
Agent-Oriented Centralized Critic for Asynchronous Multi-Agent
Reinforcement Learning

Sunghoon Hong
∗

LG AI Research

Seoul, South Korea

sunghoon.hong@lgresearch.ai

Whiyoung Jung
∗

LG AI Research

Seoul, South Korea

whiyoung.jung@lgresearch.ai

Deunsol Yoon
∗

LG AI Research

Seoul, South Korea

dsyoon@lgresearch.ai

Kanghoon Lee

LG AI Research

Seoul, South Korea

kanghoon.lee@lgresearch.ai

Woohyung Lim

LG AI Research

Seoul, South Korea

w.lim@lgresearch.ai

ABSTRACT
Multi-agent reinforcement learning (MARL) has been actively devel-

oped and successfully applied in various fields. In the conventional

MARL setting, which most previous works consider, all agents si-

multaneously take their actions every time due to the same duration

across actions. However, real-world scenarios often involve agents

executing actions with different duration resulting in asynchronous

action selection across the agents. The macro-action decentralized

partially observable Markov decision process (MacDec-POMDP)

provides a framework for modeling multi-agent decision-making,

where the action selection among the agents occurs asynchronously

across time. While several works have explored MARL methods

for MacDec-POMDP, existing methods for such asynchronicity fo-

cused on how to utilize trajectories for training and simply adopt

conventional MARL architectures. In this paper, we propose a

novel approach named agent-oriented centralized critic (AOCC)

for MacDec-POMDP, which 1) explicitly encode each agent’s ob-

servation history with the timestep information when the agent

start to perform a macro-action, and 2) explicitly aggregating them

for agent-oriented critic learning. Our experimental evaluation on

a macro-action-based multi-agent benchmark demonstrates that

the proposed approach significantly outperforms other baseline

methods for MacDec-POMDP.

KEYWORDS
Agent-Oriented Centralized Critic, MacDec-POMDP, Asynchro-

nous Multi-Agent Reinforcement Learning

1 INTRODUCTION
Multi-agent reinforcement learning (MARL) has witnessed signifi-

cant advancements in recent years, enabling decentralized agents

to collaborate and complete assigned tasks effectively [5, 6, 8, 12,

13, 20]. However, a prevailing limitation of existing MARL methods

lies in their strong assumption of synchronous action selection,

which poses challenges when applying these methods to real-world

MARL scenarios with asynchronous agents.

Real-world scenarios often involve agents executing actions asyn-

chronously, where they start and finish their actions at different

*
Equal contribution

Proc. of the Adaptive and Learning Agents Workshop (ALA 2024), Avalos, Müller, Wang,
Yates (eds.), May 6-7, 2024, Online, https://ala2024.github.io/ . 2024.

times. This asynchronicity is prevalent in various domains, such as

manufacturing, logistics, and traffic management. In such scenarios,

the application of MARL methods that assume synchronous actions

becomes impractical, necessitating the development of approaches

explicitly tailored to handle asynchronicity.

One promising framework for addressing the challenge of asyn-

chronous MARL is the macro-action decentralized partially observ-

able Markov decision process (MacDec-POMDP) [2, 3]. This frame-

work extends the options framework [14] to themulti-agent domain,

providing a flexible and general decision-making framework. In

MacDec-POMDP, the time at which each agent’s action starts and

the duration of the action can be different. While several planning

methods have been proposed for MacDec-POMDP [1, 7, 10, 11],

recent research has also explored learning-based approaches to

tackle the challenges posed by asynchronicity [17–19].

Existing MARL based methods for MacDec-POMDP have pri-

marily focused on constructing a training buffer for asynchronous

setting while adopting conventional MARL architectures originally

designed for synchronous settings, resulting in the introduction

of duplicate macro-observations for the centralized critic. Since

the common centralized critic structure for the conventional syn-

chronous MARL focuses on joint histories along the time axis, a

timestep that one agent can start to perform a macro-action while

other agents cannot, introduces a duplicate macro-observation for

the non-macro-actionable agents in the centralized critic. However,

with these duplicate macro-observations, the centralized critic may

provide inaccurate evaluations.

To address the limitations of these approaches and enable effi-

cient asynchronous learning, it is crucial to consider specialized

architectures that can effectively capture the individual agent histo-

ries and facilitate reasoning across agents. In this paper, we propose

a novel approach named agent-oriented centralized critic to address

asynchronous MARL in MacDec-POMDP. By 1) succintly encod-

ing the observation history of each agent independently with the

timestep information when the agent start to perform a macro-

action and 2) explicitly aggregating them, our approach enables

an agent-oriented centralized critic learning in asynchronous set-

tings. We evaluate the effectiveness of our proposed method on

macro-action-based multi-agent benchmarks. The results of our

experiments demonstrate the superiority of our approach compared

to conventional methods, particularly in environments that require

complex cooperation and generalization.

https://ala2024.github.io/

Figure 1: Example of a trajectory and two training buffers in MacDec-POMDP. In this example, the full trajectory represents
macro-observations (denoted by 𝑧), macro-actions (denoted by𝑚), and corresponding timesteps. Note that a set of macro-actions
is predefined, each with a different duration. Mac-CERTs is a squeezed trajectory per agent while Mac-JERTs is a joint squeezed
trajectory.

2 BACKGROUND
2.1 MacDec-POMDP
The macro-action decentralized partially observable Markov deci-

sion process (MacDec-POMDP) [3] incorporates the option frame-

work [14] into the decentralized partially observable Markov deci-

sion process (Dec-POMDP) by defining a set of macro-actions for

each agent.

Followed by the previous work [19], a MacDec-POMDP is repre-

sented as a tuple ⟨I,S, ˜A, ˜M, Ω̃, ˜𝜁 ,𝑇 , 𝑅, �̃�, 𝑍 ⟩, whereI = {1, . . . , 𝑁 }
is a set of indices of agents, S is the state space,

˜A =
∏

𝑖∈I A𝑖
is

the joint primitive-action space,
˜M =

∏
𝑖∈I M𝑖

is the joint macro-

action space, Ω̃ =
∏

𝑖∈I Ω𝑖
is the joint primitive-observation space,

˜𝜁 =
∏

𝑖∈I 𝜁 𝑖 is the joint macro-observation space, 𝑇 (𝑠′ |𝑠, 𝑎) is the
state transition probability, 𝑅 is the reward function shared over

all agents, �̃� (𝑜 |𝑠′, 𝑎), 𝑜 ∈ Ω̃ is the joint observation probability, and

𝑍 (𝑧 |𝑠′, �̃�), 𝑧 ∈ ˜𝜁 is the joint macro-observation probability. Here,

we denote (·)𝑖 as a space or an element of agent 𝑖 and ˜(·) is a prod-
uct or a joint of (·)𝑖 over all agents, and we use these notations

throughout this paper. Each macro-action, a.k.a. an option, is a tuple

𝑚𝑖 = ⟨𝛽𝑚𝑖 ,I𝑚𝑖 , 𝜋𝑚𝑖 ⟩ ∈ M𝑖
composed of a termination condition

𝛽𝑚𝑖 : H 𝑖
pri

→ [0, 1], a initiation set I𝑚𝑖 ⊂ H 𝑖
mac

, and a low-level

policy 𝜋𝑚𝑖 : H 𝑖
pri

→ A𝑖
, whereH 𝑖

pri
(orH 𝑖

mac
) is the primitive(or

macro)-action-observation history space. The objective in MacDec-

POMDP is then to find a joint high-level policy Ψ̃ =
∏

𝑖∈I Ψ𝑖
that

maximizes the following expected discounted return from an initial

state 𝑠0 for given low-level policies, i.e., macro-actions:

Ψ̃∗ = argmaxΨ̃E

[∞∑︁
𝑡=0

𝛾𝑡𝑅 (𝑠𝑡 , 𝑎𝑡) | 𝑠0, Ψ̃
]

(1)

2.2 Asynchronous MARL
Several works [17, 18] have been proposed for learning a joint

high-level policy Ψ̃ in MacDec-POMDP. In particular, these works

propose special training buffers for asynchronous settings: Macro-

action concurrent experience replay trajectories (Mac-CERTs) and

macro-action joint experience replay trajectories (Mac-JERTs). We

denote a macro-observation and a macro-action of agent 𝑖 as 𝑧𝑖

and𝑚𝑖
. In Mac-CERTs, the transition experience of each agent 𝑖

is represented as a tuple ⟨𝑧𝑖 ,𝑚𝑖 , 𝑧𝑖
′
, 𝑟 𝑖 ⟩, where 𝑟 𝑖 represents the

cumulative reward for the macro-action𝑚𝑖
starting at timestep 𝑡𝑖

and lasting 𝜏𝑖 time steps, defined as 𝑟 𝑖 =
∑𝑡𝑖+𝜏𝑖−1
𝑡=𝑡𝑖

𝛾𝑡−𝑡
𝑖
𝑟𝑡 .

We denote a joint macro-observation and a joint macro-action as

𝑧 and �̃�, respectively. In Mac-JERTs, the transition experience is rep-

resented as a tuple ⟨𝑧, �̃�, 𝑧′, 𝑟 ⟩, where 𝑟 represents the cumulative

reward for the joint macro-action �̃� defined as 𝑟 =
∑𝑡+𝜏−1
𝑡=𝑡

𝛾𝑡−𝑡𝑟𝑡 .
Unlike Mac-CERTs, 𝑡 denotes the timestep when any agent starts its

ownmacro-action and 𝑡+𝜏−1 is the ending timestepwhen any agent

finishes its macro-action. For example, in Figure 1, the agent 2 starts

its own action at timestep 1, resulting in the joint macro-action

Figure 2: Centralized critic using joint history encoders at
𝑡 = 6.

[𝑚1

0
,𝑚2

1
,𝑚3

0
]. The next macro-action starts at timestep 4 from the

agent 1, so the next joint-macro-action becomes [𝑚1

1
,𝑚2

1
,𝑚3

0
] and

𝑟𝑘 is 𝑟1 + 𝑟2 + 𝑟3 if 𝛾 = 1. An example of how Mac-CERTs and Mac-

JERTs are derived from a trajectory is illustrated in Figure 1. Note

that Mac-CERTs contain squeezed trajectories per agent, where

each agent’s trajectory includes macro-observations and macro-

actions collected only when the corresponding agent performs a

new macro-action. In contrast, Mac-JERTs contain joint squeezed

trajectories that include joint macro-observations and joint macro-

actions collected only when any agent performs its macro-action.

Xiao et al. [17] presented two deep Q-networks (DQNs) [9]

based approaches that learn macro-action-value functions in decen-

tralized manner and centralized manner through Mac-CERTs and

Mac-JERTs, respectively. Combining Mac-CERTs and Mac-JERTs,

Xiao et al. [18] proposed DQN based approach for learning central-

ized training with decentralized execution (CTDE). Xiao et al. [19],

closely related to our work, extended the previous macro-action

based DQN methods to an actor-critic method for asynchronous

MARL in CTDE setting, and used Mac-JERTs for centralized critic

learning.

The previous works mainly focused on constructing a training

buffer for asynchronous learning and simply adopted conventional

MARL architectures originally designed for synchronous settings to

learn value functions. Instead, we provide a novel architecture using

agent-oriented encoders specifically for learning value functions in

asynchronous settings.

3 METHOD
3.1 Motivation
As mentioned in the subsection 2.2, the previous work focused

on the training buffer for MacDec-POMDP [19], rather than the

architecture itself. The centralized critic of previous work focused

on joint histories of all agents along the time axis and thus utilizes a

joint history encoder to abstract joint macro-observations, defined

as the concatenation of the most recent macro-observations of

each agent. However, consecutive joint macro-observations may

contain duplicated information from the local macro-observations

at timesteps when one agent can start to perform a macro-action

but other agents cannot, and the introduction of the duplicated

local macro-observations can result in an inaccurate centralized

critic.

To illustrate this, let us consider a trajectory example of MacDec-

POMDP, as shown in Figure 1. In this example, the joint macro-

observation history abstracted by the joint history encoder at

timestep 𝑡 = 6 is written as

˜ℎ = Enc (𝑧0, 𝑧1, 𝑧2, 𝑧3, 𝑧4) (2)

= Enc

©«

𝑧1
0

𝑧2
0

𝑧3
0

 ,

𝑧1
0

𝑧2
1

𝑧3
0

 ,

𝑧1
1

𝑧2
1

𝑧3
0

 ,

𝑧1
1

𝑧2
1

𝑧3
1

 ,

𝑧1
2

𝑧2
2

𝑧3
1

ª®®®¬ ,

where 𝑧𝑘 represents the 𝑘-th joint macro-observation and 𝑧𝑖
𝑘
rep-

resents the 𝑘-th macro-observation of the 𝑖-th agent. This is also

illustrated below in Figure 2. As demonstrated in this example,

the conventional joint history encoder utilizes the same macro-

observations multiple times (e.g., 𝑧2
1
three times), which can hinder

the accurate capture of both the local history of all agents and the

reasoning among agents.

To address this issue, we propose a novel structure for a cen-

tralized critic in MacDec-POMDP, named the agent-oriented cen-

tralized critic (AOCC). The AOCC consists of two components: 1)

Agent-oriented encoder with positional encoding, 2) Aggregation

module for incorporating histories of all agents. Figure 3 illustrates

the proposed structure, which offers advantages in extracting agent

histories and identifying reasoning compared to the conventional

structure. Detailed explanations of each component and their re-

spective roles are provided in the following subsections.

3.2 Agent-Oriented Centralized Critic
The proposed agent-oriented structure has 𝑁 agent-oriented en-

coders, each of which takes the latest local macro-observations

of the corresponding agent as input and abstracts the history of

the local macro-observations as output. It is noteworthy that this

encoder avoids utilizing the same local macro-observations repeat-

edly to abstract its history, a departure from the centralized en-

coder in the previous structure. Consequently, the agent-oriented

encoders focus solely on capturing the history of the corresponding

agent, ensuring accurate capture of the local history. Following the

previous work, we employ gate recurrent unit (GRU) [4] for the

agent-oriented encoders without parameter sharing across agents.

Then the history of the agent 𝑖 is written as

ℎ𝑖 := Enc
𝑖
(
𝑧𝑖
0
, . . . , 𝑧𝑖

𝑘

)
, (3)

where Enc
𝑖
is an agent-oriented encoder of agent 𝑖 and 𝑧𝑖

𝑘
is the

latest local macro-observation.

However, the agent-oriented encoder breaks a temporal align-

ment between agents, as it only encodes the localmacro-observations

of each agent, not their joint observations. The recurrent model cap-

tures the order of the local macro-observation sequence within its

Figure 3: Agent-oriented centralized critic at 𝑡 = 6.

agent, but consideration must also be given to the order of macro-

observations between agents for appropriate critic learning. To

address this critical issue, we inject time information by adopting

the sinusoidal positional encoding [15] aimed at injecting temporal

markers for the macro-observation of each agent.

We encode the timestep of a local macro-observation as a posi-

tional encoding vector 𝑝𝑖 and concatenate it with the local macro-

observation 𝑧𝑖 . Consequently, the history of agent 𝑖 can be rewritten,

extending Equation 3, as follows:

ℎ𝑖 := Enc
𝑖
(
[𝑧𝑖
0
, 𝑝𝑖

0
], . . . , [𝑧𝑖

𝑘
, 𝑝𝑖

𝑘
]
)
, (4)

where 𝑝𝑖
𝑘
is the positional encoding vector of the timestep when

the macro-action 𝑧𝑖
𝑘
is performed. The positional encoding enables

the centralized critic to encompass overall temporal information,

ensuring a coherent understanding of the temporal ordering and

duration of macro-actions across all agents.

The agent-oriented histories abstracted from the agent-oriented

encoders are further processed by the aggregation module to ap-

proximate the value function. There are several options for the

aggregation module, including attention networks or multi-layer

perceptron (MLP) followed by concatenation or summation. How-

ever, for the sake of simplicity, we choose concatenation with MLP

layers. In particular, the input of the aggregation module is the

concatenation of the latest local histories, expressed as follows:

˜ℎ :=

[
ℎ1, . . . , ℎ𝑁

]
(5)

Then, the subsequent MLP layers convert the joint history into its

value 𝑉 (˜ℎ).

(a) Map A (b) Map B (c) Map C

Figure 4: The collection of the 7×7OvercookedEnvironments.

(a) Map A (b) Map B (c) Map C

Figure 5: The collection of the randomized Overcooked Envi-
ronments.

(a) Map A (b) Map B (c) Map C

Figure 6: The collection of the 15 × 15 Overcooked Environ-
ments.

3.3 Training Actor with Agent-Oriented
Centralized Critic

Following the previous work [19], we also utilize actor-critic algo-

rithm for CTDE with the vanilla policy gradient. To be specific, we

train a parameterized value function 𝑉𝑤 (·) as follows:

JV (𝑤) = EΨ𝜃
[(
𝑦 −𝑉𝑤 (˜ℎ)

)
2

]
, (6)

where 𝑦 = 𝑟 + 𝛾𝜏𝑉𝜃 (˜ℎ′) (7)

The corresponding a parameterized policy Ψ𝜃𝑖 for agent 𝑖 is opti-
mized as follows:

∇𝜃𝑖 JΨ (𝜃𝑖) = EΨ𝜃𝑖 [∇𝜃𝑖 logΨ𝜃𝑖 (𝑚
𝑖 | ℎ𝑖)Φ], (8)

where Φ =

(
𝑟 𝑖 + 𝛾𝜏

𝑖

𝑉w (˜ℎ′) −𝑉w (˜ℎ)
)

(9)

(a) 6 × 6 (b) 8 × 8 (c) 10 × 10

Figure 7: The collection of the BoxPushing Environments.

4 EXPERIMENT
4.1 Environments
We evaluate our method on two collections of environments for

MacDec-POMDP; Overcooked and BoxPushing [18, 19].

Overcooked.Overcooked environment is derived from the Gym-

Cooking environment [16]. The objective is for three agents to cook

ingredients (e.g., tomato, onion) and deliver the prepared salad

to the destination quickly. To be specific, all vegetables must be

chopped, and the chopped vegetables must be placed on a single

plate and delivered to the destination (a cell marked as yellow star).

The environment has three maps of 7 × 7 grid (A, B, and C) as

shown in Figure 4. Agents observe a 5 × 5 grid centered around

themselves and select macro-actions, such as go to tomato, chop

and deliver. Once an agent performs a macro-action, the macro-

action terminates if the goal of the macro-action is achieved or the

goal cannot be achieved in the current position of the agent. For

example, in map A, once an agent performs go to tomato, then

the macro-action terminates when the agent touches the tomato.

On the other hand, in map B, which is separated into two, the agent

in the upper-left side of the map cannot be move to tomato, so the

macro-action go to tomato terminates at the timestep that the

agent starts to perform the macro-action. The team receives a small

bonus reward when they chop vegetables, and large reward for

delivering the correct salad. They get penalty when deliver wrong

salad, such as a salad without tomato, and additionally get tiny

penalty for every timestep.

Moreover, we make the original Overcooked environments more

complicated as shown in Figure 5 and Figure 6.

Overcooked-Rand.We randomize initial positions of objects

and agents in each episode to give randomness and uncertainty

in the environment, since agents in the original environment may

solve a given task by simply memorizing the action sequence with-

out considering observation. If the random positions are infeasible,

the environment readjusts the positions.

Overcooked-Large. We increase the original grid size 7 × 7

to 15 × 15 where the duration of macro-action becomes longer,

resulting in more frequent duplication of local macro-observations.

Overcooked-Large-Rand. For more challenging environments,

we apply both randomization and up-scaling.

BoxPushing.We also evaluate our method on another bench-

mark for MacDec-POMDP, named BoxPushing. The objective of

BoxPushing environment is for two agents, blue and green, to push

big box together in the middle of the map to the yellow area. The

environment has three maps with different grid size as shown in

Figure 7. Each agent can observe one of five conditions, i.e., empty,

another agent, boundary, small box and big box, of an unit

cell in front of it, and can do turn-left, turn-right, stay, move-

to-small-box, move-to-big-box and push. Each agent can push

small box alone and receives a small reward when they push it to

the yellow area. On the other hand, the big box only moves when

both agents push it at the same time, and they get a large when they

successfully push it to the yellow area. The team gets penalty when

any agent hits the boundary or pushes the big box alone. In this

respect, this environment necessitate the cooperation between two

agents in that they should avoid attractive sub-optimality (pushing

small boxes individually) and try to get optimality (pushing a big

box together). Different from Xiao et al. [19], we do not allow ad-

ditional access to the ground truth state (agents’ poses and boxes’

positions) in centralized critic learning.

4.2 Evaluation
We compare our proposed method, AOCC, with baseline methods

using the joint history encoder, naive independent actor centralized

critic (NIACC) and independent actor individual centralized critic

(IAICC) [19] where the difference lies in whether to maintain a sin-

gle centralized critic (NIACC) or have independent critics for each

agent (IAICC). Both baselines utilize actor-critic based CTDE with

vanilla policy gradient. Each experiment is run with five random

seeds to report the mean and standard error of returns.

4.3 Performance Comparison
In fixed Overcooked environments (Figure 8), AOCC shows better

stability in that it consistently reaches the optimality in all envi-

ronments, while the baselines shows slower convergence. Yet, the

final returns are similar due to the simplicity of the environment

itself. In Overcooked-Rand, AOCC significantly outperforms the

baselines in both sample efficiency and final return.

In Overcooked-Large (Figure 9) where the length of the macro

action is longer so that duplicated macro-observations occurs more

frequently, the performance gap between AOCC and other base-

lines becomes even larger except for Overcooked-Large-B and

Overcooked-Large-Rand-B where all methods fails due to its diffi-

culty.

As in Figure 10, all the baselines learn a sub-optimal policy at the

initial stage in BoxPushing environments.
*
However, the baselines

fail to reach the optimality except only IAICC in 6 × 6 grid and

cannot escape from the sub-optimality. On the other hand, only

AOCC succeed to reach optimality as learning progress.

These results show that our approach ismore effective forMacDec-

POMDP problems than previous approach, joint history representa-

tion learning. Due to the redundancy in joint history of NIACC and

IAICC, we conjecture, both methods suffer a difficulty in learning

accurate value function, leading to lower performance than AOCC,

which verifies the effectiveness of agent-oriented centralized critic.

*
We use local macro-observations for training agents, while Xiao et al. [19] allow

access to ground truth state.

0 4 8 12 16 20
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-A

NIACC
IAICC
AOCC

0 4 8 12 16 20
Environment steps (1M)

0

100

200
Overcooked-B

0 4 8 12 16 20
Environment steps (1M)

0

100

200
Overcooked-C

0 8 16 24 32 40
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-Rand-A

0 20 40 60 80 100
Environment steps (1M)

0

100

Overcooked-Rand-B

0 8 16 24 32 40
Environment steps (1M)

0

100

200
Overcooked-Rand-C

Figure 8: Training curves on Overcooked environments. The maximum training environment step depends on the difficulty of
each environment.

0 8 16 24 32 40
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-Large-A

NIACC
IAICC
AOCC

0 20 40 60 80 100
Environment steps (1M)

40

20

0
Overcooked-Large-B

0 8 16 24 32 40
Environment steps (1M)

0

100

200
Overcooked-Large-C

0 20 40 60 80 100
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-Large-Rand-A

0 20 40 60 80 100
Environment steps (1M)

40

20

0
Overcooked-Large-Rand-B

0 20 40 60 80 100
Environment steps (1M)

0

100

200
Overcooked-Large-Rand-C

Figure 9: Training curves on Overcooked-Large environments. The maximum training environment step depends on the
difficulty of each environment.

4.4 Ablation Study
To analyze the effect of removing the redundancy in joint history en-

coder, we evaluate ablated version of AOCC, referred to AOCC-dup,

which has the same network architecture but the history consists

of the duplicated macro-observations as in IAICC. To be specific,

each agent encoder in AOCC-dup uses the squeezed trajectory of

the corresponding agent in Mac-JERTs while that in AOCC uses the

squeezed trajectory of the corresponding agent in Mac-CERTs. The

experiment is conducted in the various Overcook-C environment,

where the performance gap with other baselines is the largest.

0.0 0.1 0.2 0.2 0.3 0.4
Environment steps (1M)

0

100

200

300

Re
tu

rn

BoxPushing-6x6
NIACC
IAICC
AOCC

0.0 0.1 0.2 0.2 0.3 0.4
Environment steps (1M)

0

100

200
BoxPushing-8x8

0.0 0.1 0.2 0.2 0.3 0.4
Environment steps (1M)

0

50

100

BoxPushing-10x10

Figure 10: Training curves on BoxPushing environments.

0 8 16 24 32 40
Environment steps (1M)

0

100

200

Re
tu

rn

Overcooked-Rand-C

AOCC
AOCC-dup

0 8 16 24 32 40
Environment steps (1M)

0

100

200
Overcooked-Large-C

0 20 40 60 80 100
Environment steps (1M)

0

100

200
Overcooked-Large-Rand-C

Figure 11: Ablation study on redundancy in history encoders.

As in Figure 11, both AOCC and AOCC-dup stably reach the

optimal point although AOCC-dup is quite slower. However, as the

grid size gets larger and complicated, AOCC-dup shows unstable

learning while AOCC consistently converges to the optimal point.

We hypothesize that during centralized critic learning, repetitive

but unnecessary learning signals, stemming from the redundancy,

interfere with the accurate learning of a value function.

5 CONCLUSION
In this work, we addressed the challenge of asynchronous multi-

agent reinforcement learning by introducing the use of agent-

oriented representations learningwithin theMacDec-POMDP frame-

work. Our approach encodes the observation history of each agent

independently with temporal information through positional encod-

ing, and aggregate them explicitly, enabling efficacious centralized

critic learning in asynchronous settings. Through experiments on

a macro-action-based multi-agent benchmark, we demonstrated

the superiority of our proposed method compared to conventional

approaches, particularly in environments that require complex co-

operation and generalization. Also, we studied the effect of redun-

dancy from duplicated macro-observation history in critic learning,

and showed reducing it brings better performance. For future work,

further qualitative analysis on representation from agent-oriented

encoder in the perspective of neural architecture would be helpful

to understand AOCC and the reason of degradation in centralized

critic learning with redundancy.

REFERENCES
[1] Christopher Amato, George Konidaris, Ariel Anders, Gabriel Cruz, Jonathan P

How, and Leslie P Kaelbling. 2016. Policy search for multi-robot coordination

under uncertainty. The International Journal of Robotics Research 35, 14 (2016),

1760–1778.

[2] Christopher Amato, George Konidaris, and Leslie P. Kaelbling. 2014. Planning

with Macro-Actions in Decentralized POMDPs. In 2014 International Conference
on Autonomous Agents and Multi-agent Systems (AAMAS). 1273–1280.

[3] Christopher Amato, George Konidaris, Leslie P Kaelbling, and Jonathan P How.

2019. Modeling and planning with macro-actions in decentralized POMDPs.

Journal of Artificial Intelligence Research 64 (2019), 817–859.

[4] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv:1412.3555 (2014).
[5] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-

mon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 32.

[6] Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun

Wang, and Yaodong Yang. 2022. Trust Region Policy Optimisation in Multi-Agent

Reinforcement Learning. In International Conference on Learning Representations.
https://openreview.net/forum?id=EcGGFkNTxdJ

[7] Miao Liu, Christopher Amato, Emily Anesta, John Griffith, and Jonathan How.

2016. Learning for decentralized control of multiagent systems in large, partially-

observable stochastic environments. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 30.

[8] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.

2017. Multi-agent actor-critic for mixed cooperative-competitive environments.

In Advances in Neural Information Processing Systems, Vol. 30.
[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[10] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi, Christopher Amato, Shih-

Yuan Liu, Jonathan P. How, and John Vian. 2017. Decentralized control of

multi-robot partially observable Markov decision processes using belief space

macro-actions. Int. J. Robotics Res. 36, 2 (2017), 231–258. https://doi.org/10.1177/

0278364917692864

[11] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi, Christopher Amato, Shih-

Yuan Liu, Jonathan P How, and John Vian. 2017. Decentralized control of multi-

robot partially observable Markov decision processes using belief space macro-

actions. The International Journal of Robotics Research 36, 2 (2017), 231–258.

[12] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and

John Vian. 2017. Deep decentralized multi-task multi-agent reinforcement learn-

ing under partial observability. In International Conference on Machine Learning.
PMLR, 2681–2690.

[13] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function Factori-

sation for Deep Multi-Agent Reinforcement Learning. In International Conference
on Machine Learning. PMLR, 4295–4304.

[14] Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and

Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.

Artif. Intell. 112, 1–2 (aug 1999), 181–211. https://doi.org/10.1016/S0004-3702(99)

00052-1

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[16] Sarah A. Wu, Rose E. Wang, James A. Evans, Joshua B. Tenenbaum, David C.

Parkes, and Max Kleiman-Weiner. 2020. Too many cooks: Coordinating multi-

agent collaboration through inverse planning. In Cognitive Science.
[17] Yuchen Xiao, Joshua Hoffman, and Christopher Amato. 2020. Macro-action-based

deep multi-agent reinforcement learning. In Conference on Robot Learning. PMLR,

1146–1161.

[18] Yuchen Xiao, Joshua Hoffman, Tian Xia, and Christopher Amato. 2020. Learning

multi-robot decentralized macro-action-based policies via a centralized Q-net.

In 2020 IEEE International conference on robotics and automation (ICRA). IEEE,
10695–10701.

[19] Yuchen Xiao, Weihao Tan, and Christopher Amato. 2022. Asynchronous actor-

critic for multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems. https://openreview.net/forum?id=K_LtkDGdonK

[20] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,

and Yi Wu. 2022. The surprising effectiveness of ppo in cooperative multi-

agent games. In Advances in Neural Information Processing Systems Datasets and
Benchmarks Track, Vol. 35. 24611–24624.

https://openreview.net/forum?id=EcGGFkNTxdJ
https://doi.org/10.1177/0278364917692864
https://doi.org/10.1177/0278364917692864
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://openreview.net/forum?id=K_LtkDGdonK

	Abstract
	1 Introduction
	2 Background
	2.1 MacDec-POMDP
	2.2 Asynchronous MARL

	3 Method
	3.1 Motivation
	3.2 Agent-Oriented Centralized Critic
	3.3 Training Actor with Agent-Oriented Centralized Critic

	4 Experiment
	4.1 Environments
	4.2 Evaluation
	4.3 Performance Comparison
	4.4 Ablation Study

	5 Conclusion
	References

