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Abstract

We study the optimization problem associated with fitting two-layer ReLU neural
networks with respect to the squared loss, where labels are generated by a target
network. Use is made of the rich symmetry structure to develop a novel set of tools
for studying the mechanism by which over-parameterization annihilates spurious
minima. Sharp analytic estimates are obtained for the loss and the Hessian spec-
trum at different minima, and it is proved that adding neurons can turn symmetric
spurious minima into saddles; minima of lesser symmetry require more neurons.
Using Cauchy’s interlacing theorem, we prove the existence of descent directions
in certain subspaces arising from the symmetry structure of the loss function. This
analytic approach uses techniques, new to the field, from algebraic geometry, repre-
sentation theory and symmetry breaking, and confirms rigorously the effectiveness
of over-parameterization in making the associated loss landscape accessible to
gradient-based methods. For a fixed number of neurons and inputs, the spectral
results remain true under symmetry breaking perturbation of the target.

1 Introduction

An outstanding question in deep learning (DL) concerns the ability of simple gradient-based methods
to successfully train neural networks despite the nonconvexity of the associated optimization problems.
Indeed, nonconvex optimization landscapes may have spurious (i.e., non-global local) minima with
large basins of attraction and this can cause a complete failure of these methods. Evidence suggests
that this problem can be circumvented by the use of a large number of parameters in DL models.
In view of the complexity exhibited by contemporary neural networks and the absence of suitable
analytic tools, much recent research has focused on two-layer ReLU networks as a realistic starting
point for a theoretical study [1, 2, 3, 4, 5, 6, 7]. The two-layer networks considered were typically of
the form:

f(x;W,α) := α⊤φ(Wx), W ∈ M(k, d), α ∈ Rk, (1)

where φ(z) := max{0, z} is the ReLU function acting entrywise and M(k, d) denotes the space of
k × d matrices. In order to isolate the study of optimization-related obstructions due to nonconvexity
from issues pertaining to the expressive power of two-layer networks, data has been often assumed to
be fully realizable. This was further motivated by hardness results which indicated a strict barrier
inherent to the explanatory power of distribution-free approaches operating in complete generality
[8, 9, 10]. For the squared loss, the resulting, highly nonconvex, expected loss is

L(W,α) :=
1

2
Ex∼D

[(
f(x;W,α)− f(x;V,β)

)2]
, (2)

where D denotes a probability distribution over the input space, W ∈ M(k, d), α ∈ Rk are the
optimization variables, and V ∈ M(d, d), β ∈ Rd are fixed parameters.
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The choice of the d-variate normal Gaussian distribution for the input distribution has drawn a
considerable interest, e.g., [11, 12, 13, 14, 15, 16, 17]. Empirically, it has been observed that as the
number of neurons k increases, the loss of models obtained using stochastic gradient descent (SGD)
under Xavier initialization [18] decreases (see [9, 19]). The objective of this work is to study the
mathematical mechanism behind this fundamental phenomenon. Using ideas based on symmetry
breaking (see Section 2), we are able to employ techniques from representation theory and algebraic
geometry to study how the loss landscape is transformed when the number of neurons is increased.
A key feature of our approach is the use of Puiseux series in d and path based techniques. For
example, we may define the spectrum of the Hessian as Puiseux series for real values of d and so
determine the values of d (typically not integers) where eigenvalues change sign. These methods
allow the proof of powerful analytic results: in this paper, we derive sharp analytic estimates of
the loss and the Hessian spectrum at local minima allowing us to analyze the mechanism whereby
spurious minima are annihilated when the number of neurons k is increased. Our contributions can
be summarized by

Theorem 1 (Informal) We describe several infinite families of spurious minima, partly characterized
by their symmetry, and prove that:
• Adding rather few neurons can transform symmetric spurious minima into saddles.
• The Hessian spectrum remains extremely skewed with Θ(d) eigenvalues growing linearly with d,
and Θ(kd) eigenvalues being Θ(1).
• Increasing the number of neurons adds Θ(d) descent directions in a Θ(d)-dimensional subspace
dictated by the symmetry structure (i.e., the isotypic decomposition) of the loss function.
• The loss remains (essentially) unchanged.

The formation of new decent directions allows gradient-based methods to escape spurious minima
that exist in the original loss landscape (k = d), and so detect models of reduced loss. To indicate
the subtly of the results given in Theorem 1, consider a family of spurious minima with symmetry
∆(Sd−1 ×S1) (the type II family described in Section 3). Assume k = d. Spurious minima occur for
d ≥ 6. Adding one neuron results in these minima occurring for d ≥ 8 — not promising. Adding two
neurons annihilates all these spurious minima and creates no new spurious minima. The mechanism
is finite, cannot be inferred from a limiting case, and persists under forced symmetry breaking, and so
applies beyond symmetric targets. If instead we consider the unique family of spurious minima with
isotropy ∆Sd (see Section 3), we find that adding just one neuron annihilates these spurious minima.
This occurs through the appearance of a multiplicity (d− 1)-eigenvalue associated to the standard
representation of Sd on Rd−1 (all other eigenvalues remain positive). More precisely, if k = d there
are 3 strictly positive Hessian eigenvalues associated to the standard representation of Sd, each with
multiplicity d− 1. Modulo O(d−

1
2 ) terms, they are 1

4 − 1
2π ,

1
4 , and d

4 + 1
4 . After the addition of one

neuron (k = d+ 1), there are 4 Hessian eigenvalues associated to the standard representation of Sd

and, modulo O(d−
1
2 ) terms, these satisfy

d

4
+

1

2
,
1

4
− 1

2π
,
−1 +

√
5

4π
+

1

4
> 0 >

−1−
√
5

4π
+

1

4
.

This example highlights the special role that the standard representation plays in the annihilation of
spurious minima (see Section 5 and the concluding remarks). The sharp estimates of the Hessian
spectrum further demonstrate how symmetry breaking enables a complete characterization of the
dynamics of gradient-based methods, locally, in the vicinity of symmetric critical points. The
dependence of such methods on stability of critical points therefore indicates that attempts for a
global theory should be preceded by a good description of the mechanism by which spurious minima
transform into saddles—the aim of this work.

Next, we relate our results to the existing literature.

Annihilation of spurious minima on account of over-parameterization. Existing methods for the
analysis of optimization problem (2) include: mean-field [4], optimal transport [2], NTK [20, 21, 22]
and the thermodynamic limit [5, 16, 23, 24]. These methods operate by passing to limiting regimes
where the number of inputs or neurons is taken to infinity. A growing number of works has limited
the explanatory power of such approaches [25, 26]. Approaches for addressing the loss landscapes in
finite parameter regimes exist and include [6] which obtains several generalities on critical points,
and [7] which studies conditions under which a single neuron can be added in contrived way so as to
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turn a given minimum in M(d, d) into a saddle in M(d+ 1, d). However, as shown in the present
work, families of minima in M(d+ 1, d) exist. Indeed, families of minima of lesser symmetry are
shown to require at least two additional neurons before turning into saddles.

Symmetry breaking in nonconvex loss landscapes. It has been recently found that the symmetry
of spurious minima in optimization problem (2) break the symmetry of global minima [27] (see
Section 2 for a formal exposition). A similar phenomenon has been observed for tensor decomposition
problems in [28] and later studied [29]. The present work builds on methods developed in a line
of work concerning this phenomenon of symmetry breaking. In [30], path based techniques are
introduced to construct infinite families of critical points represented by Puiseux series in d−1. In [31],
results from the representation theory of the symmetric group are used, together with the Puiseux
series result, to obtain precise analytic estimates on the Hessian spectrum. In [32], it is shown that
certain families of saddles transform into spurious minima at a fractional dimensionality. Moreover,
the spectra of these families of spurious minima is shown to be identical to that of global minima to
O(d−

1
2 )-order. In [33], generic Sd-equivariant steady-state bifurcation is studied, emphasizing the

complex geometry of the exterior square and the standard representations along which the minima
studied in this work are created and annihilated.

The results above assume that the number of neurons is less or equal the number of inputs: k ≤ d.
The present work concerns the over-parameterized case k > d (additional terms used in related
contexts are over-specified, e.g., [34] and over-realized, e.g., [6]). The study of the technically more
demanding case of over-parameterization requires new methods and ideas, which we describe below.

• We develop a method which allows the expression of eigenvalues in terms of the gradient entries.
The approach is used to evaluate eigenvalues of Θ(d2)-multiplicity analytically, and reveals hidden
algebraic relations between criticality and curvature.

• Eigenvalues of O(d)-multiplicity are computed numerically using estimates of the Puiseux series
coefficients. The estimates are obtained through numerical methods used either directly for a
system of equations corresponding to different orders of the Puiseux series terms, or for a reduced
system of equations obtained by exploiting the geometric structure of the problem.

• Lastly, Cauchy’s interlacing theorem is used to reduce the complexity of the computation of descent
directions afforded by over-parameterization, and yields a tight characterization of linear subspaces
along which spurious minima transform into saddles.

The methods are illustrated for eight families of critical points. Orthogonality of the target matrices is
not required by the symmetry-breaking framework; other choices of target matrices, distributions,
activation functions and architectures have been considered in previous works, and are a topic of
current research.

Organization of the paper. The proof of Theorem 1 is in four parts: symmetry & the loss
function, families of symmetric minima, Hessian spectrum, and a change of stability under over-
parameterization. Proofs and technical details are deferred to the appendix.

2 Symmetry and the loss function

The presentation of our results requires some familiarity with group and representation theory. Key
ideas and concepts are introduced as needed.

The symmetric group Sd, d ∈ N, is the group of permutations of [d] =̇ {1, . . . , d}. The orthogonal
group O(d) is the subgroup of all orthogonal linear maps on Rd. We may identify Sd with the
subgroup of O(d) consisting of permutation matrices. Thus Sd acts naturally on [d] (as permutations)
and orthogonally on Rd (as permutation matrices).

For k, d ∈ N, there are natural actions of Sk and Sd on the space M(k, d) of k × d matrices: Sk

permutes rows, Sd permutes columns. The loss function (2) is invariant under row permutations:
L(σW ) = L(W ), for all σ ∈ Sk—whatever the choice of V,β. The product action of Sk × Sd on
M(k, d) plays a central role in the study of invariance properties of L. If A = [Aij ] ∈ M(k, d),
(π, ρ) ∈ Sk × Sd, then

(π, ρ)[Aij ] = [Aπ−1(i),ρ−1(j)], π ∈ Sk, ρ ∈ Sd, (i, j) ∈ [k]× [d]. (3)
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The action can be defined in terms of permutation matrices. If k ≥ d, the diagonal subgroup ∆Sd of
Sk × Sd is defined by ∆Sd = {(g, g) | g ∈ Sd ⊆ Sk}. Clearly, ∆Sd ≈ Sd.

Henceforth assume k ≥ d. Regard M(d, d) as the linear subspace of M(k, d) defined by appending
k − d zero rows to each matrix in M(d, d). Let V ∈ M(k, d) denote the matrix determined by the
identity matrix Id ∈ M(d, d). By the orthogonal symmetry of the Gaussian distribution, our results
will hold for any V determined by a matrix in O(d). We shall not consider training processes but
rather concrete instances of families of critical points, and so throughout weights are assumed fixed.
The weights of the second layer of critical points studied in the present work consists of positive
weights and so, by the positive homogeneity of the ReLU activation, there is no loss of generality
in assuming that the second layer of weights is set to ones, i.e., α = β = Ik,1, Ii,j being the
i× j-matrix with all entries equal to 1.

Optimization problem (2) has a rich symmetry structure; for our choice of V,α and β, L is Sk × Sd-
invariant [27]. It is natural to ask how the critical points of L reflect this symmetry. Given W ∈
M(k, d), the largest subgroup of Sk×Sd fixing W is called the isotropy subgroup of W . The isotropy
group quantifies the symmetry of W . If k = d, V has isotropy group ∆Sd and every global minimizer
of L lies on the Sd × Sd-orbit of V [7, 30]. Empirically, if k ≥ d, non-degenerate (i.e., no zero
Hessian eigenvalues) spurious minima of L tend to be highly symmetric in that their isotropy groups
are conjugate to large subgroups of ∆Sd. Indeed, we suspect that for our choice of V , the isotropy of
non-degenerate spurious minima is always non-trivial and conjugate to a subgroup of ∆Sd.

If k > d, the isotropy of V is not a subgroup of ∆Sd— it contains the subgroup Id × Sk−d of row
permutations. Perhaps surprisingly, L is more regular at critical points of spurious minima than at
points giving the global minimum: if k = d, analyticity of L at W = V fails. If k > d, V has a
row of zeros and L is not differentiable at W = V [1] (see also [7]). It may easily be shown that
there is a k − d-dimensional compact connected Sk × Sd-invariant simplicial complex Λ ⊂ M(k, d)
consisting of all matrices that define the global minimum value of zero (see Section A.7). Necessarily,
Λ contains the Sk × Sd orbit of V . At boundary points of Λ, L is not differentiable. The Hessian,
defined on the interior of the simplex, is always singular. Here our focus will always be on families
of spurious minima with non-degenerate critical points.

3 Families of minima: structure and basic properties

Families of spurious minima often have characteristic properties. For example, the asymptotics in
d of the loss or their chance of being detected by SGD. For a systematic study of the optimization
landscape of L, we need to categorize minima and understand their distinctive analytic properties.
Both isotropy and the notion of a regular family play an important role. Throughout we assume
k = d+m, for all d ≥ d0, where m ≥ 0 is an integer constant.

If G is a subgroup of ∆Sd, let M(k, d)G = {W ∈ M(k, d) | gW = W, ∀g ∈ G} denote the fixed
point space for the action of G on M(k, d). Every Sd × Sk-equivariant vector field on M(k, d) is
tangent to M(k, d)G and so ∇L is tangent to M(k, d)G. Hence c ∈ M(k, d)G is a critical point of
L|M(k, d)G iff c is a critical point of L. The inclusion id : [d]→[d+ 1] induces a natural inclusion
id : Sd ⊂ Sd+1, where id(Sd) fixes d + 1. More generally, given a positive integer p and d0 > p,
we have a sequence of inclusions id,p : Sd−p × Sp→Sd+1−p × Sp, d ≥ d0. Identifying Sd with
∆Sd, a sequence (Gd)d≥d0 of subgroups of ∆Sd is natural if for some positive integer p < d0, (a)
id,p(Gd) ⊂ Gd+1, and (b) dim(M(k, d)Gd) is independent of d ≥ d0 (assume k ≥ d).

Example 1 Set Gd = ∆(Sd−p × Sp) and m be a positive integer. If p = 0, then Gd = ∆Sd and
dim(M(d+m, d)Gd) = 2+m, d ≥ d0 = 2; if p = 1, then dim(M(d+m, d)∆(Sd−1×S1)) = 5+2m,
d ≥ 3; if p ≥ 2, then dim(M(d+m, d)∆(Sd−p×Sp)) = 6 + 2m, d ≥ 4.

If (Gd)d≥d0 is natural, we often identify M(k, d)Gd with RN , d ≥ d0, where dim(M(k, d)Gd) = N .
We define linear isomorphisms Ξ : RN→M(k, d)Gd for the families of Example 1. Let I⋆i =
Ii,i − Ii, i ∈ N. The matrix Ξ(ξ), ξ ∈ RN , is expressed as block diagonal matrix [Bij ], where
each Bi,j is a linear combination in the coordinates of ξ of the matrices Ii,j , Ii and I⋆i . For
example, if p = 1, m ≥ 1, then N = 5 + 2m and Ξ(ξ1, · · · , ξN ) is the (2 +m) × 2-block matrix
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[Bij ] ∈ M(d+m, d)∆(Sd−1×S1) defined by

B11 = ξ1Id−1 + ξ2I
⋆
d−1, B12 = ξ3Id−1,1,

Bi1 = ξ2iI1,d−1, Bi2 = ξ2i+1I1,1, 2 ≤ i ≤ 2 +m.

Similar expressions hold for the other families. In practice, we restrict the vector field ∇L to
M(k, d)Gd and then pull back this vector field using Ξ to a vector field Fd on RN . The Jacobian
of Fd is then equal to the Hessian of ∇(L|M(k, d)Gd). Observe that Fd does not depend on a
choice of inner product on RN ; indeed, we take the standard Euclidean inner product on RN

(Ξ : RN→M(k, d)G is not an isometry). Since Fd(ξ) = Ξ−1∇L(Ξ(ξ)), we may read off the
components of Fd(ξ) directly from the corresponding matrix entries of ∇L. We find that Fd is a
continuous family of vector fields on RN in the real parameter d. Obviously, no such statement can
hold on M(k, d) as the dimension of M(k, d) depends on d. Moreover, the vector fields Fd will be
real analytic outside of a thin (semianalytic) subset of RN . Indeed, Fd is subanalytic [35] but the real
analyticity statement is easily proved directly and suffices for our applications. All of this allows us to
“connect” the critical points c(d) ∈ M(k, d)Gd , d ≥ d0, by curves in RN and develop a path-based
approach to our problem.

Definition 1 (Notation & Assumptions as above.) A family {C(d) = Ξ(c(d)) | d ≥ d0} of critical
points of L with isotropy Gd ⊂ ∆Sd is weakly regular if (Gd)d≥d0

is natural and for d ≥ d0

(a) There is a continuous curve γd : [0, 1]→RN of critical points of Fd joining c(d) to c(d+ 1).

(b) L is real analytic at Ξ(c(d)) ∈ M(k, d).

(c) Fd is real analytic on a neighbourhood of γd([0, 1]) ⊂ RN .

(d) The Jacobian of Fd along γd is non-singular.

If limd→∞ c(d) =̇ c∞ ∈ RN exists and is bounded (Euclidean norm on RN ), the family is regular.

Using (c,d), and the real analytic implicit function theorem, γd is real analytic. The family defined by
c(d) = V is not weakly regular as (b) fails even if k = d.

It may be shown, using results on subanalytic sets and the Curve Selection Lemma [36], that every
regular family has a fractional power series (FPS) representation. That is, with the notation and
assumptions of Definition 1, there exist d1 ≥ d0 and a minimal b ∈ N such that each component
ci(d) of c(d) ∈ RN is given by the convergent power series

c(d)i =

∞∑
j=0

ci,jd
− j

b , i ∈ [N ]. (4)

Under the assumption of weak regularity, there may be Puiseux series representations [30, Exam. 4.13]
and c∞ lies in the one point compactification of RN . In practice, rather than use the general result,
we prove directly that a family has an FPS representation. Verifying regularity for sufficiently large
d0, is usually straightforward or trivial. We refer to Section A for examples of construction of FPS
representations when k > d.

The FPS representation for families of critical points is important both theoretically, and computa-
tionally and yields Puiseux series representations of the objective value and Hessian spectrum. It
was shown in [30, Section 8] that for k = d several (regular) families of critical points with isotropy
Gd = ∆(Sd−p × Sp), p ∈ {0, 1}, had FPS representations in d−

1
2 (so b = 2). Each coordinate of

c∞ = limd→∞ c(d) ∈ RN was either ±1 or zero. For examples of FPS representations with k = d
and Gd = ∆(Sk−p × Sp), p ∈ {2, 3}, see [32]. Explicit construction of the coefficients in these FPS
examples is relatively straightforward and algebraic formulae can be given for low order terms. When
k > d, analysis is harder. It is not always possible to give low order coefficients in a simple algebraic
form. Moreover, there may be multiple regular families with the same limiting value c∞ ∈ RN .

Definition 2 Let p ≥ 0 and take Gd = ∆(Sd−p × Sp) as in Example 1. A regular family of
critical points with isotropy (Gd)d≥d0 is of type I (resp. type II) if as d→∞, the diagonal ele-
ments of the (d−p)×(d−p)-block corresponding to the action of ∆Sd−p converge to −1 (resp. +1).
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In terms of FPS, a family is of type I (resp. type II) if c1,0 = −1 (resp. +1).

Remark 1 When k = d, we suspect that the initial coefficients ci,0 of the FPS of a regular family
with isotropy ∆(Sd−p × Sp), p ≥ 0, satisfy ci,0 ∈ {±1, 0}. However, this is false if k > d—we give
an example later. Moreover if k = d, and with a slight extension of the notion of regular family,
there is a regular family with G2d = ∆(Sd × Sd), d ∈ N, with c1,0 = +1, c5,0 = −1 (coefficients
corresponding to the diagonal entries of the principal blocks associated to Sd × Id and Id × Sd).

Henceforth, we emphasize k > d, and families with isotropy ∆(Sd−p × Sp), p ∈ {0, 1}. However,
the methods are quite general.

Theorem 2 Suppose that C is a regular family of critical points. Assume that initial terms of the
asociated FPS do not all vanish and b ∈ {2, 4}. If the isotropy Gd = ∆Sd, k ∈ {d, d+ 1}, then C
is of type I; if the isotropy Gd = ∆(Sd−1 × S1), k ∈ {d, d+ 1, d+ 2}, then C is either of type I or
type II and there exists at least one family of each type. If k = d there is precisely one type I family
and, if p ̸= 0, one type II family.

Remark 2 For k = d, both type I and type II families are spurious minima [31, 32]. However,
empirically, type I minima are not detected by SGD when Xavier initialization is used. Since the loss
at type II minima decays as Θ(1/d) and the loss at type I is Θ(1) (independently of the isotropy), it
may be tempting to argue that the expected initial loss under Xavier initialization is smaller than the
loss at type I minima. However, this turns out to be false: Assume k = d. Under Xavier initialization,(
1− 2

π

)
d ≤ EW [L(W )] ≤

(
1− 1

π

)
d (see Section A.6).

As we increase k−d, the original type I and II critical points of spurious minima persist as degenerate
critical sets and new regular families of critical points of the same type are generated. Thus, if
k − d = 1, and Gd ⊊ ∆Sd, two regular families of type I points are generated which are swapped by
the permutation of rows d and d+1. Similarly for families of type II. When k−d = 2, 3!= |S3| new
regular families of type I critical points appear; similarly for type II. Additional families of critical
points, which do not originate from the original families and are not spurious minima, may appear.
See Section A.7 for degenerate critical point sets occurring on account of over-parameterization.

Our focus will be on the families of type I and II critical points that arise through the above mechanism.
For a given isotropy Gd = ∆(Sd−p × Sp), p ∈ {0, 1}, a type X and k ≥ d, with m = k − d fixed,
let CX

p,m denote a choice of regular family of critical points {cXp,m(d) ∈ M(k, d)Gp} that originates
from the unique regular family of critical points of type X that exists when k = d. It is enough to
analyze just one of the type X families when k > d as, by equivariance, the choices lie on the same
Sd × Sk-orbit and so have similar Hessians. Once the existence of the FPS representation for the
families CX

p,m has been proved, the next step is to estimate the Hessian spectrum, the topic of the
next section.

We conclude with examples illustrating the quantitative power of our approach.

Example 2 (1) We investigate how the loss L(cII1,m) depends on k − d for the type II families CII
1,m,

m ∈ {0, 1, 2}. For m > 0, the initial coefficients of the FPS are found using Newton-Raphson
method applied either directly for a system of equations corresponding to different orders of the FPS
coefficients Section A.5, or for a reduced system of equations obtained through an explicit use of
the geometry of the problem Section A.1. We give the asymptotics modulo O(d−

3
2 ) and find that if

L(cII1,m) = αmd−1 +O(d−
3
2 ), then

α0 = 2.97357632715 . . . (=
1

2
− 2

π2
), α1 = 2.67254813889 . . . , α2 = 2.67193392202 . . .

(2) Consider L(cI1,m) for type I families. We find that L(cI1,m) = 1
2 −

1
π +O(d−

1
2 ), for m ∈ {0, 1, 2}.

Higher order terms are m-dependent but can be computed, as they can if p = 0. For example, if
p = 0, m = 1 then L(cI0,1) = 1

2 − 1
π − 4

3πd
− 1

2 +
(
−1− 2

π2 + 4
π

)
d−1 +O(d−

3
2 ).

(3) We conclude with an example where the FPS is in powers of d−
1
4 and two components of c∞ ∈ R7

do not lie in {±1, 0}. If k = d + 1, the initial terms of the FPS for a type I family c(d) of critical
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points of spurious minima are given by

c(d)1 = −1 + 2d−1 +
π

2
d−

3
2 +O(d−

7
4 ), c(d)2 = 2d−1 −

√
π − 2d−

7
4 +O(d−2),

c(d)3 = d−1 − 6 + 3π

4π
√
π − 2

d−
5
4 +O(d−

3
2 ), c(d)4 =

√
π − 2

2
d−

3
4 +O(d−1),

c(d)5 =
1

2
+

6 + 3π

8π
√
π − 2

d−
1
4 +O(d−

1
2 ), c(d)6 =

√
π − 2

2
d−

3
4 +O(d−1),

c(d)7 = −1

2
+

6 + 3π

8π
√
π − 2

d−
1
4 +O(d−

1
2 )

(see Section A.5 for details). The loss L(cI1,1) = 1
2 − 1

π − 4
3πd

− 1
2 − (π−2)

3
2

3π d−
3
4 +O(d−1).

4 Hessian spectrum

The FPS representation makes possible an analytic characterization of the Hessian spectrum using
tools from the representation theory of groups (see Section B for a brief review). The main tool used is
the isotypic decomposition relating the isotropy of a given point to minimal invariant subspaces of the
Hessian. We begin by presenting the isotypic decomposition needed for the over-parameterized case.

Let k ≥ d. Regard M(k, d) as an Sd-representation (diagonal action on M(d, d) ⊂ M(k, d)). By
restriction, M(k, d) is a Sq × Sp-representation, where q = d − p, p < q, and Sq × Sp ⊂ Sd. If
p ∈ {0, 1} (the case of interest here) the isotypic decomposition uses 4 irreducible representations
of Sq, when d ≥ 4: the trivial representation t of degree 1, the standard representation sq of Sq of
degree q − 1, the exterior square representation xq = ∧2sq of degree (q−1)(q−2)

2 and a representation
yq of degree q(q−3)

2 (associated to the partition (q − 2, 2) [37, 38]). For p ∈ {0, 1}, the isotypic
decomposition is

M(k, d) = (m+ 3p+ 2)t+ (pm+ 2p+ 3)sq + xq + yq. (5)

Since the representations xq, xq contribute 2 eigenvalues, of total multiplicity q2 − 2q + 1, we have

Lemma 1 If k − d = m ≥ 0 and p ∈ {0, 1}, then of the kd eigenvalues of the Hessian at a point of
isotropy ∆(Sd−p × Sp):

1. Θ(d2) are populated by two eigenvalues: the x- and y-representation eigenvalues.

2. At most O(k − d) eigenvalues are distinct.

Lemma 1 implies that the isotropy type of a point strictly restricts the number of distinct eigenvalues
of the Hessian spectrum. For fixed k − d, the x- and the y-representation eigenvalues account for
kd−Θ(d) of the eigenvalues. We show that for all families of critical points considered here, the x-
and the y-representation eigenvalues are identical to order O(d−

1
4 ).

Theorem 3 For a family of critical points of isotropy ∆(Sd−p × Sp), p ∈ {0, 1} and k as in
Theorem 2, kd−Θ(d) of the Hessian eigenvalues are populated by the two eigenvalues:

1

4
− 1

2π
+O(d−

1
4 ) and

1

4
+

1

2π
+O(d−

1
4 )

associated to the x- and the y-representation, respectively.

The derivation of Theorem 3 builds on a technique used in [31, 32] and is directed towards the case
where k > d and the coefficients of FPS may not be given in a simple algebraic form. Specifically,
we rewrite the expression for the Hessian eigenvalues in terms of the gradient entries. Since gradient
entries vanish at critical points, this allow us to evaluate the eigenvalue expressions. For example, the
Puiseux series of the x-eigenvalue of Type I ∆(Sd−1 × S1)-critical points is

λd
x =

1

4
− 1

2π
+ [d0]Fd,1 − c1,2[d

1
2 ]Fd,1 − [d0]Fd,2 + [d

1
4 ]Fd,1d

1
4 + [d

1
2 ]Fd,1d

1
2 +O(d−

1
4 ), (6)
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with [dα]Fd,i indicating the coefficient of dα in Fd,i. Since Fd,i vanish at critical points, λd
x =

1
4 −

1
2π +O(d−

1
4 ). Equation 6 further demonstrates the sensitivity of the x-eigenvalue to variations in

the FPS coefficients and in different orders of the gradient terms, see Section B.1. Algebraic relations
between criticality and curvature indicate therefore a certain rigidity of the loss landscape. Relations
of similar nature exist between criticality and the loss at a point.

It follows from Theorem 3 that all Hessian eigenvalues not associated to the trivial or standard
representations are strictly positive for sufficiently large d. Consequently, annihilation of spurious
minima in a family must be tangent to an invariant subspace of the sum of the isotypic components
for the trivial and standard representations. Generically, it is to be expected that the subspace will be
isomorphic to either the trivial representation or the standard representation.

5 Over-parameterization

Having computed the x- and the y-eigenvalues, we now turn to describe how the eigenvalues associated
to the trivial and the standard representations vary when the number of neurons is increased. We find
that while eigenvalues associated to the trivial representation remain strictly positive for all sufficiently
large d—some eigenvalues, associated to the standard representation, become negative, indicating a
transition from minima to saddles along the isotypic component of the standard representation. We
start with points of isotropy ∆Sd.

5.1 Critical points of isotropy ∆Sd

By Theorem 2, if k ∈ {d, d+ 1}, there is one regular family of critical points with isotropy ∆Sd: the
type I family CI

0,i, i = k − d. The representation-theoretic tools used in Section 4, yield a complete
characterization of the Hessian spectrum of both families of critical points (see the discussion
following the statement of Theorem 1 in the introduction for more details).

The spectral analysis of the Hessian reveals that:

A. CI
0,0 is a family of minima.

B. Adding one neuron turns it into the family CI
0,1 of non-degenerate saddles where the negative

eigenvalue of the Hessian at CI
0,1 is associated to the standard representation sd.

Since the negative eigenvalue of the Hessian at CI
0,1 is associated to sd, there are exactly d−1 descent

directions, out of d(d+1) possible directions in M(d+1, d), lying in the 4d−4-dimensional isotypic
component 4sd spanned by (only nonzero elements are described):

1. The (d− 1)-dimensional space of (d+ 1)× d-matrices [yij ] where for i, j ∈ [d], yij = zi − zj ,
for some (z1, · · · , zd) ∈ Rd with

∑
i∈[d] zi = 0.

2. The (d−1)-dimensional space of (d+1)×d-matrices [yij ] where for i, j ∈ [d], i ̸= j, yij = zi+zj ,
where (z1, · · · , zd) ∈ Rd with

∑
i∈[d] zi = 0.

3. The (d− 1)-dimensional space of (d+ 1)× d-matrices whose diagonal elements sum up to zero.

4. The (d− 1)-dimensional space of (d+ 1)× d-matrices whose (d+ 1)’th row elements sum up to
zero.

No regular families with isotropy ∆Sd exists if two neurons or more are added, i.e., k − d ≥ 2 (see
Section A.7).

5.2 Critical points of isotropy ∆(Sd−1 × S1)

Consider the type II regular families CII
1,0, CII

1,1 and CII
1,2, corresponding to k = d, d+ 1 and d+ 2

respectively. We show that negative eigenvalues of the Hessian appear when k − d = 2 but not
k − d = 1. The same result (and proof) hold for the type I family.

For k = d, k = d+ 1, the eigenvalues associated to the trivial and standard representation sd−1 are
strictly positive—see Table 5.2. By Theorem 3, the x- and the y-representation eigenvalues are also
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Isotypic component Degree k = d k = d+ 1
Symmetry ∆Sd−1 Symmetry ∆Sd−1

Trivial representation 1 0.0908 0.0044, 0.0843
0.25 0.2632, 0.3121

mult. 5, if k = d 0.1591d - 0.3471 0.1591d + 0.7546
mult. 7, if k = d+ 1 0.25d + 0.25 0.25d + 0.5

0.25d + 0.8471 0.25d + 1.0979
Standard representation sd−1 d− 2 0.0908 0.0230, 0.0908

0.0908 0.0936
mult. 5, if k = d 0.25 0.2693

mult. 6, if k = d+ 1 0.4091 0.5340
0.25d + 0.25 0.25d + 0.5

Loss Θ(1/d) Θ(1/d)

Table 1: Type II critical points with symmetry ∆Sd−1. The Hessian eigenvalues associated to the
trivial and the standard representation are given to four decimal places, modulo O(d−

1
2 )-terms.

strictly positive. Therefore, we have families of spurious minima for k = d, d+ 1. For k = d+ 2,
critical points in the family CII

1,2 are saddles, with strictly negative eigenvalues associated to sd−1. To
show this, we take a different route so as to reduce the complexity of the computation. Consider the
2d × 2d-submatrix Ĥ of the Hessian corresponding to the last two rows of the weight matrix. By
Cauchy’s interlacing theorem [39], the smallest eigenvalue of the Hessian is bounded from above by
the smallest eigenvalue of Ĥ . Therefore, it suffices to prove that Ĥ has a negative eigenvalue. Since
the isotypic decomposition corresponding to Ĥ consists of exactly two of the subspaces associated
to sd−1, the problem is reduced to computing the spectrum of a 2× 2 matrix. Using Puiseux series
representation, we show that modulo O(d−

1
2 )-terms the two eigenvalues of Ĥ are λ1 = 0.8060 . . .

and λ2 = −0.1198 . . .. Hence there exists a (d− 2)-dimensional eigenspace of descent directions,
projecting onto the associated eigenspace for Ĥ . Applying Cauchy’s interlacing theorem again, there
must also exist positive eigenvalues associated to sd−1.

Theorem 4 (Notation & Assumptions as above.)

• ∆Sd-symmetric critical points of type I are minima for k = d and non-degenerate saddles
for k = d+ 1 with a (d− 1)-dimensional eigenspace of descent directions.

• Critical points of isotropy ∆(Sd−1 × S1), type I or II, define regular families of spurious
minima for k = d, d + 1, and non-degenerate saddles for k = d + 2, with at least a
(d− 2)-dimensional space of descent directions.

Empirically, when k = d + 1, minima of isotropy ∆(Sd−1 × S1) are not seen for d < 8 (they are
if k = d and d ≥ 6) and the probability to detect them using gradient descent is much lower for
small values of d ≥ 8 [19] (type I minima are not detected under Xavier initialization). Theorem 4
implies that when k = d+2 there are no spurious minima of type II of symmetry ∆(Sd−1 ×S1) and
the descent directions are tangent to a copy of sd−1. The last point is crucial for understanding the
empirical results. The small eigenvalue 0.0230 associated to sd−1 when k = d+ 1 indicates that we
are close to a change of stability (bifurcation) of the critical point for gradient descent. Bifurcation of
the trivial solution on sd−1 is special and quite exceptional. In our case, the trivial solution will be a
sink for gradient descent (i.e., a strict local minimum of the loss function), when k = d+ 1, and a
source (i.e., a strict local maximum of the loss function) when k = d+ 2. The change of stability
results from the collision of a large number of saddles of high index with the sink, followed by the
emergence of a source and a large number of saddles with low index. The high index of the saddles
converging to the sink, implies that the basin of attraction for the sink shrinks rapidly as the saddles
approach the sink. We refer to [33, Sections 1.1, 4] for more on this phenomenon. As we increase d,
families CII

p,, p > 1, of spurious minima appear which may not be annihilated by adding two neurons.
However, no such minima were found in [19] when k = d+ 2, d ≤ 20 (they were for k = d+ 1).
The empirical results provide strong support for a change of stability associated to sd−1 and suggest
the unique role this representation may play in understanding over-parametrization.
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Concluding Comments

The rich symmetry structure exhibited by the loss function (2) makes possible an analytic study of
the associated nonconvex loss landscape. The approach is twofold. First, the presence of symmetry
breaking allows an efficient organization of an otherwise highly complex set of critical points,
offering new ways of recognizing, differentiating and understanding local minima (Section 2 and
Section 3). Second, for a given family of critical points, symmetry grants a parameterization of
fixed dimensionality, independent of the ambient space, which permits a new array of analytic and
algebraic tools (Section 4 and Section 5).

In this work, the symmetry breaking framework is used for investigating the nature by which
over-parameterization contributes to making the loss landscape of (2) accessible for gradient-based
methods. We find that increasing the number of neurons transforms spurious minima into saddles:
decent directions are formed along linear subspaces corresponding the standard representation sd
of Sd, ascent directions along other representations of Sd persist, and the loss remains essentially
the same. The process by which spurious minima turn into saddles suggests a powerful mechanism
enabling minimization of the loss (rather than the gradient norm [40, 41, 42]) via computationally
efficient local search methods, and further highlights the importance of the intricate interplay between
symmetries inherent to data distributions and those displayed by neural network models.

Our spectral results assume the target V has high symmetry but apply also to asymmetric problems.
In the cases we discuss, the transition from saddle to minimum, or minimum to saddle, occurs at a
non-integer value of d. Hence, at integer values of d, critical points are non-degenerate. It follows
that for the families CX

p,m we consider, there is an open neighborhood U of V = Id ∈ M(d, d), such
that for all V ′ ∈ U , the loss function L′ for V ′ has a non-degenerate critical point close to each
point of the ∆(Sd−p × Sp)-orbit of CX

p,m with the same number of negative eigenvalues (counting
multiplicities). Critical points and eigenvalues depend continuously on V ′ ∈ U and the Hessian
spectrum remains extremely skewed.

There is the problem of understanding the geometric mechanisms underlying the transition from
minimum to saddle. As already indicated, this is closely related to the geometry of the standard
representation sd of Sd. For simplicity, assume d = 2ℓ + 1 is odd (similar results hold if d is
even [33]). Gradient vector fields on sd always have a critical point at the origin which is never
a non-degenerate saddle but is (generically) either a non-degenerate minimum or maximum. The
transition between minima (sink for the gradient descent, index 2ℓ) and maxima (source, index 0)
can be achieved locally (that is, as a local deformation of the landscape geometry) by 2d−1 − 1
non-degenerate saddles of index ≥ ℓ passing simultaneously through the origin and emerging as
2d−1 − 1 non-degenerate saddles of index ≤ ℓ. No new minima or maxima are created. Forced
symmetry breaking leads to great complexity near the transition but minimal models of complexity
can be given (op. cit., Section 4).

Rather than striving for generalization, our approach in this work has been to focus on an analytically
tractable case, one already acknowledged as difficult [2, 4, 5, 9, 19, 20], that helps elucidate some of
the key foundational questions. The phenomena described are robust and so already have the power
to disprove or support general conjectures in DL [30, 31, 32]. The symmetry breaking framework
used to study these phenomena generalizes beyond the families of minima considered in the present
work [43], and applies to other choices of activation functions and distributions [27, 28]. In addition,
numerical work indicates that minima of the empirical loss are also symmetry breaking, and so allow
theoretical investigations of the empirical loss landscape as well as algorithmic biases (see, e.g., [44])
within the new analytic framework. The full scope and power of symmetry breaking in DL, and more
generally stochastic nonconvex optimization, remain to be discovered.
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