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ABSTRACT

We study the statistical performance of a continual learning problem with two lin-
ear regression tasks in a well-specified random design setting. We consider a struc-
tural regularization algorithm that incorporates a generalized ℓ2-regularization tai-
lored to the Hessian of the previous task for mitigating catastrophic forgetting. We
establish upper and lower bounds on the joint excess risk for this algorithm. Our
analysis reveals a fundamental trade-off between memory complexity and statis-
tical efficiency, where memory complexity is measured by the number of vectors
needed to define the structural regularization. Specifically, increasing the number
of vectors in structural regularization leads to a worse memory complexity but
an improved excess risk, and vice versa. Furthermore, our theory suggests that
naive continual learning without regularization suffers from catastrophic forget-
ting, while structural regularization mitigates this issue. Notably, structural regu-
larization achieves comparable performance to joint training with access to both
tasks simultaneously. These results highlight the critical role of curvature-aware
regularization for continual learning.

1 INTRODUCTION

Continual learning (CL) is a machine learning setting where multiple distinct tasks are presented
to a learning agent sequentially. As new tasks are encountered, it is expected that the agent learns
both the old and the new tasks as the number of tasks increases. However, due to limited long-
term memory, the CL agent cannot retain all past information. This makes CL significantly more
challenging than single-task learning, as it cannot perform joint training on all available samples
(Parisi et al., 2019). On the other hand, without using exceedingly large long-term memory, we
can view a CL problem as an online multi-task problem and sequentially fit a CL model with the
data from each task. Unfortunately, the final model obtained via such an online approach could
suffer from catastrophic forgetting (McCloskey & Cohen, 1989; Goodfellow et al., 2013), where
performance on earlier tasks degrades after adapting to new ones due to loss of knowledge from
previous tasks.

Many works in CL focus on developing heuristic algorithms that record information about previous
tasks to reduce forgetting in later tasks. One effective category of methods mitigates catastrophic for-
getting by applying structural regularization (Kirkpatrick et al., 2017; Aljundi et al., 2018; Chaudhry
et al., 2018; Kolouri et al., 2020; Li et al., 2021). From a geometric perspective (Chaudhry et al.,
2018; Li et al., 2021), structural regularization methods store a PSD importance matrix that estimates
the significance of model parameters for previous tasks. When learning new tasks, a quadratic reg-
ularizer based on this importance matrix is applied to prevent significant deviation of important
parameters from the previous ones (Kirkpatrick et al., 2017; Aljundi et al., 2018).

While various effective importance matrices have been proposed, practitioners have observed that
the full importance matrix can require prohibitively large memory, scaling as O

(
d2
)

for a neural
network with d parameters. To address this, several approximation strategies have been applied
to reduce the memory cost, including diagonal approximations (Kirkpatrick et al., 2017; Aljundi
et al., 2018), K-FAC (Ritter et al., 2018), and sketching (Li et al., 2023). Empirical results suggest
that more accurate approximations, which require higher memory costs, often lead to better CL
performance (Ritter et al., 2018; Li et al., 2021).
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In contrast to these practical advancements, the theoretical understanding of CL algorithms remains
in its early stages. Several theoretical works have analyzed CL and particularly regularization-based
CL methods on linear regression (e.g., Evron et al. (2022); Li et al. (2023); Zhao et al. (2024));
however, these studies focus on specific regularizers with fixed memory costs, and none explicitly
link memory usage to the statistical performance of the CL algorithm. Additionally, existing works
often impose strong assumptions on input data, limiting their forgetting analysis to optimization
settings or scenarios with fixed input data or transforms.

Contributions. In this paper, we theoretically study the memory-statistics trade-off in continual
learning algorithms with structural regularization within the linear regression setting. Specifically,
we consider two-task linear regression under covariate shift (see Definitions 1 and 2) in random de-
sign. We study the generalized ℓ2-regularized CL algorithm (GRCL), where a user-defined quadratic
regularizer is applied during the second task, controlling the extent to which the model deviates from
the learned first task (see (3)). Our contributions are as follows:

• We provide sharp risk bounds for the GRCL algorithm in the one-hot random design set-
ting. These bounds reveal a provable trade-off between CL performance and memory cost,
governed by the regularization matrix: a well-designed regularizer enhances CL perfor-
mance at the cost of more memory usage.

• We show that without regularization, catastrophic forgetting occurs when there is a signifi-
cant difference in a small subset of dominant features in the one-hot setting. Conversely, by
selecting an appropriate regularizer with higher memory usage, the GRCL algorithm can
prevent catastrophic forgetting and achieve the error rate of joint learning.

• We extend the risk bounds without regularization to the Gaussian distribution setting as
a technical advancement. We show that, in addition to differences in dominant features,
catastrophic forgetting can also occur in the Gaussian design when there exists a slight
difference in the tail features.

The paper is organized as follows. Section 2 covers the most related works to our paper; the others
are deferred to Appendix A. In Section 3, we set up the theoretical setting of the 2-task CL problem.
We present our main results and messages under this setting with supporting numerical experiments
in Section 4; additional details of numerical and practical experiments are deferred to Appendix E.
We extend our main results and messages into broader settings including Gaussian design, multi-
task CL and general neural networks in the NTK regime in Section 5. Finally, we conclude our work
in Section 6. All proofs are deferred to Appendices B, C, and D.

2 RELATED WORKS

Over the past decade, a long list of practical CL methods has been proposed to address the catas-
trophic forgetting problem of neural networks. These CL methods can be roughly divided into four
categories, utilizing regularization, replay, architecture expansion and projection respectively. One
can refer to Parisi et al. (2019); Wang et al. (2024) or Appendix A for a comprehensive overview.

Memory-performance relationship beyond regularization. The relationship between memory
and CL performance has also been observed in other CL paradigms. In replay-based methods, the
performance of ER (Chaudhry et al., 2019) rises with the size of the episodic memory. Similarly, in
projection-based approaches like GPM (Saha et al., 2021), the rank of the projection subspaces di-
rectly influences CL accuracy. While a theoretical analysis of the memory-performance relationship
in these settings is an exciting open direction, it is beyond the scope of this work.

CL theory. Several theoretical works have emerged recently on understanding forgetting in CL.
We discuss those immediately related to our paper; the others are deferred to Appendix A.

Evron et al. (2022) analyzes the ordinary continual learning in the setting with fixed input data and
labels, limiting their results to only the optimization aspects of CL. The work by Li et al. (2023)
considers the ℓ2-regularized CL performance on the two-task fixed design setting; the work by Zhao
et al. (2024) also considers the fixed-design setting and evaluates the statistical performance with
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GRCL on the multi-task linear regression. In comparison, we consider the GRCL in the random de-
sign, in which the impact of input data randomness is taken into account. Moreover, all these works
consider specific regularizers with fixed memory costs, while our work is the first to theoretically
reveal the memory-statistics relation of CL.

3 PROBLEM SETUP

Linear regression under covariate shift. We set up a 2-task CL setting with two linear regression
problems - our results can be extended to CL with more than two tasks without additional technical
hurdles. We use x ∈ H and y ∈ R to denote an input data vector in a Hilbert space (with a finite
or a countably infinite dimension d ≤ ∞ ) and a label variable, respectively. Consider two data
distributions D(1) and D(2). In the problem of continual learning, we are first given n pairs of data
vectors and label variables independently sampled from the first task distribution, and then another
n data that are drawn independently from the second distribution, which is denoted by

(x
(1)
i , y

(1)
i )ni=1 ∼ D(1), (x

(2)
i , y

(2)
i )ni=1 ∼ D(2).

For simplicity, we use the infinite-dimensional matrix notation for the dataset: X(t) denotes the
linear map from H to Rn corresponding to x

(t)
1 , . . . ,x

(t)
n ∈ H for tasks t = 1, 2. We consider the

CL problem under the covariate shift setting, defined by Definition 1 and 2.

Definition 1 (Covariance conditions). Assume that all entries and the trace of the data covariance
matrices of both tasks are finite. Denote the data covariance matrices of the two tasks by

G := ED(1) [xx⊤], H := ED(2) [xx⊤],

and denote their eigenvalues respectively by (µi)i≥1 and (λi)i≥1. For convenience, assume that
both G and H are strictly positive definite.

Definition 2 (Model conditions). For each model parameter w, define the population risks for the
two tasks by

R1(w) := ED(1)(y −w⊤x)2, R2(w) := ED(2)(y −w⊤x)2.

Assume that a shared optimal parameter exists for both tasks, i.e.,

argminR1(w) ∩ argminR2(w) ̸= ∅.

Denote w∗ as the minimal-ℓ2-norm solution that simultaneously minimizes both tasks, i.e., w∗ is
the unique solution of the following program:

min ∥w∥2, s.t. w ∈ argminR1(w) ∩ argminR2(w).

The shared optimal parameter assumption is common in theoretical CL literature (Zhao et al., 2024;
Li et al., 2023; Evron et al., 2022), allowing us to focus on the effect of covariate shift. This assump-
tion is mild, since an overparameterized neural network can solve multiple tasks together in practice,
demonstrating the existence of shared optimal parameters. Furthermore, our theory is ready to be
generalized to allow different optimal parameters by a standard application of the triangle inequality.

Continual learning. The goal of CL is to learn a model to minimize the joint population risk:

R(w) = R1(w) +R2(w).

Unlike multi-task learning problems, CL is under the constraint that the sampled datasets for the CL
tasks are accessed in a sequential manner. Specifically, a CL agent on two tasks has two learning
phases where the agent draws samples first from D(1) and then from D(2). At the end of the second
phase, the agent generates a model parameter that aims to achieve a small joint population risk.
To achieve this goal, information from D(1) needs to be transmitted to the learning phase of D(2).
Therefore, the memory consolidation phase is introduced between the learning phases (Kirkpatrick
et al., 2017; Zenke et al., 2017), in which the CL agent retains only limited information from learning
D(1) and feeds it to the second learning phase.
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Ordinary and ℓ2-regularized continual learning. Two basic CL algorithms that are well studied
in the literature are referred to by us as ordinary continual learning (OCL)(Evron et al., 2022; Li
et al., 2023; Zhao et al., 2024) and ℓ2-regularized continual learning (ℓ2-RCL)(Li et al., 2023). In
the first learning phase, both OCL and ℓ2-RCL perform ordinary least squares with the first dataset.
In the memory consolidation phase, they transmit the obtained minimum norm estimator w(1) for
the first task. In the second learning phase, OCL finds the parameter w(2) that fits the second dataset
while minimizing the ℓ2-distance to w(1). The information consolidated and transmitted between
the two learning phases is minimal, consisting of only one vector of dimension d (the estimator
w(1)). However, it is known that this algorithm suffers from catastrophic forgetting (Evron et al.,
2022; Li et al., 2023). The parameters generated by this training procedure are specified by:

w(1) =
(
X(1)⊤X(1)

)−1
X(1)⊤y(1); w(2) = w(1) +

(
X(2)⊤X(2)

)−1
X(2)⊤(y(2) −X(2)w(1)

)
.

(1)

With a slight sophistication, ℓ2-RCL computes a model parameter w(2) that fits the second dataset
under an isotropic ℓ2-penalty from the previous parameter, with its intensity quantified by γ:

w(1) =
(
X(1)⊤X(1)

)−1
X(1)⊤y(1); w(2) = argmin

w

1

n
∥y(2) −X(2)w∥22 + γ∥w −w(1)∥22.

(2)
Compared to OCL, the additional information saved and transmitted between the two learning
phases is only a scalar (the regularization parameter γ). This shows that ℓ2-RCL is still a low-
memory-cost algorithm. However, it is proved in Li et al. (2023) that no choice of γ can temper the
catastrophic forgetting for certain two-task linear regression problems. Therefore, better algorithms
involving more complicated memory consolidation need to be considered for better CL performance.

Generalized ℓ2-regularized continual learning. The primary CL algorithm in our analysis is the
generalized ℓ2-regularized continual learning (GRCL). The first learning phase of GRCL is identical
to the OCL. In the memory consolidation phase, GRCL transmits the obtained parameter w(1), as
well as a semidefinite matrix Σ ∈ Rd×d. In the second learning phase, the algorithm finds the
parameter that fits the second dataset under a quadratic penalty of distance from the previous model
parameter, quantified by the metric Σ. Specifically, GRCL outputs w(2) such that:

w(1) =
(
X(1)⊤X(1)

)−1
X(1)⊤y(1); w(2) = argmin

w

1

n
∥y(2) −X(2)w∥22 + ∥w −w(1)∥2Σ.

(3)
The additional regularization matrix Σ is usually low-rank and can be stored in the form Σ =
W⊤W , where W ∈ Rk×d. Compared to OCL, GRCL takes an additional memory of Σ, which
can be expressed with k vectors of dimension d. The choice of Σ determines the balance between
the memory cost and the statistical performance of the GRCL algorithm.

We note that GRCL covers several commonly studied CL algorithms as special cases. Specifically,
GRCL becomes OCL when Σ → 0; when Σ = γI for γ > 0, GRCL becomes ℓ2-RCL (Li et al.,
2023). The EWC algorithm (Kirkpatrick et al., 2017) is a special case of GRCL when Σ is a diagonal
matrix. We also note that GRCL has been studied in Zhao et al. (2024); however, they only focus on
the optimality of the algorithm where the size of the regularization Σ is unlimited, while we focus
on the different choice of Σ that affects the balance of the memory-statistics trade-off.

Evaluation metric. The output parameter w(2) of the CL algorithms is evaluated by the joint
excess risk, defined by the excess risk of the algorithm compared to the optimal performance:

∆(w(2)) = R(w(2))−minR(·).

We present a set of assumptions that are used in our analysis.
Assumption 1 (Well-specified noise). Assume that for the distributions for both tasks t = 1, 2, the
label variable is given by

y(t) = x(t)⊤w∗ + ε(t), ε(t) ∼ N (0, σ2),

where ε(t) is independent of x(t) and the shared optimal parameter w∗ is defined in Definition 2.
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For conciseness, we assume that the two tasks have the same noise level σ2. This is not restrictive,
and our results can be directly generalized to allow different noise levels as well.
Assumption 2 (Commutable covariance matrices). Assume that the two data covariance matrices
G and H are commutable, namely GH = HG. Without loss of generality, we further assume that
both G and H are diagonal matrices.

We note that the diagonality of covariance matrices G and H are only for convenience. Our results
also hold for commutable covariance matrices since the CL problem is rotation invariant. These
assumptions are commonly seen in the literature for the covariate shift scenario (Lei et al., 2021;
Wu et al., 2022; Zhao et al., 2024).

Notation. For two positive-value functions f(x) and g(x), we write f(x) ≲ g(x) or f(x) ≳ g(x)
if f(x) ≤ cg(x) or f(x) ≥ cg(x) respectively for some absolute constant c; and we write f(x) ≂
g(x) if f(x) ≲ g(x) ≲ f(x). For two matrices G and H , we denote G ⪯ H or G ⪰ H if G−H
or H −G are PSD matrices respectively. Additional notations are deferred to Appendix B.

4 MAIN RESULTS

We investigate the performance of the CL algorithms in the one-hot setting. The one-hot setting is a
type of random design setting (Hsu et al., 2012) that is well-studied in previous literature (Zou et al.,
2021), where input vectors are sampled from the set of natural bases. Compared to the fixed design
in Li et al. (2023), the random design considers the impact of the input distribution randomness.
Assumption 3 (One-hot setting). Let (ei)di=1 be the orthogonal bases for H. Assume that P(x(1) =
ei) = µi and that P(x(2) = ei) = λi for i ≥ 1, where µi, λi ≥ 0,

∑
i µi = 1 and

∑
i λi = 1.

Risk bounds for joint learning. When all information in the first learning phase can be accessed
in learning the second task, one can solve the two-task CL problem by joint learning, in which the
output is determined by

wjoint = argmin
w:y(1)=X(1)w,y(2)=X(2)w

∥w∥22. (4)

Since joint learning transmits more memory than any other CL algorithm, it is usually used as or
an upper bound in evaluating the performance of CL algorithms in the literature (Farajtabar et al.,
2020; Saha et al., 2021). We expect that a well-designed CL algorithm can match the performance
of joint learning. To this end, the following proposition presents a risk bound for solving the two
linear regression tasks with joint learning in the one-hot setting.
Proposition 1 (Joint learning bound). Suppose Assumptions 1, 2 and 3 hold. Denote J,K such that
J =

{
i : µi >

1
n

}
, and K =

{
i : λi >

1
n

}
. Then for wjoint given by (4),

E∆(wjoint) = bias+ variance,

where

bias =
∑
i

(1− µi)
n(1− λi)

n(µi + λi)w
∗
i
2, variance ≂

σ2

n

(
|J ∪K|+ n2

∑
i∈Jc∩Kc

(µi + λi)
2
)
.

We are particularly interested in the CL problems that are jointly learnable, i.e., having an o(1)
excess risk with joint learning. From Proposition 1, we can see that a necessary (and also sufficient)
condition to be jointly learnable is that the “head” of the distributions (i.e., the number of large
eigenvalues |J|, |K|) is o(n), and that the “tail” of the distributions satisfies the following conditions:∑

i∈Jc
µ2
i = o(1/n),

∑
i∈Kc

λ2
i = o(1/n). (5)

4.1 RISK BOUNDS FOR CONTINUAL LEARNING

Our main result, Theorem 2, provides general risk bounds for GRCL with any regularization matrix
Σ ⪰ 0. In particular, GRCL reduces to OCL when Σ → 0 and to ℓ2-RCL when Σ = γI for γ > 0.
By establishing matching upper and lower bounds for the joint excess risk of GRCL as a function of
Σ, we are able to analyze the impact of regularization on different CL algorithms.
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Theorem 2. Suppose Assumptions 1, 2, and 3 hold. Denote J,K such that J =
{
i : µi ≥ 1

n

}
,

and K =
{
i : λi ≥ 1

n

}
. Consider the PSD regularization matrix Σ = diag(γi)

p
i=1, where Σ is

commutable with the data covariance matrices G,H . Then for the GRCL output (3), it holds that

E∆(w(2)) = bias+ variance,

where the expectations of bias and variance with respect x(1) and x(2) satisfy

bias ≂ ⟨(G+H)(I −G)n(Σ2(Σ+H)−2 + (I −H)n), w∗w∗⊤⟩,

variance ≂ σ2
(
⟨(G+H)(Σ2(Σ+H)−2 + (I −H)n),

1

n
GJ

−1 + nGJc⟩

+⟨G+H,
1

n
(HK +ΣK)

−2HK + n(IKc + nΣKc)−2HKc⟩
)
.

(6)

Theorem 2 tightly characterizes the risk of GRCL in the one-hot setting. Specifically, the CL risk
consists of a bias term and a variance term, and we give matching upper and lower bounds on both
parts. These bounds are functions of the CL task distribution parameters (G,H, σ2, n) and the
regularization matrix Σ. In the following, we use this result to analyze catastrophic forgetting in
OCL and ℓ2-RCL and demonstrate how GRCL mitigates forgetting with arbitrary memory Σ.

Catastrophic forgetting of OCL and ℓ2-RCL. Compared to GRCL, OCL retains minimal mem-
ory carried over to the second learning phase. As a result, its statistical performance is expected to
be inferior to joint learning. The following corollary quantifies this difference:
Corollary 3. Under the conditions of Theorem 2, for the OCL output (1), we have

E∆(w(2)) ≂ E∆(wjoint) +
σ2

n

(∑
i∈K

µi

λi
+ n2

∑
i∈J∩Kc

µiλi

)
. (7)

As indicated by Corollary 3, for OCL to achieve an o(1) CL excess risk in a jointly learnable prob-
lem, it is sufficient and necessary to have∑

i∈K

µi

λi
+ n2

∑
i∈J∩Kc

µiλi = o(n). (8)

The expression in (8) quantifies the statistical gap between OCL and joint learning. To minimize
this gap, the intermediate eigenvalue space of H near 1/n must align with the small eigenvalue
space of G. When (8) is not satisfied, OCL experiences a constant statistical underperformance due
to catastrophic forgetting. Similarly, ℓ2-RCL is also a low-memory CL algorithm, carrying only
an additional memory of the regularization parameter γ compared to OCL. The following corollary
helps us understand the performance of ℓ2-RCL.
Corollary 4. Under the conditions of Theorem 2, for the ℓ2-RCL output (2), we have

E∆(w(2)) ≲ E∆(wjoint) + (γ + 1
n )∥w

∗∥22 +
σ2

n

∑
i∈J∪K

(
µi

λi +
1
n + γ

+
γ

µi +
1
n

)
. (9)

Corollary 4 shows that for ℓ2-RCL to achieve an o(1) risk in jointly learnable problem, it suffices
that

γ = o(1),
∑

i∈J∪K

(
µi

λi +
1
n + γ

+
γ

µi +
1
n

)
= o(n), (10)

holds for some γ > 0. It is clear that (10) is a weaker set of requirements than (8) as OCL is a
special case of ℓ2-RCL when γ → 0. However, there still exist CL tasks that are jointly solvable yet
not solvable by ℓ2-RCL. To demonstrate the failure of OCL and ℓ2-RCL, we show two examples of
CL problem: the first is not solvable by OCL, and the second is further not solvable by ℓ2-RCL.
Example 5. Under the conditions of Theorem 2, suppose σ2 = 1 and ∥w∥22 = 1. Then, for
G = diag(µi)

d
i=1 and H = diag(λi)

d
i=1:

• If µ1 = 1 and λ1 = 1/n, then the OCL excess risk satisfies E∆(w(2)) = Ω(1).

6
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• Suppose that for i < 1
3n, µi = 1 and λi =

1
n , while for 1

3n ≤ i < 2
3n, µi =

1
n and λi = 1.

For all other i ≥ 2
3n, µi = λi = 0. Then for any regularization parameter γ > 0, the

ℓ2-RCL excess risk satisfies E∆(w(2)) = Ω(1).

Thus, both OCL and ℓ2-RCL cannot match the performance of joint learning across all CL tasks.

GRCL avoids forgetting with full memory. To enhance CL performance, GRCL introduces the
regularization matrix Σ to transfer information from the first task to the training phase of the second
task. The following corollary shows that with sufficient memory and appropriate Σ, GRCL can
achieve performance comparable to joint learning.

Corollary 6. Under the same conditions as Theorem 2, consider the regularization Σ =
diag(γi)

d
i=1 with γi = µi for µi ≥ 1/n and γi = 0 otherwise. Then, for the GRCL output (6),

we have
E∆(w(2)) ≲ E∆(wjoint).

Corollary 6 demonstrates that by selecting a regularization matrix of size |J| that captures all the
top eigenvalues of G greater than 1/n, GRCL can attain joint learning performance and eliminate
catastrophic forgetting from OCL and ℓ2-RCL.

4.2 MEMORY-STATISTICS TRADE-OFF OF GRCL

In this part, we further investigate the constrained memory setting to analyze the trade-off between
memory consumption and statistical performance in GRCL. The memory cost of GRCL is measured
by the number of distinct eigenvectors in the regularization matrix Σ. Our results demonstrate that
the GRCL excess risk decreases as the memory allocated to regularization increases, and vice versa.

Catastrophic forgetting in low-memory settings. Our analysis in Section 4.1 reveals that both
OCL and ℓ2-RCL exhibit catastrophic forgetting with limited memory. We extend this understanding
to GRCL through the following example:

Example 7. Under the conditions of Theorem 2, suppose σ2 = 1 and ∥w∥22 = 1. Then, for
G = diag(µi)

d
i=1 and H = diag(λi)

d
i=1,

• For any positive constant k << N , if µi = 1/(k + 1) and λi = 1/n for 1 ≤ i ≤ k + 1,
then for any regularizer Σ of size k, the GRCL excess risk satisfies E∆(w(2)) = Ω(1).

This constructed scenario generalizes the OCL failure on Example 5 to GRCL: recall that in the
previous example, there exists one eigenvalue mismatch on the dominant eigenspace (µ1 = 1, λ1 =
1/n). Since OCL lacks the memory to store this mismatched eigenvalue, catastrophic forgetting
occurs. Similarly, in Example 7, the k + 1 dominant features in G coupled with intermediate
H eigenvalues create an insurmountable memory bottleneck – no k-dimensional regularization in
GRCL can mitigate forgetting across k + 1 orthogonal directions.

Tempered forgetting in moderate memory settings. In Corollary 6 and Example 7, we showed
that GRCL can suffer catastrophic forgetting when memory is limited, and that GRCL performance
matches joint learning with sufficient memory. The following example illustrates GRCL perfor-
mance dynamics with intermediate memory.

Example 8. Under the same conditions in Theorem 2, let G = diag(µi)
∞
i=1, where µi = i−α with

α > 1. Consider the top-k regularization Σ = diag(γi)
∞
i=1 with γi = µi for i ≤ k and γi = 0

otherwise, where 1 ≤ k ≤ α
√
n. Then, for the GRCL output (6), we have

E∆(w(2)) ≲ E∆(wjoint) ·
(
1 +

n

kα

)
. (11)

In Example 8, we observe that as the memory size k of GRCL increases, the ratio of GRCL’s excess
risk to the joint learning risk decreases at a rate of n

kα , approaching the joint learning performance
at k = α

√
n. This example demonstrates that GRCL with an intermediate memory constraint can

partially alleviate catastrophic forgetting.
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Figure 1: Expected excess risk vs. (a) sample size n, and (b) memory size k for generalized ℓ2-
regularized continual learning (GRCL), compared with joint learning (JL) and ordinary continual
learning (OCL). For each point in each curve, the y-axis represents the expected CL excess risk (in
the logarithmic scale). The dimension of the task is d = 200. The sample size is fixed at n = 5000
in (b). The excess risk is computed by taking an empirical average over 20 independent runs.

Numerical Experiments. We conduct numerical experiments in Gaussian design to verify our
theoretical results; additional experiments on practical CL datasets are deferred to Appendix E.2.
Gaussian design is a more widely used random design setting in the statistical learning literature
(Hsu et al., 2012; Bartlett et al., 2020).

Assumption 4 (Gaussian design). Assume that x(1) = G1/2z(1) and that x(2) = H1/2z(2), where
z(1), z(2) ∼ N (0, I).

We consider a CL problem adapted from Wu et al. (2022) and Li et al. (2023)(see Appendix E.1 for
details). As shown in Figure 1(a), OCL suffers from a constant excess risk due to catastrophic for-
getting. In contrast, GRCL’s performance improves with memory size k, matching the convergence
rate of joint learning at k = 5. To further verify the memory-statistics trade-off of GRCL, we vary
the memory size k in Figure 1(b), which shows that GRCL reduces excess risk with larger k and
reaches joint learning performance with k ≤ 15 for the given CL problem.

5 EXTENSIONS

In this section, we discuss extensions of our results and messages to some more general CL settings.

OCL in Gaussian design. From the numerical experiments, we observe that our main results for
the one-hot setting in Section 4 also empirically hold for the Gaussian design. However, our main
theoretical results on GRCL cannot be directly generalized to the Gaussian design due to technical
hurdles. As a preliminary step, we provide the lower and upper bounds of the OCL excess risk in
Theorems 18 and 19 in Appendix C.

We would like to highlight the different behaviors in Gaussian design from the one-hot setting: the
following example shows the additional source of forgetting in Gaussian design.

Example 9. Under the same condition in Theorem 18, suppose that σ2 = 1, ∥w∥22 = 1. Then for
(µi)

n
i=1 and (λi)

n
i=1,

• If µ1 = 1 and λ1 = 1/n, then the OCL excess risk and the forgetting is Ω(1).

• If µi = i−1 log−α(i + 1) and λi = i−1 log−β(i + 1) for some constants α, β > 1 that
satisfies β ≤ α+ 1, then the OCL excess risk and the forgetting is Ω(logβ−α−1 n).

The first problem in Example 9 illustrates how a single difference in essential features can result in
forgetting in the Gaussian case, which is also described in the one-hot case in Example 5. However,
the second problem in Example 9 shows that forgetting can also result from differences in the less
significant features on the tail.
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CL in the NTK regime. We study the extension of our main messages in linear regression to the
NTK regime of neural networks. Consider a 2-task CL setting in which the goal is to learn a neural
network model fw(x) specified by parameter w ∈ Rd. Lee et al. (2019) proved that under the NTK
regime, neural networks evolve as a linear model:

fw(x) = f (0)(x) + ⟨∇wf (0)(x),w −w(0)⟩, (12)

where f (0)(·) denotes the model with w(0) = 0 as the initial weight. Under this setting, we consider
the convergence of GRCL with gradient descent (GD). We can reduce the GRCL in the NTK setting
to the linear algorithm in (3), providing that we give the following inputs x′, y′ to the linear model:

x′(1) = ϕ(x(1)), x′(2) = ϕ(x(2)), y′
(1)

= y(1) − f (0)(x(1)), y′
(2)

= y(2) − f (1)(x(2)). (13)

With the covariance matrices G := ED(1) [ϕ(x(1))ϕ(x(1))⊤],H := ED(2) [ϕ(x(2))ϕ(x(2))⊤] de-
fined accordingly, which actually represents the Hessian of the model, we have our main results:
Theorem 10 (Theorem 2 in the NTK regime). Suppose Assumption 5 holds. Denote G :=
ED(1) [ϕ(x(1))ϕ(x(1))⊤],H := ED(2) [ϕ(x(2))ϕ(x(2))⊤]. Then for the GRCL output w(2),

E∆(w(2)) = bias+ variance,

where the bias and variance satisfy (6) defined in Theorem 2 with G,H defined as above.

Therefore, our main results in Theorem 2 as well as its collollaries and messages still hold in the
NTK regime and can be applied in general neural networks.

Multi-task CL. We study the extension of our main messages to the multi-task CL setting. For
tasks t = 1, . . . , T where T ≥ 3, the goal is to learn a model w to minimize the joint population risk
R(w) =

∑
t Rt(w). Corollary 11 extends the message that with sufficient memory and appropriate

regularization, GRCL can match the performance of joint training in multi-task CL. For details,
please refer to Appendix D.2.
Corollary 11 (Corollary 6 in the multi-task setting). Suppose Assumptions 1”, 2”, 3” hold. Con-
sider the regularization Σ(t) = diag(γ

(t)
i )di=1 for t = 1, . . . , T , with γ

(t)
i = µ

(t−1)
i for µ(t−1)

i ≥ 1/n

and γ
(t)
i = 0 otherwise. Then, for the GRCL output w(T ), we have

E∆(w(T )) ≲ E∆(wjoint). (14)

Combining with the existing Example 7, where low-memory CL behaves poorly, we deliver the
message that there is a provable memory-statistics trade-off in multi-task CL.

Practical algorithms. We now examine how to generate the regularization matrix Σ from Corol-
lary 6, which achieves joint learning performance in GRCL. Recall that Σ is computed after the first
training phase when we have access to the sampled training data X(1), and the goal is to memorize
the top eigenvalues and their corresponding eigenvectors of G. In the one-hot setting, we can sim-
ply store all distinct x(1)

i as the eigenvectors and use their frequencies as an unbiased estimation of
eigenvalues. This approach has a 0.999 probability of capturing the eigenvectors with eigenvalues
µi > 10/n. As a result, this makes GRCL a practical algorithm without requiring prior knowledge
of the true covariance parameter. In the case of Gaussian distributions or practical datasets, linear
sketching methods such as CountSketch (Charikar et al., 2002) can be used to specify the memory
utilized in GRCL, where the GRCL algorithm corresponds to the Sketched Structural Regularization
method proposed by Li et al. (2021).

6 CONCLUSIONS

We consider the generalized ℓ2-regularized continual learning algorithm with two linear regression
tasks in the random design setting. We derive lower and upper bounds for the algorithm. We show a
provable trade-off between the memory size and the statistical performance of the algorithm, which
can be adjusted by the regularization matrix. We show that catastrophic forgetting occurs when no
regularization is added and that a well-designed structural regularization can fully mitigate this issue.
We demonstrate the memory-statistics trade-off of generalized ℓ2-regularized continual learning in
random design with concrete examples and experiments.
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A ADDITIONAL RELATED WORKS

CL practice. Over the past decade, continual learning has found applications in computer vision
(Qu et al., 2021) and, more recently, in large language models (Wu et al., 2024). A long list of practi-
cal CL methods has been proposed to address the catastrophic forgetting problem of neural networks.
These CL methods can be roughly divided into four categories: regularization-based methods (e.g.,
Kirkpatrick et al. (2017)), replay-based methods (e.g., Chaudhry et al. (2019)), architecture-based
methods (e.g., Serra et al. (2018)), and projection-based methods (e.g., Saha et al. (2021)). Among
the regularization-based methods, early structural regularizers including EWC (Kirkpatrick et al.,
2017) and MAS (Aljundi et al., 2018) are widely used since they take only O (d) memory by ap-
plying diagonal approximation to the importance matrix. More complex structural regularizers with
higher memory costs are proposed later for better CL performance, including Structured Laplacian
Approximation (Ritter et al., 2018) and Sketched Structural Regularization (Li et al., 2021). Beyond
structural regularization, replay-based methods reduce forgetting by retaining the memory of old
data and replaying them in training new tasks, and projection-based methods reduce forgetting by
projecting the gradient update into a memorized subspace. One can refer to Parisi et al. (2019);
Wang et al. (2024) for a comprehensive overview.

CL theory. In addition to the works by Zhao et al. (2024); Li et al. (2023); Evron et al. (2022)
introduced in Section 2, in this section we cover additional CL theory works in the literature.

The theoretical effect of full Hessian regularization on CL has been mentioned in several papers to
different extents, including Peng et al. (2023) and Evron et al. (2023). Peng et al. (2023) mainly
focuses on the optimal solution space of general CL problems and how different CL paradigms (in-
cluding regularization-based methods) approximately solve CL by approaching that solution space,
and Evron et al. (2023) mainly studies the continual linear classification scenario. In these two
works, it is briefly mentioned and proved in optimization scenarios that a full Hessian regularization
can fully mitigate forgetting when measured on the input dataset. Compared to these papers, we in-
vestigate further by characterizing the memory-performance trade-off as well as how much memory
is required to prevent forgetting, since the Hessian is usually too large to store in the GPU memory.

The works by Goldfarb & Hand (2023); Goldfarb et al. (2024) consider CL settings in which the first
task input dataset is considered random. However, in both works, the second dataset is dependent
on the first dataset, whereas in our work, the two tasks are independent. As a result, their similarity
metric is transition-dependent while ours is task-dependent. Similar to Evron et al. (2022), Goldfarb
et al. (2024) also only considers the optimization error.

The works by Heckel (2022); Lin et al. (2023) consider the statistical error in CL. However, they
additionally assumed that the data covariance matrices are identity matrices for all tasks, while the
optimal parameter for each task is different, limiting their generalization results to the underparam-
eterized regime. This reflects the task-incremental CL setting (Van de Ven & Tolias, 2019), while
we focus on the domain-incremental CL setting where all tasks share the same optimal parameter,
but the data covariance matrices change across different tasks. Therefore, our results are not directly
comparable with theirs.

The rest of the papers are not directly connected to ours. In particular, Doan et al. (2021); Bennani
et al. (2020) studies the forgetting and the generalization error of the Orthogonal Gradient Descent
method (Farajtabar et al., 2020) in the NTK regime (Jacot et al., 2018).

B PROOF OF ONE-HOT GRCL

Additional notations. For any index set K, we denote its complement by Kc. For any index set
K and any matrix M ∈ Rn×d, denote MK as the matrix comprising the i-th columns that satisfy
i ∈ K; additionally, for any matrix M ∈ Rd×d, denote MK as the submatrix of M comprising the
i-th rows and columns that satisfy i ∈ K. We note that all matrix inverses used in this paper are
Moore-Penrose pseudoinverses.
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B.1 PRELIMINARIES

Computing w(1). We first compute w(1). By definition, we have

w(1) =
(
X(1)⊤X(1)

)−1
X(1)⊤y

=
(
X(1)⊤X(1)

)−1
X(1)⊤X(1) ·w∗ +

(
X(1)⊤X(1)

)−1
X(1)⊤ · ε(1).

Denote P(1) := I −
(
X(1)⊤X(1)

)−1
X(1)⊤X(1). Therefore

w(1) −w∗ = −P(1) ·w∗ +
(
X(1)⊤X(1)

)−1
X(1)⊤ · ε(1).

Now noticing that

Eε(1) = 0, Eε(1)ε(1)
⊤
= σ2I,

so the covariance of w(1) −w∗ is

Eε(w
(1) −w∗)(w(1) −w∗)⊤ = P(1) ·w∗w∗⊤ · P(1) + σ2

(
X(1)⊤X(1)

)−1
X(1)⊤X(1)

(
X(1)⊤X(1)

)−1

(15)

= P(1) ·w∗w∗⊤ · P(1) + σ2
(
X(1)⊤X(1)

)−1
. (16)

Computing w(2). Then we compute w(2). By the first-order optimality condition, we have

1

n
X(2)⊤(X(2)w(2) − y(2)

)
+Σ(w(2) −w(1)) = 0,

which implies

w(2) =
(
X(2)⊤X(2) + nΣ

)−1(
X(2)⊤y(2) + nΣw(1)

)
=
(
X(2)⊤X(2) + nΣ

)−1(
X(2)⊤X(2)w∗ +X(2)⊤ϵ(2) + nΣw(1)

)
.

Then we have

w(2) −w∗ =
(
X(2)⊤X(2) + nΣ

)−1

·
(
X(2)⊤X(2)w∗ +X(2)⊤ϵ(2) + nΣw(1) − (X(2)⊤X(2) + nΣ)w∗)

=
(
X(2)⊤X(2) + nΣ

)−1(
nΣ(w(1) −w∗) +X(2)⊤ϵ(2)

)
.

Similarly, notice that

Eϵ(2) = 0, Eϵ(2)ϵ(2)
⊤
= σ2I,

so the covariance of w(2) −w∗ is

E(w(2) −w∗)(w(2) −w∗)⊤

=
(
X(2)⊤X(2) + nΣ

)−1
nΣ · E(w(1) −w∗)(w(1) −w∗)⊤ · nΣ

(
X(2)⊤X(2) + nΣ

)−1

+ σ2
(
X(2)⊤X(2) + nΣ

)−1 ·X(2)⊤X(2) ·
(
X(2)⊤X(2) + nΣ

)−1
.

Denote P(2)
Σ =

(
X(2)⊤X(2) + nΣ

)−1
nΣ. Therefore

E(w(2) −w∗)(w(2) −w∗)⊤

= P(2)
Σ · E(w(1) −w∗)(w(1) −w∗)⊤ · P(2)

Σ

+ σ2
(
X(2)⊤X(2) + nΣ

)−1 ·X(2)⊤X(2) ·
(
X(2)⊤X(2) + nΣ

)−1
. (17)
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Risk decomposition. According to the risk definition and the assumption on the noise, we have

R1(w) =
1

n
E
∥∥X(1)w − y(1)

∥∥2
2

=
1

n
E
∥∥X(1)w −X(1)w∗ − ε(1)

∥∥2
2

= (w −w∗)⊤G(w −w∗) + σ2

= ⟨G, (w −w∗)(w −w∗)⊤⟩+ σ2. (18)
Similarly, the risk for the second task is

R2(w) = ⟨H, (w −w∗)(w −w∗)⊤⟩+ σ2, (19)
and the joint population risk is

R(w) = ⟨G+H, (w −w∗)(w −w∗)⊤⟩+ 2σ2. (20)

B.2 PROOF OF THEOREM 2

To compute the joint population risk and the forgetting, we give several useful lemmas.

Lemma 12 (Bound on the head of
(
X(t)⊤X(t)

)−1
). Suppose Assumptions 1 and 3 hold. Denote

K such that K =
{
i : λi ≥ 1

n}. Then, for n ≥ 2,
1

2n
H−1

K ⪯ E
(
X

(2)
K

⊤
X

(2)
K
)−1 ⪯ 12

n
H−1

K .

Similarly, denote J such that J =
{
i : µi ≥ 1

n}. Then, for n ≥ 2,
1

4n
G−1

J ⪯ E
(
X

(1)
J

⊤
X

(1)
J
)−1 ⪯ 12

n
G−1

J .

Proof. We will give the proof for
(
X

(2)
K

⊤
X

(2)
K
)−1

. The proof is the same for
(
X

(1)
J

⊤
X

(1)
J
)−1

.

For the upper bound, consider each index i ∈ K in diag
(
X

(2)
K

⊤
X

(2)
K
)−1

, which is
(
X(2)⊤X(2)

)
ii

.

Notice that according to Assumption 3, for every i ∈ [d],
(
X(2)⊤X(2)

)
ii

follows the binomial
distribution B(n, λi). Also notice that for n ≥ 2 and 1 ≤ j ≤ ⌈n/2⌉,

1

j

(
n

j

)
λj
i

(
1− λi

)n−j
=

1

j
· j + 1

n− j
·
(

n

j + 1

)
· 1− λi

λi
· λj+1

i

(
1− λi

)n−j−1

=
j + 1

j
· n

n− j
·
(
1− λi

)
· 1

nλi

(
n

j + 1

)
λj+1
i

(
1− λi

)n−j−1

≤ 6 · 1

nλi

(
n

j + 1

)
λj+1
i

(
1− λi

)n−j−1
.

Since the zero values do not count in the expectation of Moore-Penrose pseudoinverse,

E
(
X(2)⊤X(2)

)−1

ii
=

n∑
j=1

1

j

(
n

j

)
λj
i

(
1− λi

)n−j

≤ 2

⌈n/2⌉∑
j=1

1

j

(
n

j

)
λj
i

(
1− λi

)n−j

≤ 12

⌈n/2⌉∑
j=1

1

nλi

(
n

j + 1

)
λj+1
i

(
1− λi

)n−j−1

=
12

nλi

⌈n/2⌉+1∑
j=2

(
n

j

)
λj
i

(
1− λi

)n−j

≤ 12

nλi
.
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For the lower bound, consider each index i ∈ K in diag
(
X

(2)
K

⊤
X

(2)
K
)−1

:

E
(
X(2)⊤X(2)

)−1

ii
= P

((
X(2)⊤X(2)

)
ii
> 0
)
E
[(
X(2)⊤X(2)

)−1

ii
|
(
X(2)⊤X(2)

)
ii
> 0
]

≥ P
((
X(2)⊤X(2)

)
ii
> 0
)
E
[(
X(2)⊤X(2)

)
ii
|
(
X(2)⊤X(2)

)
ii
> 0
]−1

= P
((
X(2)⊤X(2)

)
ii
> 0
)
·
(
E
[(
X(2)⊤X(2)

)
ii

]
/P
((
X(2)⊤X(2)

)
ii
> 0
))−1

= P
((
X(2)⊤X(2)

)
ii
> 0
)2E[(X(2)⊤X(2)

)
ii

]−1

=
1

nλi
P
((
X(2)⊤X(2)

)
ii
> 0
)2

≥ 1

4nλi
.

The second line is by Jensen’s inequality, and the last line is because

P
((
X(2)⊤X(2)

)
ii
> 0
)
= 1−

(
1− λi

)n ≥ 1− e−1 ≥ 1/2

by noticing that for all i ≤ k, λi > λk ≥ 1
n .

Lemma 13 (Bound on the tail of
(
X(t)⊤X(t)

)−1
). Suppose Assumptions 1 and 3 hold. Denote

J,K such that J =
{
i : µi ≥ 1

n

}
, and K =

{
i : λi ≥ 1

n

}
. Then

n

e
GJc ⪯ E

(
X

(1)
Jc

⊤
X

(1)
Jc
)−1 ⪯ nGJc ,

n

e
HKc ⪯ E

(
X

(2)
Kc

⊤
X

(2)
Kc

)−1 ⪯ nHKc .

Proof. We will give the proof for
(
X

(2)
K

⊤
X

(2)
K
)−1

. The proof is the same for
(
X

(1)
J

⊤
X

(1)
J
)−1

.

Recall that for every index i,
(
X(2)⊤X(2)

)
ii

follows the binomial distribution B(n, λi). Therefore,

E
(
X(2)⊤X(2)

)−1

ii
≤ E

(
X(2)⊤X(2)

)
ii
= nλi.

Also, for i ∈ Kc,

E
(
X(2)⊤X(2)

)−1

ii
≥ E1

[(
X(2)⊤X(2)

)
ii
= 1
]

= nλi(1− λi)
n−1

≥ n

e
λi.

The last line is by λi ≤ 1
n for all i ∈ Kc.

Lemma 14 (Expectation on P(2)). Suppose Assumptions 1 and 3 hold. Then

EP(1) = (I −G)n,

EP(2) = (I −H)n.

Proof. We will give the proof for P(2). For any index i,

EP(2)
ii = E1

[(
X(2)⊤X(2)

)
ii
= 0
]
= (1− λi)

n.

The same holds for P(1).

Lemma 15. Suppose Assumptions 1 and 3 hold. Then, for all index i that satisfies λi ≥ 1/n, γi ̸= 0
and for n ≥ 2,

1

2

(
1

n2(λi + γi)2
+

(1− λi)
n

n2γ2
i

)
≤ E

(
X(2)⊤X(2) + nΣ

)−2

ii
≤ 144

(
1

n2(λi + γi)2
+

(1− λi)
n

n2γ2
i

)
.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. For the upper bound, notice that according to Assumption 3, for every i ∈ [d],(
X(2)⊤X(2)

)
ii

follows the binomial distribution B(n, λi). Also notice that for n ≥ 2 and
1 ≤ j ≤ ⌈n/2⌉, (

n

j

)
λj
i

(
1− λi

)n−j ≤ 3 · j + 1

nλi

(
n

j + 1

)
λj+1
i

(
1− λi

)n−j−1
.

Therefore, we examine the following quantity:

E
(
X(2)⊤X(2) + nΣ

)−2

ii
− 2

n2γ2
i

(1− λi)
n = (∗).

Notice that

(∗) ≤
n−1∑
j=1

1

(j + nγi)2

(
n

j

)
λj
i

(
1− λi

)n−j

≤ 2

⌈n/2⌉∑
j=1

1

(j + nγi)2

(
n

j

)
λj
i

(
1− λi

)n−j

≤ 6

⌈n/2⌉∑
j=1

1

nλi

(j + 1)

(j + nγi)2

(
n

j + 1

)
λj+1
i

(
1− λi

)n−j−1

≤ 12

nλi

⌈n/2⌉+1∑
j=2

j

(j + nγi)2

(
n

j

)
λj
i

(
1− λi

)n−j
.

Therefore,

(nλi + nγi) · (∗) ≤ 12

⌈n/2⌉+1∑
j=2

j

(j + nγi)2

(
n

j

)
λj
i

(
1− λi

)n−j
+

n−1∑
j=1

nγi
(j + nγi)2

(
n

j

)
λj
i

(
1− λi

)n−j

≤ 12 ·
n−1∑
j=1

1

j + nγi

(
n

j

)
λj
i

(
1− λi

)n−j
.

Use the same technique and we can get

(nλi + nγi) ·
n−1∑
j=1

1

j + nγi

(
n

j

)
λj
i

(
1− λi

)n−j ≤ 12 ·
n−1∑
j=1

(
n

j

)
λj
i

(
1− λi

)n−j

≤ 12.

As a result, (∗) ≤ 144
n2(λi+γi)2

, and

E
(
X(2)⊤X(2) + nΣ

)−2

ii
≤ 144 ·

(
1

n2(λi + γi)2
+

1

n2γ2
i

(1− λi)
n

)
.

For the lower bound, firstly, by Jensen’s inequality,

E
(
X(2)⊤X(2) + nΣ

)−2

ii
≥
(
EX(2)⊤X(2) + nΣ

)−2

ii

= (nλi + nγi)
−2.

Secondly, by only selecting the j = 0 term in the sum,

E
(
X(2)⊤X(2) + nΣ

)−1

ii
=

n∑
j=0

1

(j + nγi)2

(
n

j

)
λj
i

(
1− λi

)n−j

≥ 1

n2γ2
i

(1− λi)
n.

Combine them and we have

E
(
X(2)⊤X(2) + nΣ

)−2

ii
≥ 1

2
·
(

1

n2(λi + γi)2
+

1

n2γ2
i

(1− λi)
n

)
.
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Lemma 16. Suppose Assumptions 1 and 3 hold. Then, for all index i that satisfies λi ≥ 1/n, γi ̸= 0
and for n ≥ 2,

1

48
· λi

n(λi + γi)2
≤ E[

(
X(2)⊤X(2) + nΣ

)−2
X(2)⊤X(2)]ii ≤ 144 · λi

n(λi + γi)2
.

Proof. For the upper bound, notice that according to Assumption 3, for every i ∈ [d],(
X(2)⊤X(2)

)
ii

follows the binomial distribution B(n, λi). Also notice that for n ≥ 2 and
1 ≤ j ≤ ⌈n/2⌉, (

n

j

)
λj
i

(
1− λi

)n−j ≤ 3 · j + 1

nλi

(
n

j + 1

)
λj+1
i

(
1− λi

)n−j−1
.

Therefore, we examine the following quantity:

E[
(
X(2)⊤X(2) + nΣ

)−2
X(2)⊤X(2)]ii = (∗).

Notice that

(∗) ≤
n−1∑
j=1

j

(j + nγi)2

(
n

j

)
λj
i

(
1− λi

)n−j

≤ 2

⌈n/2⌉∑
j=1

j

(j + nγi)2

(
n

j

)
λj
i

(
1− λi

)n−j

≤ 6

⌈n/2⌉∑
j=1

1

nλi

j(j + 1)

(j + nγi)2

(
n

j + 1

)
λj+1
i

(
1− λi

)n−j−1

≤ 12

nλi

⌈n/2⌉+1∑
j=2

j2

(j + nγi)2

(
n

j

)
λj
i

(
1− λi

)n−j
.

Therefore,

(nλi + nγi) · (∗) ≤ 12

⌈n/2⌉+1∑
j=2

j2

(j + nγi)2

(
n

j

)
λj
i

(
1− λi

)n−j
+

n−1∑
j=1

jnγi
(j + nγi)2

(
n

j

)
λj
i

(
1− λi

)n−j

≤ 12 ·
n−1∑
j=1

j

j + nγi

(
n

j

)
λj
i

(
1− λi

)n−j
.

Use the same technique and we can get

(nλi + nγi) ·
n−1∑
j=1

j

j + nγi

(
n

j

)
λj
i

(
1− λi

)n−j ≤ 12 ·
n−1∑
j=1

j

(
n

j

)
λj
i

(
1− λi

)n−j

≤ 12nλi.

As a result,

(∗) = E[
(
X(2)⊤X(2) + nΣ

)−2
X(2)⊤X(2)]ii ≤ 144 · λi

n(λi + γi)2
.
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For the lower bound, by applying Jensen’s inequality on the positive values of
(
X(2)⊤X(2) +

nΣ
)−2

X(2)⊤X(2) we have:

E[
(
X(2)⊤X(2) + nΣ

)−2
X(2)⊤X(2)]ii

≥ P
((
X(2)⊤X(2)

)
ii
> 0
)2[E(X(2)⊤X(2) + nΣ

)2
(X(2)⊤X(2))−1

]−1

ii

= P
((
X(2)⊤X(2)

)
ii
> 0
)2[

nλi + 2nγi + n2γ2E(X(2)⊤X(2))−1
ii

]−1

≥ P
((
X(2)⊤X(2)

)
ii
> 0
)2[

nλi + 2nγi + 12n
γ2

λi

]−1

=
λi

12n(λi + γi)2
P
((
X(2)⊤X(2)

)
ii
> 0
)2

≥ λi

48n(λi + γi)2
.

The last line is because

P
((
X(2)⊤X(2)

)
ii
> 0
)
= 1−

(
1− λi

)n ≥ 1− e−1 ≥ 1/2

by noticing that λi ≥ 1
n .

Lemma 17. Suppose Assumptions 1 and 3 hold. Then, for all index i that satisfies 0 < λi ≤ 1/n
and for n ≥ 2, Then

nλi

e(1 + nγi)2
≤ E[

(
X(2)⊤X(2) + nΣ

)−2
X(2)⊤X(2)]ii ≤

nλi

(1 + nγi)2
.

Proof. Recall that for every index i,
(
X(2)⊤X(2)

)
ii

follows the binomial distribution B(n, λi).
Therefore,

E[
(
X(2)⊤X(2) + nΣ

)−2
X(2)⊤X(2)]ii ≤

1

(1 + nγi)2
E
(
X(2)⊤X(2)

)
ii

=
nλi

(1 + nγi)2
.

Also,

E[
(
X(2)⊤X(2) + nΣ

)−2
X(2)⊤X(2)]ii ≥

1

(1 + nγi)2
P
[(
X(2)⊤X(2)

)
ii
= 1
]

=
1

(1 + nγi)2
nλi(1− λi)

n−1

≥ nλi

e(1 + nγi)2
.

The last line is by λi ≤ 1
n .

Now we can give the risk in the one-hot setting in Theorem 2.

Proof of Theorem 2. Recall that P(2)
Σ =

(
X(2)⊤X(2) + nΣ

)−1
nΣ. According to (17) and (20),

Eε[R(w(2))−minR] = E⟨G+H, Eε(w
(2) −w∗)(w(2) −w∗)⊤⟩

= ⟨G+H, P(2)
Σ Eε(w

(1) −w∗)(w(1) −w∗)⊤P(2)
Σ ⟩

+ σ2⟨G+H,
(
X(2)⊤X(2) + nΣ

)−2
X(2)⊤X(2)⟩

= ⟨G+H, P(2)
Σ P(1)w∗w∗⊤P(1)P(2)

Σ ⟩

+ σ2
(
⟨G+H, P(2)

Σ

(
X(1)⊤X(1)

)−1P(2)
Σ ⟩

+ ⟨G+H,
(
X(2)⊤X(2) + nΣ

)−2
X(2)⊤X(2)⟩

)
= bias+ variance.
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where the bias term satisfies

Ebias = E⟨G+H, P(2)
Σ P(1)w∗w∗⊤P(1)P(2)

Σ ⟩
≂ ⟨(G+H)(I −G)n(Σ2(Σ+H)−2 + (I −H)n), w∗w∗⊤⟩

and the variance term satisfies

Evariance = σ2E
(
⟨G+H, P(2)

Σ

(
X(1)⊤X(1)

)−1P(2)
Σ ⟩

+ ⟨G+H,
(
X(2)⊤X(2) + nΣ

)−2
X(2)⊤X(2)⟩

)
≂ σ2

(
⟨(G+H)(Σ2(Σ+H)−2 + (I −H)n), E

(
X(1)⊤X(1)

)−1⟩

+ ⟨G+H, E
(
X(2)⊤X(2) + nΣ

)−2
X(2)⊤X(2)⟩

)
≂ σ2

(
⟨(G+H)(Σ2(Σ+H)−2 + (I −H)n),

1

n
GJ

−1 + nGJc⟩

+ ⟨G+H,
1

n
(HK +ΣK)

−2HK + n(IKc + nΣKc)−2HKc⟩
)
.

We have finished the proof.

B.3 PROOF OF PROPOSITION 1

Proof of Proposition 1. Define the joint data and the joint label noise by

X :=

(
X(1)

X(2)

)
, y :=

(
y(1)

y(2)

)
∈ R2n, ε :=

(
ε(1)

ε(2)

)
∈ R2n,

then
Eε = 0, Eεε⊤ = σ2I.

By the definition of (4), we obtain

wjoint =
(
X⊤X

)−1
X⊤y

=
(
X⊤X

)−1
X⊤Xw∗ +

(
X⊤X

)−1
X⊤ε,

which implies that

wjoint −w∗ =
((

X⊤X
)−1

X⊤X − I
)
·w∗ +

(
X⊤X

)−1
X⊤ε.

Denote Pjoint = I −
(
X⊤X

)−1
X⊤X . Therefore, it holds that

Eε(wjoint −w∗)(wjoint −w∗)⊤ = Pjoint ·w∗w∗⊤ · Pjoint + σ2 ·
(
X⊤X

)−1
. (21)

Moreover, the total risk can be reformulated to

R(w)−minR = R1(w)−minR1 +R2(w)−minR2

= ⟨G, (w −w∗)(w −w∗)⊤⟩+ ⟨H, (w −w∗)(w −w∗)⊤⟩
= ⟨G+H, (w −w∗)(w −w∗)⊤⟩.

Bringing (21) into the above, we obtain

EεR(wjoint)−minR = ⟨G+H, Eε(wjoint −w∗)(wjoint −w∗)⊤⟩

= ⟨G+H, Pjoint ·w∗w∗⊤ · Pjoint⟩+ σ2 · ⟨G+H,
(
X⊤X

)−1⟩
= bias+ variance.

For the bias part, notice that Pjoint = P1P2 in the one-hot setting. Therefore,

Ebias = E⟨G+H, Pjoint ·w∗w∗⊤ · Pjoint⟩+
= ⟨(G+H)(I −G)n(I −H)n, w∗w∗⊤⟩

=
∑
i

(µi + λi)(1− µi)
n(1− λi)

nw∗
i
2.
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For the variance part, notice that (X⊤X)ii = (X(1)⊤X(1))ii + (X(2)⊤X(2))ii for every index
i, where (X(1)⊤X(1))ii follows the binomial distribution B(n, µi), and (X(2)⊤X(2))ii follows
the binomial distribution B(n, λi). As such, consider a random variable si, which is the sum of n
independent trials, where each trial returns 1 iff at least one trial of the binomials (X(1)⊤X(1))ii

and (X(2)⊤X(2))ii return 1. Then for every index i, (X⊤X)ii satisfies

si ≤ (X⊤X)ii ≤ 2si,

and si follows the binomial distribution B(n, µi + λi − µiλi). Therefore, according to Lemma 12,
for each index i that satisfies µi + λi − µiλi ≥ c

n for constant c > 0,

1

n

1

µi + λi − µiλi
≲

1

2
Es−1

i ≤ E
(
X⊤X

)−1

ii
≤ Es−1

i ≲
1

n

1

µi + λi − µiλi
.

Also, according to Lemma 13, for each index i that satisfies µi +λi −µiλi ≤ c
n for constant c > 0,

n(µi + λi − µiλi) ≲
1

2
Es−1

i ≤ E
(
X⊤X

)−1

ii
≤ Es−1

i ≲ n(µi + λi − µiλi).

Notice that for the index sets J =
{
i : µi ≥ 1

n

}
, and K =

{
i : λi ≥ 1

n

}
, for i ∈ J ∪ K,

µi + λi − µiλi ≥ 1
n ; also, for i ∈ Jc ∩Kc, µi + λi − µiλi ≤ 2

n . Also notice that

0 ≤ µiλi ≤
1

4
(µi + λi)

2 ≤ 1

2
(µi + λi).

Therefore,
1

n

1

µi + λi
≲ E

(
X⊤X

)−1

ii
≲

1

n

1

µi + λi
, i ∈ J ∪K;

n(µi + λi) ≲ E
(
X⊤X

)−1

ii
≲ n(µi + λi), i ∈ Jc ∩Kc.

As a result,

E
(
X⊤X

)−1 ≂
1

n
(G+H)−1

J∪K + n(G+H)Jc∩Kc .

Now we can bound the variance by

Evariance = σ2 · ⟨G+H, E(X⊤X)−1⟩

≂ σ2 · ⟨G+H,
1

n
(G+H)−1

J∪K + n(G+H)Jc∩Kc⟩

=
σ2

n

(
|J ∪K|+ n2

∑
i

(µi + λi)
2
)
.

We have finished the proof.

B.4 PROOF OF COROLLARY 3

Proof of Corollary 3. Recall from Theorem 2 that

E∆(w(2)) = bias+ variance,

where

bias ≂ ⟨(G+H)(I −G)n(I −H)n, w∗w∗⊤⟩

=
∑
i

(1− µi)
n(1− λi)

n(µi + λi)w
∗
i
2,

variance ≂ σ2
(
⟨(G+H)(I −H)n,

1

n
GJ

−1 + nGJc⟩+ ⟨G+H,
1

n
H−1

K + nHKc⟩
)

≲
σ2

n

(∑
i∈K

µi

λi
+ n2

∑
i∈Kc

µiλi +
∑
i∈J

(
1− λi

)n
+ n2

∑
i∈Jc

(
1− λi

)n
µ2
i

+ |K|+ n2
∑
i∈Kc

λ2
i +

∑
i∈J

λi(1− λi

)n
µ−1
i + n2

∑
i∈Jc

λi

(
1− λi

)n
µi

)
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Also recall that the joint learning parameter wjoint satisfy

E∆(wjoint) = biasjoint + variancejoint,

where

biasjoint =
∑
i

(1− µi)
n(1− λi)

n(µi + λi)w
∗
i
2,

variancejoint ≂
σ2

n

(
|J ∪K|+ n2

∑
i∈Jc∩Kc

(µi + λi)
2
)
.

Notice that:

• The bias matches the joint learning bias;

• σ2

n

(
|K|+ n2

∑
i∈Kc λ2

i

)
is bounded by the joint learning variance;

• And that

σ2

n

(∑
i∈J

λi(1− λi

)n
µ−1
i + n2

∑
i∈Jc

λi

(
1− λi

)n
µi

)

≤ σ2

(∑
i

λ2
i (1− λi

)2n)1/2(∑
i∈J

n−2µ−2
i +

∑
i∈Jc

n2µ2
i

)1/2

≤ σ2

(
e2

n2
|K|+

∑
i∈Kc

λ2
i

)1/2(
|J|+

∑
i∈Jc

n2µ2
i

)1/2

is also bounded by the joint learning variance.

As a result,

variance ≲ variancejoint +
∑
i∈K

µi

λi
+ n2

∑
i∈Kc

µiλi +
∑
i∈J

(
1− λi

)n
+ n2

∑
i∈Jc

(
1− λi

)n
µ2
i

≤ variancejoint +
∑
i∈K

µi

λi
+ n2

∑
i∈J∩Kc

µiλi + n2
∑

i∈Jc∩Kc

µiλi + |J|+ n2
∑
i∈Jc

µ2
i

≤ variancejoint +
∑
i∈K

µi

λi
+ n2

∑
i∈J∩Kc

µiλi + |J|+ 2n2
∑
i∈Jc

µ2
i + n2

∑
i∈Kc

λ2
i

≲ variancejoint +
∑
i∈K

µi

λi
+ n2

∑
i∈J∩Kc

µiλi.

Thus we finish the proof.

B.5 PROOF OF COROLLARY 4

Proof of Corollary 4. Recall from Theorem 2 that

E∆(w(2)) = bias+ variance,

where the bias satisfies

bias ≂ ⟨(G+H)(I −G)n(Σ2(Σ+H)−2 + (I −H)n), w∗w∗⊤⟩
= biasjoint + ⟨(G+H)(I −G)nΣ2(Σ+H)−2, w∗w∗⊤⟩,

≲ biasjoint +
1

n
⟨Σ2(Σ+H)−2, w∗w∗⊤⟩+ ⟨Σ, w∗w∗⊤⟩,

≲ biasjoint + (γ + 1
n )∥w

∗∥22.
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For the variance,

1

σ2
variance ≲ ⟨(G+H)(Σ2(Σ+H)−2 + (I −H)n),

1

n
GJ

−1 + nGJc⟩

+ ⟨G+H,
1

n
(HK +ΣK)

−2HK + n(IKc + nΣKc)−2HKc⟩

≲ ⟨(G+H)(I −H)n,
1

n
GJ

−1 + nGJc⟩+ ⟨G,
1

n
GJ

−1 + nGJc⟩+ ⟨H,
1

n
H−1

K + nHKc⟩

+ ⟨HΣ2(Σ+H)−2,
1

n
GJ

−1 + nGJc⟩+ ⟨G,
1

n
(HK +ΣK)

−2HK + n(IKc + nΣKc)−2HKc⟩

≲
1

σ2
variancejoint + ⟨Σ,

1

n
GJ

−1 + nGJc⟩+ ⟨G,
1

n
(H +Σ+ 1

nI)
−2H⟩

≲
1

σ2
variancejoint +

1

n

∑
i∈J∪K

(
µi

λi +
1
n + γ

+
γ

µi +
1
n

)
.

We know from Corollary 3 that σ2⟨(G +H)(I −H)n, 1
nGJ

−1 + nGJc⟩ is bounded by the joint
learning variance. The tail terms are also bounded by the joint learning variance. Thus we finish the
proof.

B.6 PROOF OF COROLLARY 6

Proof of Corollary 6. Recall that

E∆(w(2)) = bias+ variance,

where bias and variance with respect x(1) satisfy

bias ≂ ⟨(G+H)(I −G)n(Σ2(Σ+H)−2 + (I −H)n), w∗w∗⊤⟩

=
∑
i

(1− µi)
n

(
γ2
i

(λi + γi)2
+ (1− λi)

n

)
(µi + λi)w

∗
i
2,

variance ≲ σ2
(
⟨(G+H)(Σ2(Σ+H)−2 + (I −H)n),

1

n
GJ

−1 + nGJc⟩

+ ⟨G+H,
1

n
(HK +ΣK)

−2HK + n(IKc + nΣKc)−2HKc⟩
)
.

For the bias, notice that it satisfies that the quantity
∑

i(1− µi)
n(1− λi)

n(µi + λi)w
∗
i
2 is the joint

learning bias. For the remaining part, when γi = µi for µi ≥ 1/n and γi = 0 otherwise, we have

∑
i

(1− µi)
n γ2

i

(λi + γi)2
(µi + λi)w

∗
i
2 =

∑
i∈J

(1− µi)
n µ2

i

(λi + µi)2
(µi + λi)w

∗
i
2

≤
∑
i∈J

(1− µi)
nµiw

∗
i
2

≤
∑
i∈J

(1− µi − λi)
n(µi + λi)w

∗
i
2

≤
∑
i∈J

(1− µi)
n(1− λi)

n(µi + λi)w
∗
i
2 ≤ biasjoint.

The second last line is because the function x(1 − x)n decreases when x ≥ 1/n. As a result, the
whole bias is bounded by the joint learning bias.
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For the variance,

1

σ2
variance

≲
(
⟨(G+H)(Σ2(Σ+H)−2 + (I −H)n),

1

n
GJ

−1 + nGJc⟩

+ ⟨G+H,
1

n
(HK +ΣK)

−2HK + n(IKc + nΣKc)−2HKc⟩
)

= ⟨(G+H)(I −H)n,
1

n
GJ

−1 + nGJc⟩

+
∑

i∈J∩K
(µi + λi)

(
1

nµi

γ2
i

(γi + λi)2
+

λi

n(γi + λi)2

)
+

∑
i∈J∩Kc

(µi + λi)

(
1

nµi

γ2
i

(γi + λi)2
+

λi

n(γi + 1/n)2

)

+
∑

i∈Jc∩K
(µi + λi)

(
nµi

γ2
i

(γi + λi)2
+

λi

n(γi + λi)2

)
+

∑
i∈Jc∩Kc

(µi + λi)

(
nµi

γ2
i

(γi + λi)2
+

λi

n(γi + 1/n)2

)

We know from Corollary 3 that σ2⟨(G +H)(I −H)n, 1
nGJ

−1 + nGJc⟩ is bounded by the joint
learning variance. Thus the quantity of our focus is

(∗) =
∑

i∈J∩K
(µi + λi)

(
1

nµi

γ2
i

(γi + λi)2
+

λi

n(γi + λi)2

)
+

∑
i∈J∩Kc

(µi + λi)

(
1

nµi

γ2
i

(γi + λi)2
+

λi

n(γi + 1/n)2

)

+
∑

i∈Jc∩K
(µi + λi)

(
nµi

γ2
i

(γi + λi)2
+

λi

n(γi + λi)2

)
+

∑
i∈Jc∩Kc

(µi + λi)

(
nµi

γ2
i

(γi + λi)2
+

λi

n(γi + 1/n)2

)
.

When γi = µi for µi ≥ 1/n and γi = 0 otherwise, the above quantity satisfies

(∗) ≤
∑

i∈J∩K
(µi + λi)

(
µ2
i

n(µi + λi)2
+

λi

n(µi + λi)2

)
+

∑
i∈J∩Kc

(µi + λi)

(
µ2
i

n(µi + λi)2
+

λi

n(µi + λi)2

)
+

∑
i∈Jc∩K

(µi + λi)
1

nλi
+

∑
i∈Jc∩Kc

(µi + λi) · nλi

≤
∑

i∈J∩K

1

n
+

∑
i∈J∩Kc

1

n
+

∑
i∈Jc∩K

2

n
+

∑
i∈Jc∩Kc

(nµiλi + nλ2
i ) ≲

1

σ2
variancejoint.

(22)
The last line holds because of Cauchy-Schwarz inequality. Thus we finish the proof.

B.7 PROOF OF COROLLARY 8

Proof of Corollary 8. Again, recall that

E∆(w(2)) = bias+ variance,

where bias and variance with respect x(1) satisfy

bias ≂ ⟨(G+H)(I −G)n(Σ2(Σ+H)−2 + (I −H)n), w∗w∗⊤⟩

=
∑
i

(1− µi)
n

(
γ2
i

(λi + γi)2
+ (1− λi)

n

)
(µi + λi)w

∗
i
2,

variance ≲ σ2
(
⟨(G+H)(Σ2(Σ+H)−2 + (I −H)n),

1

n
GJ

−1 + nGJc⟩

+ ⟨G+H,
1

n
(HK +ΣK)

−2HK + n(IKc + nΣKc)−2HKc⟩
)
.
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For the bias, notice that the quantity
∑

i(1− µi)
n(1− λi)

n(µi + λi)w
∗
i
2 is the joint learning bias.

For the remaining part, when γi = µi for i ≤ k and γi = 0 otherwise, we have

∑
i

(1− µi)
n γ2

i

(λi + γi)2
(µi + λi)w

∗
i
2 =

∑
i≤k

(1− µi)
n µ2

i

(λi + µi)2
(µi + λi)w

∗
i
2

≤
∑
i≤k

(1− µi)
nµiw

∗
i
2

≤
∑
i≤k

(1− µi − λi)
n(µi + λi)w

∗
i
2

≤
∑
i≤k

(1− µi)
n(1− λi)

n(µi + λi)w
∗
i
2 ≤ biasjoint.

The second last line is because the function x(1 − x)n decreases when x ≥ 1/n. As a result, the
whole bias is bounded by the joint learning bias.

For the variance, similarly to the proof of Corollary 6, the quantity of our focus is

(∗) =
∑

i∈J∩K
(µi + λi)

(
1

nµi

γ2
i

(γi + λi)2
+

λi

n(γi + λi)2

)
+

∑
i∈J∩Kc

(µi + λi)

(
1

nµi

γ2
i

(γi + λi)2
+

λi

n(γi + 1/n)2

)

+
∑

i∈Jc∩K
(µi + λi)

(
nµi

γ2
i

(γi + λi)2
+

λi

n(γi + λi)2

)
+

∑
i∈Jc∩Kc

(µi + λi)

(
nµi

γ2
i

(γi + λi)2
+

λi

n(γi + 1/n)2

)
.

When γi = µi for i ≤ k and γi = 0 otherwise, the above quantity satisfies

(∗) ≤
∑

i∈K,i≤k

(µi + λi)

(
µ2
i

n(µi + λi)2
+

λi

n(µi + λi)2

)
+

∑
i∈Kc,i≤k

(µi + λi)

(
µ2
i

n(µi + λi)2
+

λi

n(µi + λi)2

)
+

∑
i∈J∩K,i>k

(µi + λi)
1

nλi
+

∑
i∈J∩Kc,i>k

(µi + λi) · nλi +
∑

i∈Jc∩K
(µi + λi)

1

nλi
+

∑
i∈Jc∩Kc

(µi + λi) · nλi

≤
∑

i∈K,i≤k

1

n
+

∑
i∈Kc,i≤k

1

n
+

∑
i∈J∩K,i>k

1 + µi/λi

n
+

∑
i∈Kc,i>k

(nµiλi + nλ2
i ) +

∑
i∈Jc∩K

(nµiλi + nλ2
i )

≲
1

σ2

(
variancejoint +

n

kα
variancejoint

)
.

The last line holds because of Proposition 1 and Cauchy-Schwarz inequality; in particular, the fourth
term is because that

∑
i∈Kc,i>k

nµiλi ≤ n

( ∑
i∈Kc,i>k

µ2
i

)1/2( ∑
i∈Kc,i>k

λ2
i

)1/2

≤ n

(
n · k−2α · |J|

n

)1/2(
n−1 · n

∑
i∈Kc

λ2
i

)1/2

≲
n

kα
· variancejoint.

Thus we finish the proof.

B.8 PROOF OF EXAMPLES

Proof of Example 5. Recall that

E∆(w(2)) = bias+ variance,
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where bias and variance with respect x(1) satisfy

bias ≂ ⟨(G+H)(I −G)n(Σ2(Σ+H)−2 + (I −H)n), w∗w∗⊤⟩

=
∑
i

(1− µi)
n

(
γ2
i

(λi + γi)2
+ (1− λi)

n

)
(µi + λi)w

∗
i
2,

variance ≲ σ2
(
⟨(G+H)(Σ2(Σ+H)−2 + (I −H)n),

1

n
GJ

−1 + nGJc⟩

+ ⟨G+H,
1

n
(HK +ΣK)

−2HK + n(IKc + nΣKc)−2HKc⟩
)
.

1. By Corollary 3 we have

E∆(w(2)) ≳
σ2

n

(∑
i∈K

µi

λi
+ n2

∑
i∈J∩Kc

µiλi

)
= Ω(1).

2. By Theorem 2 we have

E∆(w(2)) ≥ ⟨HΣ2(Σ+H)−2,
1

n
G−1

J ⟩+ ⟨G,
1

n
(HK +ΣK)

−2HK⟩

=
∑
i∈J

γ2

µi

(
λi

n(γ + λi)2

)
+
∑
i∈K

µi

(
λi

n(γ + λi)2

)

≥ n

3

γ2

(γ + 1)2
+

n

3

1

n2(γ + 1/n)2
= Ω(1),

since n
3

γ2

(γ+1)2 = Ω(1) when γ ≥ n−1/2, and n
3

1
n2(γ+1/n)2 = Ω(1) when γ ≤ n−1/2.

Proof of Example 7. Note that Σ has rank at most k. By Theorem 2 we have

E∆(w(2)) ≥ ⟨G,
1

n
(HK +ΣK)

−2HK + n(IKc + nΣKc)−2HKc⟩

=
∑
i∈K

µi

(
λi

n(γi + λi)2

)
+
∑
i∈Kc

µi

(
λi

n(γi + 1/n)2

)
≥ 1

k + 1

∑
1≤i≤k+1

1

n2(γi + 1/n)2
= Ω(1),

since k << n is a constant and there exists at least one i such that γi = 0 for 1 ≤ i ≤ k + 1.

C PROOF OF GAUSSIAN OCL

In this section, we present the full analysis of OCL in Gaussian design as briefed in Section 5.

C.1 UPPER AND LOWER BOUNDS

We present the lower and upper bounds of the OCL excess risk in the following theorems.

Theorem 18 (Lower bound). There exist constants b1, b2, c > 0 for which the following holds.
Denote index sets J,K that are defined as follows. Let Jµ = {i : µi > µ}. Let µ∗ = max{µ :
rJcµ(G) ≥ b2n}, and define J := Jµ∗ . Similarly, let Kλ = {i : λi > λ}, λ∗ = max{λ : rKc

λ
(H) ≥

b2n}, and define K := Kλ∗ . Then if |J| ≤ b1n and |K| ≤ b1n, for every n > c, for the OCL output
(1), it holds that

E[R1(w
(2))−minR1] = bias+ variance
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where

bias ≳
∥∥( (trGJc)

2

n2
G−2

J + IJc
) 1

2 ·
( (trHKc)2

n2
H−2

K + IKc

) 1
2w∗∥∥2

G
,

variance ≳
σ2

n

〈
G, H−1

K +
n2

(trHKc)2
HKc +

(
(trHKc)2

n2
H−2

K + IKc

)
·
(
G−1

J +
n2

(trGJc)2
GJc

)〉
.

The excess risk bound in Theorem 18 consists of both bias and variance errors. The bias error arises
from the (incorrect) zero initialization, which deviates from the optimal parameter w∗. The variance
error is attributed to the additive noise ε(t) = y(t) − ⟨x(t),w∗⟩.
We complement the lower bound in Theorem 18 with an upper bound.
Theorem 19 (Upper bound). There exist constants b1, b2, b3 > 0 such that the following holds.
Suppose Assumptions 1, 2, and 4 hold. Denote two index sets J,K ⊂ [d], which satisfy |J| ≤ b1n,
rJc(G) ≥ b2n and |K| ≤ b1n, rKc(H) ≥ b2n, where

rJc(G) =
tr(GJc)

∥GJc∥2
, rKc(H) =

tr(HKc)

∥HKc∥2
.

Then, for the OCL output (1), it holds that

E[R1(w
(2))−minR1] = bias+ variance,

where bias and variance satisfy that with probability at least 1− b3e
−n/c,

bias ≲
(trGJc)

2

n2
∥w∗∥2

G−1
J

+ ∥w∗∥2GJc
,

variance ≲
σ2

n

(
tr(GJH

−1
K ) + n2 tr(GJHKc)

(trHKc)2
+ |J ∩K|+ n2

tr(G2
Jc∩Kc)

(trGJc)2

+

(
∥GKH

−1
K ∥2 +

n(tr(GKcHKc) + n∥GKcHKc∥2)
tr(HKc)2

+
(trGJc)

2

(trHKc)2

)
· tr
{(

G−1
J +

n2

tr(GJc)2
GJc

)(
tr(HKc)2

n2
H−1

K +HKc

)})
.

Theorem 19 provides an upper bound for the risk and forgetting in OCL under the Gaussian dis-
tribution setting. It can be shown that when G = H , the upper bound reduces to the single-task
linear regression bound in Bartlett et al. (2020), thus matching the lower bound. However, for the
non-degenerate case, there exists at least a ∥GKH

−1
K ∥2 gap in the fifth term concerning the variance

error. The gaps between the upper and lower bounds are due to technical challenges in obtaining
an accurate variance bound under covariate shift in the Gaussian distribution. We leave the task of
tightening these bounds for future work.

C.2 PRELIMINARIES

For both task t = 1, 2, for any index i ∈ [d] and index set K ⊂ [d] where d ≤ ∞ , we denote

A(t) = X(t)X(t)⊤, A
(t)
−i = X(t)X(t)⊤ −X

(t)
i X

(t)
i

⊤
, A

(t)
Kc = X

(t)
KcX

(t)
Kc

⊤
.

Recall that according to (15) and (17), the second moments of the output used in bounding the risks
are specified by

Eε(w
(1) −w∗)(w(1) −w∗)⊤ = P(1) ·w∗w∗⊤ · P(1) + σ2

(
X(1)⊤X(1)

)−1
X(1)⊤X(1)

(
X(1)⊤X(1)

)−1

= P(1) ·w∗w∗⊤ · P(1) + σ2X(1)⊤A(1)−2
X(1), (23)

Eε(w
(2) −w∗)(w(2) −w∗)⊤ = P(2) · Eε(w

(1) −w∗)(w(1) −w∗)⊤ · P(2)

+ σ2
(
X(2)⊤X(2)

)−1
X(2)⊤X(1)

(
X(2)⊤X(2)

)−1

= P(2) · Eε(w
(1) −w∗)(w(1) −w∗)⊤ · P(2) + σ2X(2)⊤A(2)−2

X(2),
(24)
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where P(1) = I −
(
X(1)⊤X(1)

)−1
X(1)⊤X(1) and P(2) = I −

(
X(2)⊤X(2)

)−1
X(2)⊤X(2).

Therefore, the risk that we are bounding in Theorem 18 depends on terms including P(1),P(2),
X(1)⊤A(1)−2

X(1) and X(2)⊤A(2)−2
X(2).

C.3 SPLIT THE COORDINATES

Motivated by the previous benign overfitting literature, including Bartlett et al. (2020) and Tsigler
& Bartlett (2023), we split the coordinates of the covariance matrix of each task G and H into a
“head” part and a “tail” part. The head part represents a low-dimensional space with relatively large
eigenvalues, and the tail part represents a high-dimensional space with relatively small eigenvalues.
The following lemma is an algebraic property in the same spirit of the one in Tsigler & Bartlett
(2023), and is used in splitting the coordinates of X(1)⊤A(1)−2

X(1) and X(2)⊤A(2)−2
X(2).

Lemma 20. For any nonempty index set K ⊂ [d],

X
(1)
K

⊤
A(1)−1

=
(
IK +X

(1)
K

⊤
A

(1)
Kc

−1
X

(1)
K
)−1

X
(1)
K

⊤
A

(1)
Kc

−1
,

X
(2)
K

⊤
A(2)−1

=
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

X
(2)
K

⊤
A

(2)
Kc

−1
.

Proof. We will give the proof for X(2)
K

⊤
A(2)−1

. Notice that

A(2) = X(2)X(2)⊤ = X
(2)
K X

(2)
K

⊤
+X

(2)
Kc X

(2)
Kc

⊤
= A

(2)
Kc +X

(2)
K X

(2)
K

⊤
,

and according to the Sherman-Morrison-Woodbury formula,

X
(2)
K A(2)−1

= X
(2)
K
(
A

(2)
Kc +X

(2)
K X

(2)
K

⊤)−1

= X
(2)
K A

(2)
Kc

−1(
I +X

(2)
K X

(2)
K

⊤
A

(2)
Kc

−1)−1

= X
(2)
K A

(2)
Kc

−1[
I −X

(2)
K
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

X
(2)
K

⊤
A

(2)
Kc

−1]
=
[
IK −X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1]

X
(2)
K

⊤
A

(2)
Kc

−1

=
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

X
(2)
K

⊤
A

(2)
Kc

−1
.

The proof goes the same for the first task.

The next lemma splits P(1) and P(2) into submatrices with respect to the coordinate split in each
task.
Lemma 21. For t = 1, 2, for any nonempty index set K,

P(t) :=

(
P(t)
K −Q(t)

−Q(t)⊤ P(t)
Kc

)
=

((
IK +X

(t)
K

⊤
A

(t)
Kc

−1
X

(t)
K
)−1 −X

(t)
K

⊤
A(t)−1

X
(t)
Kc

−X
(t)
Kc

⊤
A(t)−1

X
(t)
K IKc −X

(t)
Kc

⊤
A(t)−1

X
(t)
Kc

)
.

Proof. Notice that
P(t) = I −X⊤A−1X

= I −

(
X

(t)
K

⊤
A−1X

(t)
K X

(t)
K

⊤
A−1X

(t)
Kc

X
(t)
Kc

⊤
A−1X

(t)
K X

(t)
Kc

⊤
A−1X

(t)
Kc

)

=

(
IK −X

(t)
K

⊤
A−1X

(t)
K −X

(t)
K

⊤
A−1X

(t)
Kc

−X
(t)
Kc

⊤
A−1X

(t)
K IKc −X

(t)
Kc

⊤
A−1X

(t)
Kc

)
.

Therefore, by Lemma 20,

P(t)
K = IK −X

(t)
K

⊤
A−1X

(t)
K

= IK −
(
IK +X

(t)
K

⊤
A

(t)
Kc

−1
X

(t)
K
)−1

X
(t)
K

⊤
A

(t)
Kc

−1
X

(t)
K

=
(
IK +X

(t)
K

⊤
A

(t)
Kc

−1
X

(t)
K
)−1

.

We have finished the proof.
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C.4 MATRIX CONCENTRATION INEQUALITIES

In the following lemmas, we will present several useful concentration inequalities on eigenvalues of
several matrices used in our proof. The following lemma is from Lemma 9 in Bartlett et al. (2020)
and we rewrite it in our notation.
Lemma 22 (Bartlett et al. (2020)). There exists a constant c ≥ 1 such that for any PSD matrix J ,
with probability at least 1− 2e−n/c,

1

c
trJ − cn∥J∥2 ≤ µn(ZJZ⊤) ≤ µ1(ZJZ⊤) ≤ c

(
trJ + n∥J∥2

)
.

Notice that one can verify that this is identical to the original lemma in Bartlett et al. (2020), since
in their notation, Ak = ZkHkZ

⊤
k and Hk = diag{λi}i>k.

Lemma 23. There exist a constant b such that with probability at least 1− 2e−n/c, if rJc(G) ≥ bn
and rKc(H) ≥ bn, then

trGJc · In ≲ A
(1)
Jc ≲ trGJc · In, trHKc · In ≲ A

(2)
Kc ≲ trHKc · In.

Proof. We will give the proof for the second task regarding H and A(2). Recall that A(2)
Kc =

X
(2)
Kc X

(2)
Kc

⊤
Notice that since rKc(H) = tr(HKc)/∥HKc∥2 ≥ bn. Therefore,

µn(A
(2)
Kc ) = µn(Z

(2)
Kc HKcZ

(2)
Kc

⊤
)

≥ 1

c
trHKc − cn∥HKc∥2

≥
(
1

c
− c

b

)
trHKc .

Also,

µ1(A
(2)
Kc ) = µ1(Z

(2)
Kc HKcZ

(2)
Kc

⊤
)

≤ c(trHKc + n∥HKc∥2)

≤ c

(
1 +

1

b

)
trHKc .

The proof remains the same for the first task regarding G and A(1).

Lemma 24. There exist constants b1, b2, c > 0 such that for any nonempty index set K that satisfies
|K| =: k ≤ b1n, then with probability at least 1− 2e−n/c,

tr(HJc) ≲ µn(A
(2)
−i ) ≤ µk+1(A

(2)
−i ) ≲ tr(HJc).

Proof. Notice that for K that satisfies rKc(H) ≥ bn, it also holds for every i that rKc−{i}(H) ≥ bn,
since

tr(HKc−{i}) = tr(HKc)− λi

≥ bn∥HKc∥ − ∥HKc∥
≥ b′n∥HKc−{i}∥.

As a result, tr(HJc) ≲ µn(A
(2)
Kc−{i}) ≤ µ1(A

(2)
Kc−{i}) ≲ tr(HJc). Notice that A(2)

−i −A
(2)
Kc−{i} is

a PSD matrix with rank at most |K| = k. Therefore, µn(A
(2)
−i ) ≥ µn(A

(2)
Kc−{i}) ≳ tr(HJc); also,

there exists a linear space L with rank n − k such that for all v ∈ L, v⊤A
(2)
−iv = v⊤A

(2)
Kc−{i}v ≤

µ1(A
(2)
Kc−{i})∥v∥

2
2, and thus µk+1(A

(2)
−i ) ≤ µ1(A

(2)
Kc−{i}) ≲ tr(HJc).

The next two are commonly used concentration inequalities for random matrices with standard
Gaussian rows.
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Lemma 25. For t = 1, 2, there exist constants b, c > 0 such that for any nonempty index set K that
satisfies |K| = k ≤ bn, then with probability at least 1− 2e−n/c,

nIK ≾ Z
(t)
K

⊤
Z

(t)
K ≾ nIK.

Proof. According to Theorem 5.39 in Vershynin (2010), for some constants c1, c2, for every t ≥ 0,
with probability at least 1− 2 exp(−c1t

2), one has

(
√
n− c2

√
|K| − t)2 ≤ µk(Z

(t)
K

⊤
Z

(t)
K ) ≤ µ1(Z

(t)
K

⊤
Z

(t)
K ) ≤ (

√
n+ c2

√
|K|+ t)2.

Substituting t with
√
n/c3 and we get the result.

Lemma 26. Suppose Z is a matrix with n i.i.d. rows in the Hilbert space H with standard Gaussian
entries. Then for any PSD matrix J , with probability at least 1− 2e−n/c,

tr(ZJZ⊤) ≲ n · tr(J).

Proof. Denote J = V ΛV ⊤ as its singular value decomposition. Notice that each row zi ∈ H of
Z is standard Gaussian. As a result,

tr(ZJZ⊤) =

n∑
i=1

∥ΛV ⊤zi∥22,

where ∥ΛV ⊤zi∥22 are independent sub-exponential random variables with expectation tr(Λ) and
sub-exponential norms bounded by c1 tr(Λ). Also note that tr(Λ) = tr(J). Therefore, according
to Bernstein’s inequality,

P

(∣∣∣∣ 1n tr(ZJZ⊤)− trJ

∣∣∣∣ ≥ t trJ

)
≤ 2 exp(−c2nmin(t2, t)).

By substituting t with a constant we get our result.

C.5 UPPER BOUNDS

Bounding X⊤A−1X .
Lemma 27. There exist constants b1, b2, b3 > 0 for which the following holds. Denote two index
sets J,K which satisfy |J| ≤ b1n, rJc(G) ≥ b2n and |K| ≤ b1n, rKc(H) ≥ b2n. Then with
probability at least 1− b3e

−n/c,

X
(1)
J

⊤
A(1)−2

X
(1)
J ≾

1

n
·G−1

J , X
(2)
K

⊤
A(2)−2

X
(2)
K ≾

1

n
·H−1

K .

Proof. We will give the proof for the second task. By Lemma 20,

X
(2)
K

⊤
A(2)−2

X
(2)
K

=
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

X
(2)
K

⊤
A

(2)
Kc

−2
X

(2)
K
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

= H
−1/2
K

(
H−1

K +Z
(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−1

Z
(2)
K

⊤
A

(2)
Kc

−2
Z

(2)
K
(
H−1

K +Z
(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−1

H
−1/2
K

≾
1

(trHKc)2
H

−1/2
K

(
H−1

K +Z
(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−1

Z
(2)
K

⊤
Z

(2)
K
(
H−1

K +Z
(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−1

H
−1/2
K

≾
n

(trHKc)2
H

−1/2
K

(
H−1

K +Z
(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−2

H
−1/2
K

⪯ n

(trHKc)2
H

−1/2
K

(
Z

(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−2

H
−1/2
K

⪯ n

(trHKc)2
· (trHKc)2

n2
H−1

K

=
1

n
H−1

K .

The proof goes the same for the first task.
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Lemma 28. There exist constants b1, b2, b3 > 0 for which the following holds. Denote two index
sets J,K which satisfy |J| ≤ b1n, rJc(G) ≥ b2n and |K| ≤ b1n, rKc(H) ≥ b2n. Then for any PSD
matrix J , with probability at least 1− b3e

−n/c,

⟨J , X(1)
Kc

⊤
A(1)−2

X
(1)
Kc ⟩ ≲

n

(trGJc)2
· ⟨J , GJc⟩,

⟨J , X(2)
Kc

⊤
A(2)−2

X
(2)
Kc ⟩ ≲

n

(trHKc)2
· ⟨J , HKc⟩.

Proof. We will give the proof for the second task.

⟨J , X(2)
Kc

⊤
A(2)−2

X
(2)
Kc ⟩ = ⟨H1/2

Kc JH
1/2
Kc , Z

(2)
Kc

⊤
A(2)−2

Z
(2)
Kc ⟩

≲
1

(trHKc)2
tr(Z

(2)
Kc H

1/2
Kc JH

1/2
Kc Z

(2)
Kc

⊤
)

≲
n

(trHKc)2
tr(H

1/2
Kc JH

1/2
Kc )

=
n

(trHKc)2
· ⟨J , HKc⟩.

The proof goes the same for the first task.

Bounding PGP . We first introduce this well-known lemma.

Lemma 29. For any PSD matrix
(

A B
B⊤ C

)
⪰ 0, we have(

A B
B⊤ C

)
⪯ 2

(
A 0
0 C

)
.

Proof. Note that the RHS minus the LHS is
(

A −B
−B⊤ C

)
. By Schur’s Lemma, this matrix is

PSD if and only if
A−BC−1B⊤ ⪰ 0,

which holds since
(

A B
B⊤ C

)
⪰ 0 because of Schur’s Lemma.

Lemma 30. There exist constants b1, b2, b3 > 0 for which the following holds. Denote two index
sets J,K which satisfy |J| ≤ b1n, rJc(G) ≥ b2n and |K| ≤ b1n, rKc(H) ≥ b2n. Then for any PSD
matrix J , with probability at least 1− b3e

−n/c,

⟨J , P(1)GP(1)⟩ ≲
〈
J ,

(
trGJc

n

)2

G−1
J +GJc

〉
,

⟨J , P(2)HP(2)⟩ ≲
〈
J ,

(
trHKc

n

)2

H−1
K +HKc

〉
.

Proof. We will give the proof for the second task. Recall that according to Lemma 21,

P(t) :=

(
P(t)
K −Q(t)

−Q(t)⊤ P(t)
Kc

)
=

((
IK +X

(t)
K

⊤
A

(t)
Kc

−1
X

(t)
K
)−1 −X

(t)
K

⊤
A(t)−1

X
(t)
Kc

−X
(t)
Kc

⊤
A(t)−1

X
(t)
K IKc −X

(t)
Kc

⊤
A(t)−1

X
(t)
Kc

)
.

As a result,

P(2)HP(2) =

(
P(2)
K HKP(2)

K +Q(2)HKcQ(2)⊤ −P(2)
K HKQ(2) −Q(2)HKcP(2)

Kc

−P(2)
Kc HKcQ(2)⊤ −Q(2)⊤HKP(2)

Kc P(2)
Kc HKcP(2)

Kc +Q(2)⊤HKQ(2)

)

⪯ 2

(
P(2)
K HKP(2)

K +Q(2)HKcQ(2)⊤ 0

0 P(2)
Kc HKcP(2)

Kc +Q(2)⊤HKQ(2)

)
.

Therefore, in order to bound P(2)HP(2), we have four terms to consider:
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• P(2)
K HKP(2)

K : We note that

P(2)
K HKP(2)

K =
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

HK
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

= H
−1/2
K

(
H−1

K +Z
(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−2

H
−1/2
K

⪯ H
−1/2
K

(
Z

(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−2

H
−1/2
K

≾
(trHKc)2

n2
H−1

K .

• Q(2)HKcQ(2)⊤: Note that

Q(2)HKcQ(2)⊤ = X
(2)
K

⊤
A(2)−1

X
(2)
Kc HKcX

(2)
Kc

⊤
A(2)−1

X
(2)
K

= X
(2)
K

⊤
A(2)−1

Z
(2)
Kc H

2
KcZ

(2)
Kc

⊤
A(2)−1

X
(2)
K .

Notice that according to Lemma 22,

∥Z(2)
Kc H

2
KcZ

(2)
Kc

⊤
∥2 ≤ c1(tr(H

2
Kc) + n∥H2

Kc∥2)
≤ c1(∥HKc∥2 tr(HKc) + n∥HKc∥22)

≤
(
c1
b2

+
c1
b22

)
(trHKc)2

n

Therefore,

Q(2)HKcQ(2)⊤ = X
(2)
K

⊤
A(2)−1

Z
(2)
Kc H

2
KcZ

(2)
Kc

⊤
A(2)−1

X
(2)
K

≾
(trHKc)2

n
X

(2)
K

⊤
A(2)−2

X
(2)
K

⪯ (trHKc)2

n2
H−1

K .

• P(2)
Kc HKcP(2)

Kc : Note that

P(2)
Kc HKcP(2)

Kc =
(
IKc −X

(2)
Kc

⊤
A(2)−1

X
(2)
Kc

)
HKc

(
IKc −X

(2)
Kc

⊤
A(2)−1

X
(2)
Kc

)
⪯ 2 ·

(
HKc +X

(2)
Kc

⊤
A(2)−1

X
(2)
Kc HKcX

(2)
Kc

⊤
A(2)−1

X
(2)
Kc

)
,

and that

X
(2)
Kc

⊤
A(2)−1

X
(2)
Kc HKcX

(2)
Kc

⊤
A(2)−1

X
(2)
Kc = X

(2)
Kc

⊤
A(2)−1

Z
(2)
Kc H

2
KcZ

(2)
Kc

⊤
A(2)−1

X
(2)
Kc

≾
(trHKc)2

n
X

(2)
Kc

⊤
A(2)−2

X
(2)
Kc

Therefore, for any PSD matrix J ,

⟨J , P(2)
Kc HKcP(2)

Kc ⟩ ≲ ⟨J , HKc⟩+ (trHKc)2

n
⟨J , X(2)

Kc

⊤
A(2)−2

X
(2)
Kc ⟩

≲ ⟨J , HKc⟩.
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• Q(2)⊤HKQ(2): Note that

Q(2)⊤HKQ(2) = X
(2)
Kc

⊤
A(2)−1

X
(2)
K HKX

(2)
K

⊤
A(2)−1

X
(2)
Kc

= X
(2)
Kc

⊤
A

(2)
Kc

−1
X

(2)
K ·

(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

HK
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

·X(2)
K

⊤
A

(2)
Kc

−1
X

(2)
Kc

≾
(trHKc)2

n2
·X(2)

Kc

⊤
A

(2)
Kc

−1
X

(2)
K ·H−1

K ·X(2)
K

⊤
A

(2)
Kc

−1
X

(2)
Kc

=
(trHKc)2

n2
·X(2)

Kc

⊤
A

(2)
Kc

−1
Z

(2)
K Z

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
Kc

≾
(trHKc)2

n
·X(2)

Kc

⊤
A

(2)
Kc

−2
X

(2)
Kc

≾
1

n
·X(2)

Kc

⊤
X

(2)
Kc .

Therefore, for any PSD matrix J ,

⟨J , Q(2)⊤HKQ(2)⟩ ≲ 1

n
⟨J , X(2)

Kc

⊤
X

(2)
Kc ⟩

≲
1

n
tr(Z

(2)
Kc H

1/2
Kc JH

1/2
Kc Z

(2)
Kc

⊤
)

≲ tr(H
1/2
Kc JH

1/2
Kc )

= ⟨J , HKc⟩.

Combine these four terms and we get the result.

Lemma 31. There exist constants b1, b2, b3 > 0 for which the following holds. Denote two index
sets J,K which satisfy |J| ≤ b1n, rJc(G) ≥ b2n and |K| ≤ b1n, rKc(H) ≥ b2n. Then for any PSD
matrix J , with probability at least 1− b3e

−n/c,

⟨J , P(2)GP(2)⟩ ≲
〈
J ,GKc +

(
∥GKH

−1
K ∥2 +

n(tr(GKcHKc) + n∥GKcHKc∥2)
(trHKc)2

)
·
(
(trHKc)2

n2
H−1

K +HKc

)〉
.

Proof. We will give the proof for the second task. Recall that according to Lemma 21,

P(t) :=

(
P(t)
K −Q(t)

−Q(t)⊤ P(t)
Kc

)
=

((
IK +X

(t)
K

⊤
A

(t)
Kc

−1
X

(t)
K
)−1 −X

(t)
K

⊤
A(t)−1

X
(t)
Kc

−X
(t)
Kc

⊤
A(t)−1

X
(t)
K IKc −X

(t)
Kc

⊤
A(t)−1

X
(t)
Kc

)
.

As a result,

P(2)GP(2) =

(
P(2)
K GKP(2)

K +Q(2)GKcQ(2)⊤ −P(2)
K GKQ(2) −Q(2)GKcP(2)

Kc

−P(2)
Kc GKcQ(2)⊤ −Q(2)⊤GKP(2)

Kc P(2)
Kc GKcP(2)

Kc +Q(2)⊤GKQ(2)

)

⪯ 2

(
P(2)
K GKP(2)

K +Q(2)GKcQ(2)⊤ 0

0 P(2)
Kc GKcP(2)

Kc +Q(2)⊤GKQ(2)

)
.

Therefore, in order to bound P(2)GP(2), we have four terms to consider:

• P(2)
K GKP(2)

K : We note that

P(2)
K GKP(2)

K

=
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

GK
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

= H
−1/2
K

(
H−1

K +Z
(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−1

H
−1/2
K GKH

−1/2
K

(
H−1

K +Z
(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−1

H
−1/2
K

⪯ ∥H−1/2
K GKH

−1/2
K ∥2 ·H−1/2

K
(
H−1

K +Z
(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−2

H
−1/2
K

⪯ ∥GKH
−1
K ∥2 ·H−1/2

K
(
Z

(2)
K

⊤
A

(2)
Kc

−1
Z

(2)
K
)−2

H
−1/2
K

≾ ∥GKH
−1
K ∥2 ·

(trHKc)2

n2
H−1

K .

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

• Q(2)GKcQ(2)⊤: Note that

Q(2)GKcQ(2)⊤ = X
(2)
K

⊤
A(2)−1

X
(2)
Kc GKcX

(2)
Kc

⊤
A(2)−1

X
(2)
K

= X
(2)
K

⊤
A(2)−1

Z
(2)
Kc H

1/2
Kc GKcH

1/2
Kc Z

(2)
Kc

⊤
A(2)−1

X
(2)
K .

Notice that according to Lemma 22,

Z
(2)
Kc H

1/2
Kc GKcH

1/2
Kc Z

(2)
Kc

⊤
≤ c1(tr(H

1/2
Kc GKcH

1/2
Kc ) + n∥H1/2

Kc GKcH
1/2
Kc ∥2)

≤ c1(tr(GKcHKc) + n∥GKcHKc∥2).
Therefore,

Q(2)HKcQ(2)⊤ = X
(2)
K

⊤
A(2)−1

Z
(2)
Kc H

2
KcZ

(2)
Kc

⊤
A(2)−1

X
(2)
K

≾ (tr(GKcHKc) + n∥GKcHKc∥2)X(2)
K

⊤
A(2)−2

X
(2)
K

≾
(tr(GKcHKc) + n∥GKcHKc∥2)

n
H−1

K .

• P(2)
Kc GKcP(2)

Kc : Note that

P(2)
Kc GKcP(2)

Kc =
(
IKc −X

(2)
Kc

⊤
A(2)−1

X
(2)
Kc

)
GKc

(
IKc −X

(2)
Kc

⊤
A(2)−1

X
(2)
Kc

)
⪯ 2 ·

(
GKc +X

(2)
Kc

⊤
A(2)−1

X
(2)
Kc GKcX

(2)
Kc

⊤
A(2)−1

X
(2)
Kc

)
,

and that

X
(2)
Kc

⊤
A(2)−1

X
(2)
Kc HKcX

(2)
Kc

⊤
A(2)−1

X
(2)
Kc = X

(2)
Kc

⊤
A(2)−1

Z
(2)
Kc H

1/2
Kc GKcH

1/2
Kc Z

(2)
Kc

⊤
A(2)−1

X
(2)
Kc

≾ (tr(GKcHKc) + n∥GKcHKc∥2)X(2)
Kc

⊤
A(2)−2

X
(2)
Kc

Therefore, for any PSD matrix J ,

⟨J , P(2)
Kc GKcP(2)

Kc ⟩ ≲ ⟨J , GKc⟩+ (tr(GKcHKc) + n∥GKcHKc∥2)⟨J , X(2)
Kc

⊤
A(2)−2

X
(2)
Kc ⟩

≲ ⟨J , GKc⟩+ (tr(GKcHKc) + n∥GKcHKc∥2) ·
n

(trHKc)2
⟨J , HKc⟩.

• Q(2)⊤GKQ(2): Note that

Q(2)⊤GKQ(2)

= X
(2)
Kc

⊤
A(2)−1

X
(2)
K GKX

(2)
K

⊤
A(2)−1

X
(2)
Kc

= X
(2)
Kc

⊤
A

(2)
Kc

−1
X

(2)
K ·

(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

GK
(
IK +X

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
K
)−1

·X(2)
K

⊤
A

(2)
Kc

−1
X

(2)
Kc

≾ ∥GKH
−1
K ∥2 ·

(trHKc)2

n2
·X(2)

Kc

⊤
A

(2)
Kc

−1
X

(2)
K ·H−1

K ·X(2)
K

⊤
A

(2)
Kc

−1
X

(2)
Kc

= ∥GKH
−1
K ∥2 ·

(trHKc)2

n2
·X(2)

Kc

⊤
A

(2)
Kc

−1
Z

(2)
K Z

(2)
K

⊤
A

(2)
Kc

−1
X

(2)
Kc

≾ ∥GKH
−1
K ∥2 ·

(trHKc)2

n
·X(2)

Kc

⊤
A

(2)
Kc

−2
X

(2)
Kc

≾ ∥GKH
−1
K ∥2 ·

1

n
·X(2)

Kc

⊤
X

(2)
Kc .

Therefore, for any PSD matrix J ,

⟨J , Q(2)⊤GKQ(2)⟩ ≲ ∥GKH
−1
K ∥2 ·

1

n
⟨J , X(2)

Kc

⊤
X

(2)
Kc ⟩

≲ ∥GKH
−1
K ∥2 ·

1

n
tr(Z

(2)
Kc H

1/2
Kc JH

1/2
Kc Z

(2)
Kc

⊤
)

≲ ∥GKH
−1
K ∥2 · tr(H1/2

Kc JH
1/2
Kc )

= ∥GKH
−1
K ∥2 · ⟨J , HKc⟩.
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Combine these four terms and we get the result.

Now we can prove our main theorem.

Proof of Theorem 19. According to (23) and (24),

Eε[R1(w
(2))−minR1] = ⟨G, Eε(w

(2) −w∗)(w(2) −w∗)⊤⟩

= ⟨G, P(2)Eε(w
(1) −w∗)(w(1) −w∗)⊤P(2)⟩+ σ2⟨G, X(2)⊤A(2)−2

X(2)⟩
= ⟨G, P(2)P(1)w∗w∗⊤P(1)P(2)⟩

+ σ2
(
⟨G, P(2)X(1)⊤A(1)−2

X(1)P(2)⟩+ ⟨G, X(2)⊤A(2)−2
X(2)⟩

)
= bias+ variance.

For the bias part, with probability at least 1− b3e
−n/c,

bias = ⟨G, P(2)P(1)w∗w∗⊤P(1)P(2)⟩
≤ ⟨P(1)GP(1), w∗w∗⊤⟩

≲

〈(
trGJc

n

)2

G−1
J +GJc , w

∗w∗⊤⟩
〉

=
(trGJc)

2

n2
∥w∗∥2

G−1
J

+ ∥w∗∥2GJc
.

For the variance part, with probability at least 1− b3e
−n/c,

variance = σ2
(
⟨P(2)GP(2), X(1)⊤A(1)−2

X(1)⟩+ ⟨G, X(2)⊤A(2)−2
X(2)⟩

)
≲ σ2

(〈
GKc +

(
∥GKH

−1
K ∥2 +

n(tr(GKcHKc) + n∥GKcHKc∥2)
(trHKc)2

)
·
(
(trHKc)2

n2
H−1

K +HKc

)
,

1

n
G−1

J +
n

(trGJc)2
·GJc

〉
+

〈
G,

1

n
H−1

K +
n

(trHKc)2
·HKc

〉)
=

σ2

n

((
∥GKH

−1
K ∥2 +

n((trGKcHKc) + n∥GKcHKc∥2)
(trHKc)2

)
·
〈(

(trHKc)2

n2
H−1

K +HKc

)
,

G−1
J +

n2

(trGJc)2
·GJc

〉
+

〈
GJ +GJc , H

−1
K +

n2

(trHKc)2
·HKc

〉
+ |J ∩K|+ n2

tr(G2
Jc∩Kc)

(trGJc)2

)
≤ σ2

n

((
∥GKH

−1
K ∥2 +

n(tr(GKcHKc) + n∥GKcHKc∥2)
(trHKc)2

+
(trGJc)

2

(trHKc)2

)
·
〈
(trHKc)2

n2
H−1

K +HKc , G−1
J +

n2

(trGJc)2
·GJc

〉
+

〈
GJ, H

−1
K +

n2

(trHKc)2
·HKc

〉
+ |J ∩K|+ n2

tr(G2
Jc∩Kc)

(trGJc)2

)
=

σ2

n

(
tr(GJH

−1
K ) + n2 tr(GJHKc)

(trHKc)2
+ |J ∩K|+ n2

tr(G2
Jc∩Kc)

(trGJc)2

+

(
∥GKH

−1
K ∥2 +

n(tr(GKcHKc) + n∥GKcHKc∥2)
(trHKc)2

+
(trGJc)

2

(trHKc)2

)
·
〈
(trHKc)2

n2
H−1

K +HKc , G−1
J +

n2

(trGJc)2
·GJc

〉)
We have finished the proof.

C.6 LOWER BOUNDS

Lemma 32. There exist constants b1, b2, c > 0 for which the following holds. Denote two index sets
J,K which satisfy |J| ≤ b1n, rJc(G) ≥ b2n and |K| ≤ b1n, rKc(H) ≥ b2n. Then, in expectation
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to X(2), X(2)⊤A(2)−2
X(2) is a diagonal matrix. In particular, for every n > c,

(EX(1)⊤A(1)−2
X(1))ii ≳

µi

n
· ( trGJc

n
+ µi)

−2,

(EX(2)⊤A(2)−2
X(2))ii ≳

λi

n
· ( trHKc

n
+ λi)

−2.

Proof. Recall that X(2) = Z(2)H(2)1/2. Therefore,

X(2)⊤A(2)−2
X(2) = H(2)1/2Z(2)⊤A(2)−2

Z(2)H(2)1/2.

Consider the off-diagonal terms of Z(2)⊤A(2)−2
Z(2):

(EZ(2)⊤A(2)−2
Z(2))ij = e⊤i Z

(2)⊤A(2)−2
Z(2)ej

= z
(2)
i

⊤
A(2)−2

z
(2)
j

= z
(2)
i

⊤∑
l

λlz
(2)
l (z

(2)
l )⊤

−2
z
(2)
j =: f(z

(2)
i ).

Observe that f(−z
(2)
i ) = −f(z

(2)
i ) and that z

(2)
i follows the standard Gaussian distribution,

which is symmetric across 0. Therefore Ef(z(2)
i ) = 0, which kills all off-diagonal terms of

Z(2)⊤A(2)−2
Z(2).

For the diagonal terms, applying Lemma 20 on the single-element index set {i} and we get

(Z(2)⊤A(2)−2
Z(2))ii = e⊤i Z

(2)⊤A(2)−2
Z(2)ei

= z
(2)
i

⊤
A(2)−2

z
(2)
i

= λ−1
i · (λ−1

i + z
(2)
i

⊤
A

(2)
−i

−1
z
(2)
i )−1z

(2)
i

⊤
A

(2)
−i

−2
z
(2)
i (λ−1

i + z
(2)
i

⊤
A

(2)
−i

−1
z
(2)
i )−1·

=
z
(2)
i

⊤
A

(2)
−i

−2
z
(2)
i

(1 + λiz
(2)
i

⊤
A

(2)
−i

−1
z
(2)
i )2

.

According to Cauchy-Schwarz, we have

∥z(2)
i ∥22 · z

(2)
i

⊤
A

(2)
−i

−2
z
(2)
i ≥ (z

(2)
i

⊤
A

(2)
−i

−1
z
(2)
i )2.

Recall that ∥z(2)
i ∥22 = z

(2)
i

⊤
z
(2)
i ≂ n with probability 1 − 2 exp(−n/c) according to Lemma 25.

Therefore with probability 1− 2 exp(−n/c),

(Z(2)⊤A(2)−2
Z(2))ii ≥

(z
(2)
i

⊤
A

(2)
−i

−1
z
(2)
i )2

n(1 + λiz
(2)
i

⊤
A

(2)
−i

−1
z
(2)
i )2

=
1

n
·
( 1

z
(2)
i

⊤
A

(2)
−i

−1
z
(2)
i

+ λi

)−2
.

Now we examine z(2)
i

⊤
A

(2)
−i

−1
z
(2)
i . Let L be the top (n− k) dimension subspace of A(2)

−i

−1
. Then

with probability at least 1− 4 exp(−n/c),

z
(2)
i

⊤
A

(2)
−i

−1
z
(2)
i ≥ ∥ΠLz

(2)
i ∥22 · µn−k(A

(2)
−i

−1
)

≳ (n− k) · 1

µk+1(A
(2)
−i )

≳
n

trHKc

. (25)
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Since ( 1x + λi)
−2 is an increasing function, now we know that with probability at least 1 −

6 exp(−n/c),

(Z(2)⊤A(2)−2
Z(2))ii ≳

1

n
· ( trHKc

n
+ λi)

−2.

Since (Z(2)⊤A(2)−2
Z(2))ii ≥ 0, by taking expectation and multiply by λi on each side we get the

result.
Lemma 33. There exist constants b1, b2, c > 0 for which the following holds. Denote two index sets
J,K which satisfy |J| ≤ b1n, rJc(G) ≥ b2n and |K| ≤ b1n, rKc(H) ≥ b2n. Then for any PSD
diagonal matrix J , for every n > c,

E(P(1)JP(1)) ≿ J ·
(
(trGJc)

2

n2
G−2

J + IJc

)
,

E(P(2)JP(2)) ≿ J ·
(
(trHKc)2

n2
H−2

K + IKc

)
.

Proof. Suppose J = diag(ϕi)
d
i=1. We examine all diagonal elements of P(2)JP(2).

(P(2)JP(2))ii =
∑
j

ϕiP(2)
ij

2
≥ ϕiP(2)

ii

2
.

As a result, we only need to analyze the lower bound of P(2)
ii . According to Lemma 21,

P(2)
ii = (1 + x

(2)
i

⊤
A

(2)
−i

−1
x
(2)
i )−1

= (1 + λiz
(2)
i

⊤
A

(2)
−i

−1
x
(2)
i )−1.

Recall that in (25) we have that with probability at least 1− 4 exp(−n/c),

z
(2)
i

⊤
A

(2)
−i

−1
x
(2)
i ≳

n

trHKc

.

Therefore, with probability at least 1− 4 exp(−n/c),

(P(2)JP(2))ii ≳ ϕi · (1 +
nλi

trHKc

)−2

≳ ϕi ·
(
1 +

(trHKc)2

n2λ2
i

)
.

Since (P(2)JP(2))ii ≥ 0, by taking expectation we get the result.

Theorem 34. There exist constants b1, b2, c > 0 for which the following holds. Denote index sets
J,K that are defined as follows. Let Jµ = i : µi ≥ µ. Let µ∗ = max{µ : rJcµ(G) ≥ b2n}, and
define J := Jµ∗ . Similarly, let Kλ = i : λi ≥ λ, λ∗ = max{λ : rKc

λ
(H) ≥ b2n}, and define

K := Kλ∗ . Then if |J| ≤ b1n and |K| ≤ b1n, for every n > c,

Eε[R1(w
(2))−minR1] ≳

σ2

n

(〈
(trHKc)2

n2
H−2

K + IKc , IJ +
n2

(trGJc)2
·G2

Jc

〉
+

〈
G, H−1

K +
n2

(trHKc)2
·HKc

〉)
.

Proof. According to (23) and (24),

Eε[R1(w
(2))−minR1] = ⟨G, Eε(w

(2) −w∗)(w(2) −w∗)⊤⟩

= ⟨G, P(2)Eε(w
(1) −w∗)(w(1) −w∗)⊤P(2)⟩+ σ2⟨G, X(2)⊤A(2)−2

X(2)⟩
= ⟨G, P(2)P(1)w∗w∗⊤P(1)P(2)⟩

+ σ2
(
⟨G, P(2)X(1)⊤A(1)−2

X(1)P(2)⟩+ ⟨G, X(2)⊤A(2)−2
X(2)⟩

)
= bias+ variance.
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We give the bias lower bound in the expectation form. For the bias part,

Ebias = E⟨G, P(2)P(1)w∗w∗⊤P(1)P(2)⟩
= EX(1)⟨EX(2)P(2)GP(2), P(1)w∗w∗⊤P(1)⟩

≳

〈
EX(1)P(1)

(
(trHKc)2

n2
H−2

K + IKc

)
P(1), w∗w∗⊤⟩

〉
≳

〈(
(trGJc)

2

n2
G−2

J + IJc

)
·
(
(trHKc)2

n2
H−2

K + IKc

)
, w∗w∗⊤⟩

〉
=
∥∥( (trGJc)

2

n2
G−2

J + IJc
) 1

2 ·
( (trHKc)2

n2
H−2

K + IKc

) 1
2w∗∥∥2

G
.

We also give the variance lower bound in the expectation form.

Evariance = σ2
(
⟨EP(2)GP(2), EX(1)⊤A(1)−2

X(1)⟩+ ⟨G, EX(2)⊤A(2)−2
X(2)⟩

)
≳

σ2

n

(〈
G ·

(
(trHKc)2

n2
H−2

K + IKc

)
, G−1

J +
n2

(trGJc)2
·GJc

〉
+

〈
G, H−1

K +
n2

(trHKc)2
·HKc

〉)
=

σ2

n

(〈
(trHKc)2

n2
H−2

K + IKc , IJ +
n2

(trGJc)2
·G2

Jc

〉
+

〈
G, H−1

K +
n2

(trHKc)2
·HKc

〉)
We have finished the proof.

C.7 PROOF OF EXAMPLES

Proof of Example 9. We examine E
[
R1(w

(2))−R1(w
∗)
]

to represent the joint risk and forget-
ting.

1. By Theorem 18 we have

variance ≥ σ2

n
⟨G, H−1

K ⟩ ≥ σ2

n
· µ1

λ1
= 1.

As a result, E
[
R1(w

(2))−R1(w
∗)
]
= Ω(1).

2. By Theorem 18 we have

variance ≥ σ2

n
⟨G,

n2

(trHKc)2
HKc⟩,

where K = {i : λi > λ∗} and the choice of λ∗ let K satisfies tr(HKc) ≂ n∥HKc∥2. By
definition of H , K = {i : i ≥ i∗} where i∗ satisfies i∗ log i∗ ≂ n. Therefore,

variance ≥ σ2

n
⟨G,

n2

(trHKc)2
HKc⟩ = n ·

∑
i≥i∗ µiλi(∑
i≥i∗ λi

)2
= n ·

∑
i≥i∗ i

−2 log−α−β i(∑
i≥i∗ i

−1 log−β i
)2

≳ n · i
∗−1 log−α−β i∗(
log−β+1 i∗

)2 ≂ logβ−α−1 i∗ ≳ logβ−α−1 n.

As a result, E
[
R1(w

(2))−R1(w
∗)
]
= Ω

(
logβ−α−1 n

)
.
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D PROOF OF EXTENSIONS

D.1 PROOF OF CL IN THE NTK REGIME

We set up a 2-task CL setting in the NTK regime. Consider two data distributions D1,D2. For each
task, n individual samples (x(1)

i , y
(1)
i )ni=1, (x

(2)
i , y

(2)
i )ni=1 are sampled independently from D1,D2.

The goal is to learn a neural network model fw(x) specified by parameter w ∈ Rd. Lee et al.
(2019) proved that under the NTK regime, neural networks evolve as a linear model:

fw(x) = f (0)(x) + ⟨∇wf (0)(x),w −w(0)⟩,

where f (0)(·) denotes the model with w(0) = 0 as the initial weight. This formulation implies that
the feature map ϕ(x) = ∇wf (0)(x) ∈ Rd is constant over time.

Under this setting, we consider the convergence of GRCL with gradient descent (GD), consistent
with the setting of Section 3.2 in Bennani et al. (2020). In this algorithm, we optimize the following
training loss for tasks t = 1, 2:

L1(w
(1)
τ ) =

1

n

n∑
i=1

(f (1)
τ (x

(1)
i )− y

(1)
i )2, (26)

L2(w
(2)
τ ) =

1

n

n∑
i=1

(f (2)
τ (x

(2)
i )− y

(2)
i )2 + ∥w(2)

τ −w(1)∥2Σ, (27)

where Σ is the regularization matrix, τ is the GD iteration number, and w(1),w(2) is the limit of
w

(1)
τ ,w

(2)
τ , respectively. The update rule of GD for tasks t = 1, 2 is that

w
(t)
τ+1 = w(t)

τ − η∇wLt(w
(1)
τ ).

We have the following theorem to connect GRCL in this NTK regime with our linear model:
Theorem 35 (Continual Learning in NTK as a linear GRCL). In the NTK setting, with an infinites-
imally small η, GRCL outputs w(2) such that:

w(1) =
(
ϕ(X(1))⊤ϕ(X(1))

)−1
ϕ(X(1))

⊤
(y(1) − f (0)(X(1)));

w(2) = argmin
w

1

n
∥y(2) − f (1)(X(2))− ϕ(X(1))⊤(w −w(1))∥22 + ∥w −w(1)∥2Σ.

Proof. By putting (12) into (26) and (27), and computing the first-order optimality condition of (26),
we get the result.

This theorem essentially reduces the GRCL in the NTK setting to the linear GRCL algorithm in (3),
providing that we give the following inputs x′, y′to the linear model:

x′(1) = ϕ(x(1)), x′(2) = ϕ(x(2)), y′
(1)

= y(1) − f (0)(x(1)), y′
(2)

= y(2) − f (1)(x(2)). (28)

Assumption 5 (NTK data distribution condition). We assume that x′(1),x′(2), y′
(1)

, y′
(2) satisfy

Assumptions 1, 2, 3.

Note that in this case, the covariance matrices G := ED(1) [ϕ(x(1))ϕ(x(1))⊤],H :=
ED(2) [ϕ(x(2))ϕ(x(2))⊤] are actually the Hessian matrices of the model. Now we have our main
results in the NTK regime:

Theorem 36. Suppose Assumption 5 holds. Then for the GRCL output w(2) in the NTK regime, it
holds that

E∆(w(2)) = bias+ variance,

where the bias and variance satisfy (6) defined in Theorem 2.

Therefore, our main results in Theorem 2 and its collollaries and messages still hold in the NTK
regime and can be applied in general neural networks.
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D.2 PROOF OF MULTI-TASK CL

We set up a multi-task CL setting with linear regression problems. For tasks t = 1, . . . , T where T ≥
3 is a constant, consider the data distributions (D(t))Tt=1. For each task t, n samples (x(t)

i , y
(t)
i )ni=1

are drawn independently from the task distribution. The goal is to learn a model w to minimize the
joint population risk R(w) =

∑
t Rt(w), where Rt(w) := ED(t)(y − w⊤x)2 is defined in the

same way as Definition 2 in the paper. We retain the shared-optimal assumption in Definition 2. For
the covariance condition in Definition 1, we denote:

Definition 3 (Covariance conditions). H(t) := ED(t) [xx⊤] = diag(λ
(2)
i ),G(t) :=

∑t
τ=1 H

(t) =

diag(µ
(2)
i ).

One can verify that G(1) = G and H(2) = H is consistent with the original Definition 1. Under
this multi-task setting, we consider the GRCL algorithm, in which the regularization matrix series
Σ(t) can adapt as the number of task t grows:

w(1) = (X(1)⊤X(1))−1X(1)⊤y(1);

w(t) = argmin
w

1

n
∥y(t) −X(t)w∥22 + ∥w −w(t−1)∥2Σ(t) , 2 ≤ t ≤ T.

Assumption 6 (Multi-task data distribution condition). We assume that Assumptions 1, 2, 3 hold
for t = 1, . . . , T .

Proof of Corollary 11. We use induction to prove this corollary. Consider E∆(w(t)). For t = 2,
(14) already holds due to the original Corollary 6. Now we assume (14) holds for task t − 1 such
that 3 ≤ t ≤ T . In this case, according to (18), we have

E∆(w(t−1)) = ⟨G(t−1),E(w(t−1) −w∗)(w(t−1) −w∗)⊤⟩ ≲ E∆(wjoint).

Then for task t, reall that P (t)
Σ = (X(t)⊤X(t) + nΣ(t))−1nΣ(t). According to Eqs. (12) and (15),

E∆(w(t)) = ⟨G(t−1) +H(t),E(w(t) −w∗)(w(t) −w∗)⊤⟩

= Et⟨G(t−1) +H(t),P
(t)
Σ E(w(t−1) −w∗)(w(t−1) −w∗)⊤P

(t)
Σ ⟩

+ σ2⟨G(t−1) +H(t),Et(X
(t)⊤X(t) + nΣ(t))−2X(t)⊤X(t)⟩.

For the first term, notice that according to Lemma 13,

Et(G
(t−1) +H(t))P

(t)
Σ

2
≤ (G(t−1) +H(t))[G(t−1)2(G(t−1) +H(t))−2 + (IJ −H

(t)
J )n] ≲ G(t−1).

Therefore,

Et⟨G(t−1) +H(t),P
(t)
Σ E(w(t−1) −w∗)(w(t−1) −w∗)⊤P

(t)
Σ ⟩

≲ ⟨G(t−1),E(w(t−1) −w∗)(w(t−1) −w∗)⊤⟩
≲ E∆(wjoint).

For the second term, following (22), it is also bounded by variancejoint, thus bounded by
E∆(wjoint). Adding them up and we get E∆(w(t)) ≲ E∆(wjoint).

By induction, we get the result.

Corollary 11 extends the message in the paper that with sufficient memory and appropriate regular-
ization, GRCL can match the performance of joint training in multi-task CL. Combining with the
existing Example 7, where low-memory CL behaves poorly, we deliver the message that there is a
provable memory-statistics trade-off in multi-task CL.
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E EXPERIMENTS

E.1 NUMERICAL EXPERIMENT SETTINGS

We consider a CL problem instance adapted from Wu et al. (2022) and Li et al. (2023). Specifically,
the eigenvalues for G and H are {1/2i−1}di=1. For a given integer k > 0 and a small value
0 < δ < 1, the CL problem P(k) = (w∗, σ2,G,H) is specified as follows:

G = diag

(
1,

1

2
,
1

22
, . . . ,

1

2k−1
,
1

2k
, . . .

)
, H = diag

(
1

2k−1
,

1

2k−2
, . . . , 1,

1

2k
, . . .

)
,

w∗ = (1, 2−1, 3−1, . . . , k−1, . . . )⊤, σ2 = 1,

(29)

We choose P(15) for our illustration. It is evident that G and H differ in their top-15 eigenvalues.
For the GRCL algorithm, the regularization matrix Σ is specified by the rank-k approximation of
the empirical covariance matrix of the first task 1

nX
(1)⊤X(1). We then test this problem instance

and compare the GRCL risk convergence with OCL and joint learning results.

E.2 NEURAL NETWORK EXPERIMENTS

In this section, we further verify our theoretical results with experiments on practical CL datasets
using neural networks, complementing the numerical experiments in Section 4.2. We use Permuted
MNIST and Rotated MNIST, two CL benchmark datasets widely used in the literature (Kirkpatrick
et al., 2017; Farajtabar et al., 2020). In both experiments, we consider a two-task problem: the first
consists of standard MNIST digits, while the input of the second task is transformed from NMINST.
In Permuted MNIST, a random shuffle of pixels is applied on the 28 × 28 images of the original
MNIST hand-written digits to create the second task; in Rotated MNIST, instead of the random
shuffle, a rotation of an unknown fixed angle is applied.

In analogy to the OCL and the GRCL algorithms that we theoretically analyzed in Section 4, we ex-
amine three algorithms: vanilla training without regularization, full regularization, and PCA-based
low-rank regularization. In vanilla training, standard optimization is performed with the Adam opti-
mizer during the second task training. In the full regularization algorithm, the Hessian is computed
at the end of the first task training and is used as the regularization matrix in training the second task.
In the low-rank regularization algorithm, instead of the full Hessian, PCA with a predetermined rank
is performed on the saved regularization matrix. We examine different network architectures for the
two datasets due to their different properties. For Permuted MNIST, we use an MLP-based model
with 4 residual blocks, each consisting of 2 MLP layers with a hidden size of 40. The model input
dimension is 196 (the MNIST figures are resized to 14 × 14), and the output dimension is 10. For
Rotated MNIST, we use a CNN-based network with a LeNet5 structure.

The experiment results are shown in Figure 2. We make the following observation: In both settings,
the vanilla algorithm suffers from a significant drop in average accuracy due to catastrophic forget-
ting. As the memory size increases, the regularized algorithm performance improves and achieves a
reasonable empirical result. This result corresponds to the memory-statistics tradeoff demonstrated
in our theory and numerical experiments.
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(a) Permuted MNIST
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(b) Rotated MNIST

Figure 2: Average accuracy across previously learned tasks on (a) Permuted MNIST and (b)
Rotated MNIST after each epoch of training for the vanilla algorithm without regularization, the
regularization-based method with full Hessian, and with low-rank regularization. In both experi-
ments, we use the Adam optimizer with a learning rate of 10−4. The moving average parameter is
α = 0.25 and the regularization coefficient is 104 for all algorithms.
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