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Abstract001

In the absence of sizable training data002
for most world languages and NLP tasks,003
translation-based strategies such as translate-004
test—evaluating on noisy source language005
data translated from the target language—006
and translate-train—training on noisy tar-007
get language data translated from the source008
language—have been established as compet-009
itive approaches for cross-lingual transfer010
(XLT). For token classification tasks, these011
strategies require label projection: mapping the012
labels from each token in the original sentence013
to its counterpart(s) in the translation. To this014
end, it is common to leverage multilingual word015
aligners (WAs) derived from encoder language016
models such as mBERT or LaBSE. Despite ob-017
vious associations between machine translation018
(MT) and WA, research on extracting align-019
ments with MT models is largely limited to020
exploiting cross-attention in encoder-decoder021
architectures, yielding poor WA results. In this022
work, in contrast, we propose TransAlign, a023
novel word aligner that utilizes the encoder of024
a massively multilingual MT model. We show025
that TransAlign not only achieves strong WA026
performance but substantially outperforms pop-027
ular WAs and state-of-the-art non-WA-based028
label projection methods in MT-based XLT for029
token classification.030

1 Motivation and Background031

In recent years, multilingual language models032

(mLMs) have been positioned as the primary tool033

for cross-lingual transfer (XLT). By fine-tuning034

on task data in a high-resource source language,035

mLMs can make predictions in target languages036

with no (zero-shot XLT) or limited (few-shot XLT)037

labeled examples (Wu and Dredze, 2019; Wang038

et al., 2019; Lauscher et al., 2020; Schmidt et al.,039

2022). However, for token classification tasks040

(e.g., named entity recognition), translation-based041

XLT strategies—where a machine translation (MT)042

model is used to either (1) translate the original 043

target language instance into the (noisy) source 044

language before inference, known as translate-test 045

(T-Test), or (2) generate noisy target language data 046

by translating the original source language data be- 047

fore training, known as translate-train (T-Train) 048

(Hu et al., 2020; Ruder et al., 2021; Ebrahimi et al., 049

2022; Aggarwal et al., 2022; Artetxe et al., 2023; 050

Ebing and Glavaš, 2024)—substantially outper- 051

form zero-shot XLT (Chen et al., 2023; García- 052

Ferrero et al., 2023; Le et al., 2024; Parekh et al., 053

2024), especially for low(er)-resource languages 054

(Ebing and Glavaš, 2025). 055

Translation-based XLT strategies for token clas- 056

sification tasks require the additional step of la- 057

bel projection: mapping the labeled spans from 058

the original to the translated sentence. A broad 059

body of work addressed label projection starting 060

from task-specific (Duong et al., 2013; Ni et al., 061

2017; Stengel-Eskin et al., 2019; Eskander et al., 062

2020; Fei et al., 2020, inter alia) and evolving to 063

task-agnostic methods (Chen et al., 2023; García- 064

Ferrero et al., 2023; Le et al., 2024; Parekh et al., 065

2024). While WA-based label projection (Och and 066

Ney, 2003; Dyer et al., 2013; Jalili Sabet et al., 067

2020; Dou and Neubig, 2021; Wang et al., 2022)— 068

which project labels by aligning tokens in the origi- 069

nal sentence to corresponding tokens in the trans- 070

lated sentence—served as baseline throughout, re- 071

cent work has rendered it less effective than other 072

label projection strategies such as marker-based ap- 073

proaches (Chen et al., 2023; García-Ferrero et al., 074

2023; Le et al., 2024; Parekh et al., 2024). Ebing 075

and Glavaš (2025), however, show that WA-based 076

label projection can perform at least on a par with 077

these state-of-the-art projection methods as long as: 078

(i) it is carefully designed and (ii) relies on a strong 079

underlying WA model. 080

Current multilingual WAs either leverage con- 081

textualized embeddings from vanilla encoders (e.g., 082

mBERT or XLM-R) (Jalili Sabet et al., 2020; 083
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Dou and Neubig, 2021) or sentence encoders (e.g.,084

LaBSE) (Wang et al., 2022). Despite, WA and085

MT being, intuitively, two highly related and inter-086

leaved tasks (Och and Ney, 2003; Callison-Burch087

et al., 2004; Koehn et al., 2007; Dyer et al., 2013),088

research on extracting word alignments from MT089

models has largely been limited to extracting align-090

ments from the attention mechanism, yielding091

poor WA performance for the cross-attention of092

transformer-based encoder-decoder MT models093

(Bahdanau et al., 2015; Ghader and Monz, 2017;094

Ferrando and Costa-jussà, 2021).095

Contributions. In this work, (1) we propose096

TransAlign, a WA that leverages (only) the encoder097

of NLLB (Team et al., 2022), a massively multi-098

lingual encoder-decoder MT model. Next, to its099

vanilla (non-fine-tuned) variant, we explore the im-100

pact of further fine-tuning TransAlign on parallel101

WA data. (2) We extensively evaluate TransAlign102

extrinsically on translation-based XLT for token103

classification on two established benchmarks cov-104

ering 28 diverse languages. We find TransAlign105

to substantially outperform popular word align-106

ers as well as a state-of-the-art non-WA-based la-107

bel projection method. Furthermore, we evaluate108

TransAlign intrinsically on the word alignment task109

showing its strong performance, particularly on110

words carrying semantic meaning. (3) Finally, we111

ablate important design decisions including the en-112

coder layer to extract the alignments from and the113

similarity threshold based on which an alignment114

is established. We will publicly release our code.115

2 An MT Encoder as a Word Aligner116

The task of word alignment aims at finding se-117

mantically corresponding pairs of words between a118

source language sentence x = (x1, x2, ..., xn) and119

target language sentence y = (y1, y2, ..., ym):120

A = {(xi, yj) : xi ∈ x, yj ∈ y}.121

Extracting Alignments. For TransAlign, we ex-122

tract word alignments from the contextualized em-123

beddings produced by the encoder of a multilingual124

encoder-decoder MT model. We separately feed125

the source language sentence x and target language126

sentence y through the encoder obtaining their con-127

textualized representations hx and hy, respectively.128

Following prior work (Jalili Sabet et al., 2020; Dou129

and Neubig, 2021; Wang et al., 2022), we next130

obtain the token similarity matrix Sxy:131

Sxy = hxh
T
y132

We row- and column-normalize the similarity 133

matrix using softmax to obtain Ŝxy and Ŝyx— 134

capturing the similarity from x to y and y to x. 135

Finally, we compute the alignment matrix A by 136

intersecting the two similarity matrices: 137

A = (Sxy > c) ∗ (ST
yx > c), 138

where c is the alignment threshold and Aij = 1 139

indicates that two tokens are aligned. As the MT 140

encoder operates on the level of sub-word tokens, 141

we consider two words to be aligned if any of their 142

sub-word tokens are aligned, in line with the prior 143

WA work (Jalili Sabet et al., 2020; Dou and Neubig, 144

2021; Wang et al., 2022). 145

Fine-Tuning for Word Alignment. Addition- 146

ally, we explore fine-tuning TransAlign on a word 147

alignment-specific objective to further improve per- 148

formance. Different from related work—that em- 149

ployed full fine-tuning (Dou and Neubig, 2021; 150

Wang et al., 2022) or adapter-based fine-tuning 151

(Wang et al., 2022)—we opt for LoRA (Hu et al., 152

2022) as it does not increase model depth while 153

maintaining parameter efficiency. We resort to the 154

following loss function for WA fine-tuning: 155

L =
∑
ij

Âij
1

2
(
(Sxy)ij

n
+

(ST
yx)ij

m
), 156

where Â refers to the alignments extracted at the 157

current training step and n (or m) is the number of 158

tokens in sentence x (or y) (Dou and Neubig, 2021; 159

Wang et al., 2022). 160

3 Experiments 161

With label projection as the key remaining applica- 162

tion of word aligners, we first evaluate TransAlign 163

on translation-based XLT for token classification. 164

We then additionally benchmark TransAlign intrin- 165

sically on word alignment itself. 166

3.1 Experimental Setup 167

TransAlign. For both extrinsic and intrinsic eval- 168

uation, we use the encoder of the distilled 600M 169

parameter version of NLLB (Team et al., 2022) as 170

the backbone of TransAlign. We extract alignments 171

after the last (i.e., 12th) layer using an alignment 172

threshold of c = 0.001. 173

Extrinsic Evaluation. We benchmark the down- 174

stream capabilities of the fine-tuned TransAlign 175

on translation-based XLT for token classification. 176
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We resort to T-Test—since it is shown to outper-177

form T-Train (Le et al., 2024; Ebing and Glavaš,178

2025)—where an MT model is used to translate the179

original target language instances into the (noisy)180

source language before inference. Afterward, the181

predictions are mapped back to the original target182

language via word alignment. Having obtained the183

alignments, we follow the span-based label projec-184

tion algorithm of Ebing and Glavaš (2025).1185

Evaluation Tasks. We evaluate for 28 diverse186

languages on two established token classification187

tasks: named entity recognition (NER) and slot188

labeling (SL). For NER, we use MasakhaNER2.0189

(Masakha) (Adelani et al., 2022) encompassing190

low-resource languages from Sub-Saharan Africa.191

For SL, the evaluation dataset is xSID (van der192

Goot et al., 2021), covering mid- to high-resource193

languages and dialects. In all experiments, we use194

English as the source language.195

Label Projection Baselines. Our baselines com-196

prise two popular WAs based on multilingual en-197

coders (i) AwsmAlign (Dou and Neubig, 2021),198

based on multilingual BERT, and (ii) AccAlign199

(Wang et al., 2022), based on the multilingual sen-200

tence encoder LaBSE. Moreover, we include Codec201

(Le et al., 2024)—a state-of-the-art non-WA-based202

label projection method that identifies labeled203

spans in the translated sentence post-translation204

by means of constrained decoding.205

Downstream Fine-Tuning. We evaluate XLM-R206

Large (Conneau et al., 2020) and DeBERTaV3207

Large (He et al., 2023) as our downstream LMs.208

We train the models on the original English data209

and run experiments with 3 random seeds. We210

report the mean F1 score and standard deviation.211

Intrinsic Evaluation. We evaluate TransAlign212

on 8 language pairs: en-cz/de/fr/hi/ja/ro/sv/zh and213

compare it against the same WA-baselines. All214

WAs are evaluated in their vanilla (non-fine-tuned)215

variant. We report AER for each language pair. We216

provide full details of the intrinsic evaluation in the217

Appendix B.218

3.2 Main Results219

Extrinsic Evaluation. Table 1 outlines the T-Test220

results for the fine-tuned WAs and Codec. We221

demonstrate that all T-Test strategies exceed zero-222

shot XLT substantially reaching an improvement223

1The algorithm projects labels across spans and not indi-
vidual tokens and can compensate for some word alignment
errors. For details, we refer the reader to the original work.

Masakha xSID Avg

ZS X 52.9±1.8 76.5±1.4 64.7±1.7

Translate-Test: non-WA

Codec X 72.0±0.5 80.1±0.3 76.1±0.4

Codec D 72.4±0.4 80.2±0.4 76.3±0.4

Translate-Test: WA

AwsmAlign X 68.4±0.4 78.8±0.3 73.6±0.4

AwsmAlign D 68.8±0.4 78.7±0.4 73.8±0.4

AccAlign X 72.3±0.4 80.9±0.3 76.6±0.4

AccAlign D 72.7±0.4 80.8±0.4 76.8±0.4

TransAlign X 73.9±0.4 82.2±0.4 78.1±0.4

TransAlign D 74.3±0.4 82.2±0.4 78.3±0.4

Table 1: Main results for translation-based XLT for
token classification. Results with XLM-R (X) and De-
BERTa (D). We report mean F1.

en-zh en-cs en-fr en-de en-hi en-ja en-ro en-sv

All Words

AwsmAlign 18.2 12.3 6.3 18.6 42.9 46.2 28.9 9.9
AccAlign 16.2 9.3 5.2 16.4 30.4 43.3 20.8 7.3
TransAlign 18.8 8.9 6.8 17.7 29.4 43.2 20.6 7.8

w/o Stopwords

AwsmAlign 12.5 10.6 5.3 14.2 35.6 35.3 22.0 9.2
AccAlign 10.7 6.8 4.3 11.6 24.9 37.5 16.1 5.8
TransAlign 10.6 6.3 4.0 11.8 23.4 36.5 15.2 5.1

Table 2: Main results for word alignment evaluation.
Word alignment models are evaluated in their vanilla
(non-fine-tuned) variant. We report the AER consider-
ing all words and without considering stopwords.

of up to 13.4% on average (with TransAlign and 224

XLM-R). Comparing TransAlign against the other 225

WA baselines, we find it to clearly outperform 226

AwsmAlign and AccAlign by 5.5% and 1.5% on 227

average.2 Not only does TransAlign outperform 228

popular WAs in translation-based XLT for token 229

classification, but it also improves over the compet- 230

itive non-WA-based label projection method Codec 231

by 2% on average. This finding is noteworthy as 232

TransAlign is a fair baseline for Codec: both ap- 233

proaches use a fine-tuned NLLB model of the same 234

size for label projection. However, TransAlign is 235

computationally more efficient as it only uses the 236

encoder of NLLB and thus avoids the costly con- 237

strained decoding of Codec (Le et al., 2024). 238

Intrinsic Evaluation. We present the results for 239

intrinsic evaluation in Table 2. Considering all 240

words in the source and target sentence equally, we 241

2Since TransAlign covers substantially more languages
than AccAlign, we provide additional experiments demon-
strating that the improved performance does not stem from
broader language coverage (see Appendix E).
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Figure 1: Word alignment performance across layers of
vanilla TransAlign. We present the average AER over
all 8 language pairs.

find that TransAlign produces the best results for242

4 out of 8 language pairs (AccAlign reaches the243

best performance on the remaining ones). While244

TransAlign and AccAlign perform similarly on245

alignment itself, our TransAlign exhibited stronger246

downstream XLT performance (Table 1). For exam-247

ple, in intrinsic evaluation, AccAlign outperforms248

TransAlign for Chinese and German by 2.6% and249

1.3%, respectively. In contrast, for T-Test on xSID250

(see App. G), the trend turns around: TransAlign251

outperforms AccAlign for both Chinese (0.7%) and252

German (2.2%).253

These results point to a mismatch between the254

standard word alignment evaluation that treats each255

word in the input as equally important and label256

projection for translation-based XLT that requires257

correct alignments on a subset of the input sentence.258

Commonly, labeled spans in downstream evalua-259

tion span words that carry meaning (e.g., named260

entities). We thus additionally report the align-261

ment results by excluding stopwords—words with262

little semantic meaning—from the evaluation. Re-263

sults presented in Table 2 (bottom half) support our264

hypothesis: not accounting for the (accuracy of)265

stopword alignment, TransAlign outperforms both266

baselines consistently: this means it produces more267

accurate alignments between content words, which268

explains why it yields downstream XLT gains.269

3.3 Analysis270

Performance per Layer. The layer from which271

we extract the alignments can have a substantial272

impact on performance (Jalili Sabet et al., 2020;273

Dou and Neubig, 2021; Wang et al., 2022). Fig-274

ure 1 shows the average AER performance for all275

layers of vanilla TransAlign: using the last layer276

of TransAlign substantially outperforms using any277

other layer.278

Alignment Threshold. The threshold parameter279

c decides whether two tokens are considered to be280

aligned. We ablate the choice of c for all WAs in281

their vanilla variant (see Figure 2). While AwsmA-282

10 5 10 4 10 3 10 2 10 1

20

30

40
AwsmAlign
AccAlign
TransAlign

Figure 2: Word alignment performance for different
thresholds of c. We evaluate vanilla WAs and present
the average AER over all 8 language pairs.

Masakha xSID Avg

Non-Fine-Tuned WAs

AwsmAlign 66.2±0.3 74.1±0.3 70.2±0.3

AccAlign 71.2±0.4 80.0±0.4 75.6±0.4

TransAlign 73.5±0.4 81.8±0.4 77.7±0.4

Fine-Tuned WAs

AwsmAlign 68.8±0.4 78.7±0.4 73.8±0.4

AccAlign 72.7±0.4 80.8±0.4 76.8±0.4

TransAlign 74.3±0.4 82.2±0.4 78.3±0.4

Table 3: Impact of WA fine-tuning on translation-based
XLT for token classification. Results with DeBERTa.

lign and TransAlign are robust to the threshold 283

value, we find AccAlign’s performance to severely 284

vary with the value of c. 285

Impact of WA Fine-Tuning. We obtained the best 286

results for our WA-fine-tuned TransAlign (Table 287

1). We next assess the contribution of word align- 288

ment fine-tuning for all WAs on downstream MT- 289

based XLT performance (see Table 3). We find that 290

fine-tuning improves the XLT results for all WAs, 291

but the gains are more pronounced for WAs with 292

weaker initial performance: AwsmAlign improves 293

by 3.6% compared to 0.6% for TransAlign. We 294

also note that using a stronger WA model is more 295

beneficial than fine-tuning: vanilla TransAlign out- 296

performs the WA-fine-tuned AccAlign by 0.7%. 297

4 Conclusion 298

In this work, we proposed TransAlign, a new 299

word aligner (WA) that leverages the encoder of 300

NLLB, a massively multilingual encoder-decoder 301

MT model. Our extrinsic evaluation on translation- 302

based XLT for token classification on two estab- 303

lished benchmarks covering 28 languages, shows 304

that TransAlign outperforms popular existing WAs 305

as well as state-of-the-art non-WA-based label 306

projection methods. Furthermore, our intrinsic 307

word alignment evaluation reveals that, TransAlign 308

aligns content words (rather than functional words) 309

in particular better than existing WAs, which then 310

reflects in downstream XLT gains. 311
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5 Limitations312

We focused on choosing well-established and rep-313

resentative tasks for token classification. However,314

in NLP, multilingual evaluation benchmarks are315

often created by translating the data from an ex-316

isting high-resource language followed by post-317

editing. This applies to xSID and some languages318

of Masakha. As a result, the newly introduced319

languages might contain translation artifacts re-320

ferred to as translationese. Prior work (Artetxe321

et al., 2020, 2023) stated that translation-based322

XLT strategies might lead to exploitation of trans-323

lationese, slightly overestimating performance.324

Our intrinsic evaluation points to a potential mis-325

match between the word alignment task and the326

extrinsic evaluation on translation-based XLT for327

token classification. Our results suggest that the328

mismatch stems from the discrepancy of treating all329

words equally (intrinsic evaluation) against focus-330

ing on a specific subset of words (extrinsic evalua-331

tion). While we hypothesize as to why MT models332

perform worse in aligning words with little seman-333

tic meaning than sentence encoders, further work334

is needed to test our hypothesis.335
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A Experimental Details: Extrinsic689

Evaluation690

Machine Translation. For translation, we utilize691

the state-of-the-art massively multilingual NLLB692

model with 3.3B parameters (Team et al., 2022).693

Following prior work (Artetxe et al., 2023; Ebing694

and Glavaš, 2024; Ebing and Glavaš, 2025), we695

decode using beam search with a beam size of696

5. For Masakha (Adelani et al., 2022) and xSID697

(van der Goot et al., 2021), we concatenated the pre-698

tokenized input on whitespace before translation.699

We deviate from this for the Chinese data in xSID,700

where we merge Chinese tokens without whites-701

pace. Additionally, the dialect South Tyrol (de-st)702

in xSID is not supported by NLLB. We translate703

the dialect pretending it to be German (i.e., using704

the German language code) as it is closely related705

to the latter. We accessed all datasets through the706

Hugging Face library and ensured compliance with 707

the licenses. All translations were run on a single 708

A100 with 40GB VRAM. 709

Word Aligners. We will publicly release our 710

word alignment code (Apache 2.0 license) and the 711

model checkpoints for the fine-tuned TransAlign 712

(CC-BY-NC 4.0 license). Next to TransAlign, we 713

re-implemented two popular word aligners as our 714

baselines: AwsmAlign (Dou and Neubig, 2021) 715

and AccAlign (Wang et al., 2022). We chose the 716

code repository of SimAlign (Jalili Sabet et al., 717

2020) as the starting point for our implementa- 718

tion. We accessed the code through their repos- 719

itory: (https://github.com/cisnlp/simalign). Follow- 720

ing Dou and Neubig (2021), we extracted align- 721

ments for AwsmAlign after the 8th layer using an 722

alignment threshold of c = 0.001. For AccAlign, 723

we use the 6th layer and an alignment threshold of 724

c = 0.1 (Wang et al., 2022). We comply with the 725

licenses of AwsmAlign (BSD 3-Clause) and SimA- 726

lign (MIT). We could not find licensing information 727

for AccAlign. 728

Codec. Codec (Le et al., 2024) is a label projec- 729

tion method that leverages constrained decoding 730

as part of a two-step translation procedure. In the 731

first step, the source sentence is translated into the 732

target language (e.g., from English: “This is New 733

York” to German: “Das ist New York”). Then, in 734

the second step, tags are inserted around the la- 735

beled spans in the source sentence (English: “This 736

is [ New York ]”). The marked sentence is fed 737

again as input to the MT model: during decod- 738

ing, the MT model is now constrained to gener- 739

ate only the tokens from the translation obtained 740

in the first step (“Das”, “ist”, “New”, “York”) 741

or a tag (“[”, “]”). We chose Codec as a repre- 742

sentative method for non-WA-based label projec- 743

tion: Ebing and Glavaš (2025) suggest that Codec 744

performs on par or better than comparable non- 745

WA-based label projection methods (Chen et al., 746

2023; García-Ferrero et al., 2023; Parekh et al., 747

2024). To project the labels for T-Test, we used 748

the publicly available code repository of Codec: 749

https://github.com/duonglm38/Codec. While an 750

implementation for Masakha is already provided, 751

we extended their implementation to handle label 752

projection for xSID. We adhered to the hyperparam- 753

eters in their repository and followed the existing 754

implementation closely. The constrained decoding 755

(i.e., inserting the tags post-translation) requires 756

a fine-tuned NLLB that is able to preserve/insert 757
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tags. Therefore, we follow Le et al. (2024) using758

the fine-tuned 600M parameter version of NLLB759

released by Chen et al. (2023). We could not find760

licensing information for Codec.761

Label Projection. We follow the span-based label762

projection procedure used by (Ebing and Glavaš,763

2025). The algorithm projects labels across spans764

and not individual tokens and can compensate for765

some word alignment errors. For details, we refer766

the reader to the original work. Unlike their work,767

we do not apply filtering heuristics for T-Test.768

Word Aligner Fine-Tuning. For fine-tuning, we769

apply LoRA to the feed-forward sublayer of each770

encoder layer. We train each WA for 20 epochs771

using a learning rate of 1e−4. The rank is set to772

8 and alpha to 32. We apply LoRA dropout with773

0.01. For WA training, we utilize the labeled data774

from the intrinsic evaluation (see Table 7).775

Downstream Fine-Tuning. We train both tasks776

(NER and SL) for 10 epochs using an effective777

batch size of 32. In case we can not fit the desired778

batch size, we utilize gradient accumulation. The779

learning rate is set to 1e−5 with a weight decay780

of 0.01. We implement a linear schedule of 10%781

warm-up and employ mixed precision. We evaluate782

models at the last checkpoint of training. We use783

the seqeval F1 implementation accessed through784

the Hugging Face library. Further, we access our785

downstream models—XLM-RoBERTa Large and786

DeBERTaV3 Large—through the Hugging Face787

library. All downstream training and evaluation788

runs were completed on a single V100 with 32GB789

VRAM. We estimate the GPU time to be 2000790

hours across all translations and downstream fine-791

tunings.792

Datasets.793

MasakhaNER2.0. Our experiments cover 18 out794

of 20 languages that are supported by NLLB. Note795

that Google Translate (GT) does not support all 18796

languages. Following, we mark the 11 languages797

that are supported by GT with an additional as-798

terisk: Bambara (bam)*, Ewé (ewe)*, Fon (fon),799

Hausa (hau)*, Igbo (ibo)*, Kinyarwanda (kin)*,800

Luganda (lug), Luo (luo), Mossi (most), Chichewa801

(nya), chiShona (sna)*, Kiswahili (saw)*, Setswana802

(tsn), Akan/Twi (twi)*, Wolof (wol), isiXhosa803

(xho)*, Yorùrbá (yor)*, and isiZulu (zul)*. As804

source data, we use the English training (14k in-805

stances) and validation portions (3250 instances) of806

CoNLL (Tjong Kim Sang and De Meulder, 2003).807

xSID. We evaluate 10 languages all covered by 808

NLLB and GT: Arabic (ar), Danish (da), Ger- 809

man (de), South-Tyrolean (de-st), Indonesian (id), 810

Italian (it), Kazakh (kk), Dutch (nl), Turkish (tr), 811

and Chinese (zh). Following Razumovskaia et al. 812

(2023), we excluded Japanese from the evaluation 813

because it only has half of the validation and test 814

instances and spans only a fraction of entities com- 815

pared to the other languages. Moreover, we ex- 816

clude Serbian as the evaluation data is written in the 817

Latin script whereas NLLB was only trained in the 818

Cyrillic script. xSID is an evaluation-only dataset. 819

Therefore, we follow van der Goot et al. (2021) and 820

use their publicly released English data for training 821

and validation. The instances are sourced from the 822

Snips (Coucke et al., 2018) and Facebook (Schus- 823

ter et al., 2019) SL datasets. We deduplicate the 824

training instances, ending up with over 36k training 825

and 300 validation examples. 826

B Experimental Details: Intrinsic 827

Evaluation 828

Word Alignment Baselines. We use the same 829

WA models as for the extrinsic evaluation— 830

AwsmAlign and AccAlign (see App. A). All WAs 831

are evaluated in their non-fine-tuned variant. 832

Languages. We evaluate the following 8 lan- 833

guage pairs: English-Chinese (en-zh), English- 834

Czech (en-cz), English-French (en-fr), English- 835

German (en-de), English-Hindi (en-hi), English- 836

Japanese (en-ja), English-Romanian (en-ro) and 837

English-Swedish (en-sv). We provide details on 838

the used datasets in Table 7. 839

Stopword Filtering. For the results in Table 2, 840

we applied stopword filtering prior to AER com- 841

putation. We identified stopwords from the En- 842

glish source sentences using the stopword list pro- 843

vided by NLTK (Elhadad, 2010) and removed cor- 844

responding target language words accordingly. The 845

NLTK source code is published under the Apache 846

2.0 license. We comply with their license. 847

C Further Analysis: Robustness of 848

Fine-Tuning 849

For the application of a fine-tuned WA model, only 850

a single seed of a fine-tuned model will eventu- 851

ally be used. Therefore, we ablate the variance of 852

the random seed chosen for fine-tuning. We fine- 853

tune AwsmAlign, AccAlign, and TransAlign on 854

three distinct random seeds and evaluate them on 855

9
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Figure 3: Variance of WA model fine-tuning with three
distinct random seeds evaluated on translation-based
XLT. Results with DeBERTa.

translation-based XLT. The resulting variance is de-856

picted in Figure 3. We observe little impact by the857

choice of the random seed for TransAlign: for xSID858

the variance is comparable to that of AwsmAlign859

and AccAlign, while for Masakha, it is substan-860

tially lower.861

D Further Analysis: MT Model862

In translation-based XLT for token classification, it863

is pragmatic to use the encoder of the MT model864

for word alignment since (i) only a single model865

is required for the label projection pipeline (i.e.,866

translation and label projection) and (ii) the lan-867

guage coverage of target languages is ensured for868

both steps. However, open access to the encoder869

of the MT model is required. With closed com-870

mercial MT models being considered to produce871

superior translation quality, we explore whether872

the gains obtained by TransAlign are orthogonal to873

the MT model. Our results in Table 4 suggest that874

TransAlign does not depend on its own translations.875

The performance improvements obtained by label876

projection with TransAlign are orthogonal to gains877

obtained by higher translation quality.878

Masakha xSID Avg

AwsmAlign NLLB 69.2±0.4 78.7±0.4 74.0±0.4

AccAlign NLLB 73.7±0.4 80.8±0.4 77.3±0.4

TransAlign NLLB 75.1±0.5 82.2±0.4 78.7±0.5

AwsmAlign GT 70.6±0.3 80.1±0.4 75.3±0.4

AccAlign GT 75.2±0.4 82.1±0.4 78.6±0.4

TransAlign GT 76.4±0.5 83.6±0.4 80.0±0.4

Table 4: Results for translation-based XLT for token-
level tasks with translations obtained from different MT
models—Google Translation (GT) and NLLB (NLLB).
Results with DeBERTa.

E Further Analysis: Language Coverage 879

NLLB has seen substantially more languages in 880

pretraining than LaBSE (200 vs. 109 languages). 881

To ensure that performance improvements obtained 882

by TransAlign do not simply stem from broader 883

language coverage, we evaluate TransAlign and Ac- 884

cAlign on a subset of languages seen in the pretrain- 885

ing of both models. We observe that TransAlign 886

still outperforms AccAlign even on a subset of lan- 887

guages seen by both models (see Table 5). 888

Masakha xSID Avg

AccAlign 74.1±0.5 83.2±0.4 78.7±0.4

TransAlign 75.4±0.5 84.7±0.4 80.0±0.4

Table 5: Results for translation-based XLT for token-
level tasks only evaluating languages seen in the pre-
training of both WAs. Results with DeBERTa.

F Further Analysis: NLLB Model Size 889

NLLB is released in different model sizes rang- 890

ing from 600M up to 54B parameters. Table 6 891

compares the fine-tuned TransAlign in two differ- 892

ent model sizes. We evaluate the 600M (distilled) 893

and 3.3B parameter models on translation-based 894

XLT for token classification. Our results reveal that 895

the larger model does not provide any advantage. 896

Hence, we used the 600M parameter model for our 897

main results. 898

Masakha xSID Avg

TransAlign 600M 74.3±0.4 82.2±0.4 78.3±0.4

TransAlign 3.3B 74.5±0.4 81.4±0.4 78.0±0.4

Table 6: Results for translation-based XLT for token-
level tasks with different sizes of NLLB as WA. Results
with DeBERTa.
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Lang Source Link #Sents

en-zh (Liu and Sun, 2015) https://nlp.csai.tsinghua.edu.cn/ ly/systems/TsinghuaAligner/TsinghuaAligner.html 450
en-cs (Mareček et al., 2008) https://ufal.mff.cuni.cz/czech-english-manual-word-alignment 2400
en-fr (Mihalcea and Pedersen, 2003) https://web.eecs.umich.edu/ mihalcea/wpt/ 447
en-de (Vilar et al., 2006) https://www-i6.informatik.rwth-aachen.de/goldAlignment/ 508
en-hi (Aswani and Gaizauskas, 2005) https://web.eecs.umich.edu/ mihalcea/wpt05/ 90
en-ja (Neubig, 2011) https://www.phontron.com/kftt/ 582
en-ro (Mihalcea and Pedersen, 2003) https://web.eecs.umich.edu/ mihalcea/wpt05/ 248
en-sv (Holmqvist and Ahrenberg, 2011) https://www.ida.liu.se/divisions/hcs/nlplab/resources/ges/ 192

Table 7: Datasets used for intrinsic evaluation and fine-tuning of WAs. For the fine-tuning, we held out 100 randomly
selected instances of the en-cs dataset as validation portion.

G Detailed Results: Main Results
bam ewe fon hau ibo kin lug luo mos nya sna swa tsn twi wol xho yor zul Avg

ZS X 43.4 72.8 61.0 73.5 49.9 46.3 64.9 55.0 56.1 51.1 34.4 88.1 51.5 49.5 56.2 22.2 35.1 41.5 52.9

Translate-Test: non-WA

Codec X 54.5 78.8 67.4 72.9 72.8 77.6 83.6 72.8 49.4 78.1 79.3 82.2 79.2 72.5 67.3 72.5 58.4 77.1 72.0
Codec D 54.3 79.1 68.0 73.3 73.9 78.2 83.5 74.2 48.8 79.0 79.8 82.9 79.3 73.1 67.8 72.6 58.0 77.0 72.4

Translate-Test: WA

AwsmAlign X 51.4 78.7 61.3 70.9 75.4 66.8 82.7 72.2 47.6 77.5 71.8 81.5 79.5 70.8 62.1 56.0 61.7 63.8 68.4
AwsmAlign D 51.1 78.8 62.1 71.4 77.0 67.6 82.5 73.6 47.6 77.9 72.3 82.1 79.8 71.7 62.5 56.2 61.2 63.8 68.8
AccAlign X 54.4 79.9 69.7 74.7 75.2 70.8 84.4 72.6 53.1 78.6 81.7 83.0 80.0 71.2 64.9 73.2 55.4 78.7 72.3
AccAlign D 53.8 79.9 70.1 75.2 76.7 71.5 84.2 74.1 53.2 79.1 82.3 83.6 80.4 72.0 65.4 73.3 55.3 78.8 72.7
TransAlign X 56.8 80.8 72.8 74.9 75.8 71.0 84.8 74.7 54.0 78.8 82.2 82.3 82.2 75.1 68.6 73.8 62.8 79.0 73.9
TransAlign D 56.6 80.8 73.3 75.4 77.3 71.7 84.6 76.3 53.7 79.2 82.8 82.9 82.6 75.8 69.3 74.0 62.5 79.1 74.3

Table 8: Detailed main results for translation-based XLT on Masakha. Results with XLM-R (X) and DeBERTa (D).

ar da de de-st id it kk nl tr zh Avg

ZS X 71.5 85.6 80.8 43.9 86.8 88.2 80.8 88.8 81.5 57.4 76.5

Translate-Test: non-WA

Codec X 79.0 81.9 86.1 60.4 84.8 88.4 83.0 86.5 83.6 67.0 80.1
Codec D 79.9 81.8 85.5 58.8 85.8 89.0 83.2 86.0 84.2 67.5 80.2

Translate-Test: WA

AwsmAlign X 79.1 76.2 85.2 60.2 79.1 87.9 75.3 87.3 78.1 80.1 78.8
AwsmAlign D 79.3 75.9 84.4 58.4 79.9 88.6 75.1 86.5 78.9 80.0 78.7
AccAlign X 80.2 75.8 85.2 61.0 84.1 88.2 82.6 86.6 82.4 82.5 80.9
AccAlign D 80.7 75.5 84.5 59.3 85.0 88.9 82.7 86.0 83.3 82.4 80.8
TransAlign X 81.0 81.0 87.4 61.0 87.0 88.5 82.4 87.8 83.2 83.2 82.2
TransAlign D 81.4 80.7 86.7 59.3 87.9 89.2 82.4 86.9 84.1 83.1 82.2

Table 9: Detailed main results for translation-based XLT on xSID. Results with XLM-R (X) and DeBERTa (D).

H Detailed Results: Impact of Fine-Tuning

bam ewe fon hau ibo kin lug luo mos nya sna swa tsn twi wol xho yor zul Avg

Non-Fine-Tuned WAs

AwsmAlign X 46.0 76.9 57.9 70.1 75.5 64.9 83.0 71.8 43.5 77.9 63.3 79.8 80.6 70.9 53.1 50.0 58.1 60.3 65.8
AwsmAlign D 46.0 77.0 58.6 70.6 76.9 65.6 82.8 73.2 43.6 78.4 63.7 80.5 81.2 71.7 53.5 50.0 57.7 60.2 66.2
AccAlign X 54.7 79.1 68.2 74.1 72.7 69.7 83.6 70.7 49.5 77.5 80.5 81.3 81.3 71.9 63.2 70.9 48.3 76.9 70.8
AccAlign D 54.1 79.1 68.6 74.6 74.0 70.2 83.3 72.0 49.3 78.2 81.0 82.0 81.6 73.0 63.6 71.1 48.2 77.0 71.2
TransAlign X 55.6 80.1 70.5 74.6 75.0 70.4 84.8 73.6 52.4 77.8 81.5 82.2 82.2 75.2 67.2 73.4 60.1 78.6 73.1
TransAlign D 55.4 80.1 71.2 75.1 76.6 71.0 84.6 75.0 52.4 78.5 82.1 82.8 82.5 75.9 68.0 73.5 59.9 78.8 73.5

Fine-Tuned WAs

AwsmAlign X 51.4 78.7 61.3 70.9 75.4 66.8 82.7 72.2 47.6 77.5 71.8 81.5 79.5 70.8 62.1 56.0 61.7 63.8 68.4
AwsmAlign D 51.1 78.8 62.1 71.4 77.0 67.6 82.5 73.6 47.6 77.9 72.3 82.1 79.8 71.7 62.5 56.2 61.2 63.8 68.8
AccAlign X 54.4 79.9 69.7 74.7 75.2 70.8 84.4 72.6 53.1 78.6 81.7 83.0 80.0 71.2 64.9 73.2 55.4 78.7 72.3
AccAlign D 53.8 79.9 70.1 75.2 76.7 71.5 84.2 74.1 53.2 79.1 82.3 83.6 80.4 72.0 65.4 73.3 55.3 78.8 72.7
TransAlign X 56.8 80.8 72.8 74.9 75.8 71.0 84.8 74.7 54.0 78.8 82.2 82.3 82.2 75.1 68.6 73.8 62.8 79.0 73.9
TransAlign D 56.6 80.8 73.3 75.4 77.3 71.7 84.6 76.3 53.7 79.2 82.8 82.9 82.6 75.8 69.3 74.0 62.5 79.1 74.3

Table 10: Impact of WA fine-tuning on translation-based XLT on Masakha. Results with XLM-R (X) and DeBERTa
(D).
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ar da de de-st id it kk nl tr zh Avg

Non-Fine-Tuned WAs

AwsmAlign X 74.2 75.8 84.6 58.9 76.0 85.3 59.3 85.7 69.2 73.6 74.1
AwsmAlign D 74.8 75.5 83.8 56.9 76.4 86.0 59.7 85.2 69.7 73.3 74.1
AccAlign X 78.8 75.4 84.8 59.5 82.0 86.4 81.8 86.6 82.7 82.2 80.0
AccAlign D 79.2 75.2 84.1 57.9 83.0 87.2 81.8 85.9 83.6 82.1 80.0
TransAlign X 80.0 81.0 87.3 61.0 86.5 87.8 81.8 87.3 83.8 82.6 81.9
TransAlign D 80.3 80.7 86.6 59.4 87.5 88.5 81.8 86.6 84.6 82.6 81.8

Fine-Tuned WAs

AwsmAlign X 79.1 76.2 85.2 60.2 79.1 87.9 75.3 87.3 78.1 80.1 78.8
AwsmAlign D 79.3 75.9 84.4 58.4 79.9 88.6 75.1 86.5 78.9 80.0 78.7
AccAlign X 80.2 75.8 85.2 61.0 84.1 88.2 82.6 86.6 82.4 82.5 80.9
AccAlign D 80.7 75.5 84.5 59.3 85.0 88.9 82.7 86.0 83.3 82.4 80.8
TransAlign X 81.0 81.0 87.4 61.0 87.0 88.5 82.4 87.8 83.2 83.2 82.2
TransAlign D 81.4 80.7 86.7 59.3 87.9 89.2 82.4 86.9 84.1 83.1 82.2

Table 11: Impact of WA fine-tuning on translation-based XLT on xSID. Results with XLM-R (X) and DeBERTa
(D).

I Detailed Results: MT Model

bam ewe hau ibo kin sna swa twi xho yor zul Avg

AwsmAlign NLLB 51.1 78.8 71.4 77.0 67.6 72.3 82.1 71.7 56.2 61.2 63.8 69.2
AccAlign NLLB 53.8 79.9 75.2 76.7 71.5 82.3 83.6 72.0 73.3 55.3 78.8 73.7
TransAlign NLLB 56.6 80.8 75.4 77.3 71.7 82.8 82.9 75.8 74.0 62.5 79.1 75.1

AwsmAlign GT 55.4 78.9 71.9 79.4 68.1 75.2 84.1 73.5 59.0 65.1 66.1 70.6
AccAlign GT 59.6 79.3 74.2 79.3 72.4 84.7 86.0 73.5 75.2 61.6 81.2 75.2
TransAlign GT 61.5 79.9 74.2 80.4 72.6 84.8 86.11 77.13 75.73 66.73 81.3 76.4

Table 12: Detailed results for translation-based XLT on Masakha with translations obtained from different MT
models—Google Translation (GT) and NLLB (NLLB). Results with DeBERTa.

ar da de de-st id it kk nl tr zh Avg

AwsmAlign NLLB 79.3 75.9 84.4 58.4 79.9 88.6 75.1 86.5 78.9 80.0 78.7
AccAlign NLLB 80.7 75.5 84.5 59.3 85.0 88.9 82.7 86.0 83.3 82.4 80.8
TransAlign NLLB 81.4 80.7 86.7 59.3 87.9 89.2 82.4 86.9 84.1 83.1 82.2

AwsmAlign GT 81.3 76.0 85.6 58.9 79.7 90.2 76.3 87.8 82.0 83.2 80.1
AccAlign GT 81.7 76.6 85.3 58.8 85.3 90.1 85.1 87.1 84.4 86.4 82.1
TransAlign GT 82.6 81.4 87.6 58.8 87.1 91.9 84.6 89.0 86.2 86.7 83.6

Table 13: Detailed results for translation-based XLT on xSID with translations obtained from different MT models—
Google Translation (GT) and NLLB (NLLB). Results with DeBERTa.
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J Detailed Results: Language Coverage

hau ibo kin nya sna swa wol xho yor zul Avg

AccAlign 75.2 76.7 71.5 79.1 82.3 83.6 65.4 73.3 55.3 78.8 74.1
TransAlign 75.4 77.3 71.7 79.2 82.8 82.9 69.3 74.0 62.5 79.1 75.4

Table 14: Detailed results for translation-based XLT on Masakha only evaluating languages seen in the pretraining
of both WAs. Results with DeBERTa.

ar da de id it kk nl tr zh Avg

AccAlign 80.7 75.5 84.5 85.0 88.9 82.7 86.0 83.3 82.4 83.2
TransAlign 81.4 80.7 86.7 87.9 89.2 82.4 86.9 84.1 83.1 84.7

Table 15: Detailed results for translation-based XLT on xSID only evaluating languages seen in the pretraining of
both WAs. Results with DeBERTa.

K Detailed Results: NLLB Model Size
bam ewe fon hau ibo kin lug luo mos nya sna swa tsn twi wol xho yor zul Avg

TransAlign 600M 56.6 80.8 73.3 75.4 77.3 71.7 84.6 76.3 53.7 79.2 82.8 82.9 82.6 75.8 69.3 74.0 62.5 79.1 74.3
TransAlign 3.3B 57.1 80.7 74.0 75.2 77.3 71.8 84.6 76.3 54.1 79.6 82.7 83.3 82.5 75.8 69.5 74.0 62.8 79.2 74.5

Table 16: Detailed results for translation-based XLT on Masakha with different sizes of NLLB as WA. Results with
DeBERTa.

ar da de de-st id it kk nl tr zh Avg

TransAlign 600M 81.4 80.7 86.7 59.3 87.9 89.2 82.4 86.9 84.1 83.1 82.2
TransAlign 3.3B 80.8 76.0 86.2 59.3 82.5 89.4 83.5 86.8 86.3 83.7 81.4

Table 17: Detailed results for translation-based XLT on xSID with different sizes of NLLB as WA. Results with
DeBERTa.
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