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ABSTRACT

This paper introduces unified projection-free Frank-Wolfe type algorithms for ad-
versarial continuous DR-submodular optimization, spanning scenarios such as full
information and (semi-)bandit feedback, monotone and non-monotone functions,
different constraints, and types of stochastic queries. For every problem consid-
ered in the non-monotone setting, the proposed algorithms are either the first with
proven sub-linear α-regret bounds or have better α-regret bounds than the state
of the art, where α is a corresponding approximation bound in the offline setting.
In the monotone setting, the proposed approach gives state-of-the-art sub-linear
α-regret bounds among projection-free algorithms in 7 of the 8 considered cases
while matching the result of the remaining case. Additionally, this paper addresses
semi-bandit and bandit feedback for adversarial DR-submodular optimization, ad-
vancing the understanding of this optimization area.

1 INTRODUCTION

The optimization of continuous adversarial DR-submodular functions has become increasingly
prominent in recent years. This form of optimization represents an important subset of non-convex
optimization problems at the forefront of machine learning and statistics. These challenges have
numerous real-world applications like revenue maximization, mean-field inference, and recommen-
dation systems, among others (Bian et al., 2019; Hassani et al., 2017; Mitra et al., 2021; Djolonga
& Krause, 2014; Ito & Fujimaki, 2016; Gu et al., 2023; Li et al., 2023). The problems at hand can
be conceptualized as a recurring game played between an optimizer and an adversary. In each round
of this game, the optimizer makes an action selection, while the adversary selects a reward function.
The optimizer is then allowed to query this reward function, either at any arbitrary point within
the domain (full information) or specifically at the chosen action (in the case of semi-bandit/bandit
scenarios). The adversary provides a noisy version of the gradient/value at the queried point. This
framework gives rise to a set of significant challenges, varying based on the properties of the DR-
submodular function, the constraint set, and the types of queries involved.

This paper presents a comprehensive investigation into online continuous adversarial DR-
submodular optimization. There have been significant advances in recent years, though most re-
search has predominantly focused on monotone (i.e., non-decreasing) objective functions and/or full
information feedback via stochastic gradient queries. In contrast, our study encompasses a broader
spectrum, addressing combinations of: (i) monotone or non-monotone functions, (ii) optimization
under downward closed (or convex sets containing the origin) or general convex sets, (iii) gradient
or value queries, and (iv) queries at arbitrary points or only the current action. See Table 1 for an
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enumeration of the cases along with corresponding approximation ratios α, query complexities (for
full-information feedback), and α-regret bounds for prior works and ours.

In this paper, we propose Frank-Wolfe based algorithms for this diverse family of problems. For
many cases in Table 1, our algorithms are the first to achieve sub-linear regret or improve on the
state of the art. For non-monotone objective functions (i.e., the bottom half of Table 1), our algo-
rithms beat the state of the art for almost every combination of convex feasible regions (downward-
closed or general), feedback models (full-information (with T β queries for various β), semi-bandit,
bandit), and feedback type (exact/noisy gradient/value). See Fig. 1 for a visual depiction of the im-
proved regret bound and query complexity trade offs for non-monotone functions with a downward
closed feasible region and full-information feedback with (noisy) gradient queries. The single case
for non-monotone objectives that our algorithms do not strictly improve on the prior works is for
general convex sets with full-information feedback of T 1/2 gradients (per round), in which case the
regret bound of our algorithm and that proposed by (Mualem & Feldman, 2023) both have Õ(

√
T )

dependence. We note for T β queries with 0 ≤ β < 1
2 , our algorithm’s regret bound is strictly better.
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Figure 1: 1
e

-regret bounds for
non-monotone functions with a
downward-closed feasible region
and full-information (noisy) gradient
feedback, as a function of query-
complexity. ODC is from (Thang &
Srivastav, 2021). Meta and Mono are
from (Zhang et al., 2023). Better per-
formance corresponds to the bottom
left corner. Our algorithm’s regret
bounds dominate the state of the art.

For monotone objective functions (i.e., the top half of Table 1),
our algorithms achieve the first sublinear regret for general
convex sets with full information value feedback and for gen-
eral convex sets with bandit feedback. Our algorithms also
achieve the first or better regret bounds than prior projection-
free methods (those without “‡” symbols in Table 1) for all but
one case, i.e. for general convex feasible regions with ban-
dit feedback where we match the results of (Niazadeh et al.,
2021).1 See Appendix A for more discussion.

Our algorithms and most prior Frank-Wolfe based methods
can rely on solving only linear optimization problems as sub-
routines (hence referred to as “projection-free”). Some of the
prior works that use projected gradient ascent, in particular
(Zhang et al., 2022; Chen et al., 2018b) (marked with a “‡”
in Table 1), achieve superior regret bounds of Õ(

√
T ) to other

prior works and our algorithms. In some instances, solving
a projection (or other non-linear optimization problems like
(Wan et al., 2023; Thang & Srivastav, 2021)) as a sub-routine
can be computationally expensive. Braun et al. (2022) identify
matrix completion, routing and graph problems, and problems with matroid polytopes as example
problems for which it is efficient to solve linear optimization problems but solving projections can
be expensive. (Chen et al., 2018a) showed projected gradient ascent took between five to eight times
longer than several Frank-Wolfe based methods even for small matrix completion tasks. Thus, for
some large-scale problems, if the agent has limited per-round computational resources, the regret
bounds achieved by projection-free methods (for which our methods match or improve on the state
of the art) could represent the best “practically-achievable” regret-bounds.

The key contributions of this work can be summarized as follows:

1. We propose a unified framework for Frank-Wolfe type (projection-free) algorithms for adversar-
ial continuous DR-submodular optimization, spanning scenarios with different types of feedback
(full information, semi-bandit, and bandit; exact or stochastic), objective function classes (mono-
tone and non-monotone), and convex feasible region geometries (downward-closed, origin fea-
sible, general). In particular, we provide the first projection-free algorithm for online adversarial
maximization of monotone functions over general convex sets for any feedback and oracle type.

2. For the class of non-monotone DR-submodular functions, our algorithms achieve the best (in
some cases the first) sublinear α-regret bounds for all feedback models and feasible region ge-
ometries considered.

1 The result of (Niazadeh et al., 2021) is proven for monotone functions over d-dimensional downward-
closed convex sets given a deterministic value oracle. However, as we discuss in Appendix C, replacing their
shrunk constraint set with the construction presented in (Pedramfar et al., 2023) together with a more detailed
analysis of their algorithms can be used to obtain the same regret bounds for monotone functions over all convex
sets containing the origin when we only have access to a stochastic value oracle.
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Table 1: Online DR-submodular optimization results.
F Set Feedback Reference Appx. # of queries logT (α-regret)

M
on

ot
on

e 0
∈
K

∇F Full Information

det. (Chen et al., 2018b), (*) 1− e−1 T β(β ∈ [0, 1/2]) 1− β
(Niazadeh et al., 2021) 1− e−1 T β(β ∈ [0, 1/2]) 1− β

stoch.

(Chen et al., 2018a), 1− e−1 T β(β ∈ [0, 3/2]) 1− β/3
(Zhang et al., 2019) 1− e−1 1 4/5
(Liao et al., 2023) 1− e−1 1 3/4

(Zhang et al., 2022) ‡ 1− e−1 1 1/2
This paper 1− e−1 T β(β ∈ [0, 1/2]) 2/3− β/3

Semi-bandit stoch. This paper 1− e−1 - 3/4
Full Information stoch. This paper 1− e−1 T β(β ∈ [0, 1/2]) 3/5− β/5

det.
(Zhang et al., 2019) 1− e−1 - 8/9

(Niazadeh et al., 2021) 1− e−1 - 5/6
(Wan et al., 2023) ‡‡ 1− e−1 - 3/4

F Bandit

stoch. This paper 1− e−1 - 5/6

ge
ne

ra
l ∇F

Full Information stoch. This paper 1/2 T β(β ∈ [0, 1/2]) 2/3− β/3

Semi-bandit stoch. (Chen et al., 2018b)‡ 1/2 - 1/2
This paper 1/2 - 3/4

Full Information stoch. This paper 1/2 T β(β ∈ [0, 1/2]) 3/5− β/5
F Bandit stoch. This paper 1/2 - 5/6

N
on

-M
on

ot
on

e d.
c.

∇F Full Information stoch.

(Thang & Srivastav, 2021) e−1 T β(β ∈ [0, 3/4]) 1− β/3
(Zhang et al., 2023) e−1 T β(β ∈ [0, 3/2]) 1− β/3
(Zhang et al., 2023) e−1 1 4/5

This paper e−1 T β(β ∈ [0, 1/2]) 2/3− β/3
Semi-bandit stoch. This paper e−1 - 3/4

Full Information stoch. This paper e−1 T β(β ∈ [0, 1/2]) 3/5− β/5
F Bandit det. (Zhang et al., 2023) e−1 - 8/9

stoch. This paper e−1 - 5/6

ge
ne

ra
l ∇F Full Information stoch.

(Thang & Srivastav, 2021) (1− h)/3
√
3 T β(β > 0) 1

(Mualem & Feldman, 2023), (*) (1− h)/4 T β(β ∈ [0, 1/2]) 1− β
This paper (1− h)/4 T β(β ∈ [0, 1/2]) 2/3− β/3

Semi-bandit stoch. This paper (1− h)/4 - 3/4
Full Information stoch. This paper (1− h)/4 T β(β ∈ [0, 1/2]) 3/5− β/5

F Bandit stoch. This paper (1− h)/4 - 5/6

Here h := minz∈K ∥z∥∞. The rows marked with (*) are special cases of our algorithms with appro-
priate hyperparameters. The rows marked with ‡ use gradient ascent, requiring potentially computationally
expensive projections. ‡‡ (Wan et al., 2023) uses a convex optimization subroutine in each iteration. The
logarithmic terms in regret are ignored. See Appendix A.2 for details.

3. For the class of monotone (i.e., non-decreasing) DR-submodular functions, our algorithms
achieve the state of the art α-regret bounds in 4 of the 8 cases.2 Moreover, if we only com-
pare with other projection-free algorithms, then we obtain the state of the art in 7 out of the 8
cases and match the result of (Niazadeh et al., 2021) in the last case.1

In addition to the enumerated list above, our technical novelties include (i) a novel combination of
the idea of meta-actions and random permutations to obtain a new algorithm in full-information set-
ting; (ii) handling stochastic (gradient/value) feedback without using variance reduction techniques
like momentum, which in turn leads to state of the art regret bounds; and (iii) a unified approach
that specializes to multiple scenarios considered in this paper. See Sections 3.1 and 3.2 and Ap-
pendix A.2 for more details. Table 1 describes the key comparisons of our works, where the related
works are expanded on in Appendix A.

2 BACKGROUND AND NOTATION

We introduce some basic notions, concepts and assumptions which will be used throughout the
paper. For any vector x ∈ Rd, [x]i is the i-th entry of x. We consider the partial order on Rd where
x ≤ y if and only if [x]i ≤ [y]i for all 1 ≤ i ≤ d. For two vectors x,y ∈ Rd, the join of x and y,
denoted by x ∨ y and the meet of x and y, denoted by x ∧ y, are defined

x ∨ y := (max{[x]i, [y]i})di=1 and x ∧ y := (min{[x]i, [y]i})di=1, (1)

respectively. Clearly, we have x∧y ≤ x ≤ x∨y. We use x⊙y for coordinate-wise multiplication.
We use ∥ · ∥ to denote the Euclidean norm, and ∥ · ∥∞ to denote the supremum norm. In the paper,
we consider a bounded convex domain K and w.l.o.g. assume that K ⊆ [0, 1]d. We say that K is
downward-closed (d.c.) if there is a point u ∈ K such that for all z ∈ K, we have {x | u ≤ x ≤
z} ⊆ K. Unless explicitly stated, we will assume that downward-closed convex sets contain the

2Algorithms for (semi-)bandit feedback can be used in full-information setting. Therefore (Chen et al.,
2018b) obtains the state of the art in both semi-bandit and full-information setting for monotone functions over
general convex set when given access to gradient oracles.
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origin. The diameter D of the convex domain K is defined as D := supx,y∈K∥x− y∥. We use
Br(x) to denote the open ball of radius r centered at x. More generally, for a subset X ⊆ Rd, we
define Br(X) :=

⋃
x∈X Br(x). For an affine subspace A of Rd, we define BA

r (X) := A ∩ Br(X).
We will use Rd

+ to denote the set {x ∈ Rd|x ≥ 0}. For any set X ⊆ Rd, the affine hull of X ,
denoted by aff(X), is defined to be the intersection of all affine subsets of Rd that contain X . The
relative interior of a set X is defined by

relint(X) := {x ∈ X | ∃ε > 0,Baff(X)
ε (x) ⊆ X}.

It is well known that for any non-empty convex set K, the set relint(K) is always non-empty. We
will always assume that the feasible set contains at least two points and therefore the dimension
d′ := dim(K) = dim(aff(K)) ≥ 1, otherwise the optimization problem is trivial.

A set function f : {0, 1}d → R is called submodular if for all x,y ∈ {0, 1}d with x ≥ y,

f(x ∨ a)− f(x) ≤ f(y ∨ a)− f(y), ∀a ∈ {0, 1}d. (2)

Submodular functions can be generalized over continuous domains. A function F : [0, 1]d →
R is called DR-submodular if for all vectors x,y ∈ [0, 1]d with x ≤ y, any basis vector ei =
(0, · · · , 0, 1, 0, · · · , 0) and any constant c > 0 such that x+ cei ∈ [0, 1]d and y + cei ∈ [0, 1]d,

F (x+ cei)− F (x) ≥ F (y + cei)− F (y). (3)
Note that if a function F is differentiable then the diminishing-return (DR) property (3) is equivalent
to ∇F (x) ≥ ∇F (y) for x ≤ y with x,y ∈ [0, 1]d. A function F : D → R is M1-Lipschitz
continuous if for all x,y ∈ D, ∥F (x)−F (y)∥ ≤ M1∥x−y∥. A differentiable function F : D → R
is M2-smooth if for all x,y ∈ D, ∥∇F (x) − ∇F (y)∥ ≤ M2∥x − y∥. A DR-submodular F is
monotone if F (x) ≥ F (y) for all x ≥ y.

2.1 PROBLEM SETUP

Adversarial bandit optimization problems can be formalized as a repeated game between an opti-
mizer and an adversary. The game lasts for T rounds and T is known to both players. In t-th round,
the optimizer chooses an action xt from an action set K, then the adversary chooses a reward func-
tion Ft ∈ F . We assume that the function class F has functions that map K to a bounded interval
[0,M0] ⊆ R. We consider the setting with oblivious adversary where the choice of the sequence of
functions Ft is not affected by the choice of the optimizer. In other words, we may assume that the
adversary chooses the sequence {Ft}Tt=1 before the first action of the optimizer.

Before we discuss different forms of feedback, we first formally define the notion of oracle. A
stochastic non-oblivious value oracle for the function F : K → R is a tuple (Z0, p0, F̃ ) where Z0

is an arbitrary measure space, p0 : Z0 × K → R is a non-negative measurable function such that∫
Z0

p0(z;x)dz = 1 for each x ∈ K and F̃ : Z0 ×K → R is a measurable function such that

F (x) = Ez∼p0(·;x)[F̃ (z,x)],

for all x ∈ K. We will use F̃ (x) to denote the random variable F̃ (x, z) where z is a random variable
samples according to the distribution p0(·;x). Such an oracle would be called an oblivious oracle
when p0(·;x) is independent of the choice of x. We consider the more general setting where we
only have access to a non-oblivious oracle, i.e., where p0(·;x) may depend on x.

Similarly, a non-oblivious gradient oracle for the function F : K → R is a tuple (Z1, p1, ∇̃F ) where
Z1 is an arbitrary measure space, p1 : Z1 ×K → R is a non-negative measurable function such that∫
Z1

p1(z;x)dz = 1 for each x ∈ K and ∇̃F : Z1 ×K → R is a measurable function such that

∇F (x) = Ez∼p1(·;x)[∇̃F (z,x)],

for all x ∈ K. Similarly, we will use ∇̃F (x) to denote the random variable ∇̃F (x, z) where z is a
random variable sampled according to the distribution p1(·;x).
Assumption 1. We assume that the functions Ft : [0, 1]d → R are DR-submodular, first-order
differentiable, non-negative, bounded by M0, M1-Lipschitz, and M2-smooth for some values of
M0,M1,M2 < ∞. Note that this implies that ∥∇Ft(x)∥ ≤ M1. Moreover, we also assume that we
either have access to a value oracle bounded by B0 or a gradient oracle bounded by B1 for some
values of for some B0, B1 < ∞.
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Remark 1. The proposed algorithm does not need to know the values of M0, M1, M2, B0 or B1, in
advance. However these variables appear in the regret bounds. Note that we always have B0 ≥ M0

and B1 ≥ M1. Exact oracles are special cases of stochastic oracles with B0 = M0 and B1 = M1.
When we have access to exact oracles, the performance of the proposed algorithms does not change
beyond the replacement of B0 with M0 and B1 with M1.

We consider different forms of feedback to the optimizer:

1. Full Information with gradient query oracle: In this feedback model, the optimizer is allowed
to query a stochastic non-oblivious gradient oracle ∇̃Ft(x) for Ft : K → R at multiple points.
We assume that the optimizer can query Ft a total of T β times, where β ≥ 0 gives a range from
constant queries to infinite queries.

2. Full Information with value query oracle: Same as the previous case, but the adversary reveals
a stochastic non-oblivious value oracle F̃t(x).

3. Semi-Bandit: In this feedback model, the adversary reveals a gradient sample ∇̃Ft(yt) for the
specific action yt taken, where ∇̃Ft is a stochastic non-oblivious gradient oracle for Ft.

4. Noisy Bandit: In this feedback model, the optimizer can only observe a sample of F̃t(yt), where
F̃t is a stochastic non-oblivious value oracle for Ft. Such feedback model is a generalization
of what is called full-bandit feedback in the literature. In the full-bandit feedback setting, the
optimizer observes the exact value of Ft(yt).

We note that the full information feedback can query at any point in K, while the semi-bandit and
bandit feedback can only query at yt in time t. Also note that the distributions p0 and p1, described
in the definition of stochastic oracles, may depend on the function Ft. We will use a superscript, i.e.,
pt0 and pt1, to specify the function in question.

Please note that even when dealing with offline scenarios, it is NP-hard to solve a DR-submodular
maximization problem (Bian et al., 2017b). For the problems we consider, however, there are poly-
nomial time approximation algorithms. We let α denote corresponding approximation ratios. Thus,
the goal of this work is to minimize the α-regret, which is defined as:

Rα = αmax
y∈K

T∑
t=1

Ft(y)−
T∑

t=1

Ft(yt) (4)

In Appendix A.1, we discuss the best known approximation ratios in different settings.
Remark 2. Any algorithm designed for semi-bandit setting may be trivially applied in full-
information setting with a gradient oracle. Similarly, any algorithm designed for bandit setting
may be applied in full-information setting with a value oracle.
Remark 3. As a special case, if all of the functions Ft are equal, then the semi-bandit setting
we consider reduces to online stochastic continuous DR-submodular maximization. See Table 2
in Appendix for the list of previous results in this setting for (i) monotone/non-monotone function,
(ii) constraint set choices, or (iii) bandit/semi-bandit feedback. These results achieve the same
regret guarantees as in (Pedramfar et al., 2023), and thus match the state of art for projection-free
algorithms in all cases.

3 PROPOSED ALGORITHMS

In this section, we describe the proposed algorithm with different forms of feedback and the dif-
ferent problem setups (based on the properties of the functions and the feasible set). For efficient
description of the algorithm, we first divide the problem setup into four categories:

(A) The functions {Ft}Tt=1 are monotone DR-submodular and 0 ∈ K.
(B) The functions {Ft}Tt=1 are non-monotone DR-submodular and K is a downward closed set

containing 0.
(C) The functions {Ft}Tt=1 are monotone DR-submodular and K is a general convex set.
(D) The functions {Ft}Tt=1 are non-monotone DR-submodular and K is a general convex set.
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The four divisions here for the problem provide different approximation ratios α for the problem.
Thus, the algorithm steps and the proofs change with these cases. For combining definitions in the
different forms of feedback, we define

oracle-adv(d,x) :=

{
d⊙ (1− x) (B);
d otherwise,

,update(x,v,u) =


x+ 1

K (v − u) (A);
x+ 1

K (v − u)⊙ (1− x) (B);
(1− εC)x+ εCv (C);
(1− εD)x+ εDv (D),

where εC = log(K)
2K and εD = log(2)

K . We also define the approximation ratio α as 1 − 1
e for case

(A), 1
e for case (B), 1

2 for case (C), and 1−h
4 for case (D), where h := minz∈K ∥z∥∞. Further,

grad-estimate(F,x,u) :=

{
∇̃F (x) gradient oracle;
d′

δ F̃ (x+ δu)u value oracle.

In the following subsections, we divide the proposed algorithm into different feedback scenarios.

3.1 FULL INFORMATION
Input : smoothing radius δ, shrunk

constraint set K̂, horizon T , block
size L, number of linear
maximization oracles K, online
linear maximization oracles on K̂:
E(1), · · · , E(K), number of blocks
Q = T/L.

for q = 1, 2, . . . , Q do
Pick any u ∈ argminx∈K̂ ∥x∥∞
x
(1)
q ← u

for k = 1, 2, . . . ,K do
Let v(k)

q ∈ K̂ be the output of E(k) in
round q.

x
(k+1)
q ← update(x

(k)
q ,v

(k)
q ,u)

end
xq ← x

(K+1)
q

Let (tq,1, . . . , tq,L) be a random
permutation of {(q − 1)L+ 1, . . . , qL}

for t = (q − 1)L+ 1, . . . , qL do
Play yt = xq and obtain the reward
Ft(yt)

Find the corresponding l ∈ [L] such that
t = tq,l

for k ∈ [K] such that k ≡ l (mod L) do
If we have a value oracle, sample
u
(k)
q ∼ Sd−1 ∩ L0 uniformly, otherwise

u
(k)
q ← 0

d
(k)
q ← grad-estimate(Ftq,l ,x

(k)
q ,u

(k)
q )

g
(k)
q ← oracle-adv(d

(k)
q ,x

(k)
q )

Pass g(k)
q as the adversarially chosen

vector to E(k)
end

end
end
Algorithm 1: Generalized Meta-Frank-
Wolfe

There are four main ideas used in Algorithm 1 that
allows us to obtain the desired regret bounds.

1. Offline bounds Given a submodular func-
tion F , sequence of vectors (v(k))Kk=1 in the con-
vex set K and a sequence of points x(k+1) =
update(x(k),v(k)) for k ∈ [K], for any x∗ ∈ K,
we may bound αF (x∗) − F (x(K+1)) from above
by the sum of a known term and a linear combi-
nation of ⟨oracle-adv(∇F (x(k)),x(k)),v(k)−x∗⟩,
for k ∈ [K].

See Lemma 8 for the exact statement for different
cases. This lemma captures the core idea behind
all Frank-Wolfe type algorithms for DR-submodular
maximization. In particular, if we choose

v(k) ∈ argmaxv∈K⟨oracle-adv(∇F (x(k)),x(k)),v⟩,
we recover the results in offline setting with ac-
cess to a deterministic gradient oracle. Lemma 8
is a reformulation of some of the ideas presented
in (Bian et al., 2017b;a; Zhang et al., 2023; Du,
2022; Mualem & Feldman, 2023) and (Pedramfar
et al., 2023).

2. Meta actions Having L = 1, δ = 0, and ac-
cess to gradient oracles corresponds to the idea of
meta-actions (without using Ideas 3 and 4). The idea
of meta-actions, proposed in (Streeter & Golovin,
2008) for discrete submodular functions, was first
used for continuous DR-submodular maximization
in (Chen et al., 2018b). This idea allows us to con-
vert offline algorithm into online algorithms. To be
precise, let us consider the first iteration and the first
objective function F1 of our online optimization setting. Note that F1 remains unknown until the
algorithm commits to a choice. If we were in the offline setting, we could have chosen

v(k) ∈ argmaxv∈K⟨oracle-adv(∇F1(x
(k)),x(k)),v⟩,

to obtain the desired regret bounds. The idea of meta-actions is to mimic this process in an online
setting as follows. We run K instances of an online linear optimization (OLO) algorithm, {E(k)}Kk=1.
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Here the number K denotes the number of iterations of the offline Frank-Wolfe algorithm that we
intend to mimic. Thus, to maximize ⟨oracle-adv(∇F1(x

(k)),x(k)), ·⟩, we simply use E(k). Once
the function F1 is revealed to the algorithm, it knows each linear maximization oracle “adversaries”
{oracle-adv(∇F1(x

(k)),x(k))}Kk=1. Now, we simply feed each online algorithm E(k) with the re-
ward {⟨oracle-adv(∇F1(x

(k)),x(k)), ·⟩}Kk=1. We repeat this process for each subsequent function
{Ft}t≥2. This idea, combined with Idea 1, allows us to obtain the desired α-regret bounds.

Remark 4. We assume that every instance E(k) has the following behavior and guarantee. In
every block 1 ≤ q ≤ Q, the oracle E(k) selects a vector v

(k)
q and then the adversary reveals a

vector g
(k)
q to the oracle that was chosen independently of v(k)

q . The OLO oracle guarantees that∑Q
q=1⟨g

(k)
q ,x∗ − v

(k)
q ⟩ ≤ RE(k)

Q , for some regret function RE(k)

Q . One possible choice for such

an oracle is Follow-the-Perturbed-Leader by (Kalai & Vempala, 2005) that guarantees RE(k)

Q ≤
CDB

√
Q where D is the diameter of K, B = maxq,k ∥g(k)

q ∥ and C > 0 is a constant. It follows
from the definition of grad-estimate that if we have access to gradient oracles, then B ≤ B1, while
if we have access to value oracles, then B ≤ d′

δ B0.

Input : smoothing radius δ, shrunk constraint set K̂,
horizon T , block size L, the number of
exploration steps per block K ≤ L, online
linear maximization oracles on K̂:
E(1), · · · , E(K), number of blocks Q = T/L.

for q = 1, 2, . . . , Q do
Pick any u ∈ argminx∈K̂ ∥x∥∞
x
(1)
q ← u

for k = 1, 2, . . . ,K do
Let v(k)

q ∈ K̂ be the output of E(k) in round q

x
(k+1)
q ← update(x

(k)
q ,v

(k)
q ,u)

end
xq ← x

(K+1)
q

Let (tq,1, . . . , tq,L) be a random permutation of
{(q − 1)L+ 1, . . . , qL}

for t = (q − 1)L+ 1, . . . , qL do
if t ∈ {tq,1, · · · , tq,K} then
Find the corresponding k ∈ [K] such that t = tq,k
If we have a value oracle, sample
u
(k)
q ∼ Sd−1 ∩L0 uniformly, otherwise u(k)

q ← 0

Play yt = ytq,k = x
(k)
q + δu

(k)
q for Ft (i.e., Ftq,k )

// Exploration

d
(k)
q ← grad-estimate(Ftq,k ,x

(k)
q ,u

(k)
q )

g
(k)
q ← oracle-adv(d

(k)
q ,x

(k)
q )

Pass g(k)
q as the adversarially chosen vector to E(k)

else
Play yt = xq for Ft // Exploitation

end
end

end
Algorithm 2: Generalized (Semi-)Bandit-Frank-
Wolfe

3. Random permutations Using ran-
dom permutations allows us to use less
queries at the cost of increased regret. In
the context of DR-submodular maximiza-
tion, this idea was first used in Mono-
Frank-Wolfe algorithm in (Zhang et al.,
2019). The Mono-Frank-Wolfe corre-
sponds to Algorithm 1 when K = L and
we have access to a gradient oracle. Here
we describe this idea in the general set-
ting where we allow K ̸= L, while we
still assume access to a gradient oracle.
We start by dividing the T functions into
Q = T/L blocks of length L. We define
F̄q as the average of functions in the q-th
block. For each block q, we pick a random
permutation (tq,1, . . . , tq,L) of {(q−1)L+
1, . . . , qL} uniformly from the set of all of
its permutations. The key insight is that for
all (q − 1)L < t ≤ qL, the expected value
of Ft is F̄q . Therefor we can estimate ∇F̄q

using information obtained from functions
Ft for (q − 1)L < t ≤ qL which allows
us to apply the idea of meta-actions on the
sequence of functions {F̄q}Qq=1.

4. Smoothing trick When we do not
have access to a gradient oracle, we rely on
samples from a value oracle to estimate the
gradient. The “smoothing trick” (Flaxman
et al., 2005; Hazan et al., 2016; Agarwal
et al., 2010; Shamir, 2017; Zhang et al.,
2019; Chen et al., 2020; Zhang et al., 2023; Niazadeh et al., 2021; Pedramfar et al., 2023) involves
averaging through spherical sampling around a given point. Here we use a variant that was intro-
duced in (Pedramfar et al., 2023).

Definition 1 (Smoothing Trick). For a function F : D → R defined on D ⊆ Rd, its δ-smoothed
version F̂ is given as

F̂δ(x) := E
z∼Baff(D)

δ (x)
[F (z)] = E

v∼Baff(D)−x
1 (0)

[F (x+ δv)], (5)

7
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where v is chosen uniformly at random from the dim(aff(D))-dimensional ball Baff(D)−x
1 (0). Thus,

the function value F̂δ(x) is obtained by “averaging” F over a sliced ball of radius δ around x.

The power of the smoothing trick lies in the facts that it is a good approximation of the original
function (Lemma 1) and there is a simple one-point gradient estimator for the smoothed version of
the function (Lemma 2). We will drop the subscript δ when there is no ambiguity.

Note that the domain of F̂ is smaller than the domain of F . Therefore, our ability to estimate the
gradient is limited to a smaller region compared to the entire feasible set. This limitation should be
considered when developing an algorithm for DR-submodular maximization. The notion of “shrunk
constraint set” (Zhang et al., 2019; 2023; Niazadeh et al., 2021; Pedramfar et al., 2023) was designed
to address this concern. Here we use the variant designed by (Pedramfar et al., 2023). Formally, we
choose a point c ∈ relint(K) and a real number r > 0 such that Baff(K)

r (c) ⊆ K. Then, for a given
δ < r, we define K̂c,r

δ := (1 − δ
r )K + δ

rc. Clearly if K is downward-closed, then so is K̂c,r
δ . We

will use the notation K̂ to denote this set when there is no ambiguity.

Putting these ideas together, in order to maximize F over K with a value oracle, we restrict ourselves
to the shrunk constraint set K̂ and maximize F̂ over this set using the one-point gradient estimator.

3.2 (SEMI-)BANDIT FEEDBACK

In the (semi-)bandit feedback setting, we only observe the value or gradient at the point where the
action is taken. To adapt Algorithm 1 to this setting, we start by assuming K ≤ L. In each block,
there are L functions that are used to update K linear maximization oracles. Therefore, we may
choose K exploration steps in each block where we take actions according to what we queried in
Algorithm 1. These actions are informative and allow us to carry out similar analysis to the full
information setting. In the remaining L −K steps, we exploit our knowledge of the best action so
far to minimize total α-regret. See Algorithm 2 for pseudo-code.

4 α-REGRET GUARANTEES

For brevity, we define Ru as

Ru =
(
M0 + (3 +D)M1

) Tδ
r

+

{
(8M0 +M2D

2 log(K)2) T
8K + LCDB

√
Q log(K) (C);

(M0 + 2M2D
2) T

4K + LCDB
√
Q Otherwise,

where B ≤ B1 if we have access to a gradient oracle and B ≤ d′

δ B0 otherwise and C is the constant
in Remark 4.

Theorem 1. Using Algorithm 1, we have E[Rα] ≤ Ru.

The proof is in Appendix F. Note that the number of times any function Ft is queried in Algorithm 1
is K/L. Let β be a real number such that T β = K/L. Given a gradient oracle, for any choice of
0 ≤ β ≤ 1

2 , we may set δ = 0, L = T
1−2β

3 and therefore K = T
1+β
3 and Q = T/L = T

2+2β
3 , to

obtain E[Rα] = O(T
2−β
3 log(T )2) in case (C), and O(T

2−β
3 ), otherwise. The special case L = 1

corresponds to Meta-Frank-Wolfe (Chen et al., 2018b;a; Zhang et al., 2023; Thang & Srivastav,
2021; Mualem & Feldman, 2023) while the special case L = K corresponds to Mono-Frank-Wolfe
(Zhang et al., 2019; 2023). Similarly, given a value oracle, for any choice of 0 ≤ β ≤ 1

2 , by
setting δ = T− 2+β

5 , L = T
2−4β

5 and therefore K = T
2+β
5 and Q = T/L = T

3+4β
3 , we see that

E[Rα] = O(T
3−β
5 log(T )2) in Case (C), and O(T

3−β
5 ), otherwise.

Theorem 2. Using Algorithm 2, we have E[Rα] ≤ Ru + 2M0QK.

The proof is in Appendix G. In particular, given a gradient oracle, we may set δ = 0, K = T 1/4 and
L = T 1/2 and therefore Q = T 1/2, to obtain E[Rα] = O(T 3/4 log(T )2) in Case (C) and O(T 3/4),
otherwise. Similarly, when given a value oracle, if we set K = T 1/6, L = T 1/3, δ = T−1/6 and
therefore Q = T 2/3, we see that E[Rα] = O(T 5/6 log(T )2) in Case (C) and O(T 5/6), otherwise.
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Figure 2: Empirical regret plots for the experiments. The top row depicts time-averaged regret for
each round t for a horizon of T = 500. The bottom row depicts cumulative regret for multiple
horizons with logarithmic scaling. Grey lines in the bottom row represent y = aT 1/2 curves for
different a for visual reference. Colors correspond to regret bounds (i.e. black for Õ(T 1/2)). Our
methods (solid lines) use significantly fewer queries and less computation than baselines (dashed
and dotted lines) with similar regret bounds and achieve better regret than baselines using similar
numbers of queries and computation.

5 EXPERIMENTS

We test our online continuous DR-submodular maximization algorithms for non-monotone objec-
tives, a downward-closed feasible region, and both full-information and semi-bandit gradient feed-
back. We briefly describe the setup and highlight key results. See Appendix H for more details.
We use online non-convex/non-concave non-monotone quadratic maximization following (Bian
et al., 2017a; Chen et al., 2018b; Zhang et al., 2023), randomly generating linear inequalities to
form a downward closed feasible region and for each round t we generate a quadratic function
Ft(x) =

1
2x

⊤Hx + h⊤x + c. Similar to (Zhang et al., 2023), we considered three pairs (n,m) of
dimensions n and number of constraints m, {(25, 15), (40, 20), (50, 50)}.

We ran three online algorithms from prior works, ODC from (Thang & Srivastav, 2021), Mono (full
information single query) from (Zhang et al., 2023), and Meta(β) from (Zhang et al., 2023), where
we used query parameters β = {3/4, 1, 3/2}; here and in the following we only explicitly mention
the query parameter so that there are T β queries per round and other algorithm parameters implicit.
We ran our Algorithm 1 (GMFW(β) for short) with query parameter β = {0, 1/4, 1/2} and our
semi-bandit Algorithm 2 (SBFW for short). Fig. 1 depicts regret bound and query complexity trade
offs for full-information methods.

Figure 2 shows both averaged regret within runs for a fixed horizon (top row) and cumulative regret
for different horizons, averaged over 10 independent runs. See Fig. 2’s caption for a description.
Average run-times for a horizon of T = 100 are displayed in Table 3 in Appendix H. Major dif-
ferences in run-times is in large part due to the number of online linear maximization oracles used,
which is in part related to the number of per-round queries.

In each experiment, our GMFW(β = 1/2) (black solid line) performs the best overall, despite
using significantly fewer gradient queries and significantly less computation than any of the Meta
algorithms. Our GMFW(β = 0) (red solid line) performs better than the baseline Mono (orange
dashed line; designed for the same amount of feedback).
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