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Abstract

In this paper, we propose Normality-Calibrated Autoencoder (NCAE), which can
boost anomaly detection performance on the contaminated datasets without any
prior information or explicit abnormal samples in the training phase. The NCAE
adversarially generates high confident normal samples from a latent space having
low entropy and leverages them to predict abnormal samples in a training dataset.
NCAE is trained to minimise reconstruction errors in uncontaminated samples and
maximise reconstruction errors in contaminated samples. The experimental results
demonstrate that our method outperforms shallow, hybrid, and deep methods for
unsupervised anomaly detection and achieves comparable performance compared
with semi-supervised methods using labelled anomaly samples in the training phase.
The source code is publicly available on https://github.com/andreYoo/
NCAE_UAD.git.

1 Introduction

Most of anomaly detection (AD) methods [Erfani et al., 2016, Zhai et al., 2016, Chen et al., 2017,
Ruff et al., 2018, Deecke et al., 2018, Ruff et al., 2019b, Golan and El-Yaniv, 2018, Pang et al.,
2019, Hendrycks et al., 2019a,b, Zong et al., 2018] assume that the training dataset only consists of
normal samples; however, datasets in real-world are easily contaminated, which means that datasets
contains both normal and abnormal samples. The contaminated samples significantly degrade the
AD performance of models derived based on the assumption.

Various methods have been proposed [Ruff et al., 2019a, Song et al., 2017, Akcay et al., 2018,
Chalapathy and Chawla, 2019, Zong et al., 2018] to improve the robustness of AD methods on
contaminated datasets. Particularly, filtering contaminated samples based on contamination ratio
[Zong et al., 2018, Ruff et al., 2019a], semi-supervised learning approaches that uses explicit abnormal
samples in the training step [Wang et al., 2005, Liu and Zheng, 2006, Görnitz et al., 2013, Ruff et al.,
2019a], and contamination sample prediction approaches based on geometric distance measurement
[Berg et al., 2019, Li et al., 2021, Lai et al., 2020], have been proposed. However, the aforementioned
approaches are domain or data-type specific. Additionally, those methods assume that abnormal
samples are likely to be located far from the distribution of normal samples, and the entropy of
abnormal samples is higher than that of normal samples [Berg et al., 2019, Li et al., 2021, Lai
et al., 2020]. Unfortunately, as shown in Figure 1, if a training dataset is highly contaminated, the
contaminated samples can also form a low entropy space by themselves.

In this paper, we present Normality-Calibrated Autoencoder (NCAE), which is robust to the training
dataset contamination. Our key idea on the NCAE is to adversarially generate high confident normal
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Figure 1: Entropy and distribution of latent features under different contamination ratios: (a) No
contamination, (b) 1%, (c) 5%, (d) 10%, and (e) 20%. The samples on the ‘5’ class on the MNIST
dataset are used as normal (blue dots) and contaminated samples (red x-marks) are randomly picked
from the training samples of the remaining classes. The 500 samples are randomly picked for
the visualisation. When a dataset is highly contaminated (i.e., contamination ratio over 10%),
contaminated samples are also located in a low entropy region.

samples from a low entropy feature space and then to contrastively compare the generated samples
with the input samples for estimating contamination score. After identifying the contaminated
samples, NCAE is trained to maximise reconstruction error of the found sample.

2 Normality-Calibrated Autoencoder

2.1 Learning normality-calibrated autoencoder

For n number of input samples with D dimensions X = {xi}i=1:n, x ∈ RD and the corresponding
latent features with d dimensions Z = {zi}i=1:n, z ∈ Rd, let an autoencoder is composed of an
encoder f(x) : x −→ z and a decoder g(x) : z −→ x̄. The general objective of the autoencoder is
training f and g to minimise an error between input samples x and the reconstruction results x̄, as
follows:

min
f,g

Ex∼pX ||x− x̄||2, x̄ = g · f(x), (1)

where pX denotes the entire input samples. However, an autoencoder is known to have an over-
confidence issue, i.e., low reconstruction error of unseen samples. AD methods using the autoencoder
usually identify abnormal samples using the reconstruction error. Therefore, even if the autoencoder
takes anomaly samples as inputs, it may not distinguish whether the samples are abnormal or not
[Pidhorskyi et al., 2018, Yu et al., 2021]. This over-confidence issue would be more deepened when a
training dataset is contaminated.

One straightforward approach to prevent this issue is adding an extra term to maximise reconstruction
error for contaminated samples. We define normality-calibrated reconstruction (NCR) loss as follows:

min
f,g

Ex∼pXN ||x− x̄||2 − Exc∼pXC ||xc − x̄c||2, (2)

where pXN and pX C denote the normal samples and contaminated samples, respectively, among input
samples pX . Now, we should find out which samples are contaminated to optimise autoencoder using
(2) properly.

2.2 high-confidence normal samples generation using Generative Adversarial Network

We find contaminated samples by using high confident normal samples generated from low entropy
latent space. We apply the generative adversarial network (GAN) Goodfellow et al. [2014] framework
to do this. The high-confidence normal sample generation via the GAN framework is carried out as
follows. Initially, we transform a distribution of all latent features, which are encoded from input
samples through the encoder f , to a more knowledgeable probabilistic distribution such as Gaussian
distribution. And then, we generate samples using noise signals sampled from the centre of the
knowledgeable distribution, i.e., the low entropy space. An adversarial loss for transforming a latent
feature distribution to a more knowledgeable probabilistic distribution is defined by follow:

min
f

max
Dl

Eω∼N(µZ ,Id)[logDl(ω)] + Ex∼PX [log (1−Dl(f(x)))], (3)
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where Dl denotes the discriminator for latent features, and N(µZ , Id) defines a Gaussian distribution
with the mean of latent features µZ ∈ Rd and a covariance matrix defined by an identity matrix
Id ∈ Rd×d. µZ is initialised by the mean value of latent features: µZ = 1

n

∑n
i=1 zi. We would want

each component of z to be maximally informative such as each of them to be an independent random
variable. Therefore, the covariance matrix is determined by the d× d identity matrix.

Since as f and Dl are being updated, µZ would be shifted during the training step. µZ is updated at
every training step as follows:

µt+1
Z = µt

Z − γ
1

m

m∑
i=1

(µt
Z − zi), µ0

Z =
1

n

n∑
i=1

z0i (4)

where µt+1
Z and µt

Z denote the µZ on t+ 1-th and t-th training step, respectively. m is the batch size
and zi is i-th latent features on the batch. γ is a learning rate.

To generate high confident normal samples, we formulate the following adversarial loss:
min
g

max
Ds

Ex∼PX [logDs(x)] + Eώ∼N(µZ,σId
)[log(1−Ds(g(ώ))], (5)

where Ds denotes the discriminator for samples, and N(µZ , σId) is a d-dimensional Gaussian
distribution with the mean µZ ∈ Rd and the covariance matrix σId ∈ Rd×d. µZ is equivalent to
the µZ in (3). σId is defined by multiplication of a scalar value σ ∈ [0, 1] and the identity matrix
Id. σ is a hyperparameter to control the compactness of random noise for generating samples using
the decoder g. The smaller σ can give more chances to generate high confident normal samples by
generating a feature close to the centre of the probability distribution.

2.3 Contaminated sample mining and joint learning

To predict contaminated samples, we use the generated high confident normal samples as a dictionary.
With the generation process for high confident normal samples: g(ώ) = x́, we construct a latent
feature dictionary M = [źi]i=1:m, źi = f(x́i) and M ∈ Rm×d, where m is the batch size. By
leveraging M and given each training batch {xi}i=1:m, we define a pseudo contamination score ci
of each input sample xi as follow:

ci =
1

m

m∑
j=1

f(xi) · źTj , źj ∈ M, (6)

where T denotes the transpose of the vector. We apply l2-normalisation to improve robustness on the
variation of the vector scale of the operation.

We predict the contaminated samples by sorting the score in descending order and picking top-
τ% samples among the sorted results as the contaminated samples; thus, the number of predicted
contaminated samples are decided by τm that is a multiplication of τ and the batch size m. The
above process is represented as follow:

X C = {xt}t∈C[1:⌈τm⌉], C = arg sort
i

ci, w.r.t., 1 ≤ i ≤ m

where C is a set of the sorted indices of input batch samples in descending order of the contamination
score ((6)), and X C is a set of predicted contaminated samples. ⌈·⌉ denotes the ceiling function.
τ effects of deciding the number of predicted contaminated samples, so it directly affects the AD
performance of our method.

The objective function for joint learning the entire components on our method is as follows:
min
f,g

max
Dl,Ds

Ex∼pXN ||x− f · g(x)||2 − Ex∼pXC ||x− x̄′||2︸ ︷︷ ︸
(a)

+ Eω∼N(µZ ,Id)[logDl(ω)] + Ex∼PX [log (1−Dl(f(x)))]︸ ︷︷ ︸
(b)

+ Ex∼PX [logDx(ω)] + Eω′∼N(µZ,σId
)[log(1−Ds(g(ω

′))]︸ ︷︷ ︸
(c)

,

(7)

where x̄′ is defined by the nearest sample from the given contaminated samples among the generated
high confident normal samples g(N(µZ,σId)) on the latent feature space. (a), (b), and (c) denote the
NCR loss and the two adversarial losses, respectively.
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Figure 2: Ablation studies about unsupervised AD performance depending on σ and τ . (a) and (b)
represent the trends of AUC with respect to the setting of σ and τ , respectively, on the MNIST and
Fashion-MNIST datasets.

3 Experiments

3.1 Experiment setting and Dataset

We follow the unsupervised AD protocol described by Ruff et al. [Ruff et al., 2019a]. MNIST and
Fashion-MNIST datasets are used for the experiments. We set one of the classes provided by a dataset
as normal and others as abnormal. After we decide contamination ration ρ = A

N+A , where N and A
are the numbers of normal and abnormal samples, respectively, we pick normal samples from the
chosen class and contaminated samples from the remaining classes. In the test phase, the samples of
the normal class are labelled by 0, and other samples are labelled by 1. For the performance analysis,
Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) are used.

We employ LeNet-type convolutional neural networks (CNNs) on MNIST and Fashion-MNIST
datasets, where each convolutional module consists of a convolutional layer followed by leaky ReLU
activation functions with leakiness of 0.1. We use the Adam optimiser with the recommended default
hyperparameters [Kingma and Ba, 2015]. The batch size is set to 128. The initial learning rate is 0.01
and decayed every 10 epochs by multiplying 0.1. σ and τ are decided by 0.1 and 0.1 (based on the
results from the ablation study), respectively.

3.2 Ablation study

We analyse unsupervised AD performance depending on the setting of σ and τ . MNIST and
Fashion-MNIST datasets are used for the ablation study. Ablation studies are conducted based on the
experimental protocol described in the previous section. The contamination ratio ρ is fixed to 0.2.

Parameter analysis on σ: When σ is too small, then the distribution of sample noise for generating
samples would be too compact so that the generated samples can not provide comprehensive informa-
tion to cover the diverse patterns of normal samples. On the other hand, when σ is too large, then
there is a possibility that the noise can be sampled from low entropy space (i.e., abnormal samples
also can be generated).

Figure 2(a) shows the AUC trends depending on the σ. The AUC increases rapidly in the case
of sigma is less than 0.1, and then decreases gradually. This can be interpreted as follows. If the
sampling space is too compact (i.e., when σ is too small), it means that the generated normal sample
does not provide enough information to distinguish the contaminated sample. When sampling space
is too broad (i.e., when σ is too large), it also degrades performance, but the impacts of the braoder
sampling space are relatively less than that of the smaller sampling space (e.g., when σ ≤ 0.1). The
best performance is obtained by σ of 0.1.

Parameter analysis on τ : τ decides the number of predicted contaminated samples per training
batch. The lower τ can provide more precise prediction performance but may not enough to provide
more comprehensive prediction performance. In contrast, when τ is too large, the predicted results
possibly more accurate but also may have a lot of false-positive results.
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Table 1: Performance comparison on unsupervised anomaly detection in terms of various contamina-
tion ratios ρ. MNIST and Fashion-MNIST datasets are used for the comparison. The bolded figures
indicate the best performances.

Dataset ρ OC-SVM IF KDE CAE Deep SVDD SSAD SS-DGM Deep SAD Classification NCAE

MNIST

.00 96.0±2.9 85.4±8.7 95.0±3.3 92.9±5.7 92.8±4.9 97.9±1.8 92.2±5.6 96.7±2.4 94.5±4.6 94.0±4.2

.01 94.3±3.9 85.2±8.8 91.2±4.9 91.3±6.1 92.1±5.1 96.6±2.4 92.0±6.0 95.5±3.3 91.5±5.9 97.2±5.2

.05 91.4±5.2 83.9±9.2 85.5±7.1 87.2±7.1 89.4±5.8 93.4±3.4 91.0±6.9 93.5±4.1 86.7±7.4 97.0±7.1

.10 88.8±6.0 82.3±9.5 82.1±8.5 83.7±8.4 86.5±6.8 90.7±4.4 89.7±7.5 91.2±4.9 83.6±8.2 92.6±5.7

.20 84.1±7.6 78.7±10.5 77.4±10.9 78.6±10.3 81.5±8.4 87.4±5.6 87.4±8.6 86.6±6.6 79.7±9.4 89.8±7.4

F-MNIST

.00 92.8±4.7 91.6±5.5 92.0±4.9 90.2±5.8 89.2±6.2 94.0±4.4 71.4±12.7 90.5±6.5 76.8±13.2 91.5±9.7

.01 91.7±5.0 91.5±5.5 89.4±6.3 87.1±7.3 86.3±6.3 92.2±4.9 71.2±14.3 87.2±7.1 67.3±8.1 94.5 ±4.7

.05 90.7±5.5 90.9±5.9 85.2±9.1 81.6±9.6 80.6±7.1 88.3±6.2 71.9±14.3 81.5±8.5 59.8±4.6 92.4± 8.2

.10 89.5±6.1 90.2±6.3 81.8±11.2 77.4±11.1 76.2±7.3 85.6±7.0 72.5±15.5 78.2±9.1 56.7±4.1 91.5±5.7

.20 86.3±7.7 88.4±7.6 77.4±13.6 72.5±12.6 69.3±6.3 81.9±8.1 70.8±16.0 74.8±9.4 53.9±2.9 88.9±9.2

As shown in Figure 2(b), the AUC increases rapidly with τ from 0 to 0.1 and then decreases slowly.
The results can be interpreted as follows. Finding contaminated samples themselves has a large
impact on the AD performance, but the quantity of found samples affects less to AD performance.
But, predicting too many samples may degrade AD performance by taking a great number of false
positives. The best performance is obtained by τ of 0.1.

3.3 Comparison with other methods

We consider the OC-SVM [Schölkopf et al., 2001] , isolation forest (IF) [Liu et al., 2008], and KDE
[Parzen, 1962] for shallow unsupervised baselines. For deep unsupervised competitors, we consider
general binary classifider (supervised), convolutional autoencoders (CAE), deep support vector data
description (Deep SVDD) [Ruff et al., 2018], semi-supervised anomaly detection (SSAD) [Ruff
et al., 2019a], semi-supervised deep generative model (SS-DGM) [Kingma and Ba, 2015], and deep
semi-supervised anomaly detection (Deep SAD) [Ruff et al., 2019a]. We repeat this training set
generation process 10 times per AD setup over all the nine respective anomaly classes and report the
average results over the resulting 90 experiments per contamination ratio.

Table 1 shows the quantitative performance comparison depending on the contamination ratio ρ. In
the comparison using the MNIST dataset, the proposed NCAE achieves the best performances except
when the dataset is not contaminated (ρ = 0.0). Even compared with semi-supervised approaches
[Ruff et al., 2018, 2019a] which use explicit anomaly samples in the training phase, the NCAE
shows outstanding performances. This trend is also shown in the performance comparison using the
Fashion-MNIST dataset. The NCAE produces the AUC of 91.57 and 88.97 for the Fashion-MNIST
dataset with 0.1 and 0.2 contamination ratios, respectively. Those figures are the best performance
among the listed methods when a dataset is contaminated.

The interpretation of the relatively low performance on the uncontaminated dataset (ρ = 0.0) is as
follows. Basically, our method is derived under the assumption that a training dataset is contaminated.
Therefore, even if the dataset is not contaminated, the NCAE tries to find some anomaly samples and
maximise the reconstruction errors of the samples during the model training. This process degrades
the performance of our methods as shown in the experimental results. This is a critical defect of our
method;

Overall, the comparison results demonstrate the advantage of the proposed NCAE that can detect
anomaly samples on data contamination without prior knowledge or explicit abnormal samples in the
training phase.

4 Conclusion

In this work, we have proposed NCAE that is a generative method for fully unsupervised anomaly
detection on contaminated data. The experimental results have suggested that the NCAE outperforms
existing methods for fully unsupervised anomaly detection with a large margin, and they have also
provided competitive performances compared with semi-supervised methods using explicit abnormal
samples to train their AD model.
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