ones on the diverse Unseen NAS datasets. We show that competi-
tive architectures can be obtained by searching from scratch, and we consistently find
large improvements when initialising the search with strong baselines. We believe
that this work is an important advancement towards a transformative NAS paradigm
where search space expressivity and strategic search initialisation play key roles.

1 Introduction

The goal of neural architecture search (NAS) [14, 42] is to automatically find a network architecture for a
given task, removing the need for expensive human expertise. NAS uses (i) a defined search space of all
possible architectures that can be chosen, and (ii) a search algorithm e.g. [68, 58, 40] to navigate through
the space, selecting the most suitable architecture with respect to search objectives. Despite significant
research investment in NAS, with over 1000 papers released since 2020 [59], manually designed
architectures still dominate the landscape. If someone looks through recent deep learning papers, they
will most likely come across a (manually designed) transformer [56], or perhaps a (manually designed)
MLP-Mixer [53], or even a (manually designed) ResNet [19]. Why isn’t NAS being used instead?
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Figure 1: Three state-of-the-art architectures and their associated derivation trees within einspace.
Top row shows the architectures where the black node is the input tensor and the red is the output.
Bottom row shows derivation trees where the top node represents the starting symbol, the grey internal
nodes the non-terminals and the leaf nodes the terminal operations. See Section 3.1 for details on other
node colouring. Best viewed with digital zoom.

Part of the problem is that most NAS search spaces are not expressive enough, relying heavily
on high-level operations and rigid structures. For example in the DARTS [30] search space, each
architecture consists of repeating cells; each cell is a directed acyclic graph where nodes are hidden
states, and edges are operations drawn from a fixed set of mostly convolutions. This encodes a very
specific prior—architectures contain convolutions with multi-scale, filter-like structures [50]—making
it impossible to discover anything beyond ConvNet characteristics. Indeed, random search [63, 27] is
often a strong baseline in NAS; networks sampled from unexpressive spaces behave very similarly [57]
which makes it hard to justify an (often expensive) search.

One solution is to take the ex nihilo approach to search space construction. In AutoML-Zero [41] the
authors create a very expressive search space that composes basic mathematical operations without
any additional priors. However, searching through this space is far too expensive for mainstream use,
requiring several thousand CPUs across several days to (re)discover simple operations like linear layers
and ReLUs. Recent interest in hierarchical search spaces [47] has enabled the study of search across
differing architectural granularities which naturally allows for greater flexibility. However, attempts so
far have been limited to single architecture families like ConvNets [47] or transformers [67]. The hybrid
search spaces that do exist have limited options both on the operation-level and macro structure [26, 61].

For NAS to be widely used we need the best of both worlds: a search space that is both highly
expressive, and in which we can straightforwardly use existing tried-and-tested architectures as
powerful priors for search. To this end, we propose einspace: a neural architecture search space based
on a parameterised probabilistic context-free grammar (CFG). It is highly expressive, able to represent
diverse network widths and depths as well as macro and micro structures. With its expressivity, the
space contains disparate state-of-the-art architectures such as ResNets [19], transformers [56, 13]
and the MLP-Mixer [53], as shown in Figure 1. Other notable architectures contained in einspace
are DenseNet [23], WideResNet (WRN) [64], ResMLP [54] and the Vision Permutator [21].

We realise our proposed search space through the creation of function-mapping groups that define a
broad class of fundamental network operations and further describe how such elements can be composed
into full architectures under the natural recursive capabilities of our CFG. To guarantee the validity of all
architectures generated within the expressive space, we first extend our base CFG with parameters that
ensure diverse components can be combined into complex structures. Next, we balance the contention
between search space flexibility and search space complexity by introducing mild constraints on our
search space via branching and symmetry-based priors. Finally, we integrate probabilities into our
production rules to further control the complexity of architectures sampled from our space.

To demonstrate the effectiveness of einspace, we perform experiments on the Unseen NAS
datasets [16]—eight diverse classification tasks including vision, language, audio, and chess
problems—using simple random and evolutionary search strategies. We find that in such an expressive
search space, the choice of search strategy is important and random search underperforms. When
using the powerful priors of human-designed architectures to initialise the search, we consistently find
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both large performance gains and significant architectural changes. Code to reproduce our experiments
is available at https://github.com/linusericsson/einspace.

Using only simple search strategies, we can still identify competitive architectures, indicating that
further refining these strategies in einspace could lead to significant advancements. We hope that this
novel perspective on search spaces—focusing on expressiveness and incorporating the priors of existing
state-of-the-art architectures—has the potential to drive NAS research towards a new paradigm.

2 Background

Neural architecture search
The search space used in NAS has a significant impact on results [63, 65]. This has facilitated the need
to investigate search space design alongside the actual search algorithms [37]. Early macro design
spaces [24, 68] made use of naive building blocks while accounting for skip connections and branching
layers. Further design strategies have looked at chain-structured [3, 4, 6, 43], cell-based [69, 66, 30, 15]
and hierarchical approaches. Hierarchical search spaces have been shown to be expressive and effective
in reducing search complexity and methods include factorised approaches [52], n-level hierarchical
assembly [28, 29, 48], parameterisation of hierarchical random graph generators [45] and topological
evolutionary strategies [35]. Additional work on search spaces have proposed new candidate
operations and module designs such as hand-crafted multi-branch cells [51], tree-structures [3], shuffle
operations [32], dynamic modules [22], activation functions [38] and evolutionary operators [10]. In
AutoML-Zero [41], the authors try to remove human bias from search space construction by defining
a space of basic mathematical operations as building blocks.

The pioneering work of [47] constructs search spaces using CFGs. We take this direction further
and construct einspace as a probabilistic CFG allowing for unbounded derivations, balanced by
careful tuning of the branching rate. We aim to strike a balance between the level of complexity in the
search space and incorporating components from diverse state-of-the-art architectures. Crucially, our
space enables flexibility in both macro structure and at the individual operation level. While previous
search spaces can be instantiated for specific architecture classes[30, 12], our single space incorporates
multiple classes in one, ConvNets, transformers and MLP-only architectures. Such hybrid spaces have
been explored before [26], but they have been limited in their flexibility, offering only direct choices
between convolution and attention operations and disallowing the construction of novel components.

Prominent search strategies employed for NAS include Bayesian optimisation [34, 58], reinforcement
learning [66, 68, 69] and genetic algorithms [5, 39, 40]. A popular thread of work, towards improving
computational efficiency via amortising training cost, involves the sharing of weights between different
architectures via a supernet [1, 3, 9, 18, 30, 31]. Efficiency has been further improved by sampling only
a subset of supernet channels [60], thus reducing both space exploration redundancies and memory
consumption. Alternative routes to mitigating space requirements have considered both architecture
and operation-choice pruning [7, 15]. We however highlight that random search often proves to be
a very strong baseline [27, 63]; a consequence of searching within narrow spaces. This is commonly
the case for highly engineered search spaces that contain a high fraction of strong architectures [59].
Contrasting this, in our einspace we observe that random search across many tasks performs poorly,
underpinning the value of a good search strategy for large, diverse search spaces [2, 41].

Context-free grammars
A context-free grammar (CFG; [20]) is a tuple (N,Σ,R,S), where N is a finite set of non-terminal
symbols, Σ is a finite set of terminal symbols, R is the set of production rules—where each rule maps
a non-terminal A∈N to a string of non-terminal or terminals A→ (N∪Σ)+—and S is the starting
symbol. A CFG describes a context-free language, containing all the strings that the CFG can generate.
By recursively selecting a production, starting with the rules containing the starting symbol, we can gen-
erate strings within the grammar. CFGs can be parameterised: each non-terminal, in each rule in R, is
annotated with parameters p1,...,pn that influence the production. These parameters can condition pro-
duction, based on an external state or contextual information, thus extending the power of the grammar.

A probabilistic context-free grammar (PCFG) associates each production rule with a probability [33].
These define the likelihood of selecting a particular rule given a parent non-terminal. The assigned
probabilities allow for stochastic string generation.
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3 einspace: A Search Space of Fundamental Operations

Our neural architecture search space, einspace2, is introduced here. Based on a parameterised PCFG,
it provides an expressive space containing many state-of-the-art neural architectures. We first describe
the groups of operations we include in the space, then how macro structures are represented. We then
present the CFG that defines the search space and its parameterised and probabilistic extensions.

As a running example we will be constructing a simple convolutional block with a skip connection
within einspace, explaining at each stage how it relates to the architecture. The block will consist
of a convolution, a normalisation and an activation, wrapped inside a skip connection.

3.1 Fundamental Operations

Each fundamental operation within einspace takes as input a tensor, either passed as input to the whole
network or an intermediate tensor from a previous operation, and operates on it further. An operation
can be thought of as a layer in a processing pipeline that defines the overall network. The fundamental
operations can be separated into four distinct groups of functions that define their role in a network
architecture. The terms one-to-one, one-to-many and many-to-one below refer to the number of input
and output tensors of the functions within that group. For full details of the operations, see Appendix A.2

Branching. One-to-many functions that direct the flow of information through the network by cloning
or splitting tensors. Examples include the branching within self-attention modules into queries, keys
and values. In our visualisations, these are coloured yellow.

Aggregation. Many-to-one functions that merge the information from multiple tensors into one.
Examples include matrix multiplication, summation and concatenation. In our visualisations, these
are coloured purple.

Routing. One-to-one functions that change the shape or the order of the content in a tensor without
altering its information. Examples include axis permutations as well as the im2col and col2im
operations. In our visualisations, these are coloured green.

Computation. One-to-one functions that alter the information of the tensor, either by parameterised
operations, normalisation or non-linearities. Examples include linear layers, batch norm and activations
like ReLU and softmax. In visualisations, these are coloured blue.
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Figure 2: Visualisation of ex-
ample modules with their CFG
derivations in bracket notation.
From top to bottom; sequential,
branching, routing and compu-
tation modules.

In our example, the skip connection will be handled by a combination
of branching and aggregation functions, the convolution is decom-
posed into the routing functions im2col and col2im, with a linear
layer from the computation group between them. The normalisa-
tion and activation come from the computation group. In the next
subsection, we discuss the larger structures of the architecture.

3.2 Macro Structure

The groups of functions above describe the fundamental operations
that make up an architecture. We now describe how these functions
are composed in different ways to form larger components.

A module is defined as a composition of functions from above that
takes one input tensor and produces one output tensor, with potential
branching inside. A module may contain multiple computation and
routing operations, but each branching must be paired with a subse-
quent aggregation operation. Thus, the whole network can be seen
as a module that takes a single tensor as input and outputs a single
prediction. A network module may itself contain multiple modules,
directly pertaining to the hierarchical phrase nature of CFG structures.
We divide modules into four types, visualised in Figure 2.

2The name is inspired by the generality of Einstein summation and the related Python library einops [44] as
many of our operations can be implemented by it.
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Sequential module. A pair of modules and/or functions that are applied to the input tensor sequentially.
Using our grammar, defined in Section3.3, this can be produced using the rule ( M→MM ), or equivalently
from the starting symbol S. This also applies to the rules below.

Branching module. A branching function first splits the input into multiple branches. Each branch is
processed by some inner set of modules and/or functions. The outputs of all branches are subsequently
merged in an aggregation function. In the grammar below this can be produced by the rule ( M→B M A ).

Routing module. A routing function is applied, followed by a module and/or function. A final
routing function then processes the output tensor. In the grammar below this is produced by the rule
( M→P M R ). For more details on the role of the routing module, see Appendix A.3.

Computation module. This module only contains a single function, selected from the one-to-one
computation functions described above. While this module is trivial, we will see later how its inclusion
is helpful when designing our CFG and its probabilistic extension. In the grammar below this is
produced by the rule ( M→C ).

To construct our example, we will be using all four modules. The branching module combines the
clone and add functions from before to create a 2-branch structure. One branch is a simple skip
connection by using the identity function inside a computation module. The other branch is the more
complex sequence. The convolutional layer is created by combining im2col, linear and col2im in a
routing module. The norm and activation are each wrapped in a computation module and these are all
composed in sequential modules. Figure 2 shows similar module instantiations in action.

3.3 Search Space as a Context-Free Grammar

The following CFG defines our einspace, where uppercase symbols represent non-terminals and
lowercase represent terminals. The colours refer to the function groups.

S → M M | B M A | P M R,
M → M M | B M A | P M R | C,
B → clone | group,
A → matmul | add | concat,
P → identity | im2col | permute,
R → identity | col2im | permute,
C → identity | linear | norm | relu | softmax | pos-enc.

Our networks are all constructed according to the high-level blueprint: backbone→headwhere head
is a predefined module that takes an output feature from the backbone and processes it into a prediction
(see Appendix B for more details). The backbone is thus the section of the network that is generated
by the above CFG. When searching for architectures we search across different backbones.

Completing our running example, we present the full derivation of the architecture in the CFG in
Figure 3.
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Figure 3: Example derivation tree of a traditional convolutional block with a skip connection.
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3.4 Prior Choices

When designing a search space, we must balance the need for flexibility—which allows more valid
architectures to be included—and constraints – which reduce the size of the search space. We can view
constraints as imposing priors on which architectures we believe are worth including. As discussed,
many previous frameworks are too restrictive; therefore, we aim to impose minimal priors, listed below.

Convolutional prior. We design our routing module to enable convolutions to be easily constructed,
while also allowing components like patch embeddings and transpose operations. We thus enforce that
a routing function is followed by another routing function later in the module. Moreover, im2col only
appears in the production rule of the first routing function ( P ) and col2im in the last ( R ). As shown
in Figure 2, to construct a convolution, we start from the rule ( M→P M R ) and derive the following
( P→im2col ), ( M→C→linear ) and ( R→col2im ).

Branching prior. We also impose a prior on the types of branching that can occur in a network. The
branching functions clone and group can each have a branching factor of 2, 4 or 8. For a factor of 2,
we allow each inner function to be unique, processing the two branches in potentially different ways.
For branching factors of 4 or 8, the inner function M is repeated as is, processing all branches identically
(though all inner functions are always initialised with separate parameters). Symbolically, given a
branching factor of 2 we have ( BM1M2A ) but with a branching factor of 4 we have ( BM1M1M1M1A ).
Examples of components instantiated by a branching factor of 2 include skip connections, and for 4, or
8, multi-head attention.

3.5 Feature Mode

Different neural architectures operate on different feature shapes. ConvNets maintain 3D features
throughout most of the network while transformers have 2D features. To enable such different types of
computations in the same network, we introduce the concept of a mode 3 that affects the shape of our
features and which operations are available at that point in the network. Before and after each module,
we fix the feature tensor to be of one of two specific shapes, depending on which mode we are in.

Im mode. Maintains a 3D tensor of shape (C, H, W), where C is the number of channels, H is the
height and W is the width. Most convolutional architectures operate in this mode.

Col mode. Maintains a 2D tensor of shape (S, D), where S is the sequence length and D is the token
dimensionality. This is the mode in which most transformer architectures operate.

The mode is changed by the routing functions im2col and col2im. Most image datasets will provide
inputs in the Im mode, while most tasks that use a language modality will provide it in Col mode.

Our example architecture maintains the Im mode at almost all stages, apart from inside the routing
modules where the im2col function briefly puts us in the Col mode before col2im brings us back.

3.6 Parameterising the Grammar

Due to the relatively weak priors we impose on the search space, sampling a new architecture naively
will often lead to invalid networks. For example, the shape of the output tensor of one operation may
not match the expected input shape of the next. Alternatively, the branching factor of a branching
function may not match the branching factor of its corresponding aggregation function.

We therefore extend the grammar with parameters. Each rule r now has an associated set of parameters
(s,m,b) that defines in which situations this rule can occur. When we sample an architecture from the
grammar, we start by assigning parameter values based on the expected input to the architecture. For
example, they might be the input tensor shape, feature mode and branching factor:

(s=[3,224,224],m=Im,b=1). (1)

Given this, we can continuously infer the current parameters during each stage of sampling by knowing
how each operation changes them. When we expand a production rule, we must choose a rule which
has matching parameters. If at some point, the sampling algorithm has no available valid options, it

3Note that this is similar but not the same as the mode of a general tensor, which determines the number of
dimensions of that tensor. We use the term mode to refer to the state that a particular part of the architecture is in.
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will backtrack and change the latest decision until a full valid architecture is found. Hence, we ensure
that we can sample architectures without risk of obtaining invalid ones.

As an example of this, the CFG rule for P was previously

P → identity | im2col | permute. (2)

Enhanced with parameters, this now becomes two rules

P(m=Im) → identity | im2col | permute, (3)
P(m=Col) → identity | permute. (4)

This signifies that an im2col operation is not available in the Col mode. Similarly, the available
aggregation options depend on the branching factor of the current branching module

A(b=2) → matmul | add | concat, (5)
A(b=4) → add | concat, (6)
A(b=8) → add | concat. (7)

3.7 Balancing Architecture Complexity

When sampling an architecture, we construct a decision tree where non-leaf nodes represent decision
points and leaf nodes represent architecture operations. In each iteration, we either select a non-terminal
module to expand the architecture and continue sampling, or choose a terminal function to conclude
the search at that depth. Continuously selecting modules results in a deeper, more complex network,
whereas selecting functions leads to a shallower, simpler network. We can balance this complexity by
assigning probabilities to our production rules, thereby making a PCFG. Recall our CFG rule

( M → M M | B M A | P M R | C ). (8)

If we choose one of the first three options we are delving deeper in the search tree since there is yet
another M to be expanded, but if we choose ( M→ C ), the computation-module, then we will reach
a terminal function. Thus, to balance the depth of our traversal and therefore expected architecture
complexities, we can set probabilities for each of these rules:

p(M→M M |M), p(M→B M A |M), p(M→P M R |M), p(M→C |M). (9)
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Figure 4: To ensure our CFG is consistent
and does not generate infinite architec-
tures, we make sure the branching rate
is in the sub-critical region by setting
p(M→C |M)>0.31.

The value of p(M→C | M) is especially important as it can
be interpreted as the probability that we will stop extending
the search tree at the current location.

We could set these probabilities to match what we wish
the expected depth of architectures to be (for empirical re-
sults on the architecture complexity, see Table 10 in the
Appendix). However, we can actually ensure that the CFG
avoids generating infinitely long architecture strings by set-
ting the probabilities such that the branching rate of the CFG
is less than one [8]. For details of how, see Appendix A.4.
So, as shown in Figure 4, we set the computation module
probability to p(M→C | M)=0.32 and the probabilities of
the other modules to 1−0.32

3 . For simplicity, all other rule
probabilities are uniform.

For a thorough example of how sampling is performed in
einspace, please see Appendix A.1.

4 Experiments

4.1 Experimental Details

Datasets
As our search space strives for expressivity and diverse architectures, we adopt a diverse benchmark
suite from the recent paper on Unseen NAS [16], containing datasets at different difficulties across
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vision, language, audio and further modalities. We run individual searches on these datasets, that are
each split into train, validation and test sets. See Appendix B.2 for the detailed dataset descriptions.

While Unseen NAS forms the basis of this section, we run additional experiments on the diverse NAS-
Bench360 benchmark [55] in Appendix C.1, where we beat competing NAS methods on CIFAR100,
FSD50K and Darcy Flow, and to the best of our knowledge set a new state-of-the-art on NinaPro.

Search strategy
We explore three search strategies within einspace: random sampling, random search, and regularised
evolution (RE). Random sampling estimates the average expected test performance from K random
architecture samples. Random search samples K architectures and selects the best performer on a
validation set. In regularised evolution, we start by constructing an initial population of 100 individuals,
which are either randomly sampled from the search space or seeded with existing architectures.
For (K−100) iterations, the algorithm then randomly samples 10 individuals and selects the one
with the highest fitness as the parent. This parent is mutated to produce a new child. This child is
evaluated and enters the population while the oldest individual in the population is removed, following
a first-in-first-out queue structure. An architecture is mutated in three straightforward steps:

1. Sample a Node: Uniformly at random sample a node in the architecture derivation tree.

2. Resample the Subtree: Replace the subtree rooted at the sampled node by regenerating it based
on the grammar rules. This step allows the exploration of new configurations, potentially
altering a whole subtree if a non-leaf node is chosen.

3. Validate Architecture: Check if the new architecture can produce a valid output in the forward
pass, given an input of the expected shape, and that it fits within resource constraints, e.g. GPU
memory. If it does, accept it; otherwise, discard and retry the mutation.

Note that these are very simple search strategies, and that there is huge potential to design more
intelligent approaches, e.g. including crossover operations in the evolutionary search, using hierarchical
Bayesian optimisation [47] or directly learning the probabilities of the CFG [11]. In this work, we
focus on the properties of our search space and investigate whether simple search strategies are able to
find good architectures, and leave investigations on more complex search strategies for future work.

Baselines
We compare these search strategies to PC-DARTS [60], DrNAS [7] and Bonsai-Net [15] with results
transcribed from [16]. We also compare to the performance of a trained ResNet18 (RN18). More
details on the baselines, training recipes and network instantiations can be found in Appendix B.1

4.2 Random Sampling and Search

Figure 5: The top RE(Mix) architecture
on AddNIST, found in einspace.

In previous NAS search spaces e.g. [30, 62, 12], complex
search methods often perform very similarly to random
search [27, 63]. Indeed, we can see this in Table 1 compar-
ing the PC-DARTS strategy to DARTS random search.

However for einspace, this is not the case for most
datasets. Random sampling improves on pure random
guessing (not shown), but is far from the baseline perfor-
mance of a ResNet18. The random search baseline is also
far behind, but intriguingly outperforms baseline NAS ap-
proaches on Chesseract.

4.3 Evolutionary Search from Scratch

We now turn to a more sophisticated search strategy. We
perform regularised evolution in einspace for 1000 itera-
tions across all datasets, initialising the population with 100 random samples. In Table 1 the results are
shown in the column named RE(Scratch). The performance of this strategy is significantly higher than
random search on several datasets, indicating that the search strategy is more important in an expressive
search space like einspace compared to DARTS. Compared to the top performing NAS methods,
however, it is significantly behind on some datasets.
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Table 1: Accuracies resulting from the combination of einspace with the simple search strategies
of random sampling, random search, and regularised evolution (RE). See text for further detail.
We evaluate performance across multiple datasets and modalities from Unseen NAS [16]. Results
transcribed from [16] are denoted *, where DARTS [30] and Bonsai [15] search spaces are employed.
The expressiveness of einspace enables performance that remains competitive with significantly
more elaborate search strategies, as well as outperforming the CFG-based space hNASBench201 [46]
when using evolutionary search in both spaces. Best and second best performance per dataset.

Baselines Regularised evolution (RE)
hNB201 einspace Rand. Search Rand.

Sampl.

Dataset RN18
PC-

DARTS*
Dr

NAS*
Bonsai-

Net*
RE

(Scratch)
RE

(RN18)
RE

(Mix)
RE

(Scratch) DARTS* Bonsai* ein
space

ein
space

AddNIST 93.36 96.60 97.06 97.91 93.82 97.54 97.72 83.87 97.07 34.17 67.00 10.13
Language 92.16 90.12 88.55 87.65 92.43 96.84 97.92 88.12 90.12 76.83 87.01 35.26
MultNIST 91.36 96.68 98.10 97.17 93.44 96.37 92.25 93.72 96.55 39.76 66.09 18.87
CIFARTile 47.13 92.28 81.08 91.47 58.31 60.65 62.76 30.89 90.74 24.76 30.90 25.25
Gutenberg 43.32 49.12 46.62 48.57 43.70 54.02 50.16 36.70 47.72 29.00 39.58 19.69
Isabella 63.65 65.77 64.53 64.08 59.79 64.30 62.72 56.33 66.35 58.53 56.90 32.24
GeoClassing 90.08 94.61 96.03 95.66 92.33 95.31 95.13 60.43 95.54 63.56 69.13 24.35
Chesseract 59.35 57.20 58.24 60.76 63.92 60.31 61.86 59.50 59.16 68.83 61.46 44.83

Average acc. ↑ 72.55 80.30 78.78 80.41 74.72 78.17 77.56 63.70 80.41 49.43 59.76 26.33
Average rank ↓ 7.38 4.69 4.62 3.75 6.00 3.88 4.12 9.00 4.31 9.50 8.88 11.88

4.4 Evolutionary Search from Existing SOTA Architectures

To fully utilise the powerful priors of existing human-designed structures, we now invoke search where
the initial population of our evolutionary search is seeded with a collection of existing state-of-the-art
architectures.

We first seed the entire population with the ResNet18 architecture. The search applies mutations to
these networks for 500 iterations. In Table 1, these results can be found in the RE(RN18) column.

Figure 6: The best model on the Language
dataset, found by RE(Mix) in einspace.

To further highlight the expressivity of einspace,
we perform experiments searching from an initial
population seeded with a mix of ResNet18, WRN16-
4, ViT and MLP-Mixer architectures. To our knowl-
edge, no other NAS space is able to represent such a
diverse set of architectures in a single space. These
results are shown in the RE(Mix) column.

Overall, we find that on every single task, we can
find an improved version of the initial architecture
using RE(RN18) and on all but one using RE(Mix).
Moreover, in some cases we can beat the existing
state-of-the-art, especially on tasks further from the
traditional computer vision setting. In particular,
where previous NAS methods fail—i.e. the Language dataset—the architecture in Figure 6 has a direct
improvement over the ResNet18 by 5.76%. See also the architecture in Figure 5 and the collection in
Figure 8 in the Appendix for the breadth of structures that are found in einspace.

We further compare einspace to the previous, CFG-based, hNASBench201 from Schrodi et al. [46].
This allows for an initial study on the effects of our search space design choices and, in particular, the
increased expressiveness compared to hNASBench201. These results show how einspace compares
favourably to a different search space under the same evolutionary search. Overall, we highlight that
our search results on einspace are competitive, even with far weaker search space priors.

One dataset where our searches struggle is CIFARTile, a more complex version of the CIFAR10 dataset.
While large improvements are made to the baseline networks, they still lag behind other NAS methods.
This shows how the strong and restricted focus on ConvNets within the DARTS search space is highly
successful for traditional computer vision style tasks that have been common in the literature.
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5 Limitations

Our search space, designed for diversity, is extremely large and uniquely unbounded in terms of depth
and width. This complexity makes formulating one-shot methods like ENAS [36] or DARTS [30]
challenging. Instead, developing an algorithm to learn the probabilities of the PCFG may be more
feasible. This approach, however, must address the grammar’s context-free nature where sampling
probabilities do not consider network depth, feature shape, or previous decisions, although this could
be mitigated by using the parameters outlined in Section 3.6. Due to the relatively slow nature of our
evolutionary search strategy (see Table 9 in Appendix C.5), we believe that finding more efficient
search strategies for expressive spaces like ours is an important and exciting direction for future work.

Another issue is ambiguity arising from the possibility of multiple derivation trees for a single architec-
ture, primarily due to the multiple ways of stacking sequential modules. Moreover, we have found that
through sampling and mutation, some architectures’ components reduce to the identity operation,
from e.g. stacked identity and permute operations within sequential and routing modules. Finding
ways to represent the equivalence classes of derivation trees can thus be powerful for reducing effective
search space size.

Finally, we designed einspace to be diverse, but some key structures cannot be represented in its
current form. There are no options for recurrent computation, as found in RNNs and the new wave of
state-space models like Mamba [17]. We believe this can be integrated via the inclusion of a recurrent
module that repeats the computation of the components within it—however we leave more detailed
exploration of this direction to future work. We also chose to keep the options for activations and
normalisation layers as small as possible since in practice the benefit from changing these is minor.

6 Conclusion

We have introduced einspace: an expressive NAS search space based on a parameterised PCFG. We
show that our work enables the construction of a comprehensive and diverse range of existing state-of-
the-art architectures and can further facilitate discovery of novel architectures directly from fundamental
operations. With only simple search strategies, we report competitive resulting architectures across a
diverse set of tasks, highlighting the potential value of defining highly expressive search spaces. We
further demonstrate the utility of initialising search with existing architectures as priors. We believe
that future work on developing intelligent search strategies within einspace can lead to exciting
advancements in neural architectures.
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A Search Space Details

A.1 Sampling

In this section, we explain the process of sampling an architecture from our parameterised PCFG
through an example. We specifically focus on how the running example from the main paper, a simple
convolutional block with a skip connection, could be generated.

We begin the process with the starting symbol S, which could produce several forms based on the
production rules, including ( M M ), ( B M A ), or ( P M R ). Since our block includes a skip connection, the
macro structure of our architecture is best represented by a branching module ( B M A ).

Within this module, we expand the string from left to right, thereby starting with ( B ). The specific
branching operation that fits our goal is ( B→ clone ) as we wish to later combine a transformed version
of the tensor with itself. Since we have two branches, they are produced separately (see branching
prior) and our module becomes ( B M1M2 A ).

For the first branch, ( M1 ), we need a set of components that constitute a convolution followed
by batch normalisation and an activation. Since this involves several composed operations we
first expand into a sequential module ( M1 → M3M4 ). The first of these operations represents the
convolution. Within einspace, a convolution, conv(x), is decomposed into the three operations,
col2im(linear(im2col(x))). Thus, in our grammar we unfold it as a routing module, ( M3→ P M5 R )
which further produces ( P→ im2col ), ( M5→ C→ linear ) and ( R→ col2im ). The normalisation
and activation are then generated under ( M4 ), defined as another sequential module ( M4→M6M7 ) with
( M6→C→norm ) and ( M7→C→relu ). The second branch, M2, acts as a skip connection and is thus
derived as ( M2→C→identity ).

To finalise the architecture, the aggregation symbol ( A ) merges the tensors back into one unit. To
complete the residual connection, we use the rule ( A→ add ).

The full derivation tree in this example is shown in Figure 3 of the main paper. This general sampling
process allows the creation of complex neural network architectures from a structured and interpretable
set of rules.

A.2 Fundamental Operations

Our grammar in the main paper is somewhat simplified. There are some fundamental operations that
have hyperparameters that allow multiple versions to be chosen. They are detailed here.

Branching functions. For the production rule ( B→clone |group ), the full set of options is:

B → clone(b=2) |clone(b=4) |clone(b=8) | (10)
group(dim=1,b=2)|group(dim=1,b=4)|group(dim=1,b=8)| (11)
group(dim=2,b=2)|group(dim=2,b=4)|group(dim=2,b=8)| (12)
group(dim=3,b=2)|group(dim=3,b=4)|group(dim=3,b=8), (13)

where b refers to the branching factor and dim is the dimension we group over.

Aggregation functions. Similarly, for the production rule ( A→matmul |add |concat ), the full set of
options is:

A → matmul(scaled=False) |matmul(scaled=True) | add | (14)
concat(dim=1,b=2)|concat(dim=1,b=4)|concat(dim=1,b=8)| (15)
concat(dim=2,b=2)|concat(dim=2,b=4)|concat(dim=2,b=8)| (16)
concat(dim=3,b=2)|concat(dim=3,b=4)|concat(dim=3,b=8), (17)

where scaled=True makes the matmul operation equivalent to the scaled dot product used in many
transformer architectures, dim is the dimension we concatenate over and b is the branching factor.

Routing functions. The im2col and col2im functions are implemented to offer the standard function-
ality that enables convolutional operations, including variables that set the kernel sizes, stride, dilation
and padding. Below are the full set of options for im2col. The col2im only takes the predicted output
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shape as a parameter so we can include only a single version of this operation.

im2col(k=1,s=1,p=0), im2col(k=1,s=2,p=0), (18)
im2col(k=3,s=1,p=1), im2col(k=3,s=2,p=1), (19)
im2col(k=4,s=4,p=0), im2col(k=8,s=8,p=0), im2col(k=16,s=16,p=0), (20)

where k is the kernel size, s is the stride and p the padding.

For the permute operation, there are six versions of the order parameter o. There is one for the Col
mode and five for the Im mode:

permute(o=(2,1)), (21)
permute(o=(1,3,2)), permute(o=(2,1,3)), permute(o=(2,3,1)), (22)
permute(o=(3,1,2)), permute(o=(3,2,1)). (23)

For completeness, the identity operation can also be included, making two versions
in the Col mode (with identity=permute(o=(1,2))) and six in the Im mode (with
identity=permute(o=(1,2,3))).

Computation functions. For linear layers, we vary the output dimension d across powers of two:

linear(d=16), linear(d=32), linear(d=64), (24)
linear(d=128), linear(d=256), linear(d=512), (25)
linear(d=1024), linear(d=2048). (26)

The norm operation takes on the batch-norm functionality in the Im mode and layer-norm in Col
mode. The softmax is just a softmax operation applied to the final dimension, the relu activation is
implemented as the single option leaky-relu and pos-enc is a learnable positional encoding.

A.3 Patch Embeddings and Convolutions

In this section we provide some more information about how the routing module can represent common
components.

The routing module, ( M → P M R ), puts a prior on certain types of operations inside our architectures.
A patch embedding, such as those found in many transformers, is achieved by the following derivation:
( M → im2col linear identity ), while a convolution can be obtained by ( M → im2col linear
col2im ). In terms of the process required to sample such combinations, the first is easy since there are
no dependencies between the operations. The second, however, is more complicated and requires some
discussion.

Letx be a tensor inR3×32×32 and let us consider arouting module containing the functions: im2col,
linear, col2im. The functions will be applied in order to the input tensor, giving us

x′=im2col(x), (27)

x′′=linear(x′), (28)

y=col2im(x′′). (29)

The shapes of the intermediate and final tensors {x′,x′′,y} depend on several function hyperparameters.
These are listed below.

Table 2: Hyperparameters for the three functions involved in a convolution component.

im2col col2im linear

kin=7 (kernel size) kout=7 (kernel size) cout=64 (output channels)
sin=2 (stride) sout=2 (stride)
pin=3 (padding) pout=0 (padding)

The input tensor has height dimension hin and width win. The im2col operation will extract column
vectors from this space a number of times depending on the kernel size kin, stride sin and padding pin
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values in the table above. The number of column vectors equals

l=
⌊hin+2×pin−(kin−1)−1

sin
+1

⌋
×
⌊win+2×pin−(kin−1)−1

sin
+1

⌋
, (30)

which in our case gives l=256. The shapes of all intermediate tensors can therefore be written as in
Table 3.

Table 3: Tensor shapes in the forward pass of our convolution component; cin=3,hin=32,win=32
in this example.

Tensor Shape

x [cin,hin,win]
x′ [l, cin×kin×kin]
x′′ [l, cout]
y [cout, hout, wout]

Therefore, to successfully apply the col2im function, the constraint l=hout×wout must be satisfied.
From Equation 30 we can see that the output height and width can be predicted by the im2col
parameters

hout=
⌊hin+2×pin−(kin−1)−1

sin
+1

⌋
, (31)

wout=
⌊win+2×pin−(kin−1)−1

sin
+1

⌋
. (32)

So, in practice, the im2col operation fully defines the behaviour of the convolution—apart from the
number of output channels defined by the linear layer—and the col2im only rearranges the tensor back
into its correct 3D form. This is trivial in the case where hin=win since hout=wout=

√
l. However, if

hin ̸=win, then the predicted output shapes must be remembered until the col2im operation is applied.

Thus, in our sampling and mutation algorithm, whenever anim2col operation is sampled, we must store
the predicted output shape until a corresponding col2im is applied. Additionally, the dimensionality
of l must not change in the connecting branch as it would break the constraint l=hout×wout.

A.4 Branching Rate of the CFG

If a PCFG is consistent, the probabilities of all finite derivations sum to one, or equivalently, it has a zero
probability of generating infinite strings or derivations [8]. For us, that means a sampled architecture can
not be infinitely large, and that the sampling algorithm will halt with probability one. In order to check
if a CFG is consistent, we can inspect the spectral radius ρ of its non-terminal expectation matrix [8].
If ρ<1, then the PCFG is consistent. This expectation matrix is indexed by the non-terminals in the
grammar (both the columns and the rows), and at each cell it provides the expected number of instances
the column non-terminal being generated from the row non-terminal by summing the probabilities of
the row non-terminal multiplied by the count of the column non-terminal in each rule.

We can also solve a (simple, in our case) set of linear equations in order to compute the expected length
of an architecture string, ℓ, as a function of the rule probabilities. More specifically, denote by E[A] the
expected length of string generated by a nonterminal in the grammar A. Then ℓ=E[S], where:

E[S]=
∑
S→α

p(S→α |S)
∑
i

E[αi] (33)

E[M]=
∑
M→α

p(M→α |M)
∑
i

E[αi] (34)

E[B]=1 (35)
E[A]=1 (36)
E[P]=1 (37)
E[R]=1 (38)
E[C]=1 (39)
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In the above, α is the right hand side of a rule and αi varies over the nonterminals in that right hand side.

A.5 Adjustments for One-Dimensional Tasks

We have presented our new search space primarily with the application to two-dimensional data in
mind—where, confusingly, the input tensor is of the shape (C, H, W), i.e. two spatial dimensions and
one channel dimension. In order to search for architectures on 1D datasets—with input tensors of shape
(S, D), i.e. one sequence dimension and one token dimension—we need to adjust the einspace CFG
to make it compatible.

We replace the routing functions im2col and col2im with operations that perform the full 1D convo-
lution directly—without decomposing the operation—and place them into the computation function
group. Below are the new conv1d functions in the 1D variant of einspace

conv1d(k=1,s=1,p=0,d=32), conv1d(k=1,s=1,p=0,d=64) (40)
conv1d(k=1,s=1,p=0,d=128), conv1d(k=1,s=1,p=0,d=256) (41)
conv1d(k=3,s=1,p=1,d=32), conv1d(k=3,s=1,p=1,d=64) (42)
conv1d(k=3,s=1,p=1,d=128), conv1d(k=3,s=1,p=1,d=256) (43)
conv1d(k=5,s=1,p=2,d=32), conv1d(k=5,s=1,p=2,d=64) (44)
conv1d(k=5,s=1,p=2,d=128), conv1d(k=5,s=1,p=2,d=256) (45)
conv1d(k=8,s=1,p=3,d=32), conv1d(k=8,s=1,p=3,d=64) (46)
conv1d(k=8,s=1,p=3,d=128), conv1d(k=8,s=1,p=3,d=256). (47)

Some versions of the group, concat and permute operations are also removed as they operate on a
dimension that now doesn’t exist. Below is the adjusted grammar for this variant.

S → M M | B M A | R M R,
M → M M | B M A | R M R | C,
B → clone | group,
A → matmul | add | concat,
R → identity | permute,
C → identity | conv1d | linear | norm | relu | softmax | pos-enc.

In the NASBench360 results presented in Table C.1, this 1D variant of einspace is used for the
datasets ECG, Satellite and Deepsea. The baseline WideResNet-16-4 architecture is also adjusted to
handle the 1D data, as described in [55].

A.6 Size of the Search Space

In this section we will discuss the size of the introduced search space.

Our einspace grammar contains recursive rules, e.g. ( M→ M M ). Due to this recursion the grammar
generates a language with an infinite number of strings. We know from Section A.4 that since our gram-
mar is consistent, the architecture sampling process always terminates. This means every architecture
derivation tree is finite in size. So, while einspace covers an infinite number of architectures, each
such architecture is finite. Let the architecture string denote the left-to-right sequence of leaves of a
derivation tree. We define Sn to be the set of all architecture strings of length n. As we will show next,
the size of Sn grows exponentially with n. To do this, we first introduce a few new concepts.

A Dyck language [25] is a formal language consisting of strings that represent balanced and properly
nested sequences of pairs of symbols, typically parentheses, where each opening symbol must have a
corresponding closing symbol, and at no point in the string can the number of closing symbols exceed
the number of opening symbols. A Dyck language can be generated by a context-free grammar defined
over a set of terminal symbols Σ={(,)}. Generalising this, Dyck-k denotes a Dyck language with k
distinct pairs of matching symbols, e.g. Dyck-2 has Σ={(,),[,]}. The growth of a Dyck-1 language is
described by the Catalan numbers, reflecting the exponential increase in valid strings as the length of the
input increases, i.e. the number of strings with m matching pairs of symbols is the mth Catalan number
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Cm= 1
m+1

(
2m
m

)
. Asymptotically, the number of such strings grows as O(4m). Dyck-2 languages do

not follow the Catalan numbers but still grow as O(4m).

We can rewrite (and somewhat simplify) our einspace CFG from Section 3.3 in order to generate a
Dyck language

S → M M | ( M ) | [ M ],
M → M M | ( M ) | [ M ] | C,
C → 1 | 2 | 3 | ...

The set of non-terminal symbols {B, A, P, R} has been replaced with the terminal set of parentheses
and square brackets {(, ), [, ]} and, for simplicity, the terminal symbols of C have been replaced by
integers. This makes it a Dyck-2 language with the addition of the C symbol that can be expanded into
several terminal options.

While a normal Dyck-2 language grows as O(4m), ours is more complex. Firstly, each non-terminal
symbol M will eventually produce a C which leads to a terminal. Let the number of terminals derivable
from C be χ, and the number of occurrences of the symbol C in the derivation of an architecture be c.
The number of possible strings we can obtain from just the C symbols thus grows as O(χc). Secondly,
the brackets we introduced can, in our original CFG, themselves be derived into terminal symbols for
branching, aggregation and routing functions via {B, A, P, R}. Let the maximum number of terminals
derivable from any of these be β. We already know that the number of balanced brackets is m, meaning
the total number of terminals coming from these is 2m. Therefore, the number of architecture strings
in Sn grows as

O(4m ·β2m ·χc), (48)

where m is the combined number of branching and routing modules, c is the number of computation
functions, and n = 2m + c. Some architectures will contain many nested branching or routing
functions and be dominated by the first two factors, and some will contain many sequential modules
and computation functions and be dominated by the third.

A.7 Comparison to Other Search Spaces

In Table 4 we compare einspace to other popular search spaces in the literature along several axes.
We highlight some of the most important differences here:

• einspace uniquely unifies multiple architectural families (ConvNets, Transformers, MLP-
only) into one single expressive space while the CFG-based framework of Schrodi et al. [46]
has variations of spaces centred around ConvNets only, and a separate instantiation focusing
only on Transformers.

• einspace extends to probabilistic CFGs. This enables a set of benefits that include (i)
allowing experts to define priors on the search space via probabilities, and (ii) enabling a
broader range of search algorithms that incorporate uncertainty estimates inside the search
itself.

• einspace contains recursive production rules (e.g. M → MM), meaning the same rule can
be expanded over and over again, providing an infinite space and a very high flexibility in
macro structures. In contrast, [46] instead focuses on fixed hierarchical levels that limits the
macro structure to a predefined—though very large—set of choices.

• einspace encodes architectures in the form of derivation trees. These allow for mutations that
can effectively alter both the macro structure and the individual components of an architecture.
Modifications of this class are more difficult if using e.g. the more rigid graph encodings.

Overall, we highlight that our experimental search results on einspace are competitive with previous
work, even with far weaker priors on the search space.
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Table 4: Comparison of einspace with existing search spaces. RS: random search, RE: regularised
evolution, RL: reinforcement learning, BO: Bayesian optimisation and GB: gradient-based. ‡ The
size of einspace is infinite, but we can bound the number of possible architectures strings of a certain
length, as discussed in Section A.6. † Gradient-based search is difficult in these spaces due to their size,
but other weight-sharing methods may be available. * The paper introducing hNASBench201 [46] also
considers versions of the search space for Transformer language models.

Search Space Properties Available Search Strategies
Type Size Focus RS RE RL BO GB

einspace PCFG Infinite‡ ConvNets, Transformers, MLP-only ✓ ✓ ✓ ✓ †
hNASBench201 CFG 10446 ConvNets* ✓ ✓ ✓ ✓ †
NASBench201 Cell 104 ConvNets ✓ ✓ ✓ ✓ ✓
NASBench101 Cell 105 ConvNets ✓ ✓ ✓ ✓ ✓
DARTS Cell 1018 ConvNets ✓ ✓ ✓ ✓ ✓

B Implementation and Experimental Details

B.1 Networks

Baseline networks
We use convolutional baselines of ResNet18 [19] and WideResNet-16-4 [64]. Both stems use a 3×3
convolution instead of the standard 7×7 as most input shapes in the datasets we use are small. The
former contains a max-pooling layer in the stem, which for simplicity we decide to not represent in
our search space. Instead we modify the pooling operation and replace it with a 3×3 convolution
with stride 2. This has been shown to be equally powerful [49] and in our experiments we find that it
performs similarly. Our ViT model is a small 4-layer network with a patch size of 4, model width of
512, and 4 heads. The MLP-Mixer shares the same patch embedding stem with a patch size of 4. It has
8 layers and, similarly, a model width of 512. The channel mixer expands the dimension by 4 and the
token mixer cuts it in half. The models have the following number of parameters (given an input image
of shape [3, 64, 64]): Resnet18: 11.2M, WRN16-4: 2.8M, ViT: 4.4M and MLP-Mixer: 6.5M.

Network head
Every network that is instantiated contains a few common operations. For classification tasks, the
network head takes the following form: the output features of the sampled backbone are reduced to
their channel dimension via reduce(x, ‘B C H W -> B C’, ‘mean’)4 or reduce(x, ‘B C H ->
B C’, ‘mean’), depending on if the input features x are in Im or Col mode. Second, a final linear
layer that maps the channel dimension to the target dimension (i.e., the number of classes) is appended.
For dense prediction tasks: the head contains an adaptive average pooling layer that upsamples the
two final dimensions of the backbone features to the target image size. If the features are in the Col
mode, we insert a new dimension after the batch size. Then regardless of mode, a linear layer adjusts
the number of channels to the target channel number.

Network training
Each network is trained and evaluated separately with no weight sharing. During the search phase we
minimise the loss on a train split and compute the validation metric on a validation set. To evaluate the
final chosen module, we retrain on train+val splits and evaluate on test. To speed up our experiments,
the inner loop optimisation of architectures uses fewer epochs compared to the evaluation phase. All
networks are trained using the SGD optimizer with momentum of 0.9. The values for learning rate,
weight decay, batch size and more can be found in Table 5.

B.2 Datasets

Our experimental evaluation covers 19 different datasets, with sizes ranging from thousands of data
points, to a million (Satellite from NASBench360), and spatial resolutions of up to 256×256 (Cosmic
from NASBench360). In this section we briefly describe these parts in detail.

We followed the official instructions of Unseen NAS [16] to setup the datasets. Descriptions of each
dataset follow:

4The notation used here comes from the Python package einops [44], which implements a reduce function.
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Table 5: Hyperparameters for each dataset, taken from Geada et al. [16] for Unseen NAS and Tu et al.
[55] for NASBench360. We set the number of search epochs to be one eighth of the evaluation epochs
to speed up the search stage without significantly compromising on signal quality. For the Unseen
NAS datasets (top set) we report the accuracy across all datasets. For NASBench360 (second set) and
CIFAR10 (bottom), the metrics differ and we report the 0-1 error instead of accuracy to align with the
other metrics focused on error minimisation.

Dataset Metric Baseline Epochs Epochs Batch Learning Weight Mom-
name type model (search) (eval) size rate decay entum

AddNIST Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
Language Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
MultNIST Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
CIFARTile Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
Gutenberg Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
Isabella Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
GeoClassing Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
Chesseract Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9

CIFAR100 0-1 error WRN16-4 25 200 128 0.1 5×10−4 0.9
Spherical 0-1 error WRN16-4 25 200 128 0.1 5×10−4 0.9
NinaPro 0-1 error WRN16-4 25 200 128 0.1 5×10−4 0.9
FSD50K 1 - mAP WRN16-4 25 200 256 0.1 5×10−4 0.9
Darcy Flow relative ℓ2 WRN16-4 25 200 4 0.001 5×10−4 0.9
PSICOV MAE8 WRN16-4 25 200 8 0.001 5×10−4 0.9
Cosmic 1 - AUROC WRN16-4 25 200 8 0.001 5×10−4 0.9
ECG 1 - F1 WRN16-4 25 200 256 0.1 5×10−4 0.9
Satellite 0-1 error WRN16-4 25 200 4096 0.1 5×10−4 0.9
Deepsea 1 - AUROC WRN16-4 25 200 256 0.1 5×10−4 0.9

CIFAR10 0-1 error WRN16-4 25 200 128 0.1 5×10−4 0.9

AddNIST
This dataset is derived from the MNIST dataset. Specifically, each RGB image is computed by
stacking three MNIST images in the channel dimension. Each image has the shape 3×28×28. It
has a total of 20 categories; the class label is computed by summing the MNIST labels in all three
channels. Among the 70,000 images, 45,000 are used for training, 15,000 are used for validation,
and 10,000 images are used for testing.

Language
Language consists of six-letter words extracted from dictionaries of ten Latin alphabet languages:
English, Dutch, German, Spanish, French, Portuguese, Swedish, Zulu, Swahili, and Finnish. Words
containing diacritics or the letters ‘y’ and ‘z’ are excluded, making an alphabet of 24 letters. Each
sample consists of four words encoded into a binary image of shape 1×24×24. The task is to
predict the language of the sample. Along the y-axis are the letter positions in the concatenated
24-letter string, and along the x-axis are the letters in the alphabet. As an example, a one in the
position (0, 0) indicates that the first letter in the string is an ‘a’. The dataset is split into 50,000
training samples, 10,000 validation samples, and 10,000 test samples.

MultNIST
MultNIST is a dataset designed similarly to AddNIST, originating from the same research objective.
Each channel of the 3 channel images contains an image from the MNIST dataset. Each image has
the shape 3×28×28. The dataset is divided into 50,000 training images, 10,000 validation images,
and 10,000 test images. Unlike AddNIST, MultNIST comprises ten classes (0-9), the label for each
MultNIST image is computed using the formula l=(r×g×b)mod10, where r, g and b are the
MNIST labels of the red, green, and blue channels, respectively.

CIFARTile
CIFARTile is a dataset where each image is a composite of four CIFAR-10 images arranged in a
2×2 grid, making each sample an image of shape 3×64×64. The dataset is divided into 45,000
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training images, 15,000 validation images, and 10,000 test images. CIFARTile has four classes
(0-3), determined by the number of distinct CIFAR-10 classes in each grid, minus one.

Gutenberg
Gutenberg is a dataset sourced from Project Gutenberg. It includes texts from six authors, with
basic text preprocessing applied: punctuation removal, diacritic conversion, and elimination of
structural words. The dataset contains consecutive sequences of three words (3-6 letters each),
padded to 6 characters and concatenated into 18-character strings. These strings are converted
into images with size 1×27×18, with the x-axis representing character positions and the y-axis
representing alphabetical letters or spaces. The task is to predict the author of each sequence. The
dataset is split into 45,000 training, 15,000 validation, and 6,000 test images.

Isabella
Isabella is a dataset derived from musical recordings of the Isabella Stewart Gardner Museum,
Boston. It includes four classes based on the era of composition: Baroque, Classical, Romantic,
and 20th Century. The recordings are split into five-second snippets and converted into 64-band
spectrograms, resulting in images with dimensions 1× 64× 128. The dataset is divided into
50,000 training images, 10,000 validation images, and 10,000 test images, ensuring no overlap of
recordings across splits. The task is to predict the era of composition from the spectrogram.

GeoClassing
GeoClassing is based on the BigEarthNet dataset. It uses satellite images initially labeled for
ground-cover classification but reclassified by the European country they depict. The dataset
includes ten classes: Austria, Belgium, Finland, Ireland, Kosovo, Lithuania, Luxembourg, Portugal,
Serbia, and Switzerland. Each image is of size 3×64×64. The dataset is split into 43,821 training
images, 8,758 validation images, and 8,751 test images. The task is to predict the country depicted
in each image based on topology and ground coverage.

Chesseract
Chesseract is a dataset derived from public chess games of eight grandmasters. The dataset consists
of the final 15% of board states from these games. Each position is one-hot encoded by piece type
and color, resulting in 1×8×8 images. The dataset is divided into 49,998 training images, 9,999
validation images, and 9,999 test images, ensuring no positions from the same game appear across
splits. Each image is classified into one of three classes: White wins, Draw, or Black wins. The
task is to predict the game’s result based on the given board position. We pad the input with 5
zero-valued pixels to make a 12×18×18 tensor.

We follow the official instructions of NASBench360 [55] to setup the datasets. Dataset descriptions
follow:

CIFAR100
CIFAR100 is a widely known image classification dataset with 100 fine-grained classes. Each image
is of size 3×32×32. The dataset is split into 40,000 training, 10,000 validation and 10,000 testing
images. We preprocess the images by applying random crops, horizontal flips, and normalisation.

Spherical
Spherical dataset consists on classifying spherically projected CIFAR100 images. Specifically,
CIFAR images are projected to the northern hemisphere with a random rotation. Each image is of
size 3×60×60. Spherical dataset uses the same split ratios as CIFAR100. In this case, there is no
data augmentation nor pre-processing steps.

NinaPro
NinaPro is a dataset for classifying hand gestures given their electromyography signals. EMG
data signals are collected with two Myo armbands as wave signals. Wave signals, along with their
wavelength and frequency, are processed 2D signals of shape 1×16×52. There are 18 classes,
which are heavily imbalanced, with the neutral position amounting for 65% of all gestures. The
dataset is split into 2,638 training samples, 659 validation samples, and 659 testing samples. No
further data augmentation is applied.

FSD50K
Freesound Dataset 50k (FSD50K) is a collection of 51,197 sound clips, categorised into 200
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categories, where each clip can receive multiple labels. The task is to classify the sound event from
its log-mel spectrogram, and the performance is computed via the mean average precision (mAP).
We resample the raw audio files at a frequency of 22,050 Hz and convert them into 96-band log-mel
spectrograms. From these longer audio files, we extract shorter, overlapping 1-second segments,
resulting in an input size of 1×101×96. During training, one randomly-selected segment per clip
is used, rather than all segments. Background noise is added to 75% of the training data as part of
data augmentation. The validation set consists of 4,170 clips and the test set of 10,231 clips.

Darcy Flow
Darcy Flow is a regression task for predicting the solution of a 2D PDE at a predefined later stage
given some 2D initial conditions. The input is a 1×85×85 image describing the initial state of
the fluid. The output should match the same dimensions. The dataset is split into 900 images for
training, 100 for validation, and 100 for test. Input data is normalised.

PSICOV
This dataset concerns the use of neural networks in the protein folding prediction pipeline. It uses
proteins from one source, DeepCov, for training and validation. DeepCov contains 3,456 proteins
each with shape 57×128×128. The validation set consists of 100 proteins, with the rest used
for training. The test set comes from another source, PSICOV, with 150 proteins. These proteins
come in features of a different shape, 1×512×512. Due to this, the evaluated network takes each
non-overlapping 1×128×128 patch as input. The labels represent pairwise distances between
residues. The evaluation metric is mean absolute error (MAE) computed on distances below 8Å,
denoted as MAE8.

Cosmic
Cosmic contains images from the F435W filter collected from the Hubble Space Telescope. It aims
to identify cosmic rays (corrupted pixels) in the images. Inputs are images of 1×256×256, and
outputs are pixel binary predictions (artifact vs. no-artifact). The dataset is split into 4,347 images
for training, 483 for validation, and 420 for test.

ECG
The ECG task concerns predicting irregularities in electrocardiograms. ECG recordings of 9-60
seconds are sampled at 300 Hz and labeled using four classes: normal, disease, other, or noisy
rhythms. We process each recording with a fixed sliding window of 1,000 ms and stride of 500 ms.
This transforms 2,186 single lead recordings into more than 330,000 segments. We use 261,740 of
these for training, 33,281 for validation, and 33,494 for test. Each segment has the shape 1×1,000.
The evaluation metric is the F1-score.

Satellite
The goal of the Satellite task is to classify land cover maps for geo-surveying, for one million data
points across 24 categories. Each data point is a single-channel satellite time-series of shape 1×46,
with standard normalisation augmentation applied. The data is split with 800,000 samples for the
training set, 100,000 for validation, and 100,000 for test.

Deepsea
This dataset focuses on predicting the behaviour of chromatin proteins to aid in understanding
genetic diseases. Each data point is a genome sequence of 1,000-base pairs (A, C, T or G),
represented as a binary matrix of shape 1000× 4, categorised across 36 classes of chromatin
features. The training set contains 71,753 data points, with 2,490 for validation and 149,400 for
testing. The evaluation metric is the area under the receiver operating characteristic (AUROC).

Finally, we also report results on the classic CIFAR10 dataset:

CIFAR10
CIFAR10 is a widely known image classification dataset with 10 classes. Each image is of size
3×32×32. The dataset is split into 40,000 training, 10,000 validation and 10,000 testing images.
We preprocess the images by applying random crops, horizontal flips, and normalisation.

B.3 Compute Resources

All our experiments ran on our two internal clusters with the following infrastructure:
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Table 6: Lower is better. Our results on NASBench360 [55], where we report errors across all datasets
as described in Table 5. We compare to the results from [55], where the GAEA algorithm on the
DARTS search space is used, along with a human-designed expert architecture per dataset (Expert).
RE(WRN) refers to initialising the regularised evolution search algorithm with the WideResNet16-4
(WRN) architecture. Note that we could not reproduce some baseline WRN performances in our code.
We have therefore reported both the WRN from NB360 and our own WRN results. We use our own
results for computing average ranks. Best and second best performance per dataset (excluding WRN
from NB360).

WRN
NB360

WRN
ours

GAEA
DARTS Expert RE(WRN)

einspace

CIFAR100 23.35 25.61 24.02 19.39 21.47
Spherical 85.77 76.32 48.23 67.41 66.37
NinaPro 6.78 10.32 17.67 8.73 6.37
FSD50K 0.92 0.92 0.94 0.62 0.65
Darcy Flow 0.073 0.032 0.026 0.008 0.014
PSICOV 3.84 5.71 2.94 3.35 4.38
Cosmic 0.245 0.245 0.229 0.127 0.730
ECG 0.43 0.59 0.34 0.28 0.46
Satellite 15.49 15.29 12.51 19.80 12.55
DeepSea 0.40 0.45 0.36 0.30 0.36

Average rank ↓ - 3.60 2.35 1.70 2.35

Table 7: Higher is better. Accuracies for searches with DenseNet121 as well as finetuning pretrained
networks on the Unseen NAS benchmark. First two column are the baseline performances of training
ResNet18 and DenseNet121 from scratch. Next two columns are results when initialising our regu-
larised evolution with ResNet18 and DenseNet121. Final two columns are results when finetuning
ResNet18 and EfficientNet-B0 from their pretrained ImageNet weights.

RE Finetuning
RN18 DN121 RN18 DN18 RN18 ENB0

AddNIST 93.36 94.72 97.54 94.84 94.69 94.77
Language 92.16 91.27 96.84 98.39 90.31 90.62
MultNIST 91.36 92.58 96.37 94.86 91.12 91.90
CIFARTile 47.13 56.37 60.65 66.06 52.26 79.32
Gutenberg 43.32 42.97 54.02 47.23 42.52 42.08
Isabella 63.65 43.65 64.30 42.89 62.35 67.46
GeoClassing 90.08 92.20 95.31 94.33 90.70 95.81
Chesseract 59.35 61.72 60.31 61.64 61.29 62.24

Average acc. ↑ 72.55 71.94 78.17 75.03 73.16 78.02

• AMD EPYC 7552 48-Core Processor with 1000GB RAM and 8× NVIDIA RTX A5500 with
24GB of memory

• AMD EPYC 7452 32-Core Processor with 400GB RAM and 7× NVIDIA A100 with 40GB
of memory

Each experiment used a single GPU to train each architecture. Running 1000 iterations of RE(Scratch)
on the quickest datasets (Language and Chesseract) took around 2 days, while the slowest (GeoClassing)
took 4 days. We had very similar training times for RE(RN18) and RE(Mix) which ran for 500 iterations.

C Additional Results

C.1 NASBench360

We test einspace on the diverse NASBench360 [55] to further showcase its potential. These results
can be found in Table 6. In this setting the baseline network is a WideResNet16-4 (WRN)—which is
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Table 8: Lower is better. Performance on CIFAR10 as measured by the 0-1 error.

RN18 RE(RN18) RE(Mix)

CIFAR10 5.09 4.69 5.27

Table 9: Runtime of search algorithms, as well as the number of model parameters for the found
architectures. Numbers for PC-DARTS on two datasets are missing due to missing logs from the
authors of [16]. RE on einspace is the RE(Mix) variant, while RE on hNASBench201 searches from
scratch.

AddNIST Language MultNIST CIFARTile Gutenberg Isabella GeoClassing Chesseract

ru
nt

im
e

(h
ou

rs
) DrNAS 10 9 11 25 13 59 23 10

PC-DARTS 4 - 5 12 9 30 - 2
RE(hNB201) 15 72 21 59 9 59 37 9
RE(einspace) 55 71 32 62 42 80 65 42

#p
ar

am
s

(×
1
06

) DrNAS 4 4 5 3 3 4 4 4
PC-DARTS 3 - 3 3 2 2 - 2
RE(hNB201) 1 1 1 3 1 1 1 1
RE(einspace) 20 1 25 5 1 5 4 11

adapted for the 1D tasks ECG, Satellite and Deepsea as in [55]. We see that our regularised evolution
with the baseline as the initial seed, RE(WRN), again consistently finds architectural improvements. It
matches the performance of the GAEA search strategy on the DARTS search space, achieving the same
average rank. On NinaPro, it even beats the Expert architecture, specifically designed for this task and
to the best of our knowledge sets a new state-of-the-art. Note that we fail to exactly reproduce the WRN
baseline network performance on several tasks, so we report both our own WRN values along with
those from [55].

C.2 More Baseline Architectures

We explore another baseline architecture, DenseNet121, and use it as the initial seed to our evolutionary
search in einspace. In Table 7, we can see that the DenseNet121 on its own performs comparably to
the ResNet18 model. When seeding search from the model with RE(DN121), we observe performance
boosts similar to the gaps found between RN18 and RE(RN18), highlighting the general applicability
of initialising search from different architectures within einspace.

C.3 Finetuning

We present further results comparing our method against finetuning a model from pre-trained weights.
In the experiments presented in Table 7, a finetuned EfficientNet-B0 matches or beats the ResNet18
baseline on the Unseen NAS datasets. However, RE(Mix) on einspace still often outperforms this
method, e.g. on Gutenberg by 12%, although finetuning dominates on the CIFARTile vision task.

C.4 CIFAR10

To complete our evaluation on common NAS benchmarks, we also report results on the CIFAR10
dataset in Table 8.

C.5 Runtime and Parameter Count

Table 9 summarises the runtimes and parameter counts of architectures found using DrNAS, PC-
DARTS, and RE on hNASBench201 and einspace. Notably, the gradient-based DrNAS and PC-
DARTS demonstrate significantly shorter runtimes, with DrNAS achieving search times between 10 to
25 hours and PC-DARTS between 4 to 12 hours. In contrast, the black-box evolutionary methods show
substantially longer runtimes, ranging from 9 to 80 hours, as they independently train a large number
of networks. The search times for einspace are comparable to those for hNASBench201, though due
to the potential increased complexity in candidate architectures, they can sometimes be significantly
longer. In terms of model parameters, DrNAS and PC-DARTS consistently produce architectures
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Table 10: The distribution of terminal and nonterminal symbols as well as average branching factors in
2000 sampled architectures with varying values for the computation module probability p(M→C |M).
For probability values 0.2 and 0.1 there is no data, as the sampling process is too time-consuming.

Type p(M→C |M) Min Mean Median Std Max

te
rm

in
al

s

0.9 2 3.87 3.00 2.84 28
0.8 2 5.34 4.00 6.32 54
0.7 2 6.72 4.00 11.22 118
0.6 2 8.65 4.00 16.73 202
0.5 2 40.22 5.00 303.65 4779
0.4 2 100.15 8.00 749.61 12026
0.3 2 6070.77 9.00 64863.45 878122

no
n-

te
rm

in
al

s

0.9 2 3.63 3.00 3.45 42
0.8 2 5.04 3.00 6.91 64
0.7 2 6.00 3.00 9.21 81
0.6 2 7.74 4.00 13.61 165
0.5 2 39.03 5.00 325.18 5219
0.4 2 88.58 8.00 649.44 10417
0.3 2 4588.13 8.00 50203.87 734497

br
an

ch
in

g
fa

ct
or

0.9 1 1.75 1.00 1.63 7.61
0.8 1 2.05 1.00 1.95 7.73
0.7 1 2.05 1.00 1.91 7.83
0.6 1 2.17 1.00 1.96 7.73
0.5 1 2.34 1.00 2.00 7.88
0.4 1 2.81 1.75 2.14 7.87
0.3 1 2.80 1.75 2.13 7.96

with parameter counts around 4 million, hNASBench201 is consistently more parameter efficient at
around 1M, while einspace finds architectures that vary significantly in size from 1M–25M, showing
flexibility in adaptation to task difficulty.

C.6 Empirical Architecture Complexity

For our experiments we set the computation module probability to p(M → C | M) = 0.32 using
the branching rate method described in A.4. We next report empirical results for the architecture
complexities as we vary this value. In Table 10 we can see that the complexity, as measured by the
count of terminals and non-terminals in the derivation trees, grows as the probability decreases.

When searching for an architecture on a new unknown task, the flexibility of the search space is key.
During our random searching on einspacewe found that we sampled networks with parameter counts
ranging from zero up to 1 billion, and from as few as two operations up to as many as 3,000. The
frequency of all functions in einspace that appear in these networks can be found in Figure 7.
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Figure 7: Frequency of each module/function in 8,000 sampled architectures with p(M→C |M)=0.32.
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Figure 8: The top architectures found by RE(Mix) in einspace on Unseen NAS. From left to right, row
by row: AddNIST, Language; MultNIST, CIFARTile; Gutenberg, Isabella; GeoClassing, Chesseract.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer:[Yes]
Justification: The main contribution is our search space— einspace—which is described in
detail in the paper, and can be explored using the code we have provided. We have claimed
competitive results on the Unseen NAS datasets with our space using simple search algorithms
which can be verified in Table 1. We have included aspirational goals as motivation, and made
it clear that we believe this work is a step towards achieving them.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a dedicated Limitations section in our paper. Please see Section 5 for
more details.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not present any theoretical proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide implementation and experimental details in Appendix B. We also
submit our codebase together with the paper. The codebase includes all configuration files to
reproduce our results on Unseen NAS (Tab. 1) and NASBench360 (Tab. 6). It also includes
detailed instructions on how to set up the environment and datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
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way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We submit our codebase together with the paper for reviewers to check our
results. The codebase includes all configuration files to reproduce our results on Unseen NAS
(Tab. 1) and NASBench360 (Tab. 6). It also includes detailed instructions on how to set up the
environment and datasets. We will make our codebase publicly available on acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a detailed description of the experimental settings in Appendix B.
We also submit the codebase, from which readers can find all the settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Unfortunately, the computational expense for running multiple runs of each
experiment was too large. We focused on breadth of tasks instead of repeated runs on the
same task.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: In Appendix B.3 we give information on computer workers, memory and time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics, and confirm that the research conducted
conforms with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]
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Justification: This is foundational research which is application agnostic.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer:[NA]
Justification: This is foundational research which is application agnostic.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer:[Yes]
Justification: This work uses existing datasets and the work corresponding to these datasets is
cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For commmon datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Well-documented code is provided. Please see our answer to Question 5 of the
checklist.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA]
Justification: The research does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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