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Abstract
Real-world applications of reinforcement learning often involve environments
where agents operate on complex, high-dimensional observations, but the
underlying (“latent”) dynamics are comparatively simple. However, outside
of restrictive settings such as small latent spaces, the fundamental statistical
requirements and algorithmic principles for reinforcement learning under latent
dynamics are poorly understood.

This paper addresses the question of reinforcement learning under general latent
dynamics from a statistical and algorithmic perspective. On the statistical side,
our main negative result shows that most well-studied settings for reinforcement
learning with function approximation become intractable when composed
with rich observations; we complement this with a positive result, identifying
latent pushforward coverability as a general condition that enables statistical
tractability. Algorithmically, we develop provably efficient observable-to-latent
reductions—that is, reductions that transform an arbitrary algorithm for the latent
MDP into an algorithm that can operate on rich observations—in two settings:
one where the agent has access to hindsight observations of the latent dynamics
[LADZ23], and one where the agent can estimate self-predictive latent models
[SAGHCB20]. Together, our results serve as a first step toward a unified statistical
and algorithmic theory for reinforcement learning under latent dynamics.

1 Introduction
Many application domains for reinforcement learning (RL) require the agent to operate on rich,
high-dimensional observations of the environment, such as images or text [WSD15; LFDA16;
KFPM21; NRKFG22; Bak+22; Bro+22]. However, the environment itself can often be summarized
by latent dynamics for a low-dimensional or otherwise simple latent state space. The decoupling
of latent dynamics from the complex observation process naturally suggests a modular framework
for algorithm design: first learn a representation that decodes the latent state from observations, then
apply a reinforcement learning algorithm for the latent dynamics on top of the learned representation.
This paper investigates the algorithmic and statistical foundations of this framework. We ask: Can
we take existing algorithms and sample complexity guarantees for reinforcement learning in the
latent state space and lift them to the observation space in a modular fashion?

There is a growing body of theoretical and empirical work developing algorithms that combine
representation learning and reinforcement learning to develop scalable algorithms. On the empirical
side, a plethora of representation learning objectives have been deployed to varying degrees of
success [PAED17; Tan+17; ZMCGL21; LSA20; YFK21; Lam+24; Guo+22; HPBL23], but we lack
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a mathematical framework to systematically compare these objectives and understand when one
might be preferred to another. On the theoretical side, all existing approaches suffer from three
primary drawbacks: (a) they are tailored to restricted classes of latent dynamics models (tabular
MDPs [KAL16; DKJADL19; MHKL20; ZSUWAS22; MFR23], LQR [DR21; Mha+20], or factored
MDPs [MLJL21]), limiting generality; (b) the analyses, despite focusing on restrictive settings, are
unwieldy, limiting progress in algorithm development; and (c) they are not modular, in the sense
that the representation learning procedures are specialized to specific choices of latent reinforcement
learning algorithm, limiting ease of use.

1.1 Contributions
We address the aforementioned limitations by introducing a new framework, reinforcement learning
under general latent dynamics.

Reinforcement learning under general latent dynamics (Section 2). In our framework, the agent
performs control based on high-dimensional observations, but the dynamics of the environment are
governed by an unobserved latent state space. Following prior work (particularly the so-called Block
MDP formulation [DKJADL19]), we assume that the latent states can be uniquely decoded from
observations, but that the true decoder is unknown and must be learned. To aid in the decoding
process, we supply the learner with a class of representations that is realizable in the sense that it is
powerful enough to represent the true decoder. Our point of departure from prior theoretical works is
that we do not assume specific structure (e.g., tabular or linear dynamics) on the Markov decision
process (MDP) that governs the latent dynamics. Instead, we make the minimal assumption that the
latent dynamics belong to a base MDP class which is statistically tractable, in the sense that when
the latent states are directly observed there exists some reinforcement learning algorithm with low
sample complexity that is capable of learning a near-optimal policy for every MDP in the class. We
take the first steps toward building a unified and modular theory for reinforcement learning in this
setting.

Contributions: Statistical modularity (Section 3). A central consideration for reinforcement
learning under latent dynamics is that representation learning and exploration must be intertwined:
an accurate decoder is required to explore the latent state space, but exploration is required to learn
an accurate decoder. To develop provable sample complexity guarantees, one must prevent errors
from compounding during this interleaving process, a challenging statistical problem which prior
work addresses through strong structural assumptions on the base MDP [KAL16; DKJADL19;
MHKL20; ZSUWAS22; MFR23; DR21; Mha+20; MLJL21]. For the general latent-dynamics setting
we consider, it is unclear whether similar techniques can be applied, or whether the setting is even
statistically tractable, ignoring computational considerations. Thus, our first contribution considers
the question of statistical modularity:2

If a base MDP class is tractable when observed directly, is the corresponding latent-dynamics
problem tractable?

Statistical modularity adopts a minimax perspective by assuming that the base MDP lies in a given
class, and demands that the sample complexity of the latent-dynamics setting is controlled by a
natural bound on the sample complexity of the base MDP class. We show, perhaps surprisingly,
that most well-studied reinforcement learning settings involving function approximation [RVR13;
JKALS17; SJKAL19; MJTS20; AJSWY20; Li09; DVRZ19; WSY20; ZGS21; Du+21; JLM21;
FKQR21] do not admit statistical modularity (Theorem 3.1). In other words, statistical tractability
of an MDP class does not extend to the latent-dynamics setting. We complement these negative
findings with a positive result, identifying pushforward coverability as a general structural condition
on the latent dynamics that enables sample efficiency (Theorem 3.2).

Contributions: Algorithmic modularity (Section 4). Beyond developing a modular understanding
of the statistical landscape, we investigate modular algorithm design principles for RL under general
latent dynamics. Specifically, we consider the question of observable-to-latent reductions, whereby
RL under latent dynamics can be reduced to the simpler problem of RL with latent states directly
observed:

Can we generically lift algorithms for a base MDP class to solve the corresponding latent-dynamics
problem?

2This question and associated definitions are restated formally in Section 3.1.

2



This property, which we refer to as algorithmic modularity, enables modular, greatly simplified
algorithm design, allowing one to use an arbitrary base algorithm for the base MDP class to solve the
corresponding latent-dynamics problem. Algorithmic modularity is a stronger property than mere
statistical modularity, and thus is subject to our statistical lower bound. Accordingly, we consider two
settings that sidestep the lower bound through additional feedback and modeling assumptions. Our
first algorithmic result considers hindsight observability [LADZ23], where latent states are revealed
during training, but not at deployment (Theorem 4.1). Our second considers stronger function
approximation conditions that enable the estimation of self-predictive latent models [SAGHCB20]
through representation learning (Theorem A.1). Both results are fully modular: they transform
any sample-efficient algorithm for the base MDP class into a sample-efficient algorithm for the
latent-dynamics setting. Thus, they constitute the first general-purpose algorithms for RL under
latent dynamics.

Together, we believe our results can serve as a foundation for further development of practical,
general-purpose algorithms for RL under latent dynamics. To this end, we highlight a number of
fascinating and challenging open problems for future research (Section 5).

2 Reinforcement Learning under General Latent Dynamics

In this section we formally introduce our framework, reinforcement learning under general latent
dynamics.

MDP preliminaries. We consider an episodic finite-horizon online reinforcement learn-
ing setting. With H denoting the horizon, a Markov decision process (MDP) M⋆ ={
X ,A, {P ⋆h}Hh=0, {R⋆h}Hh=1, H

}
consists of a state space X , an action spaceA, a reward distribution

R⋆h : X ×A → ∆([0, 1]) (with expectation r⋆h(x, a)), and a transition kernel P ⋆h : X ×A → ∆(X )
(with the convention that P ⋆0 (· | ∅) is the initial state distribution).3

At the beginning of the episode, the learner selects a randomized, non-stationary policy π =
(π1, . . . , πH), where πh : X → ∆(A); we let Πrns denote the set of all such policies. The episode
evolves through the following process; beginning from x1 ∼ P ⋆0 (· | ∅), the MDP generates a trajec-
tory (x1, a1, r1), . . . , (xH , aH , rH) via ah ∼ πh(xh), rh ∼ R⋆h(xh, ah), and xh+1 ∼ P ⋆h (· | xh, ah).
We let PM⋆,π denote the law under this process, and let EM⋆,π denote the corresponding expectation,
and likewise let PM,π and EM,π denote the analogous laws and expectations in another MDP M . We
assume that

∑H
h=1 rh ∈ [0, 1] almost surely for any trajectory in M⋆.

For a policy π and MDP M , the expected reward for π is given by JM(π) := EM,π
[∑H

h=1 rh
]
,

and the value functions are given by V M,π
h (x) := EM,π

[∑H
h′=h rh′ | xh = x

]
, and

QM,π
h (x, a) := EM,π

[∑H
h′=h rh′ | xh = x, ah = a

]
. We let πM = {πM,h}Hh=1 denote an

optimal deterministic policy of M , which maximizes V M,π (over π) at all states (and in particular,
satisfies πM ∈ argmaxπ∈Πrns

JM(π)), and write QM,⋆ := QM,πM . For f : X × A → R, we
write πf (x) := argmaxa f(x, a) as well as Vf (x) = maxa f(x, a). For MDP M , horizon
h ∈ [H], and g : X → R, we let T Mh denote the Bellman (optimality) operator defined
via [T Mh g](x, a) = EM [rh + g(xh+1) | xh = x, ah = a], and we overload notation by letting
[T Mh f ](x, a) = [T Mh Vf ](x, a). We also let T M,πh denote the Bellman evaluation operator
defined via [T M,πh f ](x, a) = EM

[
rh + Ea′∼πh+1(·|xh+1)[f(xh+1, a

′)] | xh = x, ah = a
]
, for any

π ∈ Πrns. We define the occupancy measures for layer h via dM,πh (x) = PM,π[xh = x] and
dM,πh (x, a) = PM,π[xh = x, ah = a].

Online reinforcement learning. In online reinforcement learning, the learning algorithm ALG
repeatedly interacts with an unknown MDP M⋆ by executing a policy and observing the resulting
trajectory. After T rounds of interaction, the algorithm outputs a final policy π̂, with the goal of
minimizing their risk, defined via

Risk(T,ALG,M⋆) := JM
⋆
(πM⋆)− JM

⋆
(π̂). (1)

3To simplify presentation, we assume that X and A are countable; our results extend to handle continuous
variables with an appropriate measure-theoretic treatment.
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Framework: Reinforcement learning under general latent dynamics. In reinforcement learning
under general latent dynamics, we consider MDPsM⋆ where the dynamics are governed by the evolu-
tion of an unobserved latent state sh, while the agent observes and acts on observations xh generated
from these latent states. Formally, a latent-dynamics MDP consists of two ingredients: a base MDP
Mlat = {S,A, {Plat,h}Hh=0, {Rlat,h}Hh=1, H} defined over a latent state space S, and a decodable
emission process ψ := {ψh : S → ∆(X )}Hh=1, which maps each latent state to a distribution over
observations. The former is an arbitrary MDP defined over S, while the latter is defined as follows.

Definition 2.1 (Emission process). An emission process is any function ψ := {ψh : S → ∆(X )}Hh=1,
and is said to be decodable if

∀h,∀s′ ̸= s ∈ S : suppψh(s) ∩ suppψh(s
′) = ∅. . (2)

When ψ = {ψh}Hh=1 is decodable, we let ψ−1 := {ψ−1
h : X → S}Hh=1 denote the associated decoder.

With this, we can formally introduce the notion of a latent-dynamics MDP.

Definition 2.2 (Latent-dynamics MDP). For a base MDP Mlat =
{S,A, {Plat,h}Hh=0, {Rlat,h}Hh=1, H}, and a decodable emission process ψ, the latent-dynamics
MDP ⟪Mlat, ψ⟫ :=

{
X ,A, {Pobs,h}Hh=0, {Robs,h}Hh=1, H

}
is defined as the MDP where the latent

dynamics evolve based on the agent’s action ah ∈ A via the process sh+1 ∼ Plat,h(sh, ah) and
rh ∼ Rlat,h(sh, ah). The latent state is not observed directly, and instead the agent observes
xh ∈ X generated by the emission process xh ∼ ψh+1(sh).4

Note that under these dynamics, the decoder ψ−1 associated with ψ ensures that ψ−1
h (xh) = sh

almost surely for all h ∈ [H]. That is, the latent states can be uniquely decoded from the observations.
To emphasize the distinction between the latent-dynamics MDP ⟪Mlat, ψ⟫ (which operates on the
observable state space X ) and the MDP Mlat (which operates on the latent state space S), we refer
to the latter as a base MDP rather than, for example, a “latent MDP”, and apply a similar convention
to other latent objects whenever possible.5

Departing from prior work, we do not place any inherent restrictions on the base MDP, and in
particular do not assume that the latent space is small (i.e., tabular). Rather, we aim to understand—in
a unified fashion—what structural assumptions on the base MDP Mlat are required to enable
learnability under latent dynamics. To this end, it will be useful to considers specific classes (i.e.,
subsets) of base MDPsMlat and the classes of latent-dynamics MDPs they induce.

Definition 2.3 (Latent-dynamics MDP class). Given a set of base MDPsMlat and a set of decoders
Φ ⊂ {X → S}, we let

⟪Mlat,Φ⟫ := {⟪Mlat, ψ⟫ :Mlat ∈Mlat, ψ is decodable, ψ−1 ∈ Φ} (3)
denote the class of induced latent-dynamics MDPs.

Stated another way, ⟪Mlat,Φ⟫ is the set of all latent-dynamics MDPs ⟪Mlat, ψ⟫ where (i) the
base MDP Mlat lies inMlat, and (ii), the emission process ψ is decodable, with the corresponding
decoder belonging to Φ. The class Mlat represents our prior knowledge about the underlying
MDP Mlat; concrete classes considered in prior work include tabular MDPs [KAL16; DKJADL19;
MHKL20; ZSUWAS22; MFR23], linear dynamical systems [DMRY20; DR21; Mha+20], and
factored MDPs [MLJL21]. In particular, the class Mlat may itself warrant using function
approximation. At the same time, the class Φ represents our prior knowledge or inductive bias
about the emission process, enabling representation learning. In what follows, we investigate
what conditions onMlat make the induced class ⟪Mlat,Φ⟫ tractable, both statistically (statistical
modularity; Section 3) and via reduction (algorithmic modularity; Section 4).

3 Statistical Modularity: Positive and Negative Results
This section presents our main statistical results. We begin by formally defining the notion of
statistical modularity introduced in Section 1, present our main impossibility result (lower bound) and
its implications (Section 3.2), then give positive results for the general class of pushforward-coverable
MDPs (Section 3.3).

4Equivalently the dynamics can be described via Robs,h(xh, ah) = Rlat(ψ
−1
h (xh), ah) and Pobs,h(xh+1 |

xh, ah) = Plat,h(ψ
−1
h+1(xh+1) | ψ−1

h (xh), ah) · ψh+1(xh+1 | ψ−1
h+1(xh+1)).

5For example, in Section 4 we will be concerned with reductions from observation-space algorithms to “base
algorithms” that operate on the latent state space.
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3.1 Statistical modularity: A formal definition
We first define the statistical complexity for a MDP class (or, model class)M.

Definition 3.1 (Statistical complexity). We say that an MDP class M can be learned up to ε-
optimality using comp(M, ε, δ) samples if there exists an algorithm ALG which, for every M ∈M,
attains

Risk(T,ALG,M) ≤ ε
with probability at least 1− δ, after T = comp(M, ε, δ) rounds of online interaction in M .

We say that a base MDP classMlat admits statistically modularity if, for any decoder class Φ, the
induced latent-dynamics MDP class ⟪Mlat,Φ⟫ can be learned with statistical complexity that is
polynomial in: (i) the statistical complexity for the base class, and (ii) the capacity of the decoder class.

Definition 3.2 (Statistical modularity). We say the MDP classMlat is statistically modular under
complexity comp(Mlat, ε, δ) if, for every decoder class Φ, we have

comp(⟪Mlat,Φ⟫, ε, δ) = poly(comp(Mlat, ε, δ), log|Φ|). (4)

We say thatMlat admits strong statistical modularity if Eq. (4) holds when comp(Mlat, ε, δ) is the
minimax sample complexity forMlat.

In the sequel, we examine well-studied MDP classesMlat (e.g., those which admit low Bellman
rank [JKALS17]) and choose comp(Mlat, ε, δ) based on natural upper bounds on their optimal
sample complexity; in this case we will simply say they are (or are not) statistical modular, leaving
the complexity upper bound comp implicit. Following prior work [KAL16; DKJADL19; MHKL20;
ZSUWAS22; MFR23; DR21; Mha+20; MLJL21], we use log|Φ| as a proxy for the statistical
complexity of supervised learning with the decoder class Φ.6

The two most notable examples of statistical modularity covered by prior work are: (i) taking
Mlat as the set of tabular MDPs admits strong statistical modularity [DKJADL19; MHKL20;
MFR23], and (ii) takingMlat as the set of linear MDPs admits statistical modularity with complexity
poly(d,H, |A|, ε−1, log

(
δ−1
)
) [AKKS20; UZS22; MCKJA24; MBFR23].7 Interestingly, the latter

does not admit strong statistical modularity, because the optimal rate forMlat does not scale with
|A|, but the rate for ⟪Mlat,Φ⟫ necessarily does [LS20; HLSW21]. The results of Mhammedi et al.;
Misra et al.; Song et al. [Mha+20; MLJL21; SWFK24] can also be viewed as instances of statistical
modularity for other base MDP classes.

3.2 Lower bounds: Impossibility of statistical modularity
Our main result in this section is to show that for most MDP classes Mlat considered in the
literature on sample-efficient reinforcement learning with function approximation [RVR13; JKALS17;
SJKAL19; MJTS20; AJSWY20; Li09; DVRZ19; WSY20; ZGS21; Du+21; JLM21; FKQR21],
statistical modularity (under the natural complexity upper bound for the class of interest) is impossible.
Our central technical result is the following lower bound, which shows that statistical modularity
can be impossible even when the base MDP is known to the learner a-priori. The lower bound is a
significant generalization of the result from Song et al. [SWFK24]; we first state the lower bound,
then discuss implications.

Theorem 3.1 (Impossibility of statistical modularity). For every N ≥ 4, there exists a decoder class
Φ with |Φ| = N and a family of base MDPsMlat satisfying (i) |Mlat| = 1, (ii) H ≤ O(log(N)),
(iii) |S| = |X | ≤ N2, (iv) |A| = 2, and such that

1. For all ε, δ > 0, we have comp(Mlat, ε, δ) = 0.

2. For an absolute constant c > 0, comp(⟪Mlat,Φ⟫, c, c) ≥ Ω(N/ log(N)).

In other words, even when the base dynamics are fully known, strong statistical modularity
(in this case, poly(log|Φ|) complexity) is impossible; any algorithm will require at least
min{

√
S, 2

Ω(H)
/H, |Φ|/log|Φ|} episodes to learn a near-optimal policy for a latent-dynamics MDP

⟪Mlat, ψ⟫ ∈ ⟪Mlat,Φ⟫.
6Our main results easily extend to infinite classes through standard arguments.
7In the latter case, the latent-dynamics class ⟪Mlat,Φ⟫ may be seen to be a set of low-rank MDPs (that

is, linear MDPs with unknown features), so that low-rank MDP algorithms may be applied directly on the
observations (Appendix E.2).
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Base MDP class Mlat
Statistical

Modularity?
Tabular ✓

Contextual Bandits ✓
Low-Rank MDP ✓

Known Deterministic MDP (|Mlat| = 1) ✓
Low State Occupancy (∀π : S → ∆(A)) ✓
Model Class + Pushforward Coverability ✓

Linear CB/MDP ✗⋆

Model Class + Coverability (∀πM :M ∈ M) ✗
Known Stochastic MDP (|Mlat| = 1) ✗

Bellman Rank (Q-type or V -type) ✗
Eluder Dimension + Bellman Completeness ✗

Q⋆-Irrelevant State Abstraction ✗
Linear Mixture MDP ✗

Linear Q⋆/V ⋆ ✗
Low State/State-Action Occupancy (∀πM :M ∈ M) ✗

Bisimulation ?
Low State-Action Occupancy (∀π : S → ∆(A)) ?⋆

Model Class + Coverability (∀π : S → ∆(A)) ?

Figure 1: Summary of statistical
modularity (SM) results.
✓: SM is possible for a nat-
ural choice of comp(·) (e.g.,
poly(|S|, |A|, H, ε−1, log

(
δ−1

)
)

for tabular MDPs).
✗: SM is not possible with natural
choices of comp(·).
?: open.
⋆: SM is possible if willing to pay
for (suboptimal) |A| complexity.
See Appendix E.2 for precise
descriptions of each setting and
our choices for their complexities.

Intuition for lower bound. The intuition behind the lower bound in Theorem 3.1 is as follows: the
unobserved latent state space consists of N = |Φ| binary trees (indexed from 1 to N ), each with N
leaf nodes. The starting distribution is uniform over the roots of the N trees, and the agent receives a
reward of 1 if and only if they navigate to the leaf node that corresponds to the index of their current
tree. The observed state space is identical to the latent state space, but the emission process shifts the
index of the tree by an amount which is unknown to the agent. Despite the base MDP being known
and the decoder class satisfying realizability, the agent requires near-exhaustive search to identify the
value of the shift and recover a near-optimal policy.

A taxonomy of statistical modularity. As a corollary, we prove that many (but not all) well-studied
function approximation settings do not admit statistical modularity by embedding them into the
lower bound construction of Theorem 3.1 (as well as a variant of the result, Theorem E.1). Our
results are summarized in Figure 1. Our impossibility results highlight the following phenomenon:
many MDP classes Mlat that place structural assumptions via the value functions (e.g., MDPs
with linear-Q⋆/V ⋆ [Du+21] or MDPs with a Bellman complete value function class of bounded
eluder dimension [JLM21; WSY20]) become intractable under latent dynamics. Intuitively, this
is because it is not possible to take advantage of structure in value functions without learning a
good representation, and, simultaneously, these assumptions are too weak by themselves to enable
learning such a representation. Meanwhile, MDP classesMlat that place structural assumptions on
the transition distribution (e.g., MDPs with low state occupancy complexity [Du+21] or low-rank
MDPs [AKKS20]) are sometimes (but not always) tractable under latent dynamics.8

We point to Appendix E.2 for background on all the settings in Figure 1 and proofs that they are (or
are not) statistically modular. We remark that it is fairly straightforward to embed most of the MDP
classes of Figure 1 into the construction of Theorem 3.1 since it only uses only a single base MDP
Mlat, and we expect that many other base MDP classes can similarly be shown to be intractable.
However, proving the positive results in Figure 1 requires establishing several new results showing
that certain base classes are tractable under latent dynamics; most notably, we next discuss the case
of pushforward coverability.

3.3 Upper bounds: Pushforward-coverable MDPs are statistically modular
Our main postive result concerning statistical modularity is to highlight pushforward coverability
[XJ21; AFK24; MFR24]—a strengthened version of the coverability parameter introduced in Xie
et al. [XFBJK23]—as a general structural parameter that enables sample-efficient reinforcement
learning under latent dynamics.

8If one is willing to pay for suboptimal |A| factors, then more (but not all) classes become statistically
tractable (e.g., linear MDPs [JYWJ20] and MDPs with low state-action occupancy [Du+21]).
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Definition 3.3 (Pushforward coverability). The pushforward coverability coefficient Cpush for an
MDP Mlat with transition kernel Plat is defined by

Cpush(Mlat) = max
h∈[H]

inf
µ∈∆(S)

sup
(s,a,s′)∈S×A×S

Plat,h−1(s
′ | s, a)

µ(s′)
. (5)

Concrete examples [AFK24; MFR24] include: (i) tabular MDPs Mlat admit Cpush(Mlat) ≤ |S|; and
(ii) Low-Rank MDPs Mlat (with or without known features) in dimension d admit Cpush(Mlat) ≤ d.
Further examples include analytically sparse Low-Rank MDPs [GMR24] and Exogenous Block
MDPs with weakly correlated noise [MFR24]. Our main result is as follows.

Theorem 3.2 (Pushforward-coverable MDPs are statistically modular). LetMlat be a base MDP
class such that each Mlat ∈Mlat has pushforward coverability bounded by Cpush(Mlat) ≤ Cpush.
Then, for any decoder class Φ, we have:

1. comp(Mlat, ε, δ) ≤ poly(Cpush, |A|, H, log|Mlat|, ε−1, log
(
δ−1
)
), and

2. comp(⟪Mlat,Φ⟫, ε, δ) ≤ poly(Cpush, |A|, H, log|Mlat|, log|Φ|, ε−1, log
(
δ−1
)
, log log|S|).

Theorem 3.2 shows that, modulo a term that is doubly-logarithmic in |S|, latent pushforward cover-
ability enables statistical modularity. That is, when the base (latent) dynamics satisfy pushforward
coverability, there exists an algorithm for the latent-dynamics setting which scales with the statistical
complexity of the base MDP class and log|Φ|. We suspect that the additional log log|S| factor is not
essential and can be removed with a more sophisticated analysis. We note that the complexity comp
chosen above is not the minimax complexity forMlat, since every set of pushforward coverable
MDPs is also a set of coverable MDPs with a potentially smaller coverability parameter [AFK24].

Let us provide some intuition for this result. We firstly note that when M⋆
lat has pushforward cover-

ability parameter Cpush, it holds that for any emission process ψ⋆, the observation-level MDPM⋆
obs :=⟪M⋆

lat, ψ
⋆⟫ also satisfies pushforward coverability with the same parameter Cpush (Lemma D.5). Yet,

despite access to realizable base MDP classMlat and decoder class Φ, it is unclear whether the latent-
dynamics MDPM⋆

obs satisfies any of the observation-level function approximation conditions required
by existing approaches that provide sample complexity guarantees under pushforward coverability.
In particular, known algorithms for this setting either require a Bellman-complete value function
class [XFBJK23], a class realizing certain density ratios [AFJSX24; AFK24], or a realizable model
class [AFK24], and it is highly nontrivial to construct these for the latent-dynamics MDP M⋆

obs =⟪M⋆
lat, ψ

⋆⟫ given only the base MDP classMlat and the decoder class Φ. Intuitively, this is because
the former observation-level function approximation classes capture properties of the observation-
level dynamics which cannot be obtained without some knowledge of the emission process.

Our main technical contribution is to establish a new structural property for pushforward-coverable
MDPs (Lemma F.1): low-dimensional linear embeddings of their latent models can approximate the
Bellman updates for an arbitrary set of test functions (as long as the set is not too large). We use
this property to construct low-dimensional linear features that can approximate Bellman backups
in observation-space, allowing us to (approximately) satisfy the Bellman completeness assumption
required to apply GOLF [JLM21] to the latent-dynamics MDP. A fascinating open question is whether
a similar approach can be used to establish that standard (as opposed to pushforward) coverable
MDPs are statistically modular, which would encompass all other known positive cases of statistical
modularity (cf. Figure 1). We refer interested readers to a more detailed technical overview in
Appendix F.1, as well as the full proof in Appendix F.2.

4 Algorithmic Modularity
We now turn our attention to algorithmic modularity. Specifically, we aim for observable-to-latent
reductions, whereby—via representation learning—RL under latent dynamics can be efficiently
reduced to the simpler problem of RL with latent states directly observed. Since algorithmic
modularity is a stronger property than statistical modularity, we sidestep the previous lower bounds in
Section 3 through additional feedback and modeling assumptions. Our main result for this section is a
new meta-algorithm, O2L, which, under these assumptions (and when equipped with an appropriately
designed representation learning oracle), acts as a universal reduction in the sense that, whenever the
representation learning oracle has low risk, the reduction transforms any sample-efficient algorithm
for any base MDP class into a sample-efficient algorithm for the induced latent-dynamics MDP class.
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Algorithm 1 O2L: Observable-to-Latent Reduction
1: input: Epochs T , episodes K, decoder set Φ, rep. learning oracle REPLEARN, base alg. ALGlat.
2: for t = 1, 2, · · · , T do
3: REPLEARN chooses a representation ϕ̂(t) : X → S ∈ Φ based on data collected so far.
4: Initialize new instance of ALGlat.
5: for k = 1, 2, · · · ,K do // ALGlat plays K rounds in the “ϕ̂(t)-compressed dynamics.”

6: ALGlat chooses policy π(t,k)

lat : S × [H]→ ∆(A).
7: Deploy πlat ◦ ϕ̂(t) to collect trajectory {x(t,k)

h , a(t,k)

h , r(t,k)

h }Hh=1.
8: Update ALGlat with compressed trajectory {ϕ̂(t)

h (x(t,k)

h ), a(t,k)

h , r(t,k)

h }Hh=1.
9: end for

10: ALGlat returns final policy π̂(t) : S× [H]→ ∆(A), deploy π̂(t)◦ ϕ̂(t) to collect one trajectory.
11: end for
12: return π̂ = Unif(π̂(1) ◦ ϕ̂(1), . . . , π̂(T ) ◦ ϕ̂(T )).

Setup and O2L meta-algorithm. For the results in this section, we denote the (unknown) latent-
dynamics MDP of interest byM⋆

obs := ⟪M⋆
lat, ψ

⋆⟫, and use ϕ⋆ := (ψ⋆)−1 to denote the true decoder.
The O2L meta-algorithm (Algorithm 1) learns a near-optimal policy for M⋆

obs by alternating between
performing representation learning and executing a black-box “base” RL algorithm (designed for the
base MDP) on the learned representation; this approach is inspired by empirical methods that blend
representation learning and RL in the latent space (e.g., [GKBNB19; SAGHCB20; Ni+24]).

Concretely, the algorithm takes as input a representation learning oracle REPLEARN and a base RL
algorithm ALGlat that operates in the latent space. In each epoch t ∈ [T ], REPLEARN produces a new
representation ϕ̂(t) : X → S based on data observed so far (potentially using additional side informa-
tion, which we will elaborate on in the sequel). Then, the reduction invokes ALGlat, using ϕ̂(t) to sim-
ulate access to the true latent states. In particular, ALGlat runs for K episodes, where at each episode
k: (i) ALGlat produces a latent policy πlat(t,k) : S×[H]→ ∆(A), (ii) the latent policy is transformed
into an observation-level policy via composition with ϕ̂(t), i.e. πlat(t,k) ◦ ϕ̂(t), which is then deployed
to produce a trajectory {x(t,k)

h , a(t,k)

h , r(t,k)

h }Hh=1, and (iii) the trajectory is compressed through ϕ̂(t)

and used to update ALGlat via {ϕ̂(t)

h (x(t,k)

h ), a(t,k)

h , r(t,k)

h }Hh=1 (cf. Line 8 of Algorithm 1).9 After the
K rounds conclude, ALGlat produces a final latent policy π̂(t)

lat : S × [H]→ ∆(A). The final policy
π̂ chosen by the O2L algorithm is a uniform mixture of π̂(t)

lat ◦ ϕ̂(t) over all the epochs.

The central assumption behind O2L is that the base algorithm ALGlat can achieve low-risk in
the underlying base MDP M⋆

lat if given access to the true latent states sh = ϕ⋆(xh). Beyond this
assumption, we require that the representation learning oracle REPLEARN can learn a sufficiently
high-quality representation. In our applications, this will be made possible by assuming access
to a realizable decoder class Φ and two distinct assumptions: hindsight observability (Section 4.1)
and conditions enabling self-predictive representation learning (Section 4.2). We will show that
under these conditions, we can instantiate a representation learning oracle such that O2L inherits
the sample complexity guarantee for ALGlat, thereby achieving algorithmic modularity.

4.1 Algorithmic modularity via hindsight observability
Our first algorithmic result bypasses the hardness in Section 3 by considering the setting of hindsight
observability, which has garnered recent interest in the context of POMDPs [LADZ23; GCWXWB24;
SLS23; LXJZV24]. Here, we assume that at training time (but not during deployment), the algorithm
has access to additional feedback in the form of the true latent states, which are revealed at the end of
each episode.

Assumption 4.1 (Hindsight Observability [LADZ23]). The latent states (ϕ⋆1(x1), . . . , ϕ
⋆
H(xH)) are

revealed to the learner after each episode (x1, a1, r1, . . . , xH , aH , rH) concludes.

We emphasize that in the hindsight observability framework, the learner must still execute observation-
space policies πobs : X×[H]→ ∆(A), as the latent states are only revealed at the end of each episode.
Under hindsight observability, we can instantiate the representation learning oracle in O2L so that the

9Note that, if ϕ̂ is inaccurate, the compressed trajectory cannot necessarily be viewed as being generated by a
latent MDP, and must instead be viewed as coming from a Partially Observed MDP (Appendix I.1.1).
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reduction achieves low risk for any choice of black-box base algorithm ALGlat. In particular, we make
use of online classification oracles, which use the revealed latent states to achieve low classification
loss with respect to ϕ⋆ under adaptively generated data. We first state a guarantee based on generic
classification oracles, then instantiate it to give a concrete end-to-end sample complexity bound.

Formally, at each step t, the online classification oracle, denoted via REPclass, is given the
states and hindsight observations collected so far and produces a deterministic estimate ϕ̂(t) =
REPclass({x(i)

h , ϕ
⋆
h(x

(i)

h )}i<t,h≤H) for the true decoder ϕ⋆. We measure the regret of the oracle via
the 0/1 loss for classification:

Regclass(T ) :=
T∑
t=1

H∑
h=1

Eπ(t)∼p(t) E
π(t)
[
I
{
ϕ̂(t)

h (xh) ̸= ϕ⋆h(xh)
}]
,

where p(t) represents a randomization distribution over the policy π(t). Our reduction succeeds under
the assumption that the oracle has low expected regret.

Assumption 4.2. For any (possibly adaptive) sequence π(t), with π(t) ∼ p(t), the online classification
oracle REPclass has expected regret bounded by

E[Regclass(T )] ≤ Estclass(T ),

where Estclass(T ) is a known upper bound.

We apply such an oracle within O2L as follows: at the end of each iteration t ∈ [T ] in
O2L, we sample k ∼ [K] uniformly, and update the classification oracle with the trajectory
(x(t,k)

1 , a(t,k)

1 , r(t,k)

1 ), . . . , (x(t,k)

H a(t,k)

H , r(t,k)

H ); see the proof of Theorem 4.1 for details. We let
Riskobs(TK) denote the risk of the O2L reduction when run for T epochs of K episodes, and
we let Risk⋆(K) := E[Risk(K,ALGlat,M

⋆
lat)] denote the expected risk of ALGlat when executed

on M⋆
lat with access to the true latent states sh = ϕ⋆(xh) for K episodes.

Theorem 4.1 (Risk bound for O2L under hindsight observability). Let ALGlat be a base algorithm
with base risk Risk⋆(K), and REPclass a representation learning oracle satisfying Assumption 4.2.
Then Algorithm 1, with inputs T,K,Φ, REPclass, and ALGlat, has expected risk

E[Riskobs(TK)] ≤ Risk⋆(K) +
2K

T
Estclass(T ).

This result shows that we can achieve sublinear risk under latent dynamics as long as (i) the base
algorithm achieves sublinear risk Risk⋆(K) given access to the true latent states, and (ii) the classifi-
cation oracle achieves sublinear regret Estclass(T ). Notably, the result is fully modular, meaning we
require no explicit conditions on the latent dynamics or the base algorithm, and is computationally
efficient whenever the base algorithm and classification oracle are efficient.

To make Theorem 4.1 concrete, we next provide a representation learning oracle (EXPWEIGHTS.DR;
Algorithm 3 in Appendix G.1) based on a derandomization of the classical exponential weights
mechanism, which satisfies Assumption 4.2 with Estclass ≲ H log |Φ| whenever it has access to a
class Φ that satisfies decoder realizability.

Lemma 4.1 (Online classification via EXPWEIGHTS.DR). Under decoder realizability (ϕ⋆ ∈ Φ),
EXPWEIGHTS.DR (Algorithm 3) satisfies Assumption 4.2 with10

Estclass(T ) = Õ(H log|Φ|).

Instantiating Theorem 4.1 with the above representation learning oracle, we obtain the following
algorithmic modularity result.

Corollary 4.1 (Algorithmic modularity under hindsight observability). For any base algorithm
ALGlat, under decoder realizability (ϕ⋆ ∈ Φ), O2L with inputs T,K,Φ, EXPWEIGHTS.DR, and
ALGlat achieves

E[Riskobs(TK)] ≲ Risk⋆(K) +
HK log|Φ|

T
.

Consequently, for any ALGlat, setting T ≈ KH log|Φ|/Risk⋆(K) achieves E[Riskobs(TK)] ≲
Risk⋆(K) with a number of trajectories TK = Õ(K2H log|Φ|/Risk⋆(K)).

10In this section, the notations Õ,≈, and ≲ ignore only constants and logarithmic factors of H .
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Beyond achieving algorithmic modularity, this result shows that under hindsight observability, we
can achieve strong statistical modularity (modulo possible H factors) for every base MDP class
Mlat, an important result in its own right.11 As an example, suppose that Risk⋆(K) = O(K−1/2),
which is satisfied by many standard algorithms of interest [JKALS17; JYWJ20; JLM21; FKQR21].
Then, setting T according to Corollary 4.1 obtains an expected risk bound of ε using O(H log|Φ|/ε5)
trajectories.

Remark 4.1 (Online versus offline oracles). Theorem 4.1 critically uses that assumption that REPclass
satisfies an online classification error bound to handle the fact that data is generated adaptively based
on the estimators ϕ̂(1), . . . , ϕ̂(T ) it produces, which is by now a relatively standard technique in the
design of interactive decision making algorithms [FR20; FKQR21; FR23]. We note that under
coverability and other exploration conditions, online oracles for classification can be directly obtained
from offline (i.e. supervised) classification oracles [XFBJK23; BRS24; FHQR24].

4.2 Algorithmic modularity via self-predictive estimation
We complement the above results by studying the general online RL setting without hindsight
observations. To address this more challenging setting, we design an optimistic self-predictive
estimation objective (Eq. (7)), which learns a representation by jointly fitting a decoder together
with a latent model. We prove that any representation learning oracle that attains low regret with
respect to this objective can be used in O2L to obtain observable-to-latent reductions for any low-risk
base algorithm ALGlat (for a formal statement, see Theorem A.1). We provide a (computationally
inefficient) estimator (SELFPREDICT.OPT; Algorithm 4 in Appendix H.1) which we show attains
low optimistic self-regret under certain statistical conditions (namely, coverability of the base MDP
and a function approximation condition enabling us to express the self-prediction target as a latent
model, see Lemma A.1 for a formal statement), thereby obtaining an end-to-end reduction for the
general online RL setting. For lack of space, these results are deferred to Appendix A.

5 Discussion
Our work initiates the study of statistical and algorithmic modularity for reinforcement learning under
general latent dynamics. Our positive and negative results serve as a first step toward a unified theory
for reinforcement learning in the presence of high-dimensional observations. To this end, we close
with some important future directions and open problems.

Statistical modularity. Can we obtain a unified characterization for the statistical complexity of RL
under latent dynamics with a given class of base MDPsMlat? Our results in Section 3 suggest that
this will require new tools that go beyond existing notions of statistical complexity. Toward resolving
this problem, concrete questions that are not yet understood include: (i) Is coverability [XFBJK23]
(as opposed to pushforward coverability) sufficient for learnability under latent dynamics? (ii) Is the
Exogenous Block MDP problem [EMKAL22; MFR24]—a special case of our general framework—
statistically tractable? Lastly, are there additional types of feedback that are weaker than hindsight
observability, yet suffice to bypass the hardness results in Section 3?

Algorithmic modularity. Can we derive a unified representation learning objective that enables
algorithmic modularity whenever statistical modularity is possible? Ideally, such an objective would
be computationally tractable. Alternatively, can we show that algorithmic modularity fundamentally
requires stronger modeling assumptions than statistical modularity? Toward addressing the problems
above, a first step might be to understand: (i) What are the minimal statistical assumptions under
which we can minimize the self-predictive objective in Section 4.2? (ii) How can we encourage
finding good representations via self-prediction beyond the use of optimism over the base (latent)
models; and (iii) when can we minimize self-prediction in a computationally efficient fashion?

Acknowledgements
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Google Scholar Award, and Sloan Fellowship.

11Formally, while we have defined the statistical modularity condition in terms of high-probability risk bounds,
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A Omitted Results from Section 4: Algorithmic Modularity via
Self-predictive Estimation

In this section, we remove the assumption of hindsight observability used in Section 4.1 and instantiate
O2L in the general online RL setting. Rather than assume access to additional side-information,
we adopt a model-based representation learning approach, and augment our ability to perform
representation learning by equipping the representation learning algorithm with a set of base MDPs
Mlat in addition to the decoder class Φ. We will learn a representation by jointly fitting a decoder
and the base (latent) dynamics, which is a common approach in practice [GKBNB19; HLBN19;
Haf+19; HLNB21; Sch+20; SAGHCB20; Guo+22]. We firstly present in Appendix A.1 a new notion
of optimistic self-predictive regret which combines self-predictive representation learning with a form
of optimism over a learned latent model. We then show in Appendix A.2 that any representation
learning oracle that attains low regret, when used within O2L (Algorithm 1), leads to observable-to-
latent reductions that ensure low risk for any base algorithm ALGlat, thereby achieving algorithmic
modularity. Lastly, in Appendix A.3, we instantiate this oracle under natural structural and function
approximation conditions, yielding end-to-end modularity and sample complexity guarantees.

A.1 Self-predictive estimation
Our self-predictive representation learning oracles learn to fit a representation ϕ such that the induced
latent transitions (ϕh(xh) to ϕh+1(xh+1)) can be accurately modeled by some base (latent) MDP
Mlat ∈Mlat. To describe the objective, let us first introduce some notation. For a given MDP M
over either S (resp. X ), we write Mh(rh, sh+1 | sh, ah) (resp. Mh(rh, xh+1 | xh, ah)) for the joint
conditional distribution over rewards and next states. Next, for any ϕ ∈ Φ, we define the pushforward
model for M⋆

obs,h induced by ϕ via:[
ϕh+1♯M

⋆
obs,h

]
(r, s′ | x, a) :=

∑
x′:ϕh+1(x′)=s′

M⋆
obs,h(r, x

′ | x, a). (6)

The pushforward model for ϕ captures the forward probability of the estimated latent state ϕ(x′)
given a current observation x. To measure distance between models, we will use squared Hellinger

distance (e.g, Foster et al. [FKQR21]), defined via D2
H(P,Q) =

∫ (√
dP
dν −

√
dQ
dν

)2
dν for a common

dominating measure ν. Then, for a base model Mlat and a decoder ϕ, the self-predictive error of
(Mlat, ϕ), at state-action pair xh, ah, is given by

[∆h(Mlat, ϕ)](xh, ah) := D2
H

(
Mlat,h(ϕh(xh), ah),

[
ϕh+1♯M

⋆
obs,h

]
(xh, ah)

)
.

This term captures the ability of Mlat,h(ϕh(xh), ah) to predict the next latent state ϕh+1(xh+1)
which is obtained by the pushforward model

[
ϕh+1♯M

⋆
obs,h

]
(xh, ah). Formally, in our model-based

representation learning setup, we consider oracles which, for each iteration t within O2L, take as
input the trajectories collected so far and produce an estimate (M̂ (t)

lat, ϕ̂
(t)) for the decoder and base

model. The representation learning oracle’s self-predictive regret, for the sequence (M̂ (t)

lat, ϕ̂
(t)), is

then defined as

Regself(T ) =
T∑
t=1

H∑
h=0

Eπ(t)∼p(t) E
π(t)
[
[∆h(M̂

(t)

lat, ϕ̂
(t))](xh, ah)

]
,

where p(t) represents a randomization distribution over the policy π(t).

On its own, minimizing this regret may lead to degenerate solutions, a widely observed phenomenon
in practice [Tan+23]. For example, in a standard combination lock MDP (e.g., Agarwal et al.; Misra
et al. [AJKS22; MHKL20]), a degenerate decoder-model pair that maps all observations to a single
latent state will have zero self-predictive loss until we reach the goal, which can take exponentially
long.12 We address this via the notion of optimistic estimation used in Zhang; Foster et al. [Zha22;
FGQRS23], which biases the objective towards latent models with high return. This leads to the

12This is similar to the observation that naive value function approximation methods, such as Fitted Q-Iteration,
can fail to explore in online RL without optimism. We expect that given access to additional exploratory data
(e.g., in the Hybrid RL setting of Song et al. [SZSBKS23]), the latent optimism term can be removed.
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following optimistic self-predictive regret, defined for a parameter γ > 0, via

Regself;opt(T, γ) =
T∑
t=1

H∑
h=0

Eπ(t)∼p(t) E
π(t)
[
[∆h(M̂

(t)

lat, ϕ̂
(t))](xh, ah)

]
+ γ−1(JM

⋆
lat(πM⋆

lat
)− JM̂

(t)
lat (π

M̂
(t)
lat
)). (7)

We assume going forward that REPself;opt obtains low optimistic self-predictive regret; in Ap-
pendix A.3 we provide a maximum-likelihood-type estimator and conditions under which this holds.

Assumption A.1. For a parameter γ > 0 and any (possibly adaptive) sequence π(t), with π(t) ∼ p(t),
the online representation learning oracle REPself;opt is proper (i.e. outputs M̂ (t)

lat ∈ Mlat for all
t ∈ [T ]) and satisfies

E
[
Regself;opt(T, γ)

]
≤ Estself;opt(T, γ),

where Estself;opt(T, γ) is a known upper bound.

We note that only the decoder ϕ̂(t) is used within O2L; the model M̂ (t)

lat is only used for analysis (and
possibly within the representation learner REPself;opt).

A.2 Main result
We now state the main guarantee for O2L with self-predictive representation learning. Recall
that Riskobs(TK) denotes the risk of the O2L reduction. Compared to the hindsight-observable
setting, we require a slightly stronger performance guarantee from the base algorithm ALGlat: our
result scales with the worst-case expected risk for ALGlat over all Mlat ∈ Mlat, defined via
Riskbase(K) := supMlat∈Mlat

E[Risk(K,ALGlat,Mlat))].

Theorem A.1 (Risk bound for O2L under self-predictive estimation). Suppose REPself;opt satisfies
Assumption A.1 with parameter γ > 0. Then Algorithm 1, with inputs T,K,Φ, REPself;opt, and
ALGlat has expected risk

E[Riskobs(TK)] ≤ c1 · Riskbase(K) + c2γ ·
K

T
Estself;opt(T, γ) + c3γ

−1 ·KH,

for absolute constants c1, c2, c3 > 0.

Theorem A.1 achieves sublinear risk as long as (i) the latent algorithm achieves sublinear risk
Riskbase(K) given access to the true states, and (ii) the self-predictive representation learning oracle
achieves sublinear regret Estself;opt(T, γ) for an appropriate choice of γ.13 Intuitively, our result
scales with Riskbase(K) instead of Risk⋆(K) due to potential symmetries in the self-predictive
objective. For example, there might be a representation-model pair (M̂lat, ϕ̂) that is identical
to (M⋆

lat, ϕ
⋆) up to permutations of the latent state space; these cannot be distinguished by a

representation learning oracle that does not observe the latent states directly, and thus the base
algorithm may be tasked with solving either of these base MDPs. As with Theorem 4.1, this
result achieves algorithmic modularity (since O2L inherits the risk of the base algorithm), and is
computationally efficient whenever the base algorithm and self-predictive representation learning
oracle are efficient.

Let us provide some intuition behind the proof of Theorem A.1. Recall that, within the inner loop
of O2L, the latent algorithm ALGlat interacts with the ϕ̂(t)-compressed dynamics generated by
compressing the observations xh, ah through the current decoder ϕ̂(t)

h (Line 8). The crux of the
analysis is the following observation: by the self-predictive representation learning guarantee, these
dynamics, despite being possibly non-Markovian and generated from a POMDP (Definition I.1), are
well approximated in squared Hellinger distance by the base model M̂ (t)

lat estimated by REPself;opt (cf.
Lemma I.2). We can then show that ALGlat, when given data from the ϕ̂(t)-compressed dynamics,
has risk (for solving M̂ (t)

lat) that is proportional to: i) its base risk if it were to observe states from
M̂ (t)

lat, and ii) the Hellinger distance between M̂ (t)

lat and the process induced by its ϕ̂(t)-compressed

13For example, in our estimator of Appendix A.3, we can first set γ ≈ KH/Riskbase(K) so that the third
term matches Riskbase(K), and then set T so that the second term does.

18



dynamics. The last ingredient is the use of latent optimism in Eq. (7), through which the risk on M⋆
lat

is upper bounded by the risk on M̂ (t)

lat.

In the above, showing that ALGlat obtains low risk for M̂ (t)

lat (despite given data from a different
process) is done by establishing a certain form of corruption robustness (Definition I.2). Indeed,
Theorem A.1 is a special case of a more general theorem (Theorem H.1), which provides a bound
that adapts to ALGlat’s level of robustness. We obtain Theorem A.1 by showing that any algorithm
satisfies the property we require (for a suitably slow rate), but we further show that tighter rates can
be achieved by analyzing the specifics of various algorithms of interest (Appendix I.1.4).

A.3 Instantiating the self-predictive estimation oracle
We now present an algorithm, SELFPREDICT.OPT (Algorithm 4 in Appendix H.1), which satisfies
Assumption A.1 under additional technical conditions, allowing us to instantiate Theorem A.1 to give
end-to-end guarantees. Before stating the main guarantee, we highlight a few technical difficulties
regarding obtaining finite-sample guarantees for (online) self-predictive estimation, and use them to
motivate our statistical assumptions and algorithm design.

The statistics of (online) self-predictive estimation. The first challenge is a realizability issue:
when ϕ ̸= ϕ⋆, we may not even be able to represent the objective ϕ♯M⋆

obs as a latent model using
only decoder and latent model realizability. Since we can never guarantee that ϕ = ϕ⋆ exactly in the
presence of statistical errors, we must introduce a modelling assumption which lets us capture the
pushforward models ϕ♯M⋆

obs. To this end, we introduce the mismatch functions, which are defined
as follows.

Definition A.1 (Mismatch functions). For a decodable emission process ψ⋆ and decoder ϕ ∈ Φ,
the mismatch function for ϕ, Γϕ = {Γϕ,h : S → ∆(S)}Hh=1, is defined, for every h ∈ [H], as the
probability kernel

Γϕ,h(s
′
h | sh) := Pxh∼ψ⋆h(sh)(ϕh(xh) = s′h).

In the context of self-prediction, we show that the following mismatch completeness assumption
suffices to capture the pushforward models ϕ♯M⋆

obs.

Assumption A.2 (Mismatch completeness). We have a model class L such that, for each ϕ ∈ Φ, and
Mlat ∈Mlat, we have Γϕ ◦Mlat ∈ L, where

[Γϕ ◦Mlat]h(rh, sh+1 | sh, ah) :=
∑

s′h+1∈S

Mlat,h(rh, s
′
h+1 | sh, ah)Γϕ,h+1(sh+1 | s′h+1).

In particular, Lemma D.8 establishes that

[ϕh+1♯M
⋆
obs,h](· | x, a) = [Γϕ ◦M⋆

lat]h(· | ϕ
⋆
h(x), a).

Accordingly, we view this assumption as a minimal way to realize the pushforward models ϕ♯M⋆
obs.

The second challenge is a double-sampling issue, which appears because the decoders in Eq. (7)
are coupled at different horizons. We address this with a novel “debiased” maximum likelihood
procedure that subtracts a form of excess risk (cf. Eq. (60)) to recover an unbiased estimator [Jia24].
Our debiased estimator and the mismatch completeness assumption can be viewed as analogous
to the techniques and assumptions that are required for squared Bellman error minimization in the
context of value function approximation [CJ19; JLM21].

The last issue stems from seeking an online estimation guarantee: the policies chosen by the latent
algorithm are a function of the estimated decoders, which precludes the use of randomized estimators
(e.g. exponential weights). We bypass this issue by appealing to the structural condition of coverability
[XFBJK23], which allows us to restrict our attention to estimators that achieve low offline estimation
error (via Lemma C.7).14

Definition A.2 (State Coverability). The state coverability coefficient for an MDP M and a policy
class Π defined over a state space Z , Ccov,st(M,Π), is given by

Ccov,st(M,Π) := max
h∈[H]

min
µ∈∆(Z)

max
π∈Π

max
z∈Z

{
dM,πh (z)

µ(z)

}
. (8)

14More generally, we expect that our results can be extended to any “decoupling coefficient” [Zha22; AZ22].
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We require coverability in M⋆
obs over the set of (observation-space) policies played by the O2L

reduction (cf. Line 7). Again appealing to the mismatch functions, we can express this as an
assumption about the base dynamics M⋆

lat; we show (Lemma D.1) that the latter is equivalent to
assuming coverability in M⋆

lat over the set of stochastic policies

ΓΦ ◦Πlat :=

{
[Γϕ ◦ πlat]h(a | s) =

∑
s′∈S

Γϕ,h(s
′ | s)πlat,h(a | s′) | ϕ ∈ Φ, πlat ∈ Πlat

}
, (9)

where Πlat denotes the set of policies that ALGlat may execute. While this set may appear compli-
cated, it is sufficient to assume coverability over the set of all deterministic non-stationary policies on
M⋆

lat.15

Guarantee for our self-predictive estimation oracle. With these prerequisites, the main guarantee
for our estimator, SELFPREDICT.OPT (Algorithm 4), is as follows.

Lemma A.1 (Optimistic self-predictive estimation via SELFPREDICT.OPT). Let Πlat denote the
set of policies played by ALGlat, and Ccov,st = Ccov,st(M

⋆
lat,ΓΦ ◦ Πlat) be the state coverability

parameter on M⋆
lat over the set of stochastic policies ΓΦ ◦ Πlat (Eq. (9)). Then, for any γ > 0,

under decoder realizability (ϕ⋆ ∈ Φ), base model realizability (M⋆
lat ∈ Mlat), and mismatch

function completeness with class Llat (Assumption A.2), the estimator in Algorithm 4 with inputs
Φ,Mlat,Llat, and γ satisfies Assumption A.1 with16

Estself;opt(T, γ) = Õ
(√

HCcov,st|A|T log(|Mlat||Llat||Φ|)
)
.

Instantiating Theorem A.1 with the above representation learning oracle, we obtain the following
algorithmic modularity result.

Corollary A.1 (Algorithmic modularity via SELFPREDICT.OPT). Under the same conditions as in
Lemma A.1, and for any base algorithm ALGlat, O2L with inputs T,K,Φ, SELFPREDICT.OPT, and
ALGlat achieves

E[Riskobs(TK)] ≲ c1 ·Riskbase(K)+c2γ ·
K√
T

√
HCcov,st|A| log(|Mlat||Llat||Φ|)+c3γ−1 ·KH,

for absolute constants c1, c2, c3. Consequently, for any ALGlat with base risk Riskbase(K), setting
γ and T appropriately gives

E[Riskobs(TK)] ≲ Riskbase(K),

with a number of trajectories TK = Õ(K5H3Ccov,st|A| log2(|Mlat||Llat||Φ|)/(Riskbase(K))4).

For example, if ALGlat is a base algorithm with Riskbase(K) = O(K−1/2), setting γ
and T appropriately gives an expected risk of ε with a number of trajectories TK =

Õ
(
H3Ccov,st|A|(log(|Mlat||Llat||Φ|))2/ε14

)
. This result shows that statistical modularity can be achieved

up to log(|Llat|) factors for every base MDP classMlat which is subsumed by coverability, in-
cluding tabular MDPs and low-rank MDPs.17 Compared to our positive result for the case of
pushforward coverability (Section 3.3), this imposes less dynamics assumptions (since coverability
is implied by pushforward coverability) but requires more representational assumptions (namely,
access to the mismatch-complete class Llat). We further remark that the mismatch completeness
assumption always holds for i) the Block MDP setting, since we can always construct Llat such that
log(|Llat|) = O(HS2), and ii) every MDP classMlat whenever we also have a realizable set of
emission processes (ψ⋆ ∈ Ψ), since we can constructLlat such that log(|Llat|) = log(|Φ||Mlat||Ψ|).
However, the mismatch completeness assumption may be more general than either of these settings.

15This follows from Lemma D.3 by noting that each maximum on the right hand side of Eq. (13) is attained
by a deterministic non-stationary policy.

16In this section, the notations Õ and ≲ ignores constants and logarithmic factors of: H,Ccov,st, |A|, T, and
log(|Mlat||Llat||Φ|).

17This provides a partial answer to the “Model Class + Coverability” open question of Figure 1.
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Our results can be viewed as providing a theoretical justification for self-predictive representation
learning, which has been widely used in empirical works [GKBNB19; SAGHCB20]. We consider
self-prediction’s ability to obtain universal observable-to-latent reductions as a strong indicator that it
merits further theoretical study. In particular, many empirical works propose heuristics to alleviate the
degeneracy/non-uniqueness issues inherent with self-prediction [GKBNB19; SAGHCB20; HPBL23;
Tan+23]. Our methods provide a principled way to address these, and it would be interesting to
investigate whether this is also empirically effective. In general, however, it is unclear whether our
loss admits a computationally efficient implementation, due to the presence of optimism. Towards
this, a fascinating direction for future work is understanding how self-predictive estimation can be
used to obtain algorithmic modularity without the addition of optimism over the base (latent) models.
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B Additional Discussion of Related Work
In this section, we discuss aspects of related work not already covered in greater detail.

Reinforcement learning under latent dynamics (or, with rich observations). Reinforcement
learning under latent dynamics (or, with rich observations) has received extensive investigation in
recent years, however most works have been focused on the Block MDP model in which the latent
state space is tabular/finite [KAL16; DKJADL19; MHKL20; ZSUWAS22; MFR23] (see also the
the closely related framework of Low-Rank MDPs [AKKS20; MCKJA24; ZSUWAS22; UZS22;
MBFR23]). Beyond tabular spaces, Dean et al.; Dean et al.; Mhammedi et al. [DMRY20; DR21;
Mha+20] consider continuous linear dynamics, Misra et al. [MLJL21] considers factored (but discrete)
latent dynamics, Efroni et al.; Efroni et al.; Mhammedi et al. [EMKAL22; EFMKL22; MFR24]
consider the Exogenous Block MDP problem in which a tabular latent state space is augmented with
a non-controllable (“exogenous”) factor, and Song et al. [SWFK24] consider Lipshitz continuous
dynamics. To our knowledge, our work is the first to: i) explore reinforcement learning under general
latent dynamics, in particular in settings where the latent space itself admits function approximation,
and ii) take a more modular approach (cf. the taxonomy of Section 3).

On the algorithmic side, the works of Uehara et al. [UZS22] and Zhang et al. [ZSUWAS22], which
consider Low-Rank MDPs and Block MDPs respectively, can be viewed as interleaving representation
learning with “latent” reinforcement learning algorithms that assume access to a good representation,
and were an inspiration for this work. However, the algorithmic details and analyses are highly
specialized to Block/Low-Rank MDPs, and unlikely to be directly applicable to reinforcement
learning under general latent dynamics. Other works with a modular flavor include:

• Feng et al. [FWYDY20] solve tabular Block MDPs by combining a black-box latent algorithm
with an “unsupervised learning oracle” for representation learning. This approach only leads to
guarantees for tabular Block MDPs, and it is unclear whether the unsupervised learning oracle their
approach requires can be constructed in natural settings.

• Wu et al. [WYDW21] solve tabular block MDPs by combining a corruption-robust latent algorithm
with a representation learning procedure based on clustering. Again, this work is restricted to the
tabular setting, and requires a separation condition which may not be satisfied in general.

General complexity measures for reinforcement learning. Another line of research provides
general complexity measures that enable sample-efficient reinforcement learning, including Bellman
rank [JKALS17; SJKAL19; Du+21; JLM21], eluder dimension [RVR13], coverability [XFBJK23],
and the Decision-Estimation Coefficient (DEC) [FKQR21; FGH23; FGQRS23]. Bellman rank and
other complexity measures based on average Bellman error [JKALS17; SJKAL19; Du+21; JLM21]
are insufficient to characterize learnability under general latent dynamics, as there are classesMlat

that are known to be learnable, yet do not have bounded Bellman rank or Bellman-Eluder dimension
[EMKAL22; XFBJK23]. Meanwhile, variants of Bellman rank based on squared Bellman error
or related notions of error can [XFBJK23; AFJSX24] address this problem for some settings, but
satisfying the modeling/realizability assumptions (e.g., Bellman completeness) required by these
methods in the latent-dynamics setting is non-trivial. For example, the crux of our sample complexity
bounds under latent pushforward coverability in Section 3 (Theorem 3.2) is to prove a rather involved
structural result which shows that Bellman completeness can indeed be satisfied under this assumption,
but it is unclear whether these techniques can be applied to more general latent dynamics classes. We
expect that it is possible to bound the Decision-Estimation Coefficient [FKQR21; FGH23; FGQRS23]
for the framework, but deriving efficient algorithms using this framework is non-trivial.
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C Technical Tools
Lemma C.1. For any sequence of real-valued random variables (Xt)t≤T adapted to a filtration
(Ft)t≤T , it holds that with probability at least 1− δ,

T∑
t=1

Xt ≤
T∑
t=1

log
(
Et−1

[
eXt
])

+ log
(
δ−1
)
.

Lemma C.2 (Freedman’s inequality (e.g., Agarwal et al. [AHKLLS14])). Let (Xt)t≤T be a real-
valued martingale difference sequence adapted to a filtration (Ft)t≤T . If |Xt| ≤ R almost surely,
then for any η ∈ (0, 1/R), with probability at least 1− δ,

T∑
t=1

Xt ≤ η
T∑
t=1

Et−1

[
X2
t

]
+

log
(
δ−1
)

η
.

Lemma C.3 (Corollary of Lemma C.2). Let (Xt)t≤T be a sequence of random variables adapted to
a filtration (Ft)t≤T . If 0 ≤ Xt ≤ R almost surely, then with probability at least 1− δ,

T∑
t=1

Xt ≤
3

2

T∑
t=1

Et−1[Xt] + 4R log
(
2δ−1

)
,

and
T∑
t=1

Et−1[Xt] ≤ 2

T∑
t=1

Xt + 8R log
(
2δ−1

)
.

Lemma C.4 (Lemma D.2 of Foster et al. [FHQR24]). Let (X1,F1), . . . , (Xn,Fn) be a sequence of
measurable spaces, and let X (i) =

∏i
t=1 Xt and F(i) = ⊗it=1Ft. For each i, let P (i) and Q(i) be

probability kernels from (X (i−1),F(i−1)) to (Xi,Fi). Let P and Q be the laws of X1, . . . , Xn under
Xi ∼ P (i)(· | X1:i−1) and Xi ∼ Q(i)(· | X1:i−1), respectively. Then it holds that

D2
H(P,Q) ≤ 7EP

[
n∑
i=1

D2
H(P

(i)(· | X1:i−1), Q
(i)(· | X1:i−1))

]

Lemma C.5 (Lemma A.11 of Foster et al. [FKQR21]). Let P and Q be probability measures on
(X ,F). For all h : X → R with 0 ≤ h(X) ≤ R almost surely under P and Q, we have

EP[h(X)] ≤ 3EQ[h(X)] + 4RD2
H(P,Q).

Lemma C.6 (Lemma 1 of Jiang et al. [JKALS17]). For any f : X×A → [0, 1], π : S×[H]→ ∆(A),
we have

Ex1 [f(x1, π(x1))]− J(π) =
H∑
h=1

Eπ[f(xh, ah)− T πf(xh, ah)].

Lemma C.7 (Offline-to-online conversion under coverability [XFBJK23; FHQR24]). Let M be an
MDP over state space Z , Π be a policy set, and Ccov = Ccov(M,Π) be the (state-action) coverability
coefficient for M and Π (Definition D.3). Let p(t) ∈ ∆(Π) be a sequence of distributions over Π, and
g(t)

h : Z ×A → [0, 1] be a sequence of functions. Then we have that

T∑
t=1

H∑
h=1

Eπ(t)∼p(t) E
π(t)[

g(t)

h (xh, ah)
]

≤ O


√√√√HCcov log(T )

T∑
t=1

H∑
h=1

t−1∑
i=1

Eπ(i)∼p(i) E
π(i)[

g(t)

h (xh, ah)
]
+HCcov

.
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D Structural Properties of Coverability and Mismatch Functions
This appendix contains structural results regarding coverability and the mismatch functions. We
firstly recall the definition of the mismatch functions.

Definition D.1 (Mismatch functions). For decodable emission process ψ⋆, decoder ϕ ∈ Φ and
h ∈ [H], we define the mismatch function for ϕ, Γϕ,h : S → ∆(S), as the probability kernel

Γϕ,h(s
′
h | sh) := Pxh∼ψ⋆h(sh)(ϕh(xh) = s′h).

We also recall the definition of state coverability.

Definition D.2 (State Coverability). The coverability coefficient for an MDP M and a policy class Π
defined over a state space Z , Ccov,st(M,Π), is given by

Ccov,st(M,Π) := max
h∈[H]

min
µ∈∆(Z)

max
π∈Π

max
z∈Z

{
dM,πh (z)

µ(z)

}
. (10)

We also define the related notion of state-action coverability.

Definition D.3 (State-Action Coverability). The coverability coefficient for an MDP M and a policy
class Π defined over a state space Z and action space A, Ccov(M,Π), is given by

Ccov(M,Π) := max
h∈[H]

min
µ∈∆(Z×A)

max
π∈Π

max
z,a∈Z×A

{
dM,πh (z, a)

µ(z, a)

}
. (11)

In the remainder of the section, we let Πlat ⊆ {S × [H]→ ∆(A)} denote an arbitrary set of latent
policies, and

ΓΦ ◦Πlat =

{
[Γϕ ◦ πlat]h(a | s) :=

∑
s′∈S

Γϕ,h(s
′ | s)πlat,h(a | s′) | ϕ ∈ Φ, πlat ∈ Πlat

}
. (12)

Lemma D.1 (State coverability is invariant to rich observations). Let M⋆
obs = ⟪M⋆

lat, ψ
⋆⟫. Then, we

have
Ccov,st(M

⋆
obs,Πlat ◦ Φ) = Ccov,st(M

⋆
lat,ΓΦ ◦Πlat).

Furthermore, letting {µlat,h ∈ ∆(S)}h∈[H] denote the distribution which witnesses the right-hand-
side, the left-hand-side is witnessed by the distribution

µobs,h(x) = ψ⋆h(x | ϕ⋆h(x))µlat,h(ϕ
⋆
h(x)).

The lemma follows from the following two observations.

Lemma D.2. Let {Γϕ}ϕ∈Φ denote the mismatch functions for emission ψ⋆, and let Mobs =

⟪Mlat, ψ
⋆⟫. Then, for any πlat ∈ Πlat, ϕ ∈ Φ, h ∈ [H], x ∈ X , we have

dMobs,πlat◦ϕ
h (x) = ψ⋆h(x | ϕ⋆h(x))d

Mlat,Γϕ◦πlat

h (ϕ⋆h(x)).

Proof of Lemma D.2. Below, we write sh = ϕ⋆(xh). We proceed by induction, simply writing
dobs,h := dMobs,πlat◦ϕ

h and dlat,h := d
Mlat,Γϕ◦πlat

h . The base case (h = 1) is obtained by noting that
dlat,1(s) = Plat,1(s | ∅) while dobs,1(x) = Pobs,1(x | ∅) = ψ⋆1(x | s)Plat,1(s | ∅). For the general
case, via the Bellman flow equations, we have

dobs,h(xh) =
∑

xh−1,ah−1∈X×A
Pobs,h(xh | xh−1, ah−1)dobs,h−1(xh−1)πlat(ah−1 | ϕ(xh−1))

= ψ(xh | sh)
∑

xh−1,ah−1∈X×A
Plat,h(sh | sh−1, ah−1)dlat,h−1(sh−1)ψ(xh−1 | sh−1)

× πlat(ah−1 | ϕ(xh−1))

= ψ(xh | sh)
∑

sh−1,ah−1∈S×A
Plat,h(sh | sh−1, ah−1)dlat,h−1(sh−1)

×
∑

xh−1:ϕ⋆(xh−1)=sh−1

ψ(xh−1 | sh−1)πlat(ah−1 | ϕ(xh−1)).
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The result is obtained by noting that

Γϕ ◦ πlat(ah−1 | sh−1) =
∑
s′∈S

Γϕ(s
′ | sh−1)πlat(ah−1 | s′)

=
∑
s′∈S

∑
xh−1:ϕ⋆(xh−1)=sh−1

ψ(xh−1 | sh−1)I{ϕ(xh−1) = s′}πlat(ah | s′)

=
∑

xh−1:ϕ⋆(xh−1)=sh−1

ψ(xh−1 | sh−1)πlat(ah−1 | ϕ(xh−1)),

where the second line follows from the definition of the mismatch functions.

Lemma D.3 (Equivalence of state coverability and cumulative state reachability). Let M be an MDP
defined over a state space Z . The following definition is equivalent to Definition D.2:

Ccov,st(M,Π) := max
h∈[H]

∑
z∈Z

max
π∈Π

dM,π
h (z). (13)

Proof of Lemma D.3. Straightforward adaptation of the proof of Lemma 3 from Xie et al.
[XFBJK23].

Proof of Lemma D.1. Using Lemma D.2 and Lemma D.3, we have

Ccov,st(Mobs,Πlat ◦ Φ) = max
h∈[H]

∑
x∈X

max
πlat,ϕ

dπlat◦ϕ
obs (x)

= max
h∈[H]

∑
x∈X

max
πlat,ϕ

ψ⋆(x | ϕ⋆(x))dΓϕ◦πlat

lat (ϕ⋆(x))

= max
h∈[H]

∑
s∈S

∑
x:ϕ⋆(x)=s

max
πlat,ϕ

ψ⋆(x | s)dΓϕ◦πlat

lat (s)

= max
h∈[H]

∑
s∈S

max
πlat,ϕ

d
Γϕ◦πlat

lat (s)
∑

x:ϕ⋆(x)=s

ψ⋆(x | s)

= Ccov,st(Mlat,ΓΦ ◦Πlat).

Lastly, we show that state-action coverability is bounded by state coverability times the size of the
action set.

Lemma D.4 (State-action coverability bound). For any MDP M and policy set Π, we have

Ccov(M,Π) ≤ Ccov,st(M,Π)|A|.

Proof of Lemma D.4. Let µs ∈ ∆(Z) witness Ccov,st(M,Π). Fix h ∈ [H], which we omit below
for cleanliness. Then, we have

min
µs,a∈∆(Z×A)

max
π∈Π

max
z,a∈Z×A

{
dM,π(z, a)

µs,a(z, a)

}
≤ max

π∈Π
max

z,a∈Z×A

{
dM,π(z)π(a | z)
µs(z)1/|A|

}
≤ |A|max

π∈Π
max
z∈Z

{
dM,π(z)

µs(z)

}
= Ccov,st(M,Π)|A|.

Lemma D.5 (Pushforward coverability is invariant to rich observations). Let Cpush(M) denote the
pushforward coverability parameter for an MDP M (Definition 3.3), and M⋆

obs := ⟪M⋆
lat, ψ

⋆⟫. Then,
we have

Cpush(M
⋆
obs) = Cpush(M

⋆
lat).
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Furthermore, letting {µlat,h ∈ ∆(S)}h∈[H] denote the distribution which witnesses the right-hand-
side, the left-hand-side is witnessed by the distribution

µobs,h(x) = ψ⋆h(x | ϕ⋆h(x))µlat,h(ϕ
⋆
h(x)).

This follows from an analogous equivalence of pushforward coverability and cumulative conditional
reachability.

Lemma D.6 (Equivalence of pushforward coverability and cumulative conditional reachability). Let
M be an MDP defined over a state space Z with transition kernel P . The following definition is
equivalent to pushforward coverability (Definition 3.3):

Cpush(M) := max
h∈[H]

∑
z′∈Z

max
z,a∈Z×A

Ph(z
′ | z, a).

Proof of Lemma D.6. Fix h ∈ [H], whose dependence we omit below. For the first direction, letting
µ denote the pushforward coverability distribution, we have:∑

z′∈Z
max

z,a∈Z×A
P (z′ | z, a) =

∑
z′∈Z

max
z,a∈Z×A

P (z′ | z, a)
µ(z′)

µ(z′) ≤ Cpush

∑
z′∈Z

µ(z′) = Cpush.

For the second direction, taking µ(z′) ∝ maxz,a P (z
′ | z, a), we have

min
µ∈∆(Z)

max
z,a,z′∈Z×A×Z

P (z′ | z, a)
µ(z′)

≤ max
z,a,z′∈Z×A×Z

P (z′ | z, a)
maxz̃,ã P (z′ | z̃, ã)

∑
z̃′

max
z̃,ã

P (z̃′ | z̃, ã)

≤
∑
z′

max
z,a

P (z′ | z, a).

Proof of Lemma D.5. This result follows by Lemma D.6 since,

Cpush(Mobs) =
∑
x′∈X

max
x,a

Pobs(x
′ | x, a)

=
∑
s′∈S

∑
x′:ϕ⋆(x′)=s′

max
x,a

ψ⋆(x′ | s′)Plat(s
′ | ϕ⋆(x), a)

=
∑
s′∈S

max
x,a

Plat(s
′ | ϕ⋆(x), a)

∑
x′:ϕ⋆(x′)=s′

ψ⋆(x′ | s′)

=
∑
s′∈S

max
s,a

Plat(s
′ | s, a) = Cpush(Mlat).

We next show that the mismatch functions can be used to express the observation-level backups for
any function of the decoders. For any g : S → R, h ∈ [H], we define the function [Γϕ,h ◦g] : S → R

[Γϕ,h ◦ g](s) :=
∑
s′∈S

Γϕ,h(s
′ | s)g(s′).

We further overload the Bellman operator notation and define, for any g : S → R and Mlat =
(rlat, Plat),

[T Mlat

h g](s, a) = rlat(s, a) + Es′∼Plat(s,a)[g(s
′)].

Lemma D.7. Let Mobs = ⟪Mlat, ψ
⋆⟫, ϕ⋆ := (ψ⋆)−1, ϕ ∈ Φ, and Γϕ be the mismatch function for

emission ψ⋆ (Definition D.1). Then, for any flat : S × A → R, h ∈ [H], and (x, a) ∈ X ×A, we
have [

T Mobs

h (flat ◦ ϕh+1)
]
(x, a) =

[
T Mlat

h (Γϕ,h+1 ◦ Vflat)
]
(ϕ⋆h(x), a).
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Proof of Lemma D.7. Let f := flat, h ∈ [H], and (x, a) ∈ X ×A be given. Then, we have:[
T Mobs

h (f ◦ ϕh+1)
]
(x, a)

= rlat,h(ϕ
⋆
h(x), a) + Esh+1∼Plat,h(ϕ⋆h(x),a)

Exh+1∼ψ⋆h+1(sh+1)[Vf (ϕ(xh+1))]

= rlat,h(ϕ
⋆
h(x), a) + Esh+1∼Plat,h(ϕ⋆h(x),a)

 ∑
xh+1∈X

ψ⋆(xh+1 | sh+1)Vf (ϕ(xh+1))


= rlat,h(ϕ

⋆
h(x), a) + Esh+1∼Plat,h(ϕ⋆h(x),a)

[∑
s′∈S

Γϕ(s
′ | sh+1)Vf (s

′)

]
= rlat,h(ϕ

⋆
h(x), a) + Esh+1∼Plat,h(ϕ⋆h(x),a)

[Γϕ ◦ Vf (sh+1)]

=
[
T Mlat

h (Γϕ ◦ Vf )
]
(ϕ⋆h(x), a),

where the third line follows from the definition of the mismatch function Γϕ.

We next show that the mismatch functions can be used to realize the pushforward dynamics ϕ♯M⋆
obs,

which we recall are defined as:[
ϕ♯M⋆

obs,h

]
(r, s′ | x, a) =

∑
x′:ϕ(x′)=s′

M⋆
obs,h(r, x

′ | x, a). (14)

We also recall the notation [Γϕ,h+1 ◦Mlat]h, defined via:

[Γϕ ◦Mlat]h(rh, sh+1 | sh, ah) :=
∑

s′h+1∈S

Mlat,h(rh, s
′
h+1 | sh, ah)Γϕ,h+1(sh+1 | s′h+1).

Lemma D.8 (Pushforward model realizability via mismatch functions). For all ϕ ∈ Φ, h ∈ [H], we
have:

[ϕh+1♯M
⋆
obs,h](· | x, a) =

[
[Γϕ ◦M⋆

lat]h ◦ ϕ
⋆
h

]
(· | x, a) (15)

Proof of Lemma D.8. Note that Γϕ can alternatively be written as:

Γϕ,h(s
′
h | sh) =

∑
xh:ϕ(xh)=s′h

ψ⋆h(xh | sh).

We have

ϕh+1♯M
⋆
obs,h(rh+1, sh+1 | xh, ah)

=
∑

xh+1:ϕh+1(xh+1)=sh+1

M⋆
obs,h(rh+1, xh+1 | xh, ah)

=
∑

xh+1:ϕh+1(xh+1)=sh+1

 ∑
r,s′∈R×S

M⋆
lat,h(r, s

′ | ϕ⋆h(xh), ah)ψ⋆h+1(xh+1 | s′)


=

∑
r,s′∈R×S

M⋆
lat,h(r, s

′ | ϕ⋆h(xh), ah)
∑

xh+1:ϕh+1(xh+1)=sh+1

ψ⋆h+1(xh+1 | s′)

=
∑

r,s′∈R×S

M⋆
lat,h(r, s

′ | ϕ⋆h(xh), ah)Γϕ,h+1(s
′ | sh+1)

= [Γϕ ◦M⋆
lat]h(r, sh+1 | ϕ⋆h(xh), ah),

as desired.
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E Proofs and Additional Results for Section 3.2: Impossibility Results
This section contains additional information and proofs related to our impossibility results regarding
statistical modularity (Section 3.2), and is organized as follows:

• Appendix E.1 contains the statement for an additional lower bound that is useful for establishing
the impossibility results of Figure 1.

• Appendix E.2 contains details for each entry of Figure 1.

• Appendix E.3 contains for proofs for our main lower bound (Theorem 3.1) and the additional lower
bound (Theorem E.1).

E.1 Additional Lower Bound
Theorem E.1 (Alternative lower bound). For every N ≥ 4, there exists an emission class Ψ and a
decoder class Φ with |Ψ| = |Φ| = N and a family of latent MDPsMlat satisfying (i) |Mlat| = 1,
(ii) H = 1, (iii) |S| = |X | = N , (iv) |A| = N , and such that

1. For all ε, δ > 0, we have comp(Mlat, ε, δ) = 0.

2. For an absolute constant c > 0, comp(⟪Mlat,Φ⟫, c, c) ≥ Ω(N/ log(N)).

Proof of Theorem E.1. See Appendix E.3.2.

E.2 Details for Figure 1
Below, we provide details on each entry in Figure 1. More precisely, for each latent classMlat, we
will give a (brief) description of the MDP classMlat, give our choice of latent complexity comp for
Mlat, and prove that the class is or is not statistically modular for that choice of latent complexity.
We view our choices of latent complexities as natural complexities for the respective classes.

Tabular MDPs (✓).

• Latent classMlat: Tabular MDPs Mlat = (S,A, Plat, Rlat, H). [AOM17]

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(|S|, |A|, H, ε−1, log δ−1), which is
attainable, for example, via the UCB-VI algorithm of Azar et al. [AOM17]

• Statistical modularity (✓): Known Block MDP algorithms (e.g. MUSIK [MFR23], BRIEE
[ZSUWAS22]) have sample complexities of poly(|S|, |A|, H, ε−1, log δ−1, log |Φ|).

Contextual Bandits (✓).

• Latent class Mlat: Contextual bandits with context space S, action space A, reward function
r⋆lat : S ×A → [0, 1] and a finite realizable function class satisfying r⋆ ∈ Flat.

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(|A|, log|Flat|, ε−1, log δ−1), attain-
able via, e.g., the SQUARE-CB algorithm [FR20].

• Statistical modularity (✓): We note that Flat ◦ Φ = {[f ◦ ϕ] | f ∈ F , ϕ ∈ Φ} is a realizable
function class for the observation-level reward function r⋆obs, since r⋆obs = [r⋆lat ◦ ϕ⋆] ∈ Flat ◦ Φ.
Thus, applying the SQUARE-CB algorithm directly on the observations x(t), a(t), r(t) will give
complexity poly(|A| log(|Flat||Φ|), ε−1, log δ−1) = poly(|A|, log |Flat|, log |Φ|, ε−1, log δ−1).

Low-rank MDP (✓).

• Latent class Mlat: MDPs Mlat = (S,A, H, Plat, rlat) such that there exists µ⋆lat,h ∈ Rd,

θ⋆lat,h ∈ Rd, and a known set of features Ξlat =
{
ξlat =

{
ξlat,h : S ×A → Rd

}H
h=1

}
such that

for all h ∈ [H] we have rlat(sh, ah) = ⟨ξ⋆lat,h(sh, ah), θ⋆lat,h⟩ as well as

Plat,h(sh+1 | sh, ah) = ⟨ξ⋆lat,h(sh, ah), µ⋆lat,h+1(sh+1)⟩ (16)

for some ξ⋆lat ∈ Ξlat.

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(d, |A|, H, log |Ξlat|, ε−1, log δ−1),
which is attainable via the VOX algorithm of Mhammedi et al. [MBFR23].
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• Statistical modularity (✓): This is obtained by noting that the observation-level dynamics also
satisfy the low-rank property with the same dimension. Formally, letting Pobs be the transition
kernel for ⟪Mlat, ψ

⋆⟫ and ϕ⋆ = (ψ⋆)−1, we have

Pobs,h(xh+1 | xh, ah) =
∑

sh+1∈S
Plat,h(sh+1 | ϕ⋆h(xh), ah)ψ⋆h+1(xh+1 | sh+1)

=
∑

sh+1∈S

〈
ξ⋆lat,h(ϕ

⋆
h(x), a), µ

⋆
lat,h+1(sh+1)

〉
ψ⋆h+1(xh+1 | sh+1)

=

〈
ξ⋆lat,h(ϕ

⋆
h(x), a),

∑
sh+1∈S

µ⋆lat,h+1(sh+1)ψ
⋆
h+1(xh+1 | sh+1)

〉
.

Thus, the transition kernel Pobs is a low-rank MDP with µobs,h+1(xh+1) :=∑
sh+1

µ⋆lat,h+1(sh+1)ψ
⋆
h+1(xh+1 | sh+1) and feature class

Ξlat ◦ Φ =
{
ξlat ◦ ϕ = {ξh ◦ ϕh : x, a 7→ ξh(ϕh(x), a)}Hh=1 | ξlat ∈ Ξlat, ϕ ∈ Φ

}
.

Lastly, since robs = [rlat ◦ ϕ⋆], the reward function is also linear with the same unknown feature
class. Thus we can apply VOX directly on top of the observations, with the feature class Ξlat ◦ Φ,
which will achieve a complexity poly(d, |A|, H, log|Ξlat|, log|Φ|, ε−1, log

(
δ−1
)
).

Known Deterministic MDP (|Mlat| = 1) (✓).

• Latent classMlat:Mlat = {Mlat = (S,A, Plat, Rlat, H)} is a set of MDPs of size 1 with both
deterministic rewards and deterministic transitions.

• Latent complexity comp: We take comp(Mlat, ε, δ) = 0, which is attainable as Mlat is known and
we can simply deploy its optimal policy.

• Statistical modularity (✓): We note that, due to determinism, the latent optimal policy can be
chosen to be open-loop without loss of generality, and thus will always experience the same
trajectory (s⋆1, a

⋆
1, . . . , s

⋆
H , a

⋆
H). We can define the observation-level policy which commits to this

same sequence of actions, i.e. πobs,h(xh) = a⋆h for all xh. This will be an optimal policy for any
Mobs = ⟪Mlat, ψ⟫, and can also be learned in 0 samples.

Low State Occupancy (∀π : S → ∆(A)) (✓).

• Latent class Mlat: Mlat = {Mlat = (S,A, Plat, Rlat, H)} is a set of MDPs for which
we have a realizable value function class, and such that there exists a feature map ζlat ={
ζlat,h : S → Rd

}H
h=1

such that for all π : S → ∆(A) and for all Mlat ∈Mlat, we have

∀h ∈ [H] ∃θMlat,π
h : dMlat,π

h (s) =
〈
ζlat,h(s), θ

Mlat,π
h

〉
.

Note that the feature map does not need to be known.

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(d, |A|, H, log|Flat|, ε−1, log
(
δ−1
)
),

which is attainable by the BILIN-UCB algorithm of Du et al., since i) MDPs with this property have
Bilinear rank bounded by d|A| (see Definition 4.3 and Lemma 4.6 of Du et al. [Du+21]), and ii)
one can construct the value function class Flat = {QMlat,⋆ |Mlat ∈Mlat}, which is realizable
and has size log|Flat| = log|Mlat|.

• Statistical modularity (✓): We firstly note that one can construct a realizable value function class
for the set ⟪Mlat,Φ⟫, via the set Fobs =

{
QMlat,⋆ ◦ ϕ |Mlat ∈Mlat, ϕ ∈ Φ

}
. This is realizable

since, for anyMobs := ⟪Mlat, ψ⟫, letting ϕ⋆ = ψ−1, we haveQMobs,⋆ = QMlat,⋆◦ϕ⋆, and that this
class has size log|Mlat||Φ|. We can then show that the occupancies dMobs,πfobs , for fobs ∈ Fobs,
can also be expressed as d-dimensional linear function for an appropriate choice of features,
which will imply that the BILIN-UCB algorithm run directly on Mobs will attain a complexity of
poly(d, |A|, H, logMlat, log Φ, ε

−1, log
(
δ−1
)
). To obtain this, we recall the following lemma:

Lemma D.2. Let {Γϕ}ϕ∈Φ denote the mismatch functions for emission ψ⋆, and let Mobs =

⟪Mlat, ψ
⋆⟫. Then, for any πlat ∈ Πlat, ϕ ∈ Φ, h ∈ [H], x ∈ X , we have

dMobs,πlat◦ϕ
h (x) = ψ⋆h(x | ϕ⋆h(x))d

Mlat,Γϕ◦πlat

h (ϕ⋆h(x)).
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Thanks to the above lemma, we have

d
πf◦ϕ
obs (xh) = ψ(xh | ϕ⋆(xh))d

Γϕ◦πf
lat (ϕ⋆(xh))

= ψ(xh | ϕ⋆(xh))
〈
[ζlat,h ◦ ϕ⋆h](xh), θ

Mlat,Γϕ◦πf
h

〉
=
〈
ψ(xh | ϕ⋆(xh))[ζlat,h ◦ ϕ⋆h](xh), θ

Mlat,Γϕ◦πf
h

〉
and so dπf◦ϕobs is linear with feature mapping ψ(xh | ϕ⋆(xh))[ζlat,h ◦ ϕ⋆h] and parameter θMlat,Γϕ◦πf .
Recall that the feature map need not be known, so that BILIN-UCB can still be applied despite not
knowing ψ and ϕ⋆.

Model class + Pushforward Coverability (✓).

• Latent class Mlat: Mlat = {Mlat = (S,A, Plat, Rlat, H)} is a set of MDPs that all satisfy
pushforward coverability Cpush(Mlat) ≤ Cpush (cf. Eq. (28) for the definition).

• Latent complexity comp: We take comp(Mlat, ε, δ) =
poly(Cpush, |A|, H, log|Mlat|, ε−1, log

(
δ−1
)
), which is attainable by the GOLF algorithm

via the results of Xie et al. [XFBJK23] (see also Lemma F.3). We obtain this by noting that i)
Ccov ≤ Cpush|A|, where Ccov is defined in Definition 2 of Xie et al. [XFBJK23], and ii) a realizable
model class can be used to construct a realizable value function class F and a Bellman-complete
value function helper class G with sizes log|F| = log|M| and log|G| = O(log|M|).

• Statistical modularity (✓): This is obtained via Theorem 3.2.

Linear CB/MDP (✗⋆).

• Latent classMlat: MDPs Mlat = (S,A, Plat, Rlat, H) that are linear with respect to a known
feature map ξ⋆lat : S ×A → Rd (i.e. such that Eq. (16) holds for ξ⋆lat).

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(d,H, ε−1, log
(
δ−1
)
), which is attain-

able via the LSVI-UCB algorithm of Jin et al. [JYWJ20]. Note that this guarantee does not depend
on the number of actions.

• Statistical intractability (✗): The latent model used in the construction of Theorem E.1 is a set (of
size 1) of linear MDPs with d = 1. In particular, that construction was a contextual bandit so we
only have to realize a reward function, and since there is only one latent model so we can trivially
embed this with d = 1 via ξ⋆lat(s, a) = rlat(s, a), where rlat is the reward function of the MDP
used in Theorem E.1.

• Statistical modularity with additional |A|-dependence: As in the Low-rank MDP case above,
⟪Mlat, ψ⟫ is low-rank with unknown feature set Φ′ = {ξ⋆lat ◦ ϕ | ϕ ∈ Φ}. Thus, by the same
conclusion, a the VOX algorithm will have complexity poly(d, |A|, H, log |Φ|), which is of the
desired form if we allow suboptimal dependence on |A|.

Model class + Coverability (∀πM :M ∈M) (✗).

• Latent assumption: Mlat = {Mlat = (S,A, Plat, Rlat, H)} is a set of MDPs that all satisfy
coverability with respect to the policy class ΠM = {πM |M ∈M}, i.e. we have

∀Mlat ∈Mlat : Ccov(Mlat) = inf
µh∈∆(S×A)

sup
h∈[H]

sup
π∈ΠM

∥∥∥∥dMlat,π
h

µh

∥∥∥∥
∞
<∞

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(Ccov, H, log|Mlat|, ε−1, log
(
δ−1
)
),

which is attainable by the GOLF algorithm via the results of Xie et al. [XFBJK23] (see also
Lemma F.3). We obtain this by noting that a realizable model class can be used to construct a
realizable value function class F and a complete value function class G of sizes log|F| = log|M|
and log|G| = O(log|M|).

• Statistical intractability (✗): The latent models used in the construction of Theorem 3.1 are a set of
coverable MDPs – in particular, these are trivially coverable with Ccov = 1 since there is a single
latent model and we can take µ = d

M⋆
lat,πM⋆lat . We remark that it is an interesting open question

whether this impossibility result continues to hold if we require coverability with respect to the
class Π of all possible latent policies.
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Known Stochastic MDP (|Mlat| = 1) (✗).

• Latent classMlat:Mlat = {Mlat = (S,A, Plat, Rlat, H)} is a set of MDPs of size 1.

• Latent complexity comp: We take comp(Mlat, ε, δ) = 0, which is attainable as Mlat is known and
we can simply deploy its optimal policy.

• Statistical intractability (✗): This is precisely the setting of Theorem 3.1, which shows that at least
Ω(N/ log(N)) samples will be needed, where N = |Φ|.

Bellman rank (Q-type or V -type) (✗)

• Latent assumption: Mlat = {Mlat = (S,A, Plat, Rlat, H)} is a set of latent models such that
each Mlat ∈Mlat has Q-type Bellman rank d or V -type Bellman rank d [JLM21]. Letting F be a
realizable value function class forMlat, in the Q-type case, this means that the |ΠF | × |F| matrix

EQh (π, f) = Eπ
[
fh(sh, ah)− rh −max

a′
fh+1(sh+1, a

′)
]
,

admits a rank d factorization. In the V -type case, the matrix

EVh (π, f) = Esh∼dπh,ah∼πf
[
fh(sh, ah)− rh −max

a′
fh+1(sh+1, a

′)
]

admits a rank-d matrix factorization.

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(d,H, |A| log|F|, ε−1, log
(
δ−1
)
)

for the V -type Bellman rank case, which is achievable by the OLIVE algorithm of Jiang et al.
[JKALS17], and comp(Mlat, ε, δ) = poly(d,H, log|F|, ε−1, log

(
δ−1
)
) for Q-type Bellman rank,

which is achievable by the BILIN-UCB algorithm of Du et al. [Du+21].

• Statistical intractability (✗): We note that the construction in Theorem 3.1 has |Mlat| = 1,
which trivially has Bellman rank equal to 1, so Theorem 3.1 precludes statistical modularity with
complexity comp.

Eluder dimension + Bellman Completeness (✗)

• Latent classMlat:Mlat = {Mlat = (S,A, Plat, Rlat, H)} is a set of MDPs such that there is a
function class Flat satisfying

∀flat ∈ Flat,Mlat ∈Mlat : T Mlatflat ∈ Flat.

Furthermore, each Mlat ∈Mlat has Bellman-Eluder dimension bounded by d (see Definition 8 of
[JLM21]).

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(d,H, log|F|, ε−1, log
(
δ−1
)
), which

is attainable by the GOLF algorithm of Jin et al. [JLM21].

• Statistical intractability (✗): As in the Bellman rank case, the construction in Theorem 3.1 has
|Mlat| = 1, so we can take Flat = {QMlat,⋆ | Mlat ∈ Mlat} which is evidently complete
for T Mlat , and has Eluder dimension 1, so Theorem 3.1 precludes statistical modularity with
complexity comp.

Q⋆-irrelevant State Abstraction (✗)

• Latent class Mlat: Mlat = (S,A, Plat, Rlat, H) such that there is a known state abstraction
function ζlat : S → Z such that ζlat(s) = ζlat(s

′) implies that QMlat,⋆(s, a) = QMlat,⋆(s′, a) for
all a ∈ A.

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(|Z|, |A|, H, ε−1, log
(
δ−1
)
) which is

attainable by the OLIVE algorithm of Jiang et al. [JKALS17].

• Statistical intractability (✗): We takeMlat = {Mlat} as the MDP class from the construction of
Theorem 3.1. LetQ⋆lat := QMlat,⋆. Note that we haveQ⋆lat(s, a) ∈ {0, 1} for all s, a, so we can take
a latent abstract state space Z = {(0, 0), (0, 1), (1, 0), (1, 1)} and a state abstraction function ζlat
such that ζlat(s) = (i, j) if Q⋆lat(s, 0) = i and Q⋆lat(s, 1) = j. This satisfies the property of a Q⋆-
irrelevant abstraction, since ζlat(s) = ζlat(s

′) = (i, j) implies that Q⋆lat(s, 0) = Q⋆lat(s
′, 0) = i

and Q⋆lat(s, 1) = Q⋆lat(s
′, 1) = j. This has a constant-sized abstract space (|Z| = 4) and |A| = 2,

so Theorem 3.1 precludes statistical modularity with complexity comp.
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Linear Mixture MDP (✗).

• Latent classMlat: MDPs Mlat = (S,A, Plat, Rlat, H) such that there is a known feature map
ζlat = {ζlat,h : s′, s, a 7→ Rd}Hh=1 such that

∀h ∈ [H],∃θh ∈ Rd : Plat,h(s
′ | s, a) = ⟨ζlat,h(s′ | s, a), θh⟩

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(d,H, ε−1, log
(
δ−1
)
), which is attain-

able by the UCRL-VTR+ algorithm of Zhou et al. [ZGS21]

• Statistical intractability (✗): We takeMlat = {Mlat} to be the construction of Theorem 3.1. Here,
there is a single latent model, so this is trivially embeddable with ζlat,h(s′ | s, a) = P ⋆lat,h(s

′ |
s, a) ∈ R1. This has dimension d = 1, so Theorem 3.1 precludes statistical modularity with
complexity comp.

Linear Q⋆/V ⋆ (✗).

• Latent class Mlat: MDPs Mlat = (S,A, Plat, Rlat, H) such that there are known features
maps αlat : S × A → Rd and βlat : S → Rd such that for all Mlat ∈ Mlat, there exists
unknown parameters θQ, θV ∈ Rd such that QMlat,⋆(s, a) = ⟨αlat(s, a), θQ⟩ and V Mlat,⋆(s) =
⟨βlat(s), θV ⟩.

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(d,H, ε−1, log
(
δ−1
)
), which is attain-

able by the BILIN-UCB algorithm of Du et al. [Du+21].

• Statistical intractability (✗): We can takeMlat to be the latent MDP class from the construction
of Theorem 3.1. Since there is a single latent model, this is trivially embeddable with dimension
1, i.e. we can take ζlat(s, a) = Q⋆lat(s, a) and βlat(s) = V ⋆lat(s). This has dimension d = 1, so
Theorem 3.1 precludes statistical modularity with complexity comp.

Low State or State-Action Occupancy (∀πM :M ∈M) (✗).

• Latent classMlat: In the Low State Occupancy model,Mlat = {Mlat = (S,A, Plat, Rlat, H)}
is a set of MDPs such that there exists a feature map ζVlat =

{
ζlat,h : S → Rd

}H
h=1

such that for
all π ∈ {πMlat |Mlat ∈Mlat} and for all Mlat ∈Mlat, we have

∀h ∈ [H] ∃θMlat,π
h : dMlat,π

h (s) =
〈
ζVlat,h(s), θ

Mlat,π
h

〉
.

For the State-Action Occupancy model, we have that there exists a feature map ζQlat ={
ζlat,h : S ×A → Rd

}H
h=1

such that for all π ∈ {πMlat | Mlat ∈ Mlat} and for all Mlat ∈
Mlat, we have

∀h ∈ [H] ∃θMlat,π
h : dMlat,π

h (s, a) =
〈
ζQlat,h(s, a), θ

Mlat,π
h

〉
.

Note that the feature map does not need to be known in either case.

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(d, |A|, H, log|Flat|, ε−1, log
(
δ−1
)
)

for the state occupancy case and comp(Mlat, ε, δ) = poly(d,H, log|Mlat|, ε−1, log
(
δ−1
)
). Both

are attainable by the BILIN-UCB algorithm of Du et al., since i) MDPs with this property have
Bilinear rank bounded by d|A| and d respectively (see Definition 4.3 and Lemma 4.6 of [Du+21]),
and ii) one can construct the value function class Flat = {QMlat,⋆ | Mlat ∈ Mlat} which is
realizable and has size log|Flat| = log|Mlat|.

• Intractability: We can take the construction of Theorem 3.1, which has |Mlat| = 1 and thus is
trivially embeddable with dimension 1, i.e. we can take ζVlat(s) = dMlat,πMlat (s) and ζQlat(s, a) =
dMlat,πMlat (s, a).

Bisimulation (?)

• Latent classMlat: MDPsMlat = (S,A, Plat, Rlat, H) such that there is a known state abstraction
function ζlat : S → Z such that ζlat(s) = ζlat(s̃) implies that Rlat(s, a) = Rlat(s̃, a) for all
a ∈ A as well as

∑
s′:ζlat(s′)=z′

Plat(s
′ | s, a) =

∑
s′:ζlat(s′)=z′

Plat(s
′ | s̃, a) for all z′.
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• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(|Z|, |A|, H, ε−1, log
(
δ−1
)
) which is

attainable by the OLIVE algorithm of [JKALS17].

• Openness (?): A negative result does not follow from existing constructions, since the dynamics
from the tree-based construction of Theorem 3.1 are not bisimilar unless |Z| = |S|, which allows for
the application of tabular methods. At the same time, a positive result does not follow from existing
methods, since it is non-trivial to extend existing Block MDP methods to use the bisimulation state
abstraction in a way that only pays for |Z|.

Low State-Action Occupancy (∀π : S → ∆(A)) (?⋆)

• Latent classMlat: Mlat = {Mlat = (S,A, Plat, Rlat, H)} is a set of MDPs such that there
exists a feature map ζQlat =

{
ζlat,h : S ×A → Rd

}H
h=1

such that for all π : S → ∆(A) and for
all Mlat ∈Mlat, we have

∀h ∈ [H] ∃θMlat,π
h : dMlat,π

h (s, a) =
〈
ζQlat,h(s, a), θ

Mlat,π
h

〉
.

Note that the feature map does not need to be known.

• We take comp(Mlat, ε, δ) = poly(d,H, log|Mlat|, ε−1, log
(
δ−1
)
), which is attainable by the

BILIN-UCB algorithm of Du et al., since i) MDPs with this property have Bilinear rank bounded
by d (see Definition 4.3 and Lemma 4.6 of [Du+21]), and ii) one can construct a realizable value
function class of size log|F| = log|M|.

• Openness (?): A negative result does not follow from existing constructions, since the dynamics
from the tree-based construction of Theorem 3.1 do not have linear occupancies for all π : S →
∆(A) unless d = |S|, which allows for the application of tabular methods, and the dynamics from
the bandit-based construction Theorem E.1 do not have linear occupancies for all π : S → ∆(A)
unless d = |A|. At the same time, unlike the low state occupancy case, a positive result does not
follow as it is unclear if we can express the observation-space occupancies linearly.

• Statistical tractability with additional (suboptimal) |A|-dependence (✓): Note that we can reduce
to the Low State Occupancy case (✓), since

dπ(s) =
∑
a∈A

dπ(s, a) =

〈
θπ,
∑
a∈A

ζQlat(s, a)

〉
:=
〈
θπ, ζVlat(s)

〉
.

However, this blows up the feature norm bound of the feature map ζVlat(s) by a factor of |A|, which
will appear logarithmically in the bound obtained by BILIN-UCB.

Model class + Coverability (∀π : S → ∆(A)) (?).

• Latent class Mlat: Mlat = {Mlat = (S,A, Plat, Rlat, H)} is a set of MDPs that all satisfy
coverability with respect to all policies πlat : S → ∆(A), i.e. we have

∀Mlat ∈Mlat : Ccov(Mlat) = inf
µh∈∆(S×A)

sup
h∈[H]

sup
π:S→∆(A)

∥∥∥∥dMlat,π
h

µh

∥∥∥∥
∞
<∞

• Latent complexity comp: We take comp(Mlat, ε, δ) = poly(Ccov, H, log|Mlat|, ε−1, log
(
δ−1
)
),

which is attainable by the GOLF algorithm via the results of Xie, Foster, Bai, Jiang, and Kakade (see
also Lemma F.3). We obtain this by noting that a realizable model class can be used to construct a
realizable value function class F and a complete value function class G of sizes log|F| = log|M|
and log|G| = O(log|M|).

• Openness (?): A negative result does not follow from the existing constructions. The tree-based
construction of Theorem 3.1 satisfies coverability with Ccov = exp(Ω(H)) and the bandit-based
construction of Theorem E.1 satisfies coverability with Ccov = |A|. In both cases, the lower bounds
cannot be used to rule out statistical modularity with the above latent complexity. Similarly, it
unclear how to obtain a positive result for the latent-dynamics class ⟪Mlat,Φ⟫.
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E.3 Proofs for Lower Bounds (Theorems 3.1 and E.1)
E.3.1 Main lower bound (Theorem 3.1)
We will prove the following result.

Theorem 3.1 (Impossibility of statistical modularity). For every N ≥ 4, there exists a decoder class
Φ with |Φ| = N and a family of base MDPsMlat satisfying (i) |Mlat| = 1, (ii) H ≤ O(log(N)),
(iii) |S| = |X | ≤ N2, (iv) |A| = 2, and such that

1. For all ε, δ > 0, we have comp(Mlat, ε, δ) = 0.

2. For an absolute constant c > 0, comp(⟪Mlat,Φ⟫, c, c) ≥ Ω(N/ log(N)).

Proof. Let N be given and assume without loss of generality that it is a power of 2. We first
construct the class of latent-dynamics MDPs, following Song et al. [SWFK24].

Latent MDP. The construction has a single “known” latent MDP Mlat, so that the only uncertainty
in the family of latent-dynamics MDPs we construct arises from the emission processes. We set
Mlat = {Mlat}. Set H = log2(N) + 1 and A = {0, 1}. We define the state space and latent
transition dynamics as follows.

• The state space can be partitioned as S = S1, . . . ,SN .

• Each block Si corresponds to a standard depth-H binary tree MDP with deterministic dynamics
(e.g., Osband et al.; Domingues et al. [OVR16; DMKV21]). There is a single “root” node at layer
h = 1, which we denote by siroot, and N “leaf” nodes at layer H , which we denote by

{
si,jleaf

}
j∈[N ]

.
For each h = 1, . . . ,H − 1, choosing action 0 leads to the left successor of the current state
deterministically, and choosing action 1 leads to the right sucessor; this process continues until
we reach a leaf node at layer H .

• The initial state distribution is Plat,1(∅) = Unif(s1root, . . . , s
N
root).

• There are no rewards for layers 1, . . . ,H − 1. For layer H , the reward is

RH(si,jleaf , ·) = I{j = i}. (17)

This construction can summarized as follows. At layer 1, we draw the index of one of N binary trees
uniformly at random, and initialize into the root of the tree. From here, we receive a reward of 1 if
we successfully navigate to the leaf node whose index agrees with the index of the tree itself, and
receive a reward of 0 otherwise.

Note that the total number of latent states in this construction is |S| = N · |S1| = N(2N − 1)

Observation space and decoder class. Let us introduce some additional notation. For each
block Si, let Sih := {si,jh }j∈[2h−1] denote the states in block i that are reachable at layer h, so that
Si1 =

{
siroot

}
and SiH = {si,jleaf}j∈[N ]. We define X = S so that |X | ≤ 4N2, and consider a class of

emission processes corresponding to deterministic maps. Let Σ denote the set of cyclic permutations
on N elements, excluding the identity permutation. That is, each σi ∈ Σ takes the form

σi : k 7→ k + i mod N for i ∈ {1, . . . , N}.

For each σ ∈ Σ, we consider the emission process

ψσh(· | s
(i,j)

h ) = I
s
(σ(i),j)
h

.

That is, ψσ shifts the index of the binary tree containing s(i,j)h according to σ. Let Ψ = {ψσ | σ ∈ Σ}.
Consider the decoder class

Φ = Ψ−1 :=
{
si 7→ sψ

−1(i) | ψ ∈ Ψ
}
,

which has |Φ| = N . We consider the class of rich-observation MDPs given by

⟪Mlat,Φ⟫ :=
{
M i := ⟪Mlat, ψ

σi⟫ | σi ∈ Σ
}
. (18)

It is clear that this class of rich-observation MDPs satisfies the decodability assumption for emissions
Ψ.

34



Sample complexity lower bound. To lower bound the sample complexity, we prove a lower bound
on the constrained PAC Decision-Estimation Coefficient (DEC) of [FGH23]. For an arbitrary MDP
M (defined over the space X ) and ε ∈ [0, 21/2], define18

decε(M,M) = inf
p,q∈∆(Π)

sup
M∈M

{
Eπ∼p[JM(πM)− JM(π)] | Eπ∼q

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
,

where M(π) denotes the law over trajectories (x1, a1, r1), . . . , (xH , aH , rH) induced by executing
the policy π in the MDP M , JM(π) denotes the expected reward for policy π under M , and πM
denotes the optimal policy for M . We further define

decε(M) = sup
M

decε(M,M),

where the supremum ranges over all MDPs defined over X and A. We now appeal to the following
technical lemma.

Lemma E.1. For all ε2 ≥ 4/N , we have that decε(⟪Mlat,Φ⟫) ≥ 1
2 .

In light of Lemma E.1, it follows from Theorem 2.1 in Foster et al. [FGH23]19 that any PAC RL
algorithm that uses T episodes of interaction for T log(T ) ≤ c·N must have E[JM(πM)− JM(π̂)] ≥
c′ for a worst-case MDP inM, where c, c′ > 0 are absolute constants. This implies that any PAC RL
which has E[JM(πM)− JM(π̂)] ≤ c′ must have T log(T ) ≥ c ·N and thus T ≥ c ·N/ log(N).

Proof of Lemma E.1. Define M lat as the latent-space MDP that has identical dynamics to Mlat but,
has zero reward in every state, and define M := ⟪M lat, id⟫ as the rich-observation MDP obtained
by composing M lat with the “identity” emission process id that sets xh = sh. Observe that M and
M i, induce identical dynamics in observation space if rewards are ignored: For all policies π,

PM,π[(x1, a1), . . . , (xH , aH) = ·] = PMi,π[(x1, a1), . . . , (xH , aH) = ·]. (19)

It follows that for each i, for all policies π, we have

D2
H

(
M i(π),M(π)

)
= D2

H

(
(⟪Mlat, ψi⟫)(π), (⟪M lat, id⟫)(π)

)
=

N∑
j=1

PM,π
[
xH = s

(ψi(j),j)

leaf

]
·D2

H(I1, I0)

= 2

N∑
j=1

PM,π
[
xH = s

(ψi(j),j)

leaf

]
=

2

N

N∑
j=1

PM,π
[
xH = s

(ψi(j),j)

leaf | x1 = s
(ψi(j))

root

]
, (20)

=
2

N

N∑
j=1

PM,π
[
xH = s

(j,ψ
−1
i

(j))

leaf | x1 = s(j)root

]
, (21)

since the learner receives identical feedback in the MDPsM i andM unless they reach the observation
xH = s

(ψi(j),j)

leaf for some j (corresponding to latent state s(j,j)leaf in M i), in which case they receiver
reward 1 in M i but reward 0 in M . We now claim that for any q ∈ ∆(Π), there exists a set of at least
N/2 indices Iq ⊂ [N ] such that

Eπ∼q
[
D2

H

(
M i(π),M(π)

)]
≤ 4

N
(22)

18For measures P and Q, we define squared Hellinger distance by D2
H(P,Q) =

∫
(
√
dP−

√
dQ)2.

19Theorem 2.1 in Foster et al. [FGH23] is stated with respect to supM∈conv(M) decε(M,M), but the actual
proof (Section 2.2) gives a stronger result that scales with supM decε(M,M).
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for all i ∈ Iq . To see this, note that by Eq. (21), we have

Ei∼Unif([N ]) Eπ∼q
[
D2

H

(
M i(π),M(π)

)]
≤ Eπ∼q

 2

N

N∑
j=1

1

N

N∑
i=1

PM,π
[
xH = s

(j,ψ
−1
i

(j))

leaf | x1 = s(j)root

]
≤ Eπ∼q

 2

N

N∑
j=1

1

N

 =
2

N
,

where the second inequality uses that
∑N
i=1 PM,π

[
xH = s

(j,ψ
−1
i

(j))

leaf | x1 = s(j)root

]
≤ 1, as the events

in the sum are mutually exclusive (and the event we condition on does not depend on i). We conclude
by Markov’s inequality that Pi∼Unif([N ])

[
Eπ∼q

[
D2

H

(
M i(π),M(π)

)]
≥ 4/N

]
≤ 1/2, giving Iq ≥

N/2.

From Eq. (26), we conclude that for all ε2 ≥ 4/N ,

decε(M,M) ≥ inf
q∈∆(Π)

inf
p∈∆(Π)

sup
i∈Iq

{
Eπ∼p

[
JM

i
(πMi)− JM

i
(π)
]}
.

To lower bound this quantity, observe that for any index i and any policy π, we have

JM
i
(πMi)− JM

i
(π) =

1

N

N∑
j=1

PM
(i),π

[
xH ̸= s

(ψi(j),j)

leaf | x1 = s
(ψi(j))

root

]
= 1− 1

N

N∑
j=1

PM
(i),π

[
xH = s

(ψi(j),j)

leaf | x1 = s
(ψi(j))

root

]
= 1− 1

N

N∑
j=1

PM,π
[
xH = s

(ψi(j),j)

leaf | x1 = s
(ψi(j))

root

]
= 1− 1

N

N∑
j=1

PM,π
[
xH = s

(j,ψ
−1
i

(j))

leaf | x1 = s(j)root

]
,

where the third inequality uses Eq. (19). We conclude that for any distribution p, q ∈ ∆(Π),

sup
i∈Iq

{
Eπ∼p

[
JM

i
(πMi)− JM

i
(π)
]}

≥ Ei∼Unif(Iq)

{
Eπ∼p

[
JM

i
(πMi)− JM

i
(π)
]}

≥ 1− 1

N

N∑
j=1

Ei∼Unif(Iq) P
M,π
[
xH = s

(j,ψ
−1
i

(j))

leaf | x1 = s(j)root

]

= 1− 1

N

N∑
j=1

1

|Iq|
∑
i∈Iq

PM,π
[
xH = s

(j,ψ
−1
i

(j))

leaf | x1 = s(j)root

]
≥ 1− 1

|Iq|
≥ 1

2

as long asN ≥ 4, where the second-to-last inequality uses that for all j, the events
{
xH = s

(j,ψ
−1
i

(j))

leaf |
x1 = s(j)root

}
are disjoint for all i. Since this lower bound holds uniformly for all q, p ∈ ∆(Π), we

conclude that

decε(⟪Mlat,Φ⟫,M) ≥ 1

2
.

E.3.2 Proof of alternative lower bound (Theorem E.1)
We will prove the following result.
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Theorem E.1 (Alternative lower bound). For every N ≥ 4, there exists an emission class Ψ and a
decoder class Φ with |Ψ| = |Φ| = N and a family of latent MDPsMlat satisfying (i) |Mlat| = 1,
(ii) H = 1, (iii) |S| = |X | = N , (iv) |A| = N , and such that

1. For all ε, δ > 0, we have comp(Mlat, ε, δ) = 0.

2. For an absolute constant c > 0, comp(⟪Mlat,Φ⟫, c, c) ≥ Ω(N/ log(N)).

Proof of Theorem E.1. We repeat more or less repeat the same proof as Theorem 3.1, but with the
appropriate modifications to translate from the contextual tree-based construction in Theorem 3.1
to the contextual bandit-based construction in the theorem statement. Let N be given and assume
without loss of generality that it is a power of 2.

Latent MDP. Our construction has a single “known” latent MDP Mlat; that is, the only uncertainty
in the family of rich-observation MDPs we construct arises from the emission processes. Set
Mlat = {Mlat}. Set H = 1 and A = [N ]. We define the state space and latent transition dynamics
as follows.

• The state space can be partitioned as S = S1, . . . ,SN .

• Each block Si corresponds to a single state si with N actions denoted by ai, i ∈ [N ].

• The initial state distribution is Plat,1(∅) = Unif(s1, . . . , sN ).

• The reward function is
R1(s

i, aj) = I{j = i}. (23)

Informally, this construction can summarized as a contextual bandit (with uniform context distribu-
tion), with a reward of 1 if and only if we play the action corresponding to the index of the context
drawn.

Note that the total number of latent states in this construction is |S| = N and the number of actions
is |A| = N .

Observation space and decoder class. We define X = S so that |X | = |S|, and consider a class of
emission processes corresponding to deterministic maps. Let Σ denote the set of cyclic permutations
on N elements, excluding the identity permutation. That is, each σi ∈ Σ takes the form

σi : k 7→ k + i mod N, for i ∈ {1, . . . , N}.
For each σ ∈ Σ, we consider the emission process

ψσ(· | si) = Isσ(i)(·)
That is, ψσ shifts the context si according to σ. Let Ψ = {ψσ | σ ∈ Σ}. Consider the decoder class

Φ = Ψ−1 :=
{
si 7→ sψ

−1(i) | ψ ∈ Ψ
}
,

which has |Φ| = N . We consider the class of rich-observation MDPs given by

⟪Mlat,Φ⟫ :=
{
M i := ⟪Mlat, ψ

σi⟫ | σi ∈ Σ
}
. (24)

It is clear that this class of rich-observation MDPs satisfies the decodability assumption for emissions
Ψ.

Sample complexity lower bound. To lower bound the sample complexity, we prove a lower bound
on the constrained PAC Decision-Estimation Coefficient (DEC) of [FGH23]. For an arbitrary MDP
M (defined over the space X ) and ε ∈ [0, 21/2], define20

decε(M,M) = inf
p,q∈∆(Π)

sup
M∈M

{
Eπ∼p[JM(πM)− JM(π)] | Eπ∼q

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
,

where M(π) denotes the law over observations (x1, a1, r1) induced by executing the policy π in the
MDP M , JM(π) denotes the expected reward for policy π under M , and πM denotes the optimal
policy for M . We further define

decε(M) = sup
M

decε(M,M),

where the supremum ranges over all MDPs defined over X and A. We now appeal to the following
technical lemma.

20For measures P and Q, we define squared Hellinger distance by D2
H(P,Q) =

∫
(
√
dP−

√
dQ)2.
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Lemma E.2. For all ε2 ≥ 4/N , we have that supM decε(M,M) ≥ 1
2 .

In light of Lemma E.2, it follows from Theorem 2.1 in Foster et al. [FGH23]21 that any PAC RL algo-
rithm that uses T episodes of interaction for T log(T ) ≤ c ·N must have E[JM(πM)− JM(π̂)] ≥ c′
for a worst-case MDP inM, where c, c′ > 0 are absolute constants. This implies that any PAC RL
which has E[JM(πM)− JM(π̂)] ≤ c′ must have T log(T ) ≥ c ·N and thus T ≥ c ·N/ log(N).

Proof of Lemma E.2. Define M lat as the latent-space MDP that has identical dynamics to Mlat

but, has zero reward for every state-action pair, and define M := ⟪M lat, id⟫ as the rich-observation
MDP obtained by composing M lat with the identity emission process that sets xh = sh. In the rest
of the proof, we use the shorthand ψi := ψσi . Observe that M and M i, induce identical dynamics in
observation space if rewards are ignored, i.e. for all policies π : X → ∆(A),

PM,π[(x1, a1) = ·] = PMi,π[(x1, a1) = ·]. (25)

It follows that for each i, for all policies π, we have

D2
H

(
M i(π),M(π)

)
= D2

H

(
(⟪Mlat, ψi⟫)(π), (⟪M lat, id⟫)(π)

)
=

N∑
j=1

PM,π
[
x1 = sψi(j), a1 = aj

]
·D2

H(I1, I0)

= 2

N∑
j=1

PM,π
[
x1 = sψi(j), a1 = aj

]

=
2

N

N∑
j=1

PM,π
[
a1 = aj | x1 = sψi(j)

]

=
2

N

N∑
j=1

PM,π
[
a1 = aψ

−1
i (j) | x1 = sj

]
since the learner receives identical feedback in the MDPs M i and M unless they play the action
a1 = aj given observation x1 = sψi(j) (corresponding to latent state si in M i), in which case they
receiver reward 1 in M i but reward 0 in M . We now claim that for any q ∈ ∆(Π), there exists a set
of at least N/2 indices Iq ⊂ [N ] such that

Eπ∼q
[
D2

H

(
M i(π),M(π)

)]
≤ 4

N
(26)

for all i ∈ Iq . To see this, note that by Eq. (21), we have

Ei∼Unif([N ]) Eπ∼q
[
D2

H

(
M i(π),M(π)

)]
≤ Eπ∼q

 2

N

N∑
j=1

1

N

N∑
i=1

PM,π
[
a1 = aψ

−1
i (j) | x1 = j

]
≤ Eπ∼q

 2

N

N∑
j=1

1

N

 =
2

N
.

We conclude by Markov’s inequality that Pi∼Unif([N ])

[
Eπ∼q

[
D2

H

(
M i(π),M(π)

)]
≥ 4/N

]
≤ 1/2,

giving Iq ≥ N/2.

From Eq. (26), we conclude that for all ε2 ≥ 4/N ,

decε(⟪Mlat,Φ⟫,M) ≥ inf
q∈∆(Π)

inf
p∈∆(Π)

sup
i∈Iq

{
Eπ∼p

[
JM

i
(πMi)− JM

i
(π)
]}
.

21Theorem 2.1 in Foster et al. [FGH23] is stated with respect to supM∈conv(M) decε(M,M), but the actual
proof (Section 2.2) gives a stronger result that scales with supM decε(M,M).

38



To lower bound this quantity, observe that for any index i and any policy π, we have

JM
i
(πMi)− JM

i
(π) = 1− 1

N

N∑
j=1

PM
(i),π[a1 = a(j) | x1 = s(ψi(j))]

= 1− 1

N

N∑
j=1

PM,π[a1 = a(j) | x1 = s(ψi(j))]

= 1− 1

N

N∑
j=1

PM,π
[
a1 = a(ψ

−1
i

(j)) | x1 = s(j)
]
,

where the third inequality uses Eq. (25). We conclude that for any distribution p, q ∈ ∆(Π),

sup
i∈Iq

{
Eπ∼p

[
JM

i
(πMi)− JM

i
(π)
]}

≥ Ei∼Unif(Iq)

{
Eπ∼p

[
JM

i
(πMi)− JM

i
(π)
]}

≥ 1− 1

N

N∑
j=1

Ei∼Unif(Iq) P
M,π
[
a1 = a(ψ

−1
i

(j)) | x1 = s(j)
]

= 1− 1

N

N∑
j=1

1

|Iq|
∑
i∈Iq

PM,π
[
a1 = a(ψ

−1
i

(j)) | x1 = s(j)
]
≥ 1− 1

|Iq|
≥ 1

2

as long as N ≥ 4. Since this lower bound holds uniformly for all q, p ∈ ∆(Π), we conclude that

decε(⟪Mlat,Φ⟫,M) ≥ 1

2
.
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F Proofs for Section 3.3: Positive Results
This section is dedicated to our upper bound establishing that pushforward-coverable MDPs are
statistically modular (Theorem 3.2). We provide a technical overview in Appendix F.1, and provide a
full proof in Appendix F.2.

F.1 Technical Overview: Low-dimensional embeddings for pushforward-coverable MDPs.
The idea behind our positive result is to show that under the conditions of Theorem 3.2, it is possible
to construct an (approximately) Bellman-complete value function class for the latent-dynamics MDP
M⋆

obs, at which point we can apply the GOLF algorithm of Jin et al. [JLM21]. We achieve this via two
technical contributions. The first is the introduction of the mismatch functions Γϕ, formally defined
as follows.

Definition F.1 (Mismatch functions). For a decodable emission process ψ⋆ and decoder ϕ ∈ Φ,
the mismatch function for ϕ, Γϕ = {Γϕ,h : S → ∆(S)}Hh=1, is defined, for every h ∈ [H], as the
probability kernel

Γϕ,h(s
′
h | sh) := Pxh∼ψ⋆h(sh)(ϕh(xh) = s′h).

The mismatch functions allow us to express functions of the decoders as latent objects, and we revisit
them in the context of self-predictive estimation (Appendix A). For the present result, we show
(Lemma D.7) that the mismatch functions can capture the observation-level Bellman backups for
any function of the decoders. That is, for any xh, ah, letting sh = (ψ⋆)−1(xh) denote the true latent
state, we have that for any flat : S ×A → R and ϕ ∈ Φ:

[T M
⋆
obs

h (flat ◦ ϕh+1)](xh, ah) = [T M
⋆
lat

h (Γϕ,h+1 ◦ Vflat)](sh, ah). (27)
That is, the Bellman update of flat ◦ ϕh+1 in the latent-dynamics MDP M⋆

obs can be expressed as
a Bellman update in the base MDP M⋆

lat for a different (latent) function Γϕ,h+1 ◦ Vflat(sh+1) :=∑
s′h+1

Γϕ,h+1(s
′
h+1 | sh+1)maxa′ flat(s

′
h+1, a

′).

However, the mismatch functions Γϕ embed some knowledge of the emission process, and (with only
decoder and base model realizability) are unknown to the learner. Our second technical contribution
bypasses this by establishing a new structural property for pushforward-coverable MDPs (Lemma F.1):
there exist low-dimensional linear embeddings of their transition kernels which can approximate
Bellman backups for an arbitrary and potentially unknown set of functions, as long as the set is not
too large.

Lemma F.1 (Pushforward-coverable MDPs admit low-dimensional embeddings). Let M be a
known MDP with reward function r, transition kernel P , and pushforward coverability parameter
Cpush. Let µ = {µh}h∈[H] denote its pushforward coverability distribution (i.e. the minimizer of
Definition 3.3) and F ⊆ (S × [H] → [0, 1]) be an arbitrary class of functions. Suppose that we
sample W ∈ {±1}d×S as a matrix of independent Rademacher random variables, and define

ψh(s, a) = rh(s, a)⊕
1√
d
W
(
Ph(· | s, a)/µ1/2

h (·)
)
·∈S
∈ Rd+1.

and

wf,h = 1⊕ 1√
d
W
(
µ
1/2
h (·)fh+1(·)

)
·∈S
∈ Rd+1.

Then for any εapx ∈ (0, 1), as long as we set

d ≥ 29
Cpush log

(
16|F|Hδ−1/εapx

)
εapx

,

we have that for all f ∈ F and h ∈ [H], with probability at least 1− δ:

Eµh⊗Unif(A)

[(
clip[0,2][⟨wf,h, ψh(s, a)⟩]− Thfh+1(s, a)

)2] ≤ εapx,
as well as maxs,a,h∥ψh(s, a)∥22 ≤ Cpush(16 log(|S||A|H) + 11) and maxf,h∥wf,h∥22 ≤
16 log(|F|H) + 11. We emphasize that the feature map ψ = {ψh}Hh=1 is oblivious to F , in the
sense that it can be computed directly from M without any knowledge of F .

We use this property, in conjunction with latent model realizability, to construct linear features that
can approximate the right-hand-side of Eq. (27), thus yielding an (approximately) Bellman-complete
value function class for the latent-dynamics MDP M⋆

obs.
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F.2 Proofs for Latent Model Class + Pushforward Coverability (Theorem 3.2)
In this section, we establish positive results under latent MDP classes which satisfy pushforward
coverability. We assume that every model inMlat satisfies pushforward coverability, defined as
follows:

Definition F.2 (Pushforward coverability). The pushforward coverability coefficient Cpush for an
MDP M with transition kernel P is defined by

Cpush(M) = max
h∈[H]

inf
µ∈∆(S)

sup
(s,a,s′)∈S×A×S

Ph−1(s
′ | s, a)

µ(s′)
. (28)

The pushforward coverability coefficient for an MDP classM is defined by

Cpush(M) = max
M∈M

Cpush(M).

Note that for any MDP M we always have

Ccov(M,Πrns) ≤ Cpush(M)|A|, (29)

where Ccov is the state-action coverability coefficient (Definition D.3). Thus, an MDP with low
pushforward coverability is also an MDP with low state-action coverability for all policies (upto a
dependence on |A|).
We will show the show the following result.

Theorem 3.2 (Pushforward-coverable MDPs are statistically modular). LetMlat be a base MDP
class such that each Mlat ∈Mlat has pushforward coverability bounded by Cpush(Mlat) ≤ Cpush.
Then, for any decoder class Φ, we have:

1. comp(Mlat, ε, δ) ≤ poly(Cpush, |A|, H, log|Mlat|, ε−1, log
(
δ−1
)
), and

2. comp(⟪Mlat,Φ⟫, ε, δ) ≤ poly(Cpush, |A|, H, log|Mlat|, log|Φ|, ε−1, log
(
δ−1
)
, log log|S|).

The proof comes in three parts. We will firstly show that MDP that satisfies pushforward coverabil-
ity admit low-dimensional feature maps that can approximate Bellman backups (Appendix F.2.1),
then establish that a regret bound for the GOLF algorithm [XFBJK23] under misspecification (Ap-
pendix F.2.2), and then combine these ingredients (Appendix F.2.3).

F.2.1 A structural result: Pushforward-coverable MDPs are approximately low-rank
Our central technical result for this section is Lemma F.1, which is based on a variant of the Johnson-
Lindenstrauss lemma and establishes that under pushforward coverability, we can define a linear
feature class which satisfies an approximate form of Bellman completeness. We define the clipping
operator via

clip[0,2](x) := max{min{x, 2}, 0}.

We prove the following lemma.

Lemma F.1 (Pushforward-coverable MDPs admit low-dimensional embeddings). Let M be a
known MDP with reward function r, transition kernel P , and pushforward coverability parameter
Cpush. Let µ = {µh}h∈[H] denote its pushforward coverability distribution (i.e. the minimizer of
Definition 3.3) and F ⊆ (S × [H] → [0, 1]) be an arbitrary class of functions. Suppose that we
sample W ∈ {±1}d×S as a matrix of independent Rademacher random variables, and define

ψh(s, a) = rh(s, a)⊕
1√
d
W
(
Ph(· | s, a)/µ1/2

h (·)
)
·∈S
∈ Rd+1.

and

wf,h = 1⊕ 1√
d
W
(
µ
1/2
h (·)fh+1(·)

)
·∈S
∈ Rd+1.

Then for any εapx ∈ (0, 1), as long as we set

d ≥ 29
Cpush log

(
16|F|Hδ−1/εapx

)
εapx

,
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we have that for all f ∈ F and h ∈ [H], with probability at least 1− δ:

Eµh⊗Unif(A)

[(
clip[0,2][⟨wf,h, ψh(s, a)⟩]− Thfh+1(s, a)

)2] ≤ εapx,
as well as maxs,a,h∥ψh(s, a)∥22 ≤ Cpush(16 log(|S||A|H) + 11) and maxf,h∥wf,h∥22 ≤
16 log(|F|H) + 11. We emphasize that the feature map ψ = {ψh}Hh=1 is oblivious to F , in the
sense that it can be computed directly from M without any knowledge of F .

Proof of Lemma F.1. Fix h ∈ [H], whose dependence we omit for cleanliness. We begin by verifying
that, in expectation, ⟨wf , ψ(s, a)⟩ is equal to T f(s, a). For this, note that
⟨wf , ψ(s, a)⟩

= r(s, a) +
1

d

d∑
i=1

(∑
s′∈S

Wi,s′
P (s′ | s, a)
µ1/2(s′)

)(∑
s′′∈S

Wi,s′′µ
1/2(s′′)f(s′′)

)

= r(s, a) +
∑
s′∈S

P (s′ | s, a)f(s′) + 1

d

d∑
i=1

∑
s′∈S

∑
s′′∈S
s′′ ̸=s′

Wi,s′
P (s′ | s, a)
µ1/2(s′)

Wi,s′′µ
1/2(s′′)f(s′′).

Consequently, we have

|T f(s, a)− ⟨wf , ψ(s, a)⟩| =

∣∣∣∣∣∣∣∣
1

d

d∑
i=1

∑
s′∈S

∑
s′′∈S
s′′ ̸=s′

Wi,s′
P (s′ | s, a)
µ1/2(s′)

Wi,s′′µ
1/2(s′′)f(s′′)

∣∣∣∣∣∣∣∣. (30)

Note that this remaining noise term is zero-mean – we will show in the sequel that it can be made
small by picking d appropriately. We next examine the norms of the vectors ψ(s, a) and wf . Note
that we have

∥ψ(s, a)∥22 =
1

d

d∑
i=1

(∑
s′∈S

Wi,s′
P (s′ | s, a)
µ1/2(s′)

)2

=
∑
s′∈S

P 2(s′ | s, a)
µ(s′)

+
1

d

d∑
i=1

∑
s′∈S

∑
s′′∈S
s′′ ̸=s′

Wi,s′Wi,s′′
P (s′ | s, a)
µ1/2(s′)

P (s′′ | s, a)
µ1/2(s′′)

≤ Cpush +
1

d

d∑
i=1

∑
s′∈S

∑
s′′∈S
s′′ ̸=s′

Wi,s′Wi,s′′
P (s′ | s, a)
µ1/2(s′)

P (s′′ | s, a)
µ1/2(s′′)

, (31)

where we have used that∑
s′∈S

P 2(s′ | s, a)
µ(s′)

≤ Cpush

∑
s′∈S

P (s′ | s, a) = Cpush

by definition of pushforward coverability. Further note that we have

∥wf∥22 =
1

d

d∑
i=1

(∑
s′∈S

Wi,s′µ
1/2(s′)f(s′)

)2

= Es′∼µ[f(s′)] +
1

d

d∑
i=1

∑
s′∈S

∑
s′′∈S
s′′ ̸=s′

Wi,s′Wi,s′′µ
1/2(s′)f(s′) · µ1/2(s′′)f(s′′)

≤ 1 +
1

d

d∑
i=1

∑
s′∈S

∑
s′′∈S
s′′ ̸=s′

Wi,s′Wi,s′′µ
1/2(s′)f(s′) · µ1/2(s′′)f(s′′). (32)

We will now appeal to the following technical lemma to upper bound Eq. (30), Eq. (31), and Eq. (32)
by establishing that the Rademacher noise terms concentrate to their expectations. The proof of the
lemma will be given in the sequel.
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Lemma F.2. Let u, v ∈ Rn, and let W ∈ {±1}d×n have independent Rademacher entries. Then
with probability at least 1− δ,∣∣∣∣∣∣∣∣
1

d

∑
i∈[d]

∑
j∈[n]

∑
k∈[n]
k ̸=j

Wi,jWi,kujvk

∣∣∣∣∣∣∣∣ ≤ ∥u∥2∥v∥2 ·
√

32 log(2δ−1)

d
+∥u∥22∥v∥

2
2 ·

64 log
(
2δ−1

)
d

. (33)

Furthermore, for any set of vectors V ⊂ Rn, we also have
1

d
max
v∈V

∑
i∈[d]

∑
j∈[n]

∑
k∈[n]
k ̸=j

Wi,jWi,kvjvk

≤ max
v∈V
∥v∥22(16 log|V|+ 9) + max

v∈V
∥v∥22 ·

√
32 log(2δ−1)

d
+max

v∈V
∥v∥42 ·

64 log
(
2δ−1

)
d

.

Let (s, a) ∈ S ×A and f ∈ F . To bound |⟨ψ(s, a), wf ⟩−T f(s, a)| (cf. Eq. (30)), we apply the first
bound of Lemma F.2 with u =

(
P (s′ | s, a)/µ1/2(s′)

)
s′∈S and v =

(
µ1/2(s′)f(s′)

)
s′∈S , which

gives

|⟨ψ(s, a), wf ⟩ − T f(s, a)| ≤
√

32Cpush log(2δ−1)

d
+ 64Cpush

log
(
2δ−1

)
d

:= ε(δ−1), (34)

where we have again used that ∥u∥22 =
∑
s′∈S

P 2(s′|s,a)
µ(s′) ≤ Cpush and also that ∥v∥22 = 1 since

∥f∥∞ ≤ 1 for all f ∈ F . To bound Eq. (31), we apply the second bound of Lemma F.2 with

V =

{(
Ph−1(s

′|s,a)
µ
1/2
h (s′)

)
s′∈S

}
s,a∈S×A
h×[H]

, which gives

max
s,a∈S×A,h∈[H]

∥ψh(s, a)∥22 ≤ Cpush(16 log|S||A|H + 9) + Cpush

√
32 log(2δ−1)

d
+ C2

push

64 log
(
2δ−1

)
d

.

Lastly, to bound Eq. (32), we take V =

{(
µ
1/2
h (s′)fh(s

′)
)
s′∈S

}
f∈F
h∈[H]

in Lemma F.2, which

establishes that

max
f∈F,h∈[H]

∥wf,h∥22 ≤ 9 + 16 log|F|H +

√
32 log(2δ−1)

d
+

64 log
(
2δ−1

)
d

.

Note that Eq. (34) establishes that the Bellman backup T f(s, a) is well-approximated by
⟨ψ(s, a), wf ⟩ only at a single state-action pair (s, a). We can obtain an L∞-approximation guar-
antee by taking a union bound over S and A, which would incur a dependence on log|S| in
the final sample complexity. Here, we bypass this by instead requiring only an approximation
guarantee under the L2(µ ⊗ Unif(A)) norm. Via (pushforward) coverability, this will ensure
that Eπ

[
(⟨wf , ψ(s, a)⟩ − T f(s, a))2

]
is well-controlled for all policies π, which will be suffi-

cient for our downstream sample-complexity analysis of GOLF. However, directly establishing
an L2(µ ⊗ Unif(A)) approximation guarantee is technically challenging since it would require
establishing a fourth-order (rather than second-order) equivalent of Eq. (33). The remainder of the
proof will obtain an L2(µ⊗ Unif(A)) approximation guarantee by instead sampling a dataset of size
n from µ⊗ Unif(A) and taking a union bound over that dataset to ensure a uniform bound on all
state-action pairs in that dataset. Via an additional concentration bound, this will ensure that the error
is well-behaved under the L2(µ⊗ Unif(A)) norm.

For each h ∈ [H], sample a dataset D = {(s(i)h , a
(i)

h )}ni=1 i.i.d. from µh ⊗ Unif(A). By a union
bound over n, F , and H , we have that

∀i ∈ [n], f ∈ F , h ∈ [H] :
∣∣〈ψh(s(i)h , a(i)

h ), wf,h
〉
− Thfh+1(s

(i)

h , a
(i)

h )
∣∣ ≤ ε(n|F|Hδ−1), (35)

where we recall the definition of ε(·) from Eq. (34). Now, let

Xf,h(s, a) :=
(
clip[0,2][⟨ψh(s, a), wf,h⟩]− Thfh+1(s, a)

)2
.
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Note that |Xf,h(s, a)| ≤ 4 and

Xf,h(s, a) ≤ (⟨ψh(s, a), wf,h⟩ − Thfh+1(s, a))
2
,

since Thfh+1(s, a) ∈ [0, 2] and the clipping operator is 1-Lipshitz. Note that

E(s,a)∼µh⊗Unif(A)[Xf,h(s, a)] := Eµh⊗Unif(A)

[(
clip[0,2][⟨ψh(s, a), wf ⟩]− Thfh+1(s, a)

)2]
,

where this expectation is only over the sampling of the data point (s, a) (and not the Rademacher
matrix W ). Let

Xi,f,h := Xf,h(s
(i)

h , a
(i)

h ).

By boundedness of Xf,h(s, a) and Hoeffding’s inequality, we have that with probability at least
1− δ: ∣∣∣∣∣ 1n

n∑
i=1

Xi,f,h − Eµ⊗Unif(A)[Xf,h(s, a)]

∣∣∣∣∣ ≤ 4

√
log(2δ−1)

n
.

Taking another union bound over F and H as well as the event in Eq. (35) gives that

∀f ∈ F , h ∈ [H] :

∣∣∣∣∣ 1n
n∑
i=1

Xi,f,h − Eµ⊗Unif(A)[Xf,h(s, a)]

∣∣∣∣∣ ≤ 4

√
log(2|F|Hδ−1)

n
,

(36)

and ∀i ∈ [n], f ∈ F , h ∈ [H] : Xi,f,h ≤ ε2(n|F|Hδ−1), (37)

recalling the definition of ε(·) from Eq. (34). Then, re-arranging Eq. (36) gives us that

Eµ⊗Unif(A)

[(
clip[0,2][⟨ψh(sh, ah), wf ⟩]− Thfh+1(sh, ah)

)2]
≤ 1

n

n∑
i=1

Xi,f,h + 4

√
log(2|F|Hδ−1)

n

≤ ε2(n|F|Hδ−1) + 4

√
log(2|F|Hδ−1)

n
, (38)

We now conclude the proof by picking n and d appropriately to ensure that the right-hand-side is
bounded by εapx, which will ensure the desired claim that

Eµ⊗Unif(A)

[(
clip[0,2][⟨ψh(sh, ah), wf ⟩]− Thfh+1(sh, ah)

)2] ≤ εapx.
For convenience, we introduce absolute constants c and c′ whose precise values may change from
line to line. We pick n = 64 log

(
2|F|Hδ−1

)
/ε2apx. Plugging this into (38) gives

Eµ⊗Unif(A)

[(
clip[0,2][⟨ψh(sh, ah), wf ⟩]− Thfh+1(sh, ah)

)2] ≤ ε2(n|F|Hδ−1) + c · ε (39)

Noting that n ≤ 128 |F|Hδ−1

ε2apx
and plugging this into ε (Eq. (34)) gives

ε(n|F|Hδ−1) ≤ C1/2
push

√
64 log(16|F|Hδ−1/εapx)

d
+ Cpush

128 log
(
16|F|Hδ−1/εapx

)
d

. (40)

Setting

d ≥ 29
Cpush log

(
16|F|Hδ−1/εapx

)
εapx

ensures that
ε2(n|F|Hδ−1) ≤ ε(n|F|Hδ−1) ≤ εapx

2
(41)

by Eq. (40). Combining Eq. (38) and Eq. (41), we get

Eµ⊗Unif(A)

[(
clip[0,2][⟨ψh(sh, ah), wf ⟩]− Thfh+1(sh, ah)

)2] ≤ εapx, (42)
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as desired. It only remains to establish the concentration results of Lemma F.2.

Proof of Lemma F.2. We establish the first claim. Let i ∈ [d] be fixed, and consider the random
variable

Zi :=
∑
j∈[n]

∑
k∈[n]
k ̸=j

Wi,jWi,kvjuk.

Note that E[Zi] = 0 by independence of Wi,j and Wi,k for every j ̸= k. By Exercise 6.9 of
Boucheron et al. [BLM13], we have that

logE[exp(λZi)] ≤
16λ2

2(1− 64∥u∥22∥v∥22λ)
∥u∥22∥v∥22.

Since Zi are independent, it follows that

logE

[
exp

(
λ

d∑
i=1

Zi

)]
≤ 16λ2

2(1− 64∥u∥22∥v∥22λ)
∥u∥22∥v∥22d.

Hence,
∑d
i=1 Zi is a sub-Gamma random variable with parameters ν = 16∥u∥22∥v∥

2
2d and c =

64∥u∥22∥v∥
2
2, and it follows from Equation (2.5) on page 29 of Boucheron et al. [BLM13] that for all

ε > 0,

P

(
d∑
i=1

Zi ≥ ∥u∥2∥v∥2
√
32dε+ 64∥u∥22∥v∥

2
2ε

)
≤ e−ε.

Taking a union bound, and using that the random variable is symmetric, we obtain the desired claim.

We now establish the second claim. Let V ⊂ Rn be a subset of vectors. Let i ∈ [d] be fixed, and
re-consider the random variable

Zi := max
v∈V

∑
j∈[n]

∑
k∈[n]
k ̸=j

Wi,jWi,kvjvk.

Again appealing to Exercise 6.9 of Boucheron et al. [BLM13], we have that

logE[exp(λ(Zi − E[Zi]))] ≤
16λ2

2(1− 64Bλ)
E

max
v∈V

∑
j∈[n]

∑
k∈[n]
k ̸=j

Wi,jWi,kv
2
j v

2
k


≤ 16λ2

2(1− 64Bλ)
E

max
v∈V

n∑
j,k=1

v2j v
2
k


=

16λ2

2(1− 64Bλ)
max
v∈V
∥v∥42

where B := maxv∈V∥v∥42. Since Zi are independent, it follows that

logE

[
exp

(
λ

d∑
i=1

(Zi − E[Zi])

)]
≤ 16λ2

2(1− 64Bλ)
max
v∈V
∥v∥42d.

Hence,
∑d
i=1 Zi is a sub-Gamma random variable with parameters ν = 16maxv∈V∥v∥42d and

c = 64maxv∈V∥v∥42, and it follows from Equation (2.5) on page 29 of Boucheron et al. [BLM13]
that for all ε > 0,

P

(
1

d

d∑
i=1

Zi ≥ E[Zi] + max
v∈V
∥v∥24

√
32ε

d
+ 64max

v∈V
∥v∥42

ε

d

)
≤ e−ε.
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To conclude, it remains only to show the bound E[Zi] ≤ maxv∥v∥22(16 log|V|+ 9). This follows by
a standard log-sum-exp approach. Below, we abbreviate ρj := Wi,j . We can observe that for any
λ > 0:

E[Zi] = E

max
v∈V

∑
j∈[n]

∑
k∈[n]
k ̸=j

ρjρkvjvk



≤ 1

λ
log

∑
v∈V

E

exp
λ ∑

j∈[n]

∑
k∈[n]
k ̸=j

ρjρkvjvk





≤ 1

λ
log

∑
v∈V

E

exp
λ
 n∑
j=1

ρjvj

2


 (43)

Note that X :=
∑
j ρjvj is subGaussian with parameter ∥v∥22, since:

E

exp
λ n∑

j=1

ρjvj

 =

n∏
j=1

E[exp(λρjvj)] ≤
n∏
j=1

exp

(
λ2v2j
2

)
= exp

(
λ2

2
∥v∥22

)
.

Then, it follows (e.g. Lemma 1.12 of Rigollet et al. [RH23]) that X2 − E[X2] satisfies a sub-
exponential MGF bound with parameter 16∥v∥22, i.e.

E[exp
(
λ(X2 − E[X2])

)
] ≤ exp

(
256

2
λ2∥v∥42

)
∀|λ| ≤ 1

16∥v∥22
.

We also note that

E[X2] =

n∑
i,j=1

vivj E[εiεj ] = ∥v∥22.

Adding and subtracting E[X2] in Eq. (43) gives

≤ 1

λ
log

(∑
v∈V

E
[
exp
(
λ
(
X2 − ∥v∥22

)
+ λ∥v∥22

)])

=
1

λ
log

(∑
v∈V

E
[
exp
(
λ
(
X2 − ∥v∥22

))]
exp
(
λ∥v∥22

))

≤ 1

λ
log

(∑
v∈V

exp
(
128λ2∥v∥42 + λ∥v∥22

))
∀|λ| ≤ 1

16maxv∥v∥22

≤ 1

λ
log|V|+max

v
128λ∥v∥42 +max

v
∥v∥22 ∀|λ| ≤ 1

16maxv∥v∥22
Picking λ = 1

16maxv∥v∥2
2

concludes the proof.

F.2.2 GOLF with on-policy misspecification
Consider the version of GOLF [JLM21] in Algorithm 2. We have the following guarantee for the
regret of GOLF, which extends Jin et al. [JLM21] to allow for on-policy misspecification.

Lemma F.3. Suppose that QM
⋆
obs,⋆ ∈ F and G satisfies εapx-completeness in the sense that for

all h ∈ [H] and f ∈ Fh+1, there exists g ∈ Gh such that Eπ
(
g − T M

⋆
obs

h f
)2
≤ ε2apx for all

π ∈ ΠF := {πf : f ∈ F}. Let Ccov := Ccov(M
⋆
obs,ΠF ) (Definition D.3). Then for an appropriate

choice of β, Algorithm 2 ensures that

Reg ≤ H
√
CcovT log(|F||G|HT/δ) +HT

√
Ccov log(T )εapx.
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Algorithm 2 GOLF [JLM21]
input: Function classes F and G, confidence width β > 0.
initialize: F (0) ← F , D(0)

h ← ∅ ∀h ∈ [H].
1: for episode t = 1, 2, . . . , T do
2: Select policy π(t) ← πf(t) , where f (t) := argmaxf∈F(t−1) f(x1, πf,1(x1)).
3: Execute π(t) for one episode and obtain trajectory (x(t)

1 , a
(t)

1 , r
(t)

1 ), . . . , (x(t)

H , a
(t)

H , r
(t)

H ).
4: Update dataset: D(t)

h ← D
(t−1)

h ∪
{(
x(t)

h , a
(t)

h , x
(t)

h+1

)}
∀h ∈ [H].

5: Compute confidence set:

F (t) ←
{
f ∈ F : L(t)

h (fh, fh+1)− min
gh∈Gh

L(t)

h (gh, fh+1) ≤ β ∀h ∈ [H]

}
,

where L(t)

h (f, f ′) :=
∑

(x,a,r,x′)∈D(t)
h

(
f(x, a)− r −max

a′∈A
f ′(x′, a′)

)2
, ∀f, f ′ ∈ F .

6: end for
7: Output π̂ = Unif(π(1:T )).

Proof of Lemma F.3. For each fh+1 ∈ Fh+1, let apx[fh] =

argmingh∈Gh supπ∈Π Eπ
[
(gh − Thfh+1)

2
]
. Let

δ(t)

h (·, ·) := f (t)

h (·, ·)− Tff (t)

h+1(·, ·) & δ̃(t)

h (·, ·) := f (t)

h (·, ·)− apx
[
f (t)

h+1

]
(·, ·),

and note that by Jensen’s inequality we have that for all π, Eπ
[
δ(t)

h (·, ·)
]
≤ Eπ

[
δ̃(t)

h (·, ·)
]
+ εapx.

We further adopt the shorthand d(t)

h (x, a) := dπ
(t)

h (x, a) and d̃(t)

h (x, a) :=
∑
i<t d

(t)

h (x, a). As
a consequence of realizability (Q⋆obs,h ∈ Fh) and approximate Bellman completeness, standard
concentration arguments (proved in the sequel) lead to the following result.

Lemma F.4 (Optimism and small in-sample squared Bellman errors). With probability at least 1− δ,
by taking β = c log(TH|F||G|/δ) + Tεapx, we have that for all t ∈ [T ],

(i) Q⋆obs,h ∈ F (t), and (ii)
∑
x,a

d̃(t)

h (x, a)
(
δ̃(t)

h (x, a)
)2
≤ O(β).

The rest of the proof proceeds similarly to the analysis of Section 3.2 in Xie et al. [XFBJK23].
Namely, by optimism (Lemma F.4) and a standard Bellman error decomposition (Lemma C.6) we
have

Reg ≤
T∑
t=1

H∑
h=1

E
d
(t)
h

[
δ(t)

h (x, a)
]
≤ TH · εapx +

T∑
t=1

H∑
h=1

E
d
(t)
h

[
δ̃(t)

h (x, a)
]
.

Let us defining the burn-in time

τh(x, a) = min{t | d̃(t)

h (x, a) ≥ Ccovµ
⋆
h(x, a)},

where µ⋆h is the coverability distribution for the set of policies ΠF (i.e., the distribution µ⋆h that
achieves the minimum in the coverability definition). Using the same decomposition into “burn-in
phase” and “stable phase” in Xie et al. [XFBJK23], we have:

T∑
t=1

H∑
h=1

E
d
(t)
h

[
δ̃(t)

h (x, a)
]
≤ 2HCcov +

T∑
t=1

H∑
h=1

E
d
(t)
h

[
δ̃(t)

h (x, a)I{t ≥ τh(x, a)}
]
.
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Applying a change of measure argument on the second term then gives:

T∑
t=1

H∑
h=1

E
d
(t)
h

[
δ̃(t)

h (x, a)I{t ≥ τh(x, a)}
]
≤ H

√√√√ T∑
t=1

∑
x,a

(
I{t ≥ τh(x, a)}d(t)

h (x, a)
)2

d̃(t)

h (x, a)︸ ︷︷ ︸
(A)

×

√√√√ T∑
t=1

∑
x,a

d̃(t)

h (x, a)
(
δ̃(t)

h (x, a)
)2

︸ ︷︷ ︸
(B)

By the same reasoning as in Xie et al. [XFBJK23], we have (A) ≤ O(
√
Ccov log(T )), and by

Lemma F.4 we have (B) ≤ O(
√
βT ). Using that β = log(TH|F|/δ) + Tε2apx gives the desired

result. It remains to establish the concentration results of Lemma F.4.

Proof of Lemma F.4. For any function f , define a random variable

Xt(h, f) =
(
fh(s

(t)

h , a
(t)

h )− r(t)

h − fh+1(s
(t)

h+1)
)2 − (Thfh+1(s

(t)

h , a
(t)

h )− r(t)

h − fh+1(s
(t)

h+1)
)2
.

Let Ft,h = {s(i)1 , a
(i)

1 , r
(i)

1 , . . . , s
(i)

H , a
(i)

H , r
(i)

H }i<t. Note that

E
[
r(t)

h + fh+1(s
(t)

h+1) | Ft,h
]
= Eπ

(t)

[Thf(sh, ah)]. (44)

and thus that
E[Xt(h, f) | Ft,h] = Eπ

(t)
[
(fh(sh, ah)− Thfh(sh, ah))2

]
.

Next, note that

Var[Xt(h, f) | Ft,h] ≤ E
[
(Xt(h, f))

2 | Ft,h
]

≤ E
[(
fh(s

(t)

h , a
(t)

h )− Thfh(s(t)h , a
(t)

h )
)2(

fh(s
(t)

h , a
(t)

h ) + Thfh(s(t)h , a
(t)

h ) + 2
(
r(t)

h − fh+1(s
(t)

h+1)
))2 | Ft,h]

≤ 16E
[(
fh(s

(t)

h , a
(t)

h )− Thfh(s(t)h , a
(t)

h )
)2 | Ft,h] = 16E[Xt(h, f) | Ft,h].

By Freedman’s inequality (Lemma C.2, Lemma C.3), we have that with probability at least 1− δ:∣∣∣∣∣∑
i<t

Xi(h, f)−
∑
i<t

E[Xi(h, f) | Fi,h]

∣∣∣∣∣ ≤ O
√log(1/δ)

∑
i<t

E[Xi(h, f) | Fi,h] + log(1/δ)


Taking a union bound over [T ]× [H]×F , we have that for all t, h, f , with probability at least 1−δ:∣∣∣∣∣∑

i<t

Xi(h, f)−
∑
i<t

Eπ
(i)
[
(fh(sh, ah)− Thfh(sh, ah))2

]∣∣∣∣∣ (45)

≤ O

√ι∑
i<t

Eπ(i)
[
(fh(sh, ah)− Thfh(sh, ah))2

]
+ ι

, (46)

where ι = log(|F|HT/δ). We now show that∑
i<t

Xi(h, f
(t)) ≤ β +O

(
Tε2apx + ι

)
= O(β), (47)

which will imply, from Eq. (46), that∑
i<t

Eπ
(t)
[
(fh(sh, ah)− Thfh(sh, ah))2

]
≤ O(ι+ β) = O(β),

as desired. To see Eq. (47), let

∆t =
∑
i<t

(
apx
[
Thf (t)

h+1

]
(s(i)h , a

(i)

h )− r(i)

h − f
(t)

h+1(s
(i)

h+1)
)2−(Thf (t)

h (s(i)h , a
(i)

h )− r(i)

h − f
(t)

h+1(s
(i)

h+1)
)2
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and then note that:∑
i<t

Xi(h, f
(t)) =

∑
i<t

(
f (t)

h (s(i)h , a
(i)

h )− r(i)

h − f
(t)

h+1(s
(i)

h+1)
)2 − (Thf (t)

h (s(i)h , a
(i)

h )− r(i)

h − f
(t)

h+1(s
(i)

h+1)
)2

=
∑
i<t

(
f (t)

h (s(i)h , a
(i)

h )− r(i)

h − f
(i)

h+1(s
(i)

h+1)
)2

−
∑
i<t

(
apx
[
Thf (t)

h+1

]
(s(i)h , a

(i)

h )− r(i)

h − f
(t)

h+1(s
(i)

h+1)
)2

+∆t

≤
∑
i<t

(
f (t)

h (s(i)h , a
(i)

h )− r(i)

h − f
(t)

h+1(s
(i)

h+1)
)2

− inf
gh∈Gh

∑
i<t

(
g(s(i)h , a

(i)

h )− r(i)

h − f
(t)

h+1(s
(i)

h+1)
)2

+∆t

≤ β +∆t.

where the second-to-last line follows from apx
[
Thf (t)

h+1

]
∈ G and the last line follows from the

definition of the confidence set. It remains to show that ∆t ≤ O(Tε2apx + ι), which we do via a
similar concentration argument. Namely, let

Yt(h, f) =
(
apx[Thfh+1](s

(t)

h , a
(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2−(Thfh(s(t)h , a(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2
,

and note that, as before,

E[Yt(h, f) | Ft,h] = Eπ
(t)
[
(apx[Thfh+1](sh, ah)− Thfh(sh, ah))2

]
,

and
Var[Yt(h, f) | Ft,h] ≤ 16E[Yt(h, f) | Ft,h],

by the same calculation as earlier. Thus, by Freedman’s inequality and a union bound, we have that,
with probability at least 1− δ,∣∣∣∣∣∑

i<t

Yt(h, f)−
∑
i<t

Eπ
(t)
[
(apx[Thfh+1](sh, ah)− Thfh(sh, ah))2

]∣∣∣∣∣ (48)

≤ O

√ι∑
i<t

Eπ(t)
[
(apx[Thfh+1](sh, ah)− Thfh(sh, ah))2

]
+ ι

, (49)

where ι = log(|F|HT/δ). Recalling the misspecification assumption, this implies that∑
i<t

Yt(h, f) ≤ O
(
tε2apx + ι

)
,

for all h, f, t, with high probability. This concludes the result for (ii). For (i), this follows identically
to the proof of Lemma 40 in Jin et al. [JLM21], since this only uses the property that Q⋆ ∈ F .

F.2.3 Sample-efficient latent-dynamics RL under pushforward coverability
We conclude by combining the previous two results to obtain the main result for this section.

Theorem 3.2 (Pushforward-coverable MDPs are statistically modular). LetMlat be a base MDP
class such that each Mlat ∈Mlat has pushforward coverability bounded by Cpush(Mlat) ≤ Cpush.
Then, for any decoder class Φ, we have:

1. comp(Mlat, ε, δ) ≤ poly(Cpush, |A|, H, log|Mlat|, ε−1, log
(
δ−1
)
), and

2. comp(⟪Mlat,Φ⟫, ε, δ) ≤ poly(Cpush, |A|, H, log|Mlat|, log|Φ|, ε−1, log
(
δ−1
)
, log log|S|).

Proof of Theorem 3.2. Let M⋆
obs := ⟪M⋆

lat, ψ
⋆⟫ ∈ ⟪Mlat,Φ⟫ be the unknown latent-dynamics

MDP. Define observation-level value functions

F = {QMlat,⋆ ◦ ϕ |Mlat ∈Mlat, ϕ ∈ Φ},
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so thatQM
⋆
obs,⋆ = QM

⋆
lat,⋆◦ϕ⋆ ∈ F via decoder and model realizability, and log|Fh| ≤ log|Mlat||Φ|.

Consider any function class L ⊆ {S → [0, 1]} and MDP Mlat = (rlat, Plat). For a given value
εapx > 0, setting d according to Lemma F.1 implies that there exists a d-dimensional feature map
φMlat,h(s, a) ∈ Rd+1 such that for all ℓ ∈ L and h ∈ [H], there exists wℓ,h ∈ Rd+1 such that

EµMlat
⊗Unif(A)

[(
clip[0,2]

[〈
φMlat,h(s, a), wℓ,h

〉]
− T Mlat

h ℓh+1(s, a)
)2]
≤ εapx, (50)

where µMlat is the pushforward coverability distribution for Mlat. Moreover, the map φh is explicitly
computed as a function of Mlat by a randomized algorithm with success probability 1− δ, with no
knowledge of the class L required. We consider the class

L =

{
Γϕ ◦QMlat,⋆(s, a) :=

∑
s′∈S

Γϕ(s
′ | s)QMlat,⋆(s′, a) | ϕ ∈ Φ,Mlat ∈Mlat

}
, (51)

where Γϕ : S → ∆(S) is the mismatch function for decoder ϕ and emission ψ⋆, defined in
Definition F.1. Note that L has size log|L| ≤ log|Mlat||Φ|, and that we have

T M
⋆
obs

h (QMlat,⋆
h ◦ ϕh)(x, a) = T

M⋆
lat

h (Γϕ,h+1 ◦ VMlat,⋆
h )(ϕ⋆h(x), a)

by Lemma D.7. By Lemma D.1 we have that µM⋆
obs,h

(x) = ψ⋆h(x | ϕ⋆h(x))µM⋆
lat,h

(ϕ⋆h(x)) is the
coverability distribution for MDP M⋆

obs, and

EµM⋆
lat

⊗Unif(A)[f(s, a)] = EµM⋆
obs

⊗Unif(A)[f(ϕ
⋆(x), a)].

Now, define

GMlat,h =
{
(x, a) 7→ clip[0,2][⟨φMlat,h(ϕ(x), a), w⟩] | ϕ ∈ Φ, ∥w∥22 ≤ 11 + 16 log(|Mlat||Φ|H)

}
.

Recall the definition of wf (for f : S × A → [0, 1]) from Lemma F.1, and note that by the
norm bound maxℓ∈L∥wℓ∥22 ≤ 11 + 16 log(|Mlat||Φ|H) given by Lemma F.1, we have (x, a) 7→
⟨φMlat,h(ϕ(x), a), wℓ⟩ ∈ Gh for every ℓ ∈ L. Next, note that by the norm bound maxs,a∥ψ(s, a)∥22 ≤
Cpush(11 + 16 log(|S||A|H)), given by Lemma F.1, we have every gh ∈ GMlat,h satisfies ∥gh∥∞ ≤
cC

1/2
push log(|Mlat||Φ||S||A|H) := B for some absolute constant c. Therefore, GMlat,h has size

log|GMlat,h| ≤ Õ(d · log(B) + log|Φ|) = Õ(d log log(|S|) + log|Φ|), where the Õ notation ignores
logarithmic factors of Cpush, |A|, log|Mlat|, and log|Φ|.22 Define Gh = ∪Mlat∈MlatGMlat,h, which
has size log|Gh| ≤ log|Mlat|+(Õ(d log log(|S|) + log|Φ|)). Together, these results with Lemma F.1
imply that for all fh+1 ∈ Fh+1, there exists gh ∈ Gh such that

EµM⋆
obs
,h⊗Unif(A)

[(
gh(xh, ah)−

[
T M

⋆
obs

h fh+1

]
(xh, ah)

)2]
≤ εapx.

This, in turn, implies that for all πobs ∈ Πrns we have

Eπobs

[(
gh(xh, ah)−

[
T M

⋆
obs

h fh+1

]
(xh, ah)

)2]
≤ Cpush|A|εapx,

since µM⋆
obs,h
⊗ Unif(A) satisfies coverability (Definition D.3) with parameter Ccov(M

⋆
obs,Πrns) ≤

Cpush|A| (Eq. (29)).

Then, it follows by Lemma F.3 that if we run Algorithm 2 with the classes F and G we will get

Reg ≤ H
√
Cpush|A|T log(|Mlat||Φ|HT/δ)(d log log(|S|) + log|Φ|) +HT

√
C2

push|A|2 log(T )εapx

≤ H

√
C5

push|A|T log(|Mlat||Φ|HT/δ)
log
(
C2

push|Mlat||Φ|2Hδ−1/εapx
)
log log(|S|)

εapx

+HT
√
C2

push|A|2 log(T )εapx

22Formally, this requires a standard covering number argument; we omit the details.
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Choosing εapx = 1√
T

to balance leads to

Reg ≲ HT 3/4
√
C5

push|A| log(|Mlat||Φ|HT/δ) log
(
C2

push|Mlat||Φ|2Hδ−1T
)
log log(|S|)

+HT 3/4
√
C2

push|A|2 log(T )

≲ HT 3/4
√
C5

push|A|2 log(|Mlat||Φ|HT/δ) log
(
TC2

push|Mlat||Φ|2H/δ
)
log log(|S|),

which gives a risk bound of

Risk ≲
1

T 1/4
H
√
C5

push|A|2 log(|Mlat||Φ|HT/δ) log
(
TC2

push|Mlat||Φ|2H/δ
)
log log(|S|).

Equating this to ε gives a sample complexity of

T = poly(Cpush, A,H, log|Mlat|, log|Φ|, ε−1, log
(
δ−1
)
, log log(|S|)),

as desired. Note that we have not made much effort to optimize the rate; in particular, a faster rate is
likely possible by using the GOLF.DBR algorithm of Amortila et al. [ACK24], which improves over
the GOLF algorithm under the presence of misspecification.
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G Proofs and Additional Information for Section 4.1: Hindsight RL
This appendix contains additional information and proofs related to algorithmic modularity under
hindsight observations (Section 4.1), and is organized as follows:

• Appendix G.1 contains the pseudocode and proofs related to the online representation learning
oracle EXPWEIGHTS.DR (Lemma 4.1).

• Appendix G.2 contains the proof for our risk bound of the O2L algorithm under hindsight observ-
ability (Theorem 4.1).

G.1 Pseudocode and Proofs for EXPWEIGHTS.DR (Lemma 4.1)

Algorithm 3 Derandomized Exponential Weights (EXPWEIGHTS.DR)
input: Decoder set Φ
for t = 1, 2, · · · , T do

Get dataset
{
x(i)

h , ϕ
⋆(x(i)

h )
}
i∈[t−1],h∈[H]

for h = 1, . . . ,H do
For ϕ ∈ Φ, compute

q(t)

h (ϕh) ∝ exp

(
−
t−1∑
i=1

I
[
ϕh(x

(i)

h ) ̸= ϕ⋆h(x
(i)

h )
])
,

and set
ϕ̄(t)

h (x) = argmax
s∈S

P
ϕh∼q(t)h

(ϕh(x) = s). (52)

end for
Return ϕ̄(t) = {ϕ̄(t)

h }Hh=1.
end for

The main result for this estimator is the following.

Lemma 4.1 (Online classification via EXPWEIGHTS.DR). Under decoder realizability (ϕ⋆ ∈ Φ),
EXPWEIGHTS.DR (Algorithm 3) satisfies Assumption 4.2 with23

Estclass(T ) = Õ(H log|Φ|).

Proof of Lemma 4.1. For each h ∈ [H], consider the realizable online classification problem where
x(t)

h ∼ dπ
(t)

h , for π(t) chosen adversarially, and y(t)

h = ϕ⋆h(x
(t)

h ). Consider the exponential weights
estimator

q(t)

h (ϕ) ∝ exp

(
−
t−1∑
i=1

I
[
ϕ(x(i)

h ) ̸= ϕ⋆h(x
(i)

h )
])
.

For every sequence (x(t)

h )Tt=1, these distributions satisfy the deterministic regret bound
T∑
t=1

E
ϕ̂
(t)
h ∼q(t)h

[
I
[
ϕ̂(t)

h (x(t)

h ) ̸= ϕ⋆h(x
(t)

h )
]]
≤ 2 log |Φ|,

by Corollary 2.3 of Cesa-Bianchi et al. [CBL06]. Taking conditional expectations over x(t)

h ∼ dπ
(t)

h
and using Lemma C.3 gives that with probability at least 1− δ:

T∑
t=1

E
ϕ̂
(t)
h ∼q(t)h

Eπ
(t)
[
I
[
ϕ̂(t)

h (xh) ̸= ϕ⋆h(xh)
]]
≤ 4 log |Φ|+ 8 log

(
2δ−1

)
.

Taking a union bound over h ∈ [H] and summing over h ∈ [H] we obtain that with probability at
least 1− δ:

T∑
t=1

H∑
h=1

E
ϕ̂
(t)
h ∼q(t)h

Eπ
(t)
[
I
[
ϕ̂(t)

h (xh) ̸= ϕ⋆h(xh)
]]
≤ 4H log |Φ|+ 8H log

(
2Hδ−1

)
.

23In this section, the notations Õ,≈, and ≲ ignore only constants and logarithmic factors of H .
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Now, recall that at each time t, we define the improper decoder ϕ̄(t)

h via:

ϕ̄(t)

h (x) = argmax
s∈S

P
ϕ
(t)
h ∼q(t)h

(ϕ(t)

h (x) = s) (53)

Let ℓh(xh, q
(t)

h ) = P
ϕ
(t)
h ∼q(t)h

(ϕ(t)

h (xh) ̸= ϕ⋆h(xh)). Note that ℓ satisfies

T∑
t=1

H∑
h=1

E
ϕ
(t)
h ∼q(t)h

Eπ
(t)[

I
[
ϕ(t)

h (xh) ̸= ϕ⋆h(xh)
]]

=

T∑
t=1

H∑
h=1

Eπ
(t)

E
ϕ
(t)
h ∼q(t)h

[
I
[
ϕ(t)

h (xh) ̸= ϕ⋆h(xh)
]]

(54)

=

T∑
t=1

H∑
h=1

Eπ
(t)

[ℓh(xh, q
(t)

h )]. (55)

By abuse of notation we also denote ℓh(xh, ϕ̄h) = I
[
ϕ̄h(x) ̸= ϕ⋆(x)

]
. We will show that

∀x, t, h : ℓh(xh, ϕ̄
(t)

h ) ≤ 2ℓh(xh, q
(t)

h ), (56)

from which we will obtain that with probability at least 1− δ:

Regclass(T ) =
T∑
t=1

H∑
h=1

Eπ
(t)[

I
[
ϕ̄(t)

h (xh) ̸= ϕ⋆h(xh)
]]
≤ 8H log |Φ|+ 16H log

(
2Hδ−1

)
.

Integrating the high-probability regret bound gives

E[Regclass(T )] = O(H log(H|Φ|)),

as desired. Towards establishing Eq. (56), let us fix x and let smax denote the argmax in Eq. (53).
There are two cases:

• P
ϕ
(t)
h ∼q(t)h

(ϕ(t)

h (x) = smax) ≥ 1
2 :

→ If smax = ϕ⋆(x), ℓ(x, ϕ̄(t)

h ) = 0 so we are done.

→ Otherwise, smax ̸= ϕ⋆(x) and we have ℓ(x, ϕ̄(t)

h ) = 1. However, since ϕ⋆(x) ̸= smax we have
ϕ(t)

h (x) = smax =⇒ ϕ(t)

h (x) ̸= ϕ⋆h(x) and so

P
ϕ
(t)
h ∼q(t)h

(ϕ(t)

h (x) ̸= ϕ⋆h(x)) ≥ P
ϕ
(t)
h ∼q(t)h

(ϕ(t)

h (x) = smax) ≥
1

2
=

1

2
ℓ(x, ϕ̄(t)

h ).

• P
ϕ
(t)
h ∼q(t)h

(ϕ(t)

h (x) = smax) <
1
2 :

→ If smax = ϕ⋆h(x), ℓ(x, ϕ̄
(t)

h ) = 0 so we are done.

→ Otherwise, smax ̸= ϕ⋆(x) and we have ℓ(x, ϕ̄(t)

h ) = 1. However, by definition of smax as the
mode we also have

P
ϕ
(t)
h ∼q(t)h

(ϕ(t)

h (x) = ϕ⋆h(x)) ≤ P
ϕ
(t)
h ∼q(t)h

(ϕ(t)

h (x) = smax) <
1

2
,

so in particular we have

ℓ(x, q(t)

h ) = P
ϕ
(t)
h ∼q(t)h

(ϕ(t)

h (x) ̸= ϕ⋆h(x)) >
1

2
=

1

2
ℓ(x, ϕ̄(t)

h ).

G.2 Proofs for O2L Under Hindsight Observability (Theorem 4.1)
Theorem 4.1 (Risk bound for O2L under hindsight observability). Let ALGlat be a base algorithm
with base risk Risk⋆(K), and REPclass a representation learning oracle satisfying Assumption 4.2.
Then Algorithm 1, with inputs T,K,Φ, REPclass, and ALGlat, has expected risk

E[Riskobs(TK)] ≤ Risk⋆(K) +
2K

T
Estclass(T ).
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Proof of Theorem 4.1. Let (ϕ̂(t))t∈[T ] denote the decoders chosen by REPclass, and let ρ(t) denote
the distribution over decoders induced at time t from the interaction of REPclass,ALGlat, and M⋆

obs.
Let π(t,k)

obs := π(t,k)

lat ◦ ϕ̂(t) and p(t,k)

obs denote the distribution over (observation-space) policies played
at epoch t and episode k, induced by the interaction of REPclass,ALGlat, and M⋆

obs. We adopt
the notation π(t,K+1)

lat := π̂(t)

lat ∼ p(t,K+1)

lat for the final policy output by ALGlat in epoch t and
(x(t,K+1)

h , a(t,K+1)

h , r(t,K+1)

h ) for the trajectory collected from that (observation-level) policy π̂(t)

lat ◦ ϕ̂(t).
We firstly note that by assumption, we have the guarantee

E

[
T∑
t=1

K+1∑
k=1

H∑
h=1

E
π
(t,k)
obs ∼p(t,k)obs

Eπ
(t,k)
obs

[
I
[
ϕ̂(t)

h (xh) ̸= ϕ⋆h(xh)
]]]
≤ (K + 1)Estclass(T )

≤ 2KEstclass(T ). (57)

which follows by applying Assumption 4.2 to the distributions p̄(t)

obs =
1

(K+1)

∑K+1
k=1 p

(t,k)

obs and noting
that

T∑
t=1

H∑
h=1

1

K + 1

K+1∑
k=1

E
π
(t,k)
obs ∼p(t,k)obs

Eπ
(t,k)
obs

[
I
[
ϕ̂(t)

h (xh) ̸= ϕ⋆h(xh)
]]

=

T∑
t=1

H∑
h=1

E
π̄
(t)
obs∼p̄

(t)
obs

Eπ̄
(t)
obs

[
I
[
ϕ̂(t)

h (xh) ̸= ϕ⋆h(xh)
]]
≤ Estclass(T ).

Let Risk(K,ALGlat, ϕ,M
⋆
obs) = JM

⋆
obs(π⋆M⋆

obs
) − JM

⋆
obs(π̂lat ◦ ϕ) be the random variable denot-

ing the risk of the final policy output by ALGlat after K rounds of interaction with M⋆
obs when

given feature ϕ in any epoch t. For any ϕ : X → S, let Eϕ denote the law over trajectories
(x(k)

h , a(k)

h , r(k)

h )k∈[K+1],h∈[H] and policies (π(k)

lat ◦ ϕ)k∈[K+1] generated after K rounds of interaction
when ALGlat is given feature ϕ in any epoch. (Recall that, for all of the above definitions, a new
instance of ALGlat is initialized at every epoch, so we do not have to specify which epoch it is, only
the current feature ϕ). Finally, let Gt be the “good” event

Gt =
{
∀k ∈ [K + 1],∀h ∈ [H] : ϕ̂(t)

h (x(t,k)

h ) = ϕ⋆h(x
(t,k)

h )
}
.

Recall that, in any round t, ALGlat only observes the latent (“compressed”) trajectories
(ϕ̂(t)

h (x(t,k)

h ), a(t,k)

h , r(t,k)

h ) as history for choosing policies. We can therefore conclude that, when
ϕ̂(t)(x(t,k)

h ) = ϕ⋆(x(t,k)

h ) for all k ∈ [K + 1], h ∈ [H], the distribution over final policies π̂(t)

lat chosen
by ALGlat will be identical as if we had chosen ϕ⋆ as our decoder. In particular, this implies

Eϕ̂(t)

[
I{Gt}Risk(K,ALGlat, ϕ̂

(t),M⋆
obs)
]
= Eϕ⋆ [I{Gt}Risk(K,ALGlat, ϕ

⋆,M⋆
obs)]

≤ Risk⋆(K), (58)

where the second line simply follows by removing the indicator function, recalling that Risk⋆(K) =
E[Risk(K,ALGlat,M

⋆
lat)], and using that Risk(K,ALGlat, ϕ

⋆,M⋆
obs) = Risk(K,ALGlat,M

⋆
lat).

Then, we have:

E[Riskobs(TK)] =
1

T

T∑
t=1

Eϕ̂(t)∼ρ(t)

[
Eϕ̂(t)

[
Risk(K,ALGlat, ϕ̂

(t),M⋆
obs)
]]

≤ 1

T

T∑
t=1

Eϕ̂(t)∼ρ(t)

[
Eϕ̂(t)

[
I{Gt}Risk(K,ALGlat, ϕ̂

(t),M⋆
obs)
]]

+
1

T

T∑
t=1

Eϕ̂(t)∼ρ(t)

[
Eϕ̂(t) [I{¬Gt}]

]
≤ 1

T

T∑
t=1

Risk⋆(K) +
1

T

T∑
t=1

P(¬Gt)

= Risk⋆(K) +
1

T

T∑
t=1

P(¬Gt),
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where the first equality applies the tower rule for conditional expectation, the second equality applies
linearity of conditional expectations and the upper bound Risk(K,ALGlat, ϕ̂

(t),M⋆
obs) ≤ 1, and the

third lines applies the upper bound Eq. (58). It remains to bound the last term. Here, note that by a
union bound,

P(¬Gt) ≤ E

[
K+1∑
k=1

H∑
h=1

Eπ(t,k)∼p(t,k) E
π(t,k)

I
{
ϕ̂(t)(x(t,k)

h ) ̸= ϕ⋆(x(t,k)

h )
}]
,

where we have used that trajectory k in round t is sampled from policy π(t,k), which is in turn sampled
from p(t,k). Summing over t and using the bound in Eq. (57) concludes the proof.
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H Proofs for Appendix A: Self-Predictive Estimation
This appendix contains additional information and proofs related to algorithmic modularity under
self-predictive estimation (Appendix A), and is organized as follows:

• Appendix H.1 contains the pseudocode and proofs related to the online representation learning
oracle SELFPREDICT.OPT (Lemma A.1).

• Appendix H.2 contains the proof for our risk bound of the O2L algorithm under self-predictive
estimation (Theorem A.1).

H.1 Pseudocode and Proofs for SELFPREDICT.OPT (Lemma A.1)
The pseudocode for our self-predictive estimation procedure is given in Algorithm 4.

Algorithm 4 Optimistic Self-Predictive Latent Model Estimation (SELFPREDICT.OPT)
1: input: Decoder set Φ, Latent model class Mlat, Mismatch-complete class Llat, Optimism

parameter γ
2: Set β := 1

2

√
CcovH log(T )/T

3: for t = 1, 2, · · · , T do
4: Get dataset D(t) = {x(i)

h , a
(i)

h , r
(i)

h , x
(i)

h+1}i∈[t−1],h∈[H]

5: Compute

(M̂ (t), ϕ̂(t)) = argmax
(M,ϕ)∈(Mlat,Φ)

{
(γβ)−1JM(πM) +

H∑
h=1

n∑
i=1

log
(
Mh(r

(i)

h , ϕh+1(x
(i)

h+1) | ϕh(x
(i)

h ), a(i)

h )
)

(59)

− max
(M ′,ϕ′)∈(Llat,Φ)

n∑
i=1

log
(
M ′
h(r

(i)

h , ϕh+1(x
(i)

h+1) | ϕ
′
h(x

(i)

h ), a(i)

h )
)}
.

(60)

6: Return ϕ̂(t) =
{
ϕ̂(t)

h

}
h∈[H]

.

7: end for

Our main result concerning the SELFPREDICT.OPT estimator for online optimistic self-predictive
estimation is the following. We recall our notation for the instantaneous self-prediction error

[∆h(Mlat, ϕ)](xh, ah) := D2
H

(
Mlat,h(ϕh(xh), ah),

[
ϕh+1♯M

⋆
obs,h

]
(xh, ah)

)
.

Lemma A.1 (Optimistic self-predictive estimation via SELFPREDICT.OPT). Let Πlat denote the
set of policies played by ALGlat, and Ccov,st = Ccov,st(M

⋆
lat,ΓΦ ◦ Πlat) be the state coverability

parameter on M⋆
lat over the set of stochastic policies ΓΦ ◦ Πlat (Eq. (9)). Then, for any γ > 0,

under decoder realizability (ϕ⋆ ∈ Φ), base model realizability (M⋆
lat ∈ Mlat), and mismatch

function completeness with class Llat (Assumption A.2), the estimator in Algorithm 4 with inputs
Φ,Mlat,Llat, and γ satisfies Assumption A.1 with24

Estself;opt(T, γ) = Õ
(√

HCcov,st|A|T log(|Mlat||Llat||Φ|)
)
.

Proof of Lemma A.1. We will firstly establish that the algorithm obtains low offline estimation error.

Lemma H.1 (SELFPREDICT.OPT attains low offline estimation error). For any γ > 0, under decoder
realizability (ϕ⋆ ∈ Φ), model realizability (M⋆

lat ∈Mlat), and mismatch function completeness with
class Llat (Assumption A.2), the estimator in Algorithm 4 with inputs Φ, Mlat, Llat, and γ satisfies

24In this section, the notations Õ and ≲ ignores constants and logarithmic factors of: H,Ccov,st, |A|, T, and
log(|Mlat||Llat||Φ|).
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that for all t ∈ [T ], with probability at least 1− δ,

H∑
h=0

t−1∑
i=1

Eπ(i)∼p(i) E
π(i)
[
[∆h(M̂

(t), ϕ̂(t))](xh, ah)
]
+ γ−1

(
JM

⋆
lat(πM⋆

lat
)− JM̂

(t)

(π
M̂(t))

)
≤ O

(
log
(
|Mlat||Llat||Φ|HTδ−1

))
. (61)

Given this result, we can appeal to offline-to-online conversions to establish the final result. Let
Ccov := Ccov(M

⋆
obs,Πlat ◦ Φ) denote the (state-action) coverability coefficient in M⋆

obs over the
set of policies Πlat ◦ Φ. Note that by Lemma D.1 we have Ccov,st(M

⋆
obs,Πlat ◦ Φ) = Ccov,st and

therefore by Lemma D.4 we have Ccov(M
⋆
obs,Πlat ◦ Φ) ≤ Ccov,st|A|. Let η > 0 be a parameter

to be chosen later, and βoff = O
(
log
(
|Mlat||Llat||Φ|HTδ−1

))
be the offline estimation error

guaranteed by Lemma H.1. We abbreviate α :=
√
CcovH log(T ), Ep

(t)

[·] := Eπ(t)∼p(t) E
π(t)

[·], and

Ep̃
(t)

:=
∑t−1
i=1 Eπ(i)∼p(i) E

π(i)

[·]. Then, we have:

T∑
t=1

H∑
h=1

Ep
(t)
[
[∆h(M̂

(t), ϕ̂(t))](xh, ah)
]
+ γ−1

(
JM

⋆
lat(πM⋆

lat
)− JM̂

(t)

(π
M̂(t))

)

≤ α

√√√√ T∑
t=1

H∑
h=1

Ep̃(t)
[
[∆h(M̂ (t), ϕ̂(t))](xh, ah)

]
+ γ−1

T∑
t=1

(
JM

⋆
lat(πM⋆

lat
)− JM̂

(t)

(π
M̂(t))

)
+O(HCcov)

≤ α

(
η

2

T∑
t=1

H∑
h=1

Ep̃
(t)
[
[∆h(M̂

(t), ϕ̂(t))](xh, ah)
]
+

1

2η

)
+ γ−1

T∑
t=1

(
JM

⋆
lat(πM⋆

lat
)− JM̂

(t)

(π
M̂(t))

)
+O(HCcov)

where in the first inequality we have used Lemma C.7 with g(t)

h = ∆h(M̂
(t), ϕ̂(t)) and in the second

inequality we have used the AM-GM inequality with parameter η. Collecting terms, we proceed via:

=
αη

2

T∑
t=1

(
H∑
h=1

Ep̃
(t)
[
∆h(M̂

(t), ϕ̂(t))(xh, ah)
]
+ (

γηα

2
)−1
(
JM

⋆
lat(πM⋆

lat
)− JM̂

(t)

(π
M̂(t))

))
+

α

2η
+O(HCcov)

≤ αη

2
Tβoff +

α

2η
+O(HCcov)

≤ O
(√

Ccov,st|A|H log(T )Tβoff +HCcov,st|A|
)

≤ O
(√

HCcov,st|A|T log(T ) log
(
|Mlat||Llat||Φ|HTδ−1

))
,

where in the first inequality we have used Lemma H.1 and the definition of γ in Algorithm 4 (cf. Eq.
(59)) and in the second inequality we have chosen η = 1/

√
T to balance the terms and used the bound

Ccov ≤ Ccov,st|A|. We convert to an expected regret bound by picking δ appropriately, which gives
the final result. It remains to show Lemma H.1.

Proof of Lemma H.1. Fix an iteration t ∈ [T ], and abbreviate M̂ := M̂ (t) and ϕ̂ := ϕ̂(t). We
follow the analysis of maximum likelihood estimation from Geer; Zhang; Agarwal et al. [Gee00;
Zha06; AKKS20]. In particular, we quote Lemma 24 of [AKKS20], which in an abstract conditional
estimation framework with density class F states the following.

Lemma H.2 (Lemma 24 of Agarwal et al. [AKKS20]). LetD = {(xi, yi)} be a dataset collected with
xi ∼ p(i)(x1:i−1, y1:i−1) and yi ∼ f⋆(· | xi), L(f,D) =

∑n
i=1 ℓ(f, (xi, yi)) be any loss function

that decomposes additively, f̂ : D → F be an estimator, D′ be a tangent sequence D′ = {(x̃i, ỹi)}
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sampled independently via x̃i ∼ p(i)(x1:i−1, y1:i−1) and ỹi ∼ f⋆(· | x̃i). Then, with probability at
least 1− δ, we have

− logED′ exp
(
L(f̂(D), D′)

)
≤ −L(f̂(D), D) + log

(
|F|δ−1

)
, (62)

For our purposes, we have that F =Mlat ◦ Φ, the data distribution is collected adaptively (for each

h ∈ [H]) via π(i) ∼ p(i), x(i)

h , a
(i)

h ∼ d
M⋆

obs,π
(i)

h , and r(i)

h , x
(i)

h+1 ∼ M⋆
obs(· | x

(i)

h , a
(i)

h ). For the loss
function L, we take

L((M,ϕ), D) = −
H∑
h=0

t∑
i=1

log

(
M⋆

obs(r
(i)

h+1, ϕh+1(x
(i)

h+1) | x
(i)

h , a
(i)

h )

[Mh ◦ ϕh](r(i)

h , ϕh+1(x
(i)

h+1) | x
(i)

h , a
(i)

h )

)

− γ−1

2
(JM

⋆
lat(πM⋆

lat
)− JM (πM )).

We begin by upper bounding the quantity −L((M̂, ϕ̂)(D), D) appearing on the right-hand side of
Eq. (62), or equivalently lower bounding L((M̂, ϕ̂)(D), D). Let us abbreviate V̂ = JM̂ (π

M̂
) and

V ⋆ = JM
⋆
lat(πM⋆

lat
). Towards this, note that

L((M̂, ϕ̂)(D), D) =

H∑
h=0

t∑
i=1

log
([
M̂h ◦ ϕ̂h

]
(r(i)

h , ϕ̂h+1(x
(i)

h+1) | x
(i)

h , a
(i)

h )
)

−
H∑
h=0

t∑
i=1

log
(
M⋆

obs(r
(i)

h , ϕ̂h+1(x
(i)

h+1) | x
(i)

h , a
(i)

h )
)
+
γ−1

2
(V̂ − V ⋆)

≥
H∑
h=0

t∑
i=1

log
([
M̂h ◦ ϕ̂h

]
(r(i)

h , ϕ̂h+1(x
(i)

h+1) | x
(i)

h , a
(i)

h )
)

−
H∑
h=0

max
[M ′◦ϕ′]∈Llat◦Φ

t∑
i=1

log
(
[M ′

h ◦ ϕ′h](r
(i)

h , ϕ̂h+1(x
(i)

h+1) | x
(i)

h , a
(i)

h )
)

+
γ−1

2
(V̂ − V ⋆)

≥
H∑
h=0

t∑
i=1

log
([
M⋆

lat,h ◦ ϕ⋆h
]
(r(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )
)

−
H∑
h=0

max
[M ′◦ϕ′]∈Llat◦Φ

t∑
i=1

log
(
[M ′

h ◦ ϕ′h](r
(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )
)

+
γ−1

2
(V ⋆ − V ⋆)

=

H∑
h=0

t∑
i=1

log
([
M⋆

lat,h ◦ ϕ⋆h
]
(r(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )
)

−
H∑
h=0

max
[M ′◦ϕ′]∈Llat◦Φ

t∑
i=1

log
(
[M ′

h ◦ ϕ′h](r
(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )
)
,

where in the second line we have used Lemma D.8 with Assumption A.2 and in the third line we
have used the ERM property of M̂ ◦ ϕ̂ together with decoder and model realizability. We claim that
this implies

L((M̂, ϕ̂)(D), D) ≥ − log
(
|Llat ◦ Φ|Hδ−1

)
(63)

by concentration. Indeed, for each h ∈ [H], i ∈ [t], and [M ′ ◦ ϕ′] ∈ Llat ◦ Φ, let

Z
[M ′◦ϕ′]
i,h = −1

2
log

(
M⋆

obs(r
(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )

[M ′ ◦ ϕ′](r(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )

)
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Applying Lemma C.1, we have that

t∑
i=1

log

(
M⋆

obs(r
(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )

[M ′ ◦ ϕ′](r(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )

)

≥
t∑
i=1

−2 log

(
Eπ(i)∼p(i) E

π(i)

[
exp

(
−1

2
log

(
M⋆

obs(r
(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )

[M ′ ◦ ϕ′](r(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )

))])
− log

(
δ−1
)
, (64)

with probability at least 1− δ, where we have recalled that data is gathered adaptively according to
π(i) ∼ p(i).We now quote the following lemma from Zhang; Agarwal et al. [Zha06; AKKS20].

Lemma H.3 (Lemma 25 of Agarwal et al. [AKKS20]). For anyD ∈ ∆(X ) and p, q ∈ [X → ∆(Y)],
we have

−2 logEx∼D,y∼q(·|x) exp

(
−1

2
log(q(y|x)/p(y|x))

)
≥ Ex∼D

[
D2

H(q(· | x), p(· | x))
]

Proof of Lemma H.3. We include the proof for completeness. The result follows via the following
steps.

−2 logEx∼D,y∼q(·|x) exp

(
−1

2
log(q(y|x)/p(y|x))

)
= −2 logEx∼D,y∼q(·|x)

√
p(y|x)/q(y|x)

≥ 2
(
1− Ex∼D,y∼q(·|x)

√
p(y|x)/q(y|x)

)
(∀x : log(x) ≤ x− 1)

= Ex∼D

[
2
(
1− Ey∼q(·|x)

√
p(y|x)/q(y|x)

)]
= Ex∼D

[
D2

H(p(· | x), q(· | x))
]

By Lemma H.3, we have that the right-hand-side of Eq. (64) is further lower bounded by

t∑
i=1

log

(
M⋆

obs(r
(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )

[M ′ ◦ ϕ′](r(i)

h , ϕ
⋆
h+1(x

(i)

h+1) | x
(i)

h , a
(i)

h )

)

≥
t∑
i=1

Eπ(i)∼p(i) E
π(i)[

D2
H

(
ϕ⋆h+1♯M

⋆
obs(· | x

(i)

h , a
(i)

h ), [M ′ ◦ ϕ′](· | x(i)

h , a
(i)

h )
)]
− log

(
δ−1
)

≥ − log
(
δ−1
)
,

where the last line follows from the non-negativity of squared Hellinger. Taking a union bound over
M ′ ◦ ϕ′ ∈ Llat ◦ Φ and h ∈ [H] gives the desired lower bound in Eq. (63).

To conclude the proof, it remains to lower bound the left-hand side in Eq. (62). Here, note that:

− logED′ exp
(
L((M̂, ϕ̂)(D), D′)

)
+
γ−1

2
(V ⋆ − V̂ )

= − logED′

exp
−1

2

H∑
h=1

t∑
i=1

log

 M⋆
obs(r̃

(i)

h , ϕ̂h+1(x̃
(i)

h+1) | x
(i)

h , a
(i)

h )[
M̂h ◦ ϕ̂h

]
(r(i)

h , ϕ̂h+1(x
(i)

h+1) | x
(i)

h , a
(i)

h )


= −

H∑
h=1

t∑
i=1

logEπ(i)∼p(i) E
π(i)

exp
−1

2
log

 M⋆
obs(r

(i)

h , ϕ̂h+1(x
(i)

h+1) | x
(i)

h , a
(i)

h )[
M̂h ◦ ϕ̂h

]
(r(i)

h , ϕ̂h+1(x
(i)

h+1) | x
(i)

h , a
(i)

h )

,
(65)
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where we have used that in the “tangent sequence” D′ the current sample (r̃(i)

h , x̃
(i)

h+1) is independent
of (r(i)

h , x
(i)

h+1). To bound this term, we again appeal to Lemma H.3, concluding that

−
H∑
h=1

t∑
i=1

logEπ(i)∼p(i) E
π(i)

exp
−1

2
log

 M⋆
obs(r

(i)

h , ϕ̂h+1(x
(i)

h+1) | x
(i)

h , a
(i)

h )[
M̂h ◦ ϕ̂h

]
(r(i)

h , ϕ̂h+1(x
(i)

h+1) | x
(i)

h , a
(i)

h )


≥ 1

2

H∑
h=1

t∑
i=1

Eπ(i)∼p(i) E
π(i)
[
D2

H

(
[M̂h ◦ ϕ̂h](xh, ah), ϕ̂h+1♯M

⋆
obs(xh, ah)

)]
Combining everything, we have:

1

2

(
H∑
h=1

t∑
i=1

Eπ(i)∼p(i) E
π(i)
[
D2

H

([
M̂h ◦ ϕ̂h

]
(xh, ah), ϕ̂h+1♯M

⋆
obs(xh, ah)

)]
+ γ−1(V ⋆ − V̂ )

)
≤ log

(
|Llat||Φ|Hδ−1

)
+ log

(
|Mlat||Φ|δ−1

)
Taking an additional union bound over t ∈ [T ], we have that with probability at least 1− δ:

H∑
h=1

t∑
i=1

E
π(i)∼p(i)h

Eπ
(i)
[
D2

H

([
M̂h ◦ ϕ̂h

]
(xh, ah), ϕ̂h+1♯M

⋆
obs(xh, ah)

)]
+ γ−1

(
JM

⋆
lat(πM⋆

lat
)− JM

(t)

(πM(t))
)
≤ O

(
log
(
|Mlat||Llat||Φ|HTδ−1

))
,

for all t ∈ [T ], as desired.

Corollary A.1 (Algorithmic modularity via SELFPREDICT.OPT). Under the same conditions as in
Lemma A.1, and for any base algorithm ALGlat, O2L with inputs T,K,Φ, SELFPREDICT.OPT, and
ALGlat achieves

E[Riskobs(TK)] ≲ c1 ·Riskbase(K)+c2γ ·
K√
T

√
HCcov,st|A| log(|Mlat||Llat||Φ|)+c3γ−1 ·KH,

for absolute constants c1, c2, c3. Consequently, for any ALGlat with base risk Riskbase(K), setting
γ and T appropriately gives

E[Riskobs(TK)] ≲ Riskbase(K),

with a number of trajectories TK = Õ(K5H3Ccov,st|A| log2(|Mlat||Llat||Φ|)/(Riskbase(K))4).

Proof of Corollary A.1. The first inequality simply follows by plugging the bound
of Estself;opt from Lemma A.1 into Theorem A.1. For the second inequality, let ∆ =

c2
√
HCcov,st|A| log(|Mlat||Llat||Φ|). The result follows by setting γ s.t. c3γ

−1HK =

Riskbase(K) i.e. γ = c3
KH

Riskbase(K) , and T such that γK∆√
T

= Riskbase(K) i.e. T = K4∆2γ2

Riskbase(K)2 =

K4∆2H2

(Riskbase(K))4
. Then the result follows by direct substitution and by noting that K

T ≤ 1 since
Riskbase(K) ≤ 1.

H.2 Proofs for Main Risk Bound (Theorem A.1)
Our main risk bound (Theorem A.1) follows as a special case of a more general theorem (Theo-
rem H.1), which holds for algorithm that satisfies a property we refer to as CorruptionRobust-ness
(Definition I.2). We now state the more general theorem, postponing its proof (and a formal definition
of corruption robustness) until Appendix I.

60



Theorem H.1 (Risk bound for O2L under self-predictive estimation and CorruptionRobustness).
Assume REPself;opt satisfies Assumption A.1 with parameter γ > 0 and thatMlat is realizable (i.e.
M⋆

lat ∈Mlat). Furthermore, let ALGlat be CorruptionRobust (Definition I.2) with parameter α.
Then, O2L (Algorithm 1) with inputs T,K,Φ,ALGlat, and REPself;opt has expected risk

E[Riskobs(TK)] ≤ c1 · Riskbase(K) + c2γ ·
K

T
Estself;opt(T, γ) + c3γ

−1 ·
(
α2 +H

)
(66)

for absolute constants c1, c2, c3 > 0.

Our main risk bound (Theorem A.1) follows from the following lemma, which establishes that
any ALGlat is CorruptionRobust in the sense of Definition I.2 for a sufficiently large cor-
ruption robustness parameter. Below, for any POMDP M̃ over state-action space S × A, we
write M̃(s1:h, a1:h) for the conditional probability over reward rh and sh+1 given s1:h, a1:h, i.e.
M̃h(s1:h, a1:h) = M̃h(rh, sh+1 = · | s1:h, a1:h).

Lemma H.4. Let M⋆ be any reference MDP and M̃ be any POMDP with the same state and action
space. Then for any algorithm ALGlat, we have

EM̃,ALGlat [RiskM⋆(K)] ≤ c1 EM
⋆,ALGlat [RiskM⋆(K)]

+ c2 EM̃,ALGlat

[
K∑
k=1

H∑
h=1

EM̃,π(k)
[
D2

H

(
M⋆
h(sh, ah), M̃h(s1:h, a1:h)

)]]
,

where c1, c2 > 0 are absolute constants. In particular, ALGlat is CorruptionRobust (Definition I.2)
with α = c2

√
KH .

Proof of Lemma H.4. Let us abbreviate ALG := ALGlat. For i ∈ [K], let τ (i) denote the trajectory
(s(i)1 , a

(i)

1 , r
(i)

1 , . . . , s
(i)

H , a
(i)

H , r
(i)

H ). Let P := PM⋆,ALG denote the law of {(π(i), τ (i))}i∈[K] under ALG

in the true MDP M⋆, and Q := PM̃,ALG denote the law of {(π(i), τ (i))}i∈[K] under ALG under the

POMDP M̃ . Let us write M⋆(π) and M̃(π) for the laws of trajectory τ sampled from policy π in
M⋆ or M̃ respectively. Let π̂ denote the policy output by the algorithm after K rounds of interaction
with the environment. By Lemma C.5 we have

EM̃,ALG
[
JM

⋆

(πM⋆)− JM
⋆

(π̂)
]
≤ 3EM

⋆,ALG
[
JM

⋆

(πM⋆)− JM
⋆

(π̂)
]
+4D2

H

(
PM

⋆,ALG,PM̃,ALG
)
.

By the subadditivity property for squared Hellinger distance (Lemma C.4) applied to the sequence
π(1), τ (1), . . . , π(K), τ (K), we have

D2
H

(
PM

⋆,ALG,PM̃,ALG
)
≤ 7EM̃,ALG

[
K∑
k=1

D2
H(P(π(k) | π(1:k−1), τ (1:k−1)),Q(π(k) | π(1:k−1), τ (1:k−1)))+

D2
H(P(τ (k) | π(1:k), τ (1:k−1)),Q(τ (k) | π(1:k), τ (1:k−1)))

]

= 7EM̃,ALG

[
K∑
k=1

D2
H(P(τ (k) | π(1:k), τ (1:k−1)),Q(τ (k) | π(1:k), τ (1:k−1)))

]

= 7EM̃,ALG

[
K∑
k=1

D2
H

(
M⋆(π(k)), M̃(π(k))

)]

≤ 49EM̃,ALG

[
K∑
k=1

H∑
h=1

EM̃,π(k)
[
D2

H

(
M⋆
h(sh, ah), M̃h(s1:h, a1:h)

)]]
where in the second step we have used that P(π(k) | π(1:k), τ (1:k−1)) = Q(π(k) | π(1:k), τ (1:k−1))
since the histories are equivalent, in the third step we have used that the trajectories are gener-
ated by the MDP/PODMP M⋆ and M̃ , respectively, in the fourth step we have again applied
the subadditivity property of the squared Hellinger distance (Lemma C.4) to the sequence
(s1, a1, r1, . . . , sH , aH , rH).
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Theorem A.1 (Risk bound for O2L under self-predictive estimation). Suppose REPself;opt satisfies
Assumption A.1 with parameter γ > 0. Then Algorithm 1, with inputs T,K,Φ, REPself;opt, and
ALGlat has expected risk

E[Riskobs(TK)] ≤ c1 · Riskbase(K) + c2γ ·
K

T
Estself;opt(T, γ) + c3γ

−1 ·KH,

for absolute constants c1, c2, c3 > 0.

Proof of Theorem A.1. This follows from Theorem H.1 as well as Lemma H.4, by taking
α = c2

√
KH and simplifying.

62



I Additional Results for Appendix A: Self-Predictive Estimation

This section contains a more general result for algorithmic modularity under self-predictive estimation
(Theorem H.1), from which our main result is derived as a special case, along with associated
background, applications, and proofs. This section is organized as follows.

• Appendix I.1 presents: definitions for the ϕ-compressed POMDP and CorruptionRobust algo-
rithms (Appendix I.1.1), statements for properties of the ϕ-compressed dynamics (Appendix I.1.2).
The risk bound for O2L under self-predictive estimation and CorruptionRobustness (Theo-
rem H.1) is given in Appendix I.1.3, and a statement that the GOLF algorithm is CorruptionRobust
(Appendix I.1.4).

• Appendix I.2 presents for the proofs for the properties of the ϕ-compressed POMDPs.

• Appendix I.3 presents a proof for the risk bound of O2L under self-predictive estimation and
CorruptionRobustness.

• Appendix I.4 presents a proof that the GOLF algorithm is CorruptionRobust.

I.1 O2L with Self-predictive Estimation and CorruptionRobust Base Algorithms
I.1.1 Definitions: ϕ-compressed POMDP and CorruptionRobustness

Consider iteration k ∈ [K] of epoch t ∈ [T ] within O2L. Suppose that REPLEARN has
chosen decoder ϕ = ϕ(t) : X → S. Then, the latent algorithm has observed the data
D(t,k) = {ϕ(x(t,k)

h ), a(t,k)

h , r(t,k)

h , ϕ(x(t,k)

h+1)} collected from the preceding policies in the epoch:
π(t,1)

lat ◦ ϕ(t), . . . , π(t,k−1)

lat ◦ ϕ(t) (Line 8). Due to possible inaccuracies in the decoder ϕ, the dataset
D(t,k) may not be generated from a Markovian process and must instead be viewed as being generated
from a PODMP, formally defined as follows.

Definition I.1 (ϕ-compressed POMDP). The ϕ-compressed POMDP M̃⋆
ϕ induced by M⋆

obs and ϕ
is defined by:

1. Latent state space X

2. Action space A

3. Observation state space S

4. Latent reward functions R⋆obs,h : X ×A → [0, 1]

5. Latent dynamics P ⋆obs,h : X ×A → ∆(X )

6. (Deterministic) observation function Oh : X → S defined by Oh(x) = ϕh(x),

7. Horizon H

8. Initial latent distribution P ⋆obs(x0 | ∅)

Note that the latent space for the POMDP is the observation space of the latent-dynamics MDP M⋆
obs,

and vice-versa; we adopt this terminology because—from the perspective of the base algorithm, the
observations xh can be viewed as a Markovian (yet partially observed process) that generates the
learned states ϕ(xh) on which the algorithm acts. We write P̃πlat

ϕ := PM̃
⋆
ϕ ,πlat for the probability

distribution over trajectories (xh, sh, ah, rh)h∈[H] in the ϕ-compressed POMDP when playing policy
πlat : S×[H]→ ∆(A), where xh ∈ X are the POMDP’s latent states, sh ∈ S are the observed states,
and ah ∈ A are the actions. We let Ẽ

πlat

ϕ := EM̃
⋆
ϕ ,πlat denote the corresponding expectation. We write

P̃ϕ,h(sh+1 | s1:h, a1:h) = P̃πlat

ϕ (sh+1 | s1:h, a1:h) and r̃ϕ,h(rh | s1:h, a1:h) = P̃πlat

ϕ (rh | s1:h, a1:h)
for the conditional distributions of next states and rewards given the first h state-action pairs, which
are policy-independent. We also write M̃⋆

ϕ(rh, sh+1 | s1:h, a1:h) = r̃ϕ,h(rh | s1:h, a1:h)P̃ϕ,h(sh+1 |
s1:h, a1:h) for the joint one-step probability. We will abbreviate M̃⋆

ϕ(s1:h, a1:h) := M̃⋆
ϕ(rh, sh+1 =

· | s1:h, a1:h).
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Note that for any πlat, P̃πlat

ϕ,h (sh+1 | sh, ah) is a well-defined (Markovian, policy-dependent) proba-
bility kernel, which is equivalent to

P̃πlat

ϕ,h (sh+1 | sh, ah) =
∑

s1:h−1,a1:h−1

P̃πlat

ϕ,h (s1:h−1, a1:h−1 | sh, ah)P̃ϕ,h(sh+1 | s1:h, a1:h) (67)

= Ẽ
πlat

ϕ

[
P̃ϕ,h(sh+1 | s1:h, a1:h) | sh, ah

]
(68)

Similarly, r̃πlat

ϕ,h (rh | sh, ah) is a Markovian and policy-dependent reward distribution which is
equivalent to

r̃πlat

ϕ,h (rh | sh, ah) =
∑

s1:h−1,a1:h−1

P̃πlat

ϕ,h (s1:h−1, a1:h−1 | sh, ah)r̃ϕ,h(rh | s1:h, a1:h) (69)

= Ẽ
πlat

ϕ [r̃ϕ,h(rh | s1:h, a1:h) | sh, ah]. (70)

Finally, we let

M̃πlat,⋆
ϕ,h (rh, sh+1 | sh, ah) = Ẽ

πlat

ϕ

[
M̃⋆
ϕ(rh, sh+1 | s1:h, a1:h) | sh, ah

]
(71)

denote the associated one-step model over joint rewards and transitions.

Our CorruptionRobustness condition asserts that the agent—when observing data from the ϕ(t)-
compressed dynamics M̃⋆

ϕ—attains a risk bound for Mlat which is proportional to its risk when

observing data from Mlat itself, plus a term that captures the degree of misspecification between M̃⋆
ϕ

and Mlat.

Definition I.2 (CorruptionRobust algorithm). We say that ALGlat is CorruptionRobust with
parameters α and Riskbase if there exists a constant c1 such that, for any (ϕ,Mlat) ∈ Φ×Mlat, we
have

EM̃
⋆
ϕ ,ALGlat [Risk(K,ALGlat,Mlat)] ≤ c1 · Riskbase(K)

+ αEM̃
⋆
ϕ ,ALGlat


√√√√ K∑
k=1

H∑
h=1

E
π
(k)
lat ∼p(k) Ẽ

π
(k)
lat

ϕ

[
D2

H

(
Mlat,h(sh, ah), M̃⋆

ϕ,h(s1:h, a1:h)
)],

where we recall the definition of the random variable Risk(K,ALGlat,Mlat) from Eq. (1), the

expectation EM̃
⋆
ϕ ,ALGlat denotes the interaction protocol of ALGlat in the ϕ-compressed dynamics

M̃⋆
ϕ , and p(k) denotes the randomization distribution over latent policies that ALGlat plays.

I.1.2 Basic properties of the ϕ-compressed dynamics (Definition I.1)
We establish a number of basic properties for the ϕ-compressed POMDP and their relation to the
self-prediction guarantee obtained by REPself;opt. These properties are proved in Appendix I.2.
Firstly, we have the following change-of-measure lemma:

Lemma I.1 (Change of measure lemma). For any ϕ ∈ Φ, f ∈ [S × A → [0, 1]], h ∈ [H], and
πlat ∈ [S × [H]→ ∆(A)], we have:

Ẽ
πlat

ϕ [f(sh, ah)] = Eπlat◦ϕ[[f ◦ ϕ](xh, ah)]. (72)

The next lemma states that the kernels of the ϕ-compressed POMDP are well-approximated by the
(Markovian) latent model fit by REPself;opt. We recall the instantaneous self-prediction error

[∆h(Mlat, ϕ)](xh, ah) := D2
H

(
Mlat,h(ϕh(xh), ah),

[
ϕh+1♯M

⋆
obs,h

]
(xh, ah)

)
.

Lemma I.2 (Near-markovianity of the ϕ-compressed dynamics). For any decoder ϕ, base model
Mlat, and policy πlat : S × [H]→ ∆(A), we have:

H∑
h=0

Ẽ
πlat

ϕ

[
D2

H

(
Mlat,h(sh, ah), M̃

⋆
ϕ,h(s1:h, a1:h)

)]
≤

H∑
h=0

Eπlat◦ϕ[[∆h(Mlat, ϕ)](xh, ah)]. (73)
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Furthermore, we also have
H∑
h=0

Ẽ
πlat

ϕ

[
D2

H

(
Mlat,h(sh, ah), M̃

⋆,πlat

ϕ,h (sh, ah)
)]
≤

H∑
h=0

Eπlat◦ϕ[[∆h(Mlat, ϕ)](xh, ah)]. (74)

A corollary is the following lemma establishing errors between expectations under Mlat, the model
estimated by REPself;opt, and those under the ϕ-compressed POMDP M̃⋆

ϕ .

Lemma I.3 (Simulation lemma). For any latent model Mlat with Markovian transition kernel
{Plat,h}h∈[H], latent policy πlat : S × [H] → ∆(A), and decoder ϕ ∈ Φ, we have that for all
f : S ×A → [0, 1]:

|EMlat,πlat [f(sh, ah)]− Ẽ
πlat

ϕ [f(sh, ah)]|

≤
∑
h′<h

Eπlat◦ϕ
[∥∥[Plat ◦ ϕ]h(xh′ , ah′)− ϕh+1♯P

⋆
obs,h(xh′ , ah′)

∥∥
tv

]
, (75)

and thus for any sequence of policies π(t)

lat, latent models M (t)

lat, and decoders ϕ(t), we have:
T∑
t=1

H∑
h=0

|EM
(t)
lat ,π

(t)
lat [f(sh, ah)]− Ẽ

π
(t)
lat

ϕ(t) [f(sh, ah)]| (76)

≤ H
√
TH

√√√√ T∑
t=1

H∑
h=0

Eπ
(t)
lat ◦ϕ(t)[

[∆h(M
(t)

lat, ϕ
(t))](xh, ah)

]
. (77)

I.1.3 Risk bound for O2L under CorruptionRobustness

We state the main risk bound for O2L under self-predictive estimation and the above definition of
corruption robustness.

Theorem H.1 (Risk bound for O2L under self-predictive estimation and CorruptionRobustness).
Assume REPself;opt satisfies Assumption A.1 with parameter γ > 0 and thatMlat is realizable (i.e.
M⋆

lat ∈Mlat). Furthermore, let ALGlat be CorruptionRobust (Definition I.2) with parameter α.
Then, O2L (Algorithm 1) with inputs T,K,Φ,ALGlat, and REPself;opt has expected risk

E[Riskobs(TK)] ≤ c1 · Riskbase(K) + c2γ ·
K

T
Estself;opt(T, γ) + c3γ

−1 ·
(
α2 +H

)
(66)

for absolute constants c1, c2, c3 > 0.

I.1.4 Examples of CorruptionRobust algorithms
In this section, we establish that the GOLF algorithm satisfies the CorruptionRobust definition
(Definition I.2) with a parameter α ≈ K−1/2. This improves upon the rate that would be obtained
by invoking the generic guarantee in Lemma H.4. We expect that several other algorithms can
be analyzed in a similar way, thereby leading to tight rates in the same fashion. We restate the
pseudocode in Algorithm 5 for convenience.

Let Mlat = (rlat, Plat) be given, and we let Q⋆lat := QMlat,⋆, and Tlat,hf(s, a) := rlat,h(s, a) +
Es′∼Plat,h(s,a)[Vf (s

′)]. We assume that the algorithm has a latent function class Falg which realizes
Q⋆lat, as well as a helper class Galg which is Tlat-complete for Falg.

Assumption I.1 (Tlat-completeness). We have:

Q⋆lat ∈ Falg, and TlatFalg ⊆ Galg.

For our analysis of GOLF, it is most natural to quantify the corruption levels in the following way.

Assumption I.2 (Corruption levels of Mlat and M̃⋆
ϕ). Let ε2rep be such that, for any sequence of

policies π(k)

lat played by the algorithm when interacting with the ϕ-compressed POMDP, we have
K∑
k=1

H∑
h=1

E
π
(k)
lat ∼p(k)lat

Ẽ
π
(k)
lat

ϕ

[
(rlat,h(sh, ah)− r̃π

(k)

ϕ,h (sh, ah))
2 +

∥∥∥Plat,h(sh, ah)− P̃π
(k)

ϕ,h (sh, ah)
∥∥∥2
tv

]
≤ ε2rep. (78)
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Algorithm 5 GOLF [JLM21]
input: Function classes F and G, confidence width β > 0.
initialize: F (0) ← F , D(0)

h ← ∅ ∀h ∈ [H].
1: for episode t = 1, 2, . . . , T do
2: Select policy π(t) ← πf(t) , where f (t) := argmaxf∈F(t−1) f(x1, πf,1(x1)).
3: Execute π(t) for one episode and obtain trajectory (x(t)

1 , a
(t)

1 , r
(t)

1 ), . . . , (x(t)

H , a
(t)

H , r
(t)

H ).
4: Update dataset: D(t)

h ← D
(t−1)

h ∪
{(
x(t)

h , a
(t)

h , x
(t)

h+1

)}
∀h ∈ [H].

5: Compute confidence set:

F (t) ←
{
f ∈ F : L(t)

h (fh, fh+1)− min
gh∈Gh

L(t)

h (gh, fh+1) ≤ β ∀h ∈ [H]

}
,

where L(t)

h (f, f ′) :=
∑

(x,a,r,x′)∈D(t)
h

(
f(x, a)− r −max

a′∈A
f ′(x′, a′)

)2
, ∀f, f ′ ∈ F .

6: end for
7: Output π̂ = Unif(π(1:T )).

We note that

ε2rep ≲
K∑
k=1

H∑
h=1

Ẽ
π
(k)
lat

ϕ

[
D2

H

(
Mlat,h(sh, ah), M̃

⋆,π
(k)
lat

ϕ,h (sh, ah)

)]

≤
K∑
k=1

H∑
h=1

Ẽ
π
(k)
lat

ϕ

[
D2

H

(
Mlat,h(sh, ah), M̃

⋆
ϕ,h(s1:h, a1:h)

)]
by the data-processing inequality (cf. Eq. (90) and Eq. (80)) and the inequality ∥p−q∥2tv ≤ D2

H(p, q),
and thus a CorruptionRobustness bound in terms of εrep implies a CorruptionRobustness bound
in the sense of Definition I.2.

Theorem I.1 (Latent GOLF is CorruptionRobust). Under Assumption I.1 and Assumption I.2,
Algorithm 5 with β = c

(
log
(
|F||G|KHδ−1

)
+ εrep

)
, has regret

K∑
k=1

JMlat(πMlat)− JMlat(π(k)) ≤ O
(
H
√
CcovK log(K) log(|F||G|HK/δ)

)
+O

(
H3/2

√
KCcov log(K)ε2rep

)
,

and consequently is CorruptionRobust (Definition I.2) with parameters

α =
H3/2

√
K

√
Ccov log(K) and Riskbase(K) = O

(
H√
K

√
Ccov log(K) log(|F||G|HK)

)
.

Corollary I.1 (GOLF applied in O2L). Let us suppose that the appropriate assump-
tions for the estimator in Algorithm 4 to have regret bounded by Estself(T, γ) =
O
(√
HCcovT log(Ccov|Mlat||Llat||Φ|HT )

)
(Lemma A.1) hold. Then, we can take γ ≈ K−1/2

and T ≈ K4, and the bound Theorem H.1 gives an expected risk of ε with a number of trajecto-
ries TK = poly(Ccov, H, log|Mlat|, log|Φ|, log|Llat|) · 1/ε10, improving over the 1/ε14 rate of the
universal result (Corollary A.1).

I.2 Proofs for Appendix I.1.2: Properties of ϕ-compressed POMDPs
Lemma I.1 (Change of measure lemma). For any ϕ ∈ Φ, f ∈ [S × A → [0, 1]], h ∈ [H], and
πlat ∈ [S × [H]→ ∆(A)], we have:

Ẽ
πlat

ϕ [f(sh, ah)] = Eπlat◦ϕ[[f ◦ ϕ](xh, ah)]. (72)

Proof of Lemma I.1. Recall that P̃πlat

ϕ denotes the law of (xh, sh, ah)h∈[H] in the ϕ-compressed
POMDP when playing policy πlat. For clarity, and to differentiate a random variable from its realiza-
tion, in the proofs below we will use upper-case notation such as {Sh = sh, Ah = ah, Xh = xh} to
indicate realizations of random variables in the POMDP.
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Let d̃πlat

h (s, a) = P̃πlat

ϕ (Sh = s,Ah = a) be the marginalized occupancy measure for in the ϕ-

compressed POMDP M̃⋆
ϕ . We write dπlat◦ϕ

h := d
M⋆

obs,πlat◦ϕ
h . The left-hand side in Eq. (72) is equal

to:
Ẽ
πlat

ϕ [f(sh, ah)] =
∑

s∈S,a∈A
d̃πlat

h (s, a)f(s, a),

Meanwhile, the right-hand side is equal to:

Eπlat◦ϕ
h [[f ◦ ϕ](xh, ah)] =

∑
s∈S,a∈A

f(s, a)
∑

x:ϕ(x)=s

dπlat◦ϕ
h (x, a).

So it only remains to show that, for each s ∈ S and a ∈ A, we have d̃πlat

h (s, a) =∑
x:ϕ(x)=s d

πlat◦ϕ
h (x, a). Firstly, note that it is enough to show that

∑
xh:ϕ(xh)=sh

dπlat◦ϕ
h (xh) =

d̃πlat

h (sh), since d̃πlat

h (sh, ah) = d̃πlat

h (sh)πlat(ah | sh) and
∑
xh:ϕ(xh)=sh

dπlat◦ϕ
h (xh, ah) =∑

xh:ϕ(xh)=sh
dπlat◦ϕ
h (xh)πlat(ah | ϕ(xh)) = πlat(ah | sh)

∑
xh:ϕ(xh)=sh

dπlat◦ϕ
h (xh). Toward

this, we have:∑
xh:ϕ(xh)=sh

dπlat◦ϕ
h (xh) =

∑
xh:ϕ(xh)=sh

∑
xh−1,ah−1∈X×A

dπlat◦ϕ
h−1 (xh−1, ah−1)P

⋆
obs,h(xh | xh−1, ah−1)

=
∑

xh−1,ah−1∈X×A
dπlat◦ϕ
h−1 (xh−1, ah−1)

∑
xh:ϕ(xh)=sh

P ⋆obs,h(xh | xh−1, ah−1)

=
∑

xh−1,ah−1∈X×A
dπlat◦ϕ
h−1 (xh−1, ah−1)P

⋆
obs,h(ϕ(xh) = sh | xh−1, ah−1)

At the same time,

d̃πlat

h (sh) = P̃πlat

ϕ (Sh = sh)

=
∑
x̃,ã

P̃πlat

ϕ (Xh−1 = x̃, Ah−1 = ã)P̃πlat

ϕ (Sh = sh | Xh−1 = x̃, Ah−1 = ã)

=
∑
x̃,ã

P̃πlat

ϕ (Xh−1 = x̃, Ah−1 = ã)P ⋆obs(ϕ(xh) = sh | xh−1, ah−1),

where in the second equality we have used the definition of the observation function sh = O(xh) =
ϕ(xh).

To conclude, it remains to show that for all h, we have:

dπlat◦ϕ
h (xh, ah) = P̃πlat

ϕ (Xh = xh, Ah = ah).

We do this by induction. Again, note that it is sufficient to establish dπlat◦ϕ
h (xh) = P̃πlat

ϕ (Xh = xh).
The case h = 1 is clear. For the general case, we have:

dπlat◦ϕ
h (xh) =

∑
xh−1,ah−1∈X×A

dπlat◦ϕ
h−1 (xh−1, ah−1)P

⋆
obs(xh | xh−1, ah−1)

=
∑

xh−1,ah−1∈X×A
P̃πlat

ϕ (Xh = xh−1, Ah−1 = ah−1)P
⋆
obs(xh | xh−1, ah−1)

=
∑

xh−1,ah−1∈X×A
P̃πlat

ϕ (Xh = xh−1, Ah−1 = ah−1)

× P̃πlat

ϕ (Xh = xh | Xh−1 = xh−1, Ah−1 = ah−1)

= P̃πlat

ϕ (Xh = xh).
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Lemma I.2 (Near-markovianity of the ϕ-compressed dynamics). For any decoder ϕ, base model
Mlat, and policy πlat : S × [H]→ ∆(A), we have:

H∑
h=0

Ẽ
πlat

ϕ

[
D2

H

(
Mlat,h(sh, ah), M̃

⋆
ϕ,h(s1:h, a1:h)

)]
≤

H∑
h=0

Eπlat◦ϕ[[∆h(Mlat, ϕ)](xh, ah)]. (73)

Furthermore, we also have

H∑
h=0

Ẽ
πlat

ϕ

[
D2

H

(
Mlat,h(sh, ah), M̃

⋆,πlat

ϕ,h (sh, ah)
)]
≤

H∑
h=0

Eπlat◦ϕ[[∆h(Mlat, ϕ)](xh, ah)]. (74)

Proof of Lemma I.2. We begin with the first event. Note that, for any πlat, the PODMP kernel
M̃⋆
ϕ,h(rh, sh+1 = · | s1:h, a1:h) can be written as:

M̃⋆
ϕ,h(rh, sh+1 = · | s1:h, a1:h) =

∑
xh,ah∈X×A

P̃πlat

ϕ (rh, sh+1 = · | xh, ah, s1:h, a1:h)

× P̃πlat

ϕ (xh, ah | s1:h, a1:h)

=
∑

xh,ah∈X×A
P̃πlat

ϕ (rh, sh+1 = · | xh, ah)P̃πlat

ϕ (xh, ah | s1:h, a1:h),

where we have used M̃(rh, sh+1 = · | s1:h, a1:h) = P̃πlat

ϕ (rh, sh+1 = · | s1:h, a1:h), the law of total
probability, and that xh, ah is a sufficient statistic for rh and sh+1. We further note that

P̃πlat

ϕ (rh, sh+1 = · | xh, ah) =M⋆
obs,h(rh, ϕh+1(xh+1) = · | xh, ah), (79)

since sh+1 = Oh+1(xh+1) = ϕh+1(xh+1) is a deterministic function of xh+1 and rh, xh+1 ∼
M⋆

obs,h(xh, ah). Thus, for a fixed h and t, and omitting the h indices on the decoder ϕ for cleanliness,
the expectation in equation Eq. (73) becomes:

Ẽ
πlat

ϕ

[
D2

H

(
Mlat,h(sh, ah), M̃

⋆
ϕ,h(rh, sh+1 = · | s1:h, a1:h)

)]
≤

∑
s1:h,a1:h∈(S×A)h

P̃πlat

ϕ (s1:h, a1:h)
∑
xh,ah

P̃πlat

ϕ (xh, ah | s1:h, a1:h)

×D2
H

(
Mlat,h(sh, ah), P̃

πlat

ϕ (rh, sh+1 = · | xh, ah)
)

(Jensen)

=
∑

s1:h,a1:h∈(S×A)h

xh,ah∈X×A

P̃πlat

ϕ (s1:h, a1:h)P̃
πlat

ϕ (xh, ah | s1:h, a1:h)

×D2
H

(
Mlat,h(ϕ(xh), ah), P̃

πlat

ϕ (rh, ϕ(xh+1) = · | xh, ah)
)

=
∑

xh,ah∈X×A
P̃πlat

ϕ (xh, ah)D
2
H

(
Mlat(ϕ(xh), ah),M

⋆
obs,h(rh, ϕ(xh+1) = · | xh, ah)

)
(Simplifying & Eq. (79))

= Eπlat◦ϕ[D2
H

(
Mlat(ϕ(xh), ah),M

⋆
obs,h(rh, ϕ(xh+1) = · | xh, ah)

)]
(Change of measure (Lemma I.1))

= Eπlat◦ϕ[D2
H

(
Mlat(ϕ(xh), ah), ϕ♯M

⋆
obs,h(xh, ah)

)]
, (By definition of ϕ♯M⋆

obs)

as desired. Summing over h ∈ [H] we obtain the desired bound. The bound Eq. (74) is a
consequence of Eq. (73) and the data-processing inequality. Namely, using the definition of M̃⋆,πlat

ϕ,h

from Eq. (71) and the joint convexity of the squared Hellinger distance we have:

D2
H

(
Mlat,h(· | sh, ah), M̃⋆,πlat

ϕ,h (· | sh, ah)
)

≤ Ẽ
πlat

ϕ

[
D2

H

(
Mlat,h(· | sh, ah), M̃⋆

ϕ,h(· | s1:h, a1:h)
)
| sh, ah

]
. (80)
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Thus, we have

Eπlat

ϕ

[
D2

H

(
Mlat,h(· | sh, ah), M̃⋆,πlat

ϕ,h (· | sh, ah)
)]

≤ Eπlat

ϕ

[
Eπlat

ϕ

[
D2

H

(
Mlat,h(· | sh, ah), M̃⋆

ϕ,h(· | s1:h, a1:h)
)
| sh, ah

]]
= Eπlat

ϕ

[
D2

H

(
Mlat,h(· | sh, ah), M̃⋆

ϕ,h(· | s1:h, a1:h)
)]
,

as desired.

Lemma I.3 (Simulation lemma). For any latent model Mlat with Markovian transition kernel
{Plat,h}h∈[H], latent policy πlat : S × [H] → ∆(A), and decoder ϕ ∈ Φ, we have that for all
f : S ×A → [0, 1]:

|EMlat,πlat [f(sh, ah)]− Ẽ
πlat

ϕ [f(sh, ah)]|

≤
∑
h′<h

Eπlat◦ϕ
[∥∥[Plat ◦ ϕ]h(xh′ , ah′)− ϕh+1♯P

⋆
obs,h(xh′ , ah′)

∥∥
tv

]
, (75)

and thus for any sequence of policies π(t)

lat, latent models M (t)

lat, and decoders ϕ(t), we have:

T∑
t=1

H∑
h=0

|EM
(t)
lat ,π

(t)
lat [f(sh, ah)]− Ẽ

π
(t)
lat

ϕ(t) [f(sh, ah)]| (76)

≤ H
√
TH

√√√√ T∑
t=1

H∑
h=0

Eπ
(t)
lat ◦ϕ(t)[

[∆h(M
(t)

lat, ϕ
(t))](xh, ah)

]
. (77)

Proof of Lemma I.3. Firstly note that, from Lemma I.1, the left-hand-side of Eq. (75) is equivalent
to

|EMlat,πlat [f(sh, ah)]− Ẽ
πlat

ϕ [f(sh, ah)]| = |EMlat,πlat [f(sh, ah)]− EM
⋆
obs,πlat◦ϕ[[f ◦ ϕ](xh, ah)]|

(81)
For any πlat : S × [H]→ ∆(A), let dπlat

lat,h = dMlat,πlat

h denote the occupancy in Mlat, and similarly

for any πobs : X × [H] → ∆(A) let dπobs

obs,h(xh, ah) = d
M⋆

obs,πobs

h (xh, ah) denote the occupancy in
M⋆

obs. We overload notation by letting dπlat◦ϕ
obs,h (s, a) :=

∑
x:ϕ(x)=s d

π◦ϕ
obs,h(x, a). We will establish the

stronger result that∥∥∥dπlat

lat,h(·)− d
πlat◦ϕ
obs,h (·)

∥∥∥
tv
≤
∑
h′<h

Eπlat◦ϕ[∥[Plat ◦ ϕ](xh′ , ah′)− ϕ♯P ⋆obs(xh′ , ah′)∥tv
]
, (82)

where the tv norm on the left-hand-side is over S ×A. Note that this implies the desired bound on
Eq. (81) by Holder’s inequality. We prove this by induction over h. For the base case (h = 0), we
have: ∑

s1,a1

∣∣∣∣∣dπlat
lat,1(s1, a1)− d

πlat◦ϕ
obs (s1, a1)

∣∣∣∣∣
=
∑
s1,a1

∣∣∣∣∣Plat,0(s1 | ∅)πlat(a1 | s1)−
∑

x1=ϕ(x1)=s1

dπlat◦ϕ
obs (x1, a1)

∣∣∣∣∣
=
∑
s1,a1

∣∣∣∣∣Plat,0(s1 | ∅)πlat(a1 | s1)−
∑

x1=ϕ(x1)=s1

P ⋆obs,0(x1 | ∅)πlat(a1 | ϕ(x1))

∣∣∣∣∣
=
∑
s1

∣∣∣∣∣Plat,0(s1 | ∅)− ϕ1♯P ⋆obs,0(s1 | ∅)

∣∣∣∣∣∑
a1

πlat(a1 | s1)

=
∥∥Plat,0(∅)− ϕ1♯P ⋆obs,0(∅)

∥∥
tv
.
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For the general case, let us further overload notation by letting dπ◦ϕobs,h(sh) =
∑
ah
dπ◦ϕobs,h(sh, ah)

and P ⋆obs(sh | xh−1, ah−1) = ϕ♯P ⋆obs(sh | xh−1, ah−1) =
∑
xh:ϕ(xh)=sh

P ⋆obs(xh | xh−1, ah−1).
Let us also abbreviate π := πlat. Firstly note that it is sufficient to establish the result for∑
sh∈S

∣∣∣dπlat,h(sh)− dπ◦ϕobs,h(sh)
∣∣∣, since∑

sh,ah∈S×A

∣∣∣dπlat,h(sh, ah)− dπ◦ϕobs,h(sh, ah)
∣∣∣ = ∑

sh,ah∈S×A

∣∣∣dπlat,h(sh)− dπ◦ϕobs,h(sh)
∣∣∣π(ah | sh)

=
∑
sh∈S

∣∣∣dπlat,h(sh)− dπ◦ϕobs,h(sh)
∣∣∣.

Below, all summations over sh (resp. xh) with domain unspecified are over S (resp. X ), and likewise
for summations over sh, ah or xh, ah. We have:∑
sh

∣∣∣∣∣dπlat,h(sh)− dπ◦ϕobs,h(sh)

∣∣∣∣∣
=
∑
sh

∣∣∣∣∣dπlat,h(sh)− ∑
xh:ϕ(xh)=sh

dπ◦ϕobs,h(xh)

∣∣∣∣∣
=
∑
sh

∣∣∣∣∣ ∑
sh−1,ah−1

dπlat,h(sh−1, ah−1)Plat,h(sh | sh−1, ah−1)

−
∑

xh:ϕ(xh)=sh

∑
xh−1,ah−1

dπ◦ϕobs,h(xh−1, ah−1)P
⋆
obs,h(xh | xh−1, ah−1)

∣∣∣∣∣
=
∑
sh

∣∣∣∣∣ ∑
sh−1,ah−1

dπlat,h(sh−1, ah−1)Plat,h(sh | sh−1, ah−1)

−
∑

xh−1,ah−1

dπ◦ϕobs,h(xh−1, ah−1)P
⋆
obs,h(sh | xh−1, ah−1)

∣∣∣∣∣
=
∑
sh

∣∣∣∣∣ ∑
sh−1,ah−1

dπlat,h(sh−1, ah−1)Plat,h(sh | sh−1, ah−1)

−
∑

xh−1,ah−1

dπ◦ϕobs,h(xh−1, ah−1)Plat,h(sh | ϕ(xh−1), ah−1)

+
∑

xh−1,ah−1

dπ◦ϕobs,h(xh−1, ah−1)Plat,h(sh | ϕ(xh−1), ah−1)

−
∑

xh−1,ah−1

dπ◦ϕobs,h(xh−1, ah−1)P
⋆
obs,h(sh | xh−1, ah−1)

∣∣∣∣∣
≤

∑
sh−1,ah−1

∣∣∣∣∣∣dπlat,h(sh−1, ah−1)−
∑

xh−1:ϕ(xh−1)=sh−1

dπ◦ϕobs,h(xh−1, ah−1)

∣∣∣∣∣∣
∑
sh

Plat,h(sh | sh−1, ah−1)

+
∑
sh

∣∣∣∣∣∣
∑

xh−1,ah−1

dπ◦ϕobs,h(xh−1, ah−1)
(
(Plat,h ◦ ϕ)(sh | xh−1, ah−1)− P ⋆obs,h(sh | xh−1, ah−1)

)∣∣∣∣∣∣
≤
∥∥∥dπlat,h−1(·)− d

π◦ϕ
obs,h−1(ϕ

−1(·))
∥∥∥
tv

+
∑

xh−1,ah−1

dπ◦ϕobs,h(xh−1, ah−1)
∑
sh

∣∣∣∣∣(Plat,h ◦ ϕ)(sh | xh−1, ah−1)− P ⋆obs,h(sh | xh−1, ah−1)

∣∣∣∣∣
≤
∥∥∥dπlat,h−1(·)− d

π◦ϕ
obs,h−1(ϕ

−1(·))
∥∥∥
tv
+ Eπ◦ϕ

[∥∥[Plat,h ◦ ϕ](xh−1, ah−1)− ϕ♯P ⋆obs,h(xh−1, ah−1)
∥∥
tv

]
.
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From which it follows that, for each h, we have:∥∥∥dπlat,h(·)− dπ◦ϕobs,h(ϕ
−1(·))

∥∥∥
tv
≤
∑
h′<h

Eπ◦ϕ
[∥∥[Plat ◦ ϕ]h′(xh′ , ah′)− ϕh′+1♯P

⋆
obs,h′(xh′ , ah′)

∥∥
tv

]
≤
∑
h′∈[H]

Eπ◦ϕ
[∥∥[Plat ◦ ϕ]h′(xh′ , ah′)− ϕh′+1♯P

⋆
obs,h′(xh′ , ah′)

∥∥
tv

]
.

I.3 Proofs for Appendix I.1.3: Risk Bound Under CorruptionRobustness (Theorem H.1)
Theorem H.1 (Risk bound for O2L under self-predictive estimation and CorruptionRobustness).
Assume REPself;opt satisfies Assumption A.1 with parameter γ > 0 and thatMlat is realizable (i.e.
M⋆

lat ∈Mlat). Furthermore, let ALGlat be CorruptionRobust (Definition I.2) with parameter α.
Then, O2L (Algorithm 1) with inputs T,K,Φ,ALGlat, and REPself;opt has expected risk

E[Riskobs(TK)] ≤ c1 · Riskbase(K) + c2γ ·
K

T
Estself;opt(T, γ) + c3γ

−1 ·
(
α2 +H

)
(66)

for absolute constants c1, c2, c3 > 0.

Proof of Theorem H.1. Let us write π(t,K+1)

lat = π̂(t)

lat and, for any t, k ∈ [T ] × [K + 1], π(t,k)

obs :=
π(t,k)

lat ◦ ϕ(t). Let p(t,k)

obs denote the distributions of played policies π(t,k)

obs induced by the interaction
of ALGlat and REPself;opt inside the O2L algorithm. Let us write the online sum of self-prediction
errors as

ε2rep :=

T∑
t=1

K+1∑
k=1

H∑
h=0

E
π
(t,k)
obs ∼p(t,k) E

π
(t,k)
obs
[
D2

H

(
[M (t)

lat ◦ ϕ(t)]h(xh, ah), ϕ
(t)

h+1♯M
⋆
obs,h(xh, ah)

)]
(83)

Since the final output policy of O2L satisfies π̂lat = Unif(π̂(1)

lat, . . . , π̂
(T )

lat) (Line 12), we have

E[Riskobs(TK)] =
1

T

T∑
t=1

E
[
JM

⋆
obs(π⋆obs)− JM

⋆
obs(π̂(t)

obs)
]
.

We take the following decomposition on the risk

JM
⋆
obs(π⋆obs)− JM

⋆
obs(π̂(t)

obs) = JM
⋆
lat(πM⋆

lat
)− JM

(t)
lat (π

M
(t)
lat
) + JM

(t)
lat (π

M
(t)
lat
)− JM

(t)
lat (π̂(t)

lat)︸ ︷︷ ︸
At

+ JM
(t)
lat (π̂(t)

lat)− J
M⋆

obs(π̂(t)

obs)︸ ︷︷ ︸
Bt

. (84)

We will show that E
[∑T

t=1 At

]
≲ TRegbase(K) + α

√
T E[εrep] and that E

[∑T
t=1 Bt

]
≲

√
TH E[εrep], then return to the first term JM

⋆
lat(πM⋆

lat
)− JM

(t)
lat (π

M
(t)
lat
) at the end of the proof.

To bound E
[∑T

t=1At

]
, we note that

T∑
t=1

E[At] ≤ c1TRiskbase(K)+

α

T∑
t=1

E


√√√√ K∑
k=1

H∑
h=1

E
π
(t,k)
lat ∼p(t,k)lat

Ẽ
π
(t,k)
lat

ϕ(t)

[
D2

H

(
M (t)

lat,h(sh, ah), M̃
⋆
ϕ(t),h

(s1:h, a1:h)
)]

≤ c1TRiskbase(K) + α

T∑
t=1

E


√√√√ K∑
k=1

H∑
h=1

E
π
(t,k)
lat ∼p(t,k)lat

Eπ
(t,k)
lat ◦ϕ(t)[

[∆h(M
(t)

lat, ϕ
(t))](xh, ah)

]
≤ c1TRiskbase(K) + α

√
T E


√√√√ T∑

t=1

K∑
k=1

H∑
h=1

E
π
(t,k)
obs ∼p(t,k)obs

Eπ
(t,k)
obs
[
[∆h(M

(t)

lat, ϕ
(t))](xh, ah)

]
≤ c1TRiskbase(K) + α

√
T E[εrep].
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where the first line follows from the CorruptionRobust definition (Definition I.2), the second line
follows from Lemma I.2, the third line follows by Cauchy-Schwartz, and the last line recalls the
definition of εrep from Eq. (83).

For the term
∑T
t=1Bt, for any πlat : S × [H]→ ∆(A) we let Qπlat

lat(t),h
= T M

(t)
lat

h Qπlat

lat(t),h+1
be the

Qπlat function of the latent MDP M (t)

lat. Note that

T∑
t=1

{
JM

(t)
lat (π̂(t)

lat)− Eπ̂
(t)
lat ◦ϕ

(t)
[
[Qπ̂

(t)

lat(t)
◦ ϕ(t)]1(x1, a1)

]}
(85)

=

T∑
t=1

EM
(t)
lat ,π̂

(t)
lat

[
Qπ̂

(t)

lat(t),1
(s1, a1)

]
− Eπ̂

(t)
lat ◦ϕ

(t)
[
[Qπ̂

(t)

lat(t)
◦ ϕ(t)]1(x1, a1)

]
≤

T∑
t=1

Eπ̂
(t)
lat ◦ϕ

(t)[∥∥[P (t)

lat ◦ ϕ(t)]0(∅)− ϕ(t)

1 ♯P
⋆
obs,0(∅)

∥∥
tv

]
(by Lemma I.3)

≤
T∑
t=1

H∑
h=0

Eπ̂
(t)
lat ◦ϕ

(t)[∥∥[P (t)

lat ◦ ϕ(t)]h(xh, ah)− ϕ(t)

h+1♯P
⋆
obs,h(xh, ah)

∥∥
tv

]
≤
√
THεrep, (by Cauchy-Schwartz)

so it is enough to bound

T∑
t=1

{
Eπ̂

(t)
lat ◦ϕ

(t)

[
[Q

π̂
(t)
lat

lat(t)
◦ ϕ(t)]1(x1, a1)

]
− JM

⋆
obs(π̂(t)

obs)

}
.

Fix t and h, whose indexing we omit below for cleanliness. Note that, for any πlat : S×[H]→ ∆(A),
we have:

Eπlat◦ϕ
[(

[Qπlat
lat ◦ ϕ]h(xh, ah)− T

M⋆
obs,πlat◦ϕ

h [Qπlat
lat ◦ ϕ]h+1(xh, ah)

)2]
(86)

≤ 2Eπlat◦ϕ
[(
[rlat ◦ ϕ]h − r

⋆
obs,h

)2
(xh, ah)

]
(87)

+ 2Eπlat◦ϕ
[(

EPlat,h(ϕ(xh),ah)

[
Qπlat

lat,h+1(·, πlat)
]
− EP⋆obs,h(xh,ah)

[
[Qπlat

lat ◦ ϕ]h+1(·, πlat)
])2]

(88)

≤ 2Eπlat◦ϕ
[(
[rlat ◦ ϕ]h − r

⋆
obs,h

)2
(xh, ah) +

∥∥Plat,h(ϕ(xh), ah)− ϕh+1♯P
⋆
obs,h(xh, ah)

∥∥2
tv

]
(89)

≤ 4Eπlat◦ϕ[D2
H

(
Mlat,h(ϕh(xh), ah), ϕh+1♯M

⋆
obs,h(xh, ah)

)]
, (90)

where the final line follows from two applications of the data-processing inequality (since
Mlat,h(rh, sh+1 | ϕh(xh), ah) = Rlat,h(rh | ϕh(xh), ah)Plat,h(sh+1 | ϕh(xh), ah) and
ϕh+1♯M

⋆
obs,h(rh, sh+1 | xh, ah) = R⋆obs,h(rh | xh, ah)ϕh+1♯P

⋆
obs,h(sh+1 | xh, ah)) as well as

the bound ∥p− q∥2tv ≤ D2
H(p, q). Summing this over t, h and using a standard decomposition for
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regret (Lemma C.6) gives:
T∑
t=1

{
Eπ̂

(t)
lat ◦ϕ

(t)

[
[Q

π̂
(t)
lat

lat(t)
◦ ϕ(t)]1(x1, a1)

]
− JM

⋆
obs(π̂(t)

obs)

}

=

T∑
t=1

H∑
h=1

Eπ̂
(t)
lat ◦ϕ

(t)

[
[Q

π̂
(t)
lat

lat(t)
◦ ϕ(t)]h(xh, ah)− T

M⋆
obs,π̂

(t)
lat ◦ϕ

(t)

h [Q
π̂
(t)
lat

lat(t)
◦ ϕ(t)]h+1(xh, ah)

]
(Lemma C.6)

≤
√
TH

√√√√ T∑
t=1

H∑
h=1

Eπ̂
(t)
lat ◦ϕ(t)

[(
[Q

π̂
(t)
lat

lat(t)
◦ ϕ(t)]h(xh, ah)− T

M⋆
obs,π̂

(t)
lat ◦ϕ(t)

h [Q
π̂
(t)
lat

lat(t)
◦ ϕ(t)]h+1(xh, ah)

)2
]

≤
√
4TH

√√√√ T∑
t=1

H∑
h=1

Eπ̂
(t)
lat ◦ϕ(t)

[
D2

H

([
M (t)

lat,h ◦ ϕ
(t)

h

]
(xh, ah), ϕ

(t)

h+1♯M
⋆
obs,h(xh, ah)

)]
(By Eq. (90))

≤
√
4THεrep.

Returning to the decomposition of Eq. (84) and combining everything gives:

E[Riskobs] ≤
1

T

{
T∑
t=1

E
[
JM

⋆
lat(πM⋆

lat
)− JM

(t)
lat (π

M
(t)
lat
)
]}

+
1

T

(
α
√
T + 4

√
TH

)
E[εrep]

+ c1 · Riskbase(K)

≤ 1

T

{
T∑
t=1

E
[
J(π⋆)− JM

(t)
lat (π

M
(t)
lat
) + γε2rep

]}
+
γ−1

T

(
α
√
T + 4

√
TH

)2
+ c1 · Riskbase(K)

≤ γ 2K
T

Estself;opt(T, γ) + 2γ−1
(
α2 + 16H

)
+ c1 · Riskbase(K),

where the second inequality follows by AM-GM applied to the middle term and the third
inequality follows from: i) Jensen’s inequality, ii) Assumption A.1 applied to the distributions
p̄(t)

obs =
1
K

∑K
k=1 p

(t,k)

obs , iii) the boundK+1 ≤ 2K, and iv) the inequality (x+y)2 ≤ 2(x2+y2).

I.4 Proofs for Appendix I.1.4: Examples of CorruptionRobust Algorithms
Theorem I.1 (Latent GOLF is CorruptionRobust). Under Assumption I.1 and Assumption I.2,
Algorithm 5 with β = c

(
log
(
|F||G|KHδ−1

)
+ εrep

)
, has regret

K∑
k=1

JMlat(πMlat)− JMlat(π(k)) ≤ O
(
H
√
CcovK log(K) log(|F||G|HK/δ)

)
+O

(
H3/2

√
KCcov log(K)ε2rep

)
,

and consequently is CorruptionRobust (Definition I.2) with parameters

α =
H3/2

√
K

√
Ccov log(K) and Riskbase(K) = O

(
H√
K

√
Ccov log(K) log(|F||G|HK)

)
.

Proof of Theorem I.1. Recall that the agent is observing data from the ϕ-compressed POMDP
M̃⋆
ϕ , and thus the datasets are of the form D(k)

h = D(k)

ϕ,h = {ϕ(x(i)

h ), a(i)

h , r
(i)

h , ϕ(x
(i)

h+1)}
k−1
i=1 . For any

πlat ∈ Πlat, we define

T̃ πlat

ϕ,h f(sh, ah) = r̃πlat

ϕ,h (sh, ah) + Es′∼P̃πlatϕ,h (sh,ah)
[f(s′)],

where r̃πlat

ϕ,h and P̃πlat

ϕ,h are the policy-dependent Markov operators defined in Eq. (67) and Eq. (69).

As a consequence, we observe the following misspecification guarantee for Tlat.
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Lemma I.4 (Misspecification guarantee for Tlat).

∀f : S ×A → [0, 1] :

K∑
k=1

H∑
h=1

Ẽ
π(k)

ϕ

[(
Tlat,hf(sh, ah)− T̃ π

(k)

ϕ,h f(sh, ah)
)2]
≤ O(ε2rep).

Proof of Lemma I.4. Follows from Assumption I.2 and the definitions of T̃ π(k)

ϕ,h and Tlat,h.

We begin with the following lemmas, which will be proved in the sequel.

Lemma I.5 (Optimism). For the choice of β in Theorem I.1, with probability at least 1− δ, we have
that for all k ∈ [K]:

Q⋆lat ∈ F (k).

Lemma I.6 (Small in-sample squared Bellman errors). With probability at least 1− δ, we have that
for all k ∈ [K], h ∈ [H], and f ∈ F (k):

k−1∑
i=1

Ẽ
π(i)

ϕ

[(
f(sh, ah)− T̃ π

(i)

ϕ,h f(sh, ah)
)2]
≤ O(β).

Let us write π(k)

obs := π(k) ◦ ϕ. Let us introduce the shorthand d̃(k)

obs,h :=
∑k−1
i=1 d

π
(k)
obs

obs,h, where dπobs is
the occupancy for M⋆

obs, and also the burn-in time

κh(x, a) := min

{
k :

k−1∑
i=1

dπ
(k)

obs,h(x, a) ≥ Ccovµ
⋆
h(x, a)

}
.

Let us recall, from the analysis of [XFBJK23], that for any h ∈ [H] and f : S ×A → [0, 1] we have

K∑
k=1

Eπ
(k)

[f(sh, ah)I{k < κh(sh, ah)}] ≤ 2Ccov, (91)

as well as

H∑
h=1

K∑
k=1

∑
s,a

(d
π
(k)
obs

h (x, a)I{k ≥ κh(x, a)})2

d̃(k)

h (x, a)
≤ O(HCcov log(K)). (92)
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∑
k

JMlat(πMlat)− JMlat(π(k)) ≤
K∑
k=1

H∑
h=1

EMlat,π
(k)

[f (k)(sh, ah)− Tlatf (k)(sh, ah)]

(Optimism (Lemma I.5))

≤
K∑
k=1

H∑
h=1

Ẽ
π(k)

ϕ [f (k)(sh, ah)− Tlatf (k)(sh, ah)] +H3/2
√
Kε2rep

(Simulation Lemma Lemma I.3)

=

K∑
k=1

H∑
h=1

Eπ
(k)◦ϕ[[(f (k) − Tlatf (k)) ◦ ϕ](xh, ah)] +H3/2

√
Kε2rep

(Change of measure Lemma I.1)

≤
K∑
k=1

H∑
h=1

Eπ
(k)◦ϕ[[(f (k) − Tlatf (k)) ◦ ϕ](xh, ah)I{k ≥ κh(xh, ah)}]

+ 2HCcov +H3/2
√
Kε2rep (Burn-in time Eq. (91))

≤
K∑
k=1

H∑
h=1

Eπ
(k)◦ϕ

[[
(f (k) − T̃ π

(k)

ϕ,h f (k)) ◦ ϕ
]
(xh, ah)I{k ≥ κh(xh, ah)}

]
︸ ︷︷ ︸

(I)

+

K∑
k=1

H∑
h=1

Eπ
(k)◦ϕ

[[
(T̃ π

(k)

ϕ,h f (k) − Tlat,hf (k)) ◦ ϕ
]
(xh, ah)

]
︸ ︷︷ ︸

(II)

+ 2HCcov +H3/2
√
Kε2rep

Note that, by change of measure (Lemma I.1) and the misspecification guarantee (Lemma I.4), the
second term is bounded by:

(II) =

K∑
k=1

H∑
h=1

Ẽ
π(k)

ϕ

[
(T̃ π

(k)

ϕ,h f (k) − Tlat,hf (k))(sh, ah)
]
≤
√
KHε2rep.

Turning to the first term, we have:
H∑
h=1

K∑
k=1

Eπ
(k)
obs

[[
(f (k) − T̃ π

(k)

ϕ,h f (k)) ◦ ϕ
]
(xh, ah)I{k ≥ κh(xh, ah)}

]
(93)

≤

√√√√ H∑
h=1

K∑
k=1

∑
x,a

(d
π
(k)
obs

h (x, a)I{k ≥ κh(x, a)})2

d̃(k)

h (x, a)

√√√√ H∑
h=1

K∑
k=1

E
d̃
(k)
obs

[(
(f (k) − T̃ π(k)

ϕ,h f (k)) ◦ ϕ
)2

(xh, ah)

]
(94)

≤
√
HCcov log(K)

√√√√ H∑
h=1

K∑
k=1

E
d̃
(k)
obs

[(
(f (k) − T̃ π(k)

ϕ,h f (k)) ◦ ϕ
)2

(xh, ah)

]
(coverability potential Eq. (92))

=
√
HCcov log(K)

√√√√ H∑
h=1

K∑
k=1

k−1∑
i=1

Ẽ
π(i)

ϕ

[(
f (k)(sh, ah)− T̃ π

(k)

ϕ,h f (k)(sh, ah)
)2]

(change of measure, Lemma I.1)

≤ O
(
H
√
CcovK log(K)β

)
, (95)
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where we have used that, from Lemma I.6, we have:
H∑
h=1

K∑
k=1

k−1∑
i=1

Ẽ
π(i)

ϕ

[(
f (k)(sh, ah)− T̃ π

(i)

ϕ f (k)(sh, ah)
)2]
≤ O(βHK).

This gives an upper bound on the regret of
K∑
k=1

JMlat(πMlat)− JMlat(π(k)) ≤ O
(
H
√
CcovK log(K)β +H3/2

√
Kε2rep

)
.

Using that β = O
(
log
(

|F||G|HK
δ

)
+ εrep

)
and simplifying gives

K∑
k=1

JMlat(πMlat)−JMlat(π(k)) ≤ O
(
H
√
CcovK log(K) log(|F||G|HK/δ)

)
+O

(
H3/2

√
KCcov log(K)ε2rep

)
,

as desired. It only remains to establish the concentrations results.

Concentration analysis. We establish the concentration results of Lemma I.5 and Lemma I.6.

Proof of Lemma I.6. Let

Xk(h, f) =
(
fh(s

(k)

h , a(k)

h )− r(k)

h − fh+1(s
(k)

h+1)
)2 − (T̃ π(k)

ϕ fh(s
(k)

h , a(k)

h )− r(k)

h − fh+1(s
(k)

h+1)
)2
.

Let Fk,h = {s(i)1 , a
(i)

1 , r
(i)

1 , . . . , s
(i)

H , a
(i)

H , r
(i)

H }ki=1. Note that

E
[
r(k)

h + fh+1(s
(k)

h+1) | Fk,h
]
= E

[
r(k)

h + fh+1(s
(k)

h+1) | π
(k)
]

= E
[
E
[
r(k)

h + fh+1(s
(k)

h+1) | s
(k)

h , a(k)

h , π(k)
]
| π(k)

]
= E

[
T̃ π

(k)

ϕ f(s(k)h , a(k)

h ) | π(k)

]
= Ẽ

π(k)

ϕ

[
T̃ π

(k)

ϕ f(sh, ah)
]
,

and thus that

E[Xk(h, f) | Fk,h] = Ẽ
π(k)

ϕ

[(
fh(sh, ah)− T̃ π

(k)

ϕ fh(sh, ah)
)2]

.

Next, note that

Var[Xk(h, f) | Fk,h] ≤ E
[
(Xk(h, f))

2 | Fk,h
]

≤ 16E
[(
fh(s

(k)

h , a(k)

h )− T̃ π
(k)

ϕ fh(s
(k)

h , a(k)

h )
)2
| Fk,h

]
= 16E[Xk(h, f) | Fk,h].

By Freedman’s inequality (Lemma C.2, Lemma C.3), we have that with probability at least 1− δ:∣∣∣∣∣∑
t<k

Xt(h, f)−
∑
t<k

E[Xt(h, f) | Ft,h]

∣∣∣∣∣ ≤ O
√log(1/δ)

∑
t<k

E[Xt(h, f) | Ft,h] + log(1/δ)


Taking a union bound over [K]× [H]×F , we have that for all k, h, f , with probability at least 1− δ:∣∣∣∣∣∑

t<k

Xt(h, f)−
∑
t<k

Ẽ
π(k)

ϕ

[(
fh(sh, ah)− T̃ π

(k)

ϕ fh(sh, ah)
)2]∣∣∣∣∣ (96)

≤ O

(√
ι
∑
t<k

Ẽ
π(k)

ϕ

[(
fh(sh, ah)− T̃ π

(k)

ϕ fh(sh, ah)
)2]

+ ι

)
, (97)

where ι = log(|F|HK/δ). We now show that∑
t<k

Xt(h, f
(k)) ≤ β +O(εrep + ι) = O(β), (98)
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which will imply, from Eq. (96), that∑
t<k

Ẽ
π(k)

ϕ

[(
fh(sh, ah)− T̃ π

(k)

ϕ fh(sh, ah)
)2]
≤ O(ι+ β) = O(β),

as desired. To see Eq. (98), let

∆k =
∑
t<k

(
Tlatf (k)

h (s(t)h , a
(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2−(T̃ π(t)

ϕ f (k)

h (s(t)h , a
(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2

and then note that:∑
t<k

Xt(h, f
(k)) =

∑
t<k

(
f (k)

h (s(t)h , a
(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2 − (T̃ π(t)

ϕ f (k)

h (s(t)h , a
(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2

=
∑
t<k

(
f (k)

h (s(t)h , a
(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2

−
∑
t<k

(
Tlatf (k)

h (s(t)h , a
(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2

+∆k

≤
∑
t<k

(
f (k)

h (s(t)h , a
(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2

− inf
gh∈Gh

∑
t<k

(
g(s(t)h , a

(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2

+∆k

≤ β +∆k.

where the second-to-last line follows from TlatF ⊆ G and the last line follows from the definition of
the confidence set. It remains to show that ∆k ≤ O(εrep+ ι), which we do via a similar concentration
argument. Namely, let

Yt(h, f) =
(
Tlatfh(s(t)h , a

(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2−(T̃ π(t)

ϕ fh(s
(t)

h , a
(t)

h )− r(t)

h − f
(k)

h+1(s
(t)

h+1)
)2
,

and note that, as before,

E[Yt(h, f) | Ft,h] = Ẽ
π(t)

ϕ

[(
Tlatfh(sh, ah)− T̃ π

(t)

ϕ fh(sh, ah)
)2]

,

and
Var[Yt(h, f) | Ft,h] ≤ 16E[Yt(h, f) | Ft,h],

by the same calculation as earlier. Thus, by Freedman’s inequality and a union bound, we have that,
with probability at least 1− δ,∣∣∣∣∣∑

t<k

Yt(h, f)−
∑
t<k

Ẽ
π(k)

ϕ

[(
Tlatfh(sh, ah)− T̃ π

(k)

ϕ fh(sh, ah)
)2]∣∣∣∣∣ (99)

≤ O

(√
ι
∑
t<k

Ẽ
π(k)

ϕ

[(
Tlatfh(sh, ah)− T̃ π

(k)

ϕ fh(sh, ah)
)2]

+ ι

)
, (100)

where ι = log(|F|HK/δ). Recalling the misspecification assumption Lemma I.4, this implies that∑
t<k

Yt(h, f) ≤ O(εrep + ι),

for all h, f, k, with high probability. Applying this to f = f (k) concludes the result.

Proof of Lemma I.5. We use similar arguments to the preceding lemma. Let Q⋆lat,h := Q⋆Mlat,h
. The

aim is to show that, for all h ∈ [H], k ∈ [K], g ∈ G, we have:∑
t<k

(
g(s(t)h , a

(t)

h )− r(t)

h −Q
⋆
lat,h+1(s

(t)

h+1)
)2 − (Q⋆lat,h(s(t)h , a(t)

h )− r(t)

h −Q
⋆
lat,h(s

(t)

h+1)
)2 ≥ −β,
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from which the conclusion will follow. We show that∑
t<k

(
g(s(t)h , a

(t)

h )− r(t)

h −Q
⋆
lat,h+1(s

(t)

h+1)
)2 − (T̃ π(t)

ϕ Q⋆lat,h(s
(t)

h , a
(t)

h )− r(t)

h −Q
⋆
lat,h(s

(t)

h+1)
)2

︸ ︷︷ ︸
:=Wt(h,g)

≥ −β/2,

(101)
and also that∑
t<k

(
T̃ π

(t)

ϕ Q⋆lat,h(s
(t)

h , a
(t)

h )− r(t)

h −Q
⋆
lat,h(s

(t)

h+1)
)2
−
(
Q⋆lat,h(s

(t)

h , a
(t)

h )− r(t)

h −Q
⋆
lat,h(s

(t)

h+1)
)2︸ ︷︷ ︸

:=Vt(h)

≥ −β/2.

(102)

For Eq. (101), note that

E[Wt(h, g) | Ft,h] = Ẽ
π(t)

ϕ

[(
gh(sh, ah)− T̃ π

(t)

ϕ,h Q⋆lat,h(sh, ah)
)2]

, (103)

and that Var[Wt(h, g) | Ft,h] ≤ 16E[Wt(h, g) | Ft,h]. By Freedman, this gives∣∣∣∣∣∑
t<k

Wt(h, g)−
∑
t<k

E[Wt(h, g) | Ft,h]

∣∣∣∣∣ ≤ O
√ι∑

t<k

E[Wt(h, g) | Ft,h] + ι


≤ 1

2
E[Wt(h, g) | Ft,h] +O(ι),

or in other words ∑
t<k

Wt(h, g) ≥
1

2

∑
t<k

E[Wt(h, g) | Ft,h]−O(ι) ≥ −O(ι),

using the non-negativity of Eq. (103). For Eq. (102), note that

E[Vt(h) | Ft,h] = −Ẽ
π(t)

ϕ

[(
Tlat,hQ⋆lat,h − T̃ π

(t)

ϕ,h Q⋆lat,h

)2]
≥ −εrep, (104)

and that Var[Vt(h) | Ft,h] ≤ 16Ẽ
π(t)

ϕ

[(
Tlat,hQ⋆lat,h − T̃ π

(t)

ϕ,h Q⋆lat,h

)2]
. By Freedman, this gives∣∣∣∣∣∑

t<k

Vt(h)−
∑
t<k

E[Vt(h) | Ft,h]

∣∣∣∣∣ (105)

≤ O

(√
ι
∑
t<k

Ẽ
π(t)

ϕ

[(
TlatQ⋆lat,h+1(sh, ah)− T̃ π

(t)

ϕ,h Q⋆lat,h+1(sh, ah)
)2]

+ ι

)
(106)

= O(εrep + ι), (107)

or in other words∑
t<k

Vt(h) ≥
∑
t<k

E[Vt(h) | Ft,h]−O(εrep + ι) ≥ −O(εrep + ι),

where we have used Eq. (104).
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• The answer NA means that the paper does not include experiments.
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• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of Etichs.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

10. Broader Impacts

82

https://neurips.cc/public/EthicsGuidelines
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12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [NA]

Justification: The paper does not use existing assets.

83



Guidelines:

• The answer NA means that the paper does not use existing assets.
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labor should be paid at least the minimum wage in the country of the data collector.
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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