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ABSTRACT

False negatives—missed unsafe content—remain the dominant risk in safety-
critical moderation. We present a novel recall-first moderation framework that
integrates two complementary innovations: (i) distribution-preserving contrastive
augmentation, which generates boundary-focused hard positives and negatives
while statistically preserving corpus structure, and (ii) committee-diverse re-
trieval, which combines dense, MMR, and graph-based selectors to construct
label-informative, non-redundant neighborhoods at inference. Augmented cor-
pora are validated with KL/JS divergence thresholds (≤ 0.05 globally), confirm-
ing indistinguishability from the source distribution. On a large held-out test set
of multidomain unbalanced text, vanilla retrieval-augmented pipelines expose the
persistent failure mode of under-detecting FLAGGED content (recall ≈ 0.44), but
also reveal a strong baseline gap: an open-source stack (FAISS + local LLaMA-3)
achieves significantly higher accuracy and macro-F1 than a commercial counter-
part (API embeddings + hosted LLM). Adding augmentation and committee re-
trieval improves sensitive-class recall by ∼ 10 points (to ≈ 0.56) while maintain-
ing global performance, with graph-aware retrieval pushing open-source accuracy
to 0.8510 and Macro-F1 to 0.7635. Ensemble experiments with DistilRoBERTa
further raise recall to 0.5781 without loss of utility.

1 INTRODUCTION

Automated content moderation has become a critical application area for large language models
(LLMs), due to their ability to interpret nuanced context and language. Recent studies have explored
using LLMs to assist or even replace traditional classifiers in detecting harmful or policy-violating
content (Huang, 2025; Chen et al., 2024a). Compared to static fine-tuned models, LLMs offer
greater flexibility and understanding in borderline cases. OpenAI, for example, has proposed using
GPT-4 as a content moderator to achieve more consistent policy enforcement (OpenAI, 2023). How-
ever, deploying LLMs for moderation also introduces new challenges: LLMs may reflect majority
cultural biases (Nguyen et al., 2025), struggle with ambiguous “hard cases” that require contex-
tual judgment (Huang, 2024), and can be resource-intensive to query repeatedly (Ding et al., 2024).
Critically, a key risk in safety-critical moderation is false negatives—failing to flag harmful content.
Recent work emphasizes the need to prioritize recall for unsafe content, even if it means tolerating
some false positives (Chen et al., 2024a; Huang, 2024). Our work addresses this need by combining
retrieval augmentation and contrastive data augmentation to boost the detection of subtle policy
violations while maintaining overall accuracy in imbalanced datasets, as real-world data is typically
distributed this way (He & Garcia, 2009; Chen et al., 2024b).

Main Contributions. We propose a novel LLM-based moderation pipeline that integrates diverse
retrieval and contrastive augmentation to enhance recall of harmful content. First, we introduce
a distribution-preserving paraphrase augmentation strategy that generates additional training exam-
ples which are statistically indistinguishable from the original data distribution (Papakipos & Bitton,
2022). Unlike standard augmentation (e.g., synonym replacement or back-translation (Feng et al.,
2021)), our method produces paraphrases that closely match the original length and semantics but
include hard positives/negatives—subtle rephrases of flagged content and safe content—to better
expose decision boundaries. This approach builds on the idea of counterfactual and adversarial
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augmentation in NLP (Kaushik et al., 2020; Hartvigsen et al., 2022), but focuses on safety-critical
categories. Second, we design a committee-based retrieval mechanism to supply the LLM with
diverse, relevant context at inference time. Instead of retrieving nearest neighbors with a single em-
bedding model, our pipeline combines multiple retrievers and reranking strategies—dense semantic
search, Maximal Marginal Relevance (MMR) diversification, and graph-based selection—to ensure
retrieved examples are informative and non-redundant (Zhang et al., 2025; Chernogorskii et al.,
2025; Rezaei & Dieng, 2025). Finally, we implement a recall-oriented decision policy: the model
casts votes across multiple retrieved contexts, and we apply a calibrated threshold that leans on
the side of flagging whenever there is reasonable doubt. By aggregating judgments and lowering the
threshold for the positive class, we explicitly favor high recall for unsafe content—a property critical
for safety filters (Huang, 2024). To our knowledge, this is the first framework to unify distribution-
preserving augmentation with retrieval-diverse RAG for moderation, showing that careful retrieval
diversity and thresholding can push an LLM moderator into a safer operating regime. In addition
to its methodological contributions, we use the framework to benchmark commercial RAG systems
against open-source implementations and to conduct a controlled comparison of open-source versus
proprietary subscription-based models under a unified protocol.

2 RELATED WORK

Our work integrates three complementary research directions—LLM-based moderation, retrieval
augmentation, and contrastive data augmentation—into a unified framework that explicitly priori-
tizes recall in safety-critical moderation scenarios. In this section we examine how prior work has
applied these approaches in practice.

LLMs for Content Moderation. Recent studies increasingly explore the use of large language
models (LLMs) in content moderation (Huang, 2024; OpenAI, 2023). Chen et al. (2024a) intro-
duce CLASS-RAG, which enhances robustness against adversarial prompts by retrieving safe and
unsafe examples for classification. Kolla et al. (2024) demonstrate how GPT-based assistants can
support human moderators, while Franco et al. (2025) investigate workflows where LLMs gener-
ate policy-grounded explanations. At the same time, concerns remain regarding cultural bias and
the dominance of majority perspectives in LLM moderation (Nguyen et al., 2025). To address this,
Nguyen et al. (2025) propose Mod-Guide, a retrieval-augmented system designed to surface minority
viewpoints. Our approach complements these efforts by placing explicit emphasis on recall-oriented
moderation.

Retrieval-Augmented Classification and Diversity. Retrieval-augmented generation (RAG) has
become central to knowledge-intensive NLP tasks (Izacard & Grave, 2020; Lewis et al., 2020). In
moderation, retrieval provides LLMs with contextual policy text or representative examples (Chen
et al., 2024a). However, the effectiveness of retrieval hinges on both relevance and diversity. Tech-
niques such as maximal marginal relevance (MMR) (Carbonell et al., 1998), clustering-based se-
lection (Zhang et al., 2025), and ensemble retrievers (Chernogorskii et al., 2025; Rezaei & Dieng,
2025) have been shown to improve coverage. Zhang et al. (2025) demonstrate that redundancy un-
dermines recall, while Chernogorskii et al. (2025) introduce DRAGON, a retrieval training method
that explicitly promotes diversity. Building on these insights, we employ an inference-time ensem-
ble that integrates dense, MMR, and graph-based retrieval to ensure coverage of multiple facets of
potentially harmful content.

Data Augmentation for Moderation. Data augmentation has proven effective for improving gen-
eralization, particularly under conditions of class imbalance. Traditional methods include synonym
replacement, back-translation, and noise injection (Feng et al., 2021). More recently, generative
augmentation with LLMs has been investigated (Ding et al., 2024; Kolla et al., 2024), though un-
constrained paraphrasing risks shifting away from the original distribution. Papakipos & Bitton
(2022) emphasize the importance of maintaining realism in augmented data. Alternative strategies,
such as counterfactual augmentation (Kaushik et al., 2020) and adversarial generation for toxicity
detection (Hartvigsen et al., 2022), have demonstrated strong improvements in recall. Extending
this line of work, we introduce a lightweight paraphrase generator that produces hard positives and
negatives, thereby enhancing boundary-focused exposure for classifiers.
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3 METHODS

3.1 OVERVIEW

We propose a recall-oriented moderation framework that integrates three complementary compo-
nents into a unified retrieval-augmented classification (RAG) pipeline. First, distribution-preserving
contrastive augmentation generates boundary-focused examples that remain statistically indistin-
guishable from the original data, thereby strengthening decision boundary exposure. Second,
committee-based retrieval leverages diverse retrieval strategies (dense, MMR, and graph-based) to
construct more informative and less redundant neighborhoods at inference time. Finally, a two-class
ensemble layer based on DistilRoBERTa is trained with classifier blending and a rank+veto fusion
strategy, providing robust downstream classification while preserving high recall on safety-critical
cases. Figure 1 provides a high-level illustration of the framework architecture and its core compo-
nents.

Figure 1: Overview of our recall-oriented moderation framework. The system integrates
distribution-preserving contrastive augmentation and committee-based retrieval into a unified RAG
pipeline. On the left, augmented samples are generated and validated to preserve the original dis-
tribution. On the right, a committee of diverse retrievers ensures retrieval coverage across multiple
facets of potentially harmful content.

3.2 DATA AUGMENTATION & DISTRIBUTION VALIDATION

We aim to generate label-preserving paraphrases that remain statistically indistinguishable from
the original texts. To achieve this, indistinguishability is enforced at three complementary levels:
global surface form, measured via word and character histograms; global semantic mixture pro-
portions, captured in a compact embedding space; and local per-cluster consistency, where form
is conditioned on latent semantics. Full algorithmic details are given in Appendix Section A.2.
The overall augmentation and validation workflow is illustrated in Figure 2, which shows how em-
bedding, clustering, constrained paraphrasing, and multi-level validation are combined to ensure
distribution-preserving generation.

Figure 2: Overview of the data augmentation and validation workflow: paraphrased samples are
generated under semantic- and structure-preserving constraints and validated through multi-level
KL/JS divergence checks to ensure distributional fidelity.
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The augmentation process begins by embedding texts, reducing dimensionality, and clustering them
with a Gaussian Mixture Model (GMM). Augmented samples are then produced to satisfy integer
quotas defined over the joint class×component distribution, ensuring that both label priors and latent
structure are preserved. Rounding heuristics are applied to guarantee quota completion, with precise
formulas provided in Appendix Section A.2.

Candidate paraphrases for each seed text are constrained to prevent semantic drift. A candidate s′ is
only accepted if it satisfies both length and similarity requirements:

len ok(s, s′) ∧ sim(s, s′) ∈ [ℓ, h],

where relative word and character deviations are bounded by (τw, τc) and cosine similarity lies
within [ℓ, h]. Default windows and tolerance caps are reported in Appendix Section A.4. Additional
mechanisms, including acceptance–relaxation rules, per-seed production and duplication limits, and
starvation-prevention guard rails, further regulate the process to ensure robust coverage.

To validate distributional fidelity, we compute Kullback-Leibler (KL) and Jensen–Shannon (JS) di-
vergence across three views: pooled-edge histograms of word and character counts (global form),
mixture weights from a GMM fit on the originals only (global semantics), and per-component his-
tograms (local form). Any global or per-component JS divergence exceeding 0.05 is flagged as
violating our indistinguishability tolerance. Implementation parameters include 30 bins, 99.5%
clipping, a reduced dimensionality of 50 via SVD, and k = 5 mixture components, as detailed
in Appendix Section A.3.

Augmentation is deemed distribution-preserving only when all JS metrics—global form, global
mixture proportions, and per-component maxima—are ≤ 0.05. Mini-batch vectorization and cosine
scoring yield costs that scale linearly with batch size, and runs terminate once all quotas are satisfied.
Each accepted paraphrase preserves its lineage through a pointer and receives a stable identifier. To
ensure reproducibility, we fix seeds, expose all hyperparameters via a command-line interface, and
log both JSON and Markdown validation reports, with artifacts and exact commands documented in
Appendix Section A.11.

3.3 RETRIEVAL-AUGMENTED PIPELINES

We design retrieval-augmented classification pipelines with strict controls to avoid data leakage and
to enable fair comparison between commercial and open-source systems. The process begins by
constructing train and test partitions exclusively from the original data. Augmented rows are then
assigned to the split of their corresponding parent instance, ensuring that paraphrases never cross
the train–test boundary. We summarize the overall architecture of these pipelines in Figure 3, which
contrasts the commercial and open-source implementations under a unified evaluation framework.

Figure 3: Overview of the retrieval-augmented classification pipelines: The pipeline prepares
non-leaking data for two alternatives and evaluates them under a unified protocol.

Formally, stratified splits are created only from the original data, with each augmented sample xaug
j

inheriting the partition of its parent π(xaug
j ), thereby enforcing a strict leakage-safe protocol:

Dtrain
orig ,Dtest

orig = StratifiedSplit(Dorig,test size = 0.1), xaug
j 7→ split of π(xaug

j ).
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normalization and label mapping into {FLAGGED,NOT FLAGGED} follow the preprocessing steps
in Appendix Section A.1. The final training and test sets are therefore given by Dtrain = Dtrain

orig ∪Dtrain
aug

and Dtest = Dtest
orig ∪ Dtest

aug.

Once splits are fixed, both pipelines are evaluated under a unified retrieval-augmented classification
protocol. For each test query q, a retriever Rk(q) returns the top-k nodes {n1, . . . , nk}, which are
injected alongside the query into a policy-first prompt. The model must then output a binary decision
ŷ(q) ∈ {FLAGGED,NOT FLAGGED}. Retrieval quality is quantified using Hit@k, Precision@k,
and normalized Discounted Cumulative Gain (nDCG@k), where

DCG@k =

k∑
i=1

2gi − 1

log2(i+ 1)
, nDCG@k =

DCG@k

IDCG@k
,

and retrieval diversity is measured as 1− cos (further details appear in Appendix Section A.5).

Pipeline A represents a commercial setup that relies on API-provided embeddings and hosted in-
ference. Sentence-level chunks and the full policy are indexed using a 1536-dimensional API em-
bedder, with retrieval based on similarity search . The classification step is carried out by a hosted
instruction-tuned model (gpt-4o-mini, temperature 0.0), which is constrained to emit a single
token in {FLAGGED,NOT FLAGGED}. Indices pin the embedder configuration to ensure dimension
consistency, and implementation-specific parameters are documented in Appendix Section A.5.

Pipeline B, in contrast, is an open-source variant that leverages local infrastructure. A FAISS in-
dex is constructed over Hugging Face sentence embeddings (all-MiniLM-L6-v2), with pol-
icy text injected solely through the prompt. Inference is handled by a quantized local model,
Power-LLaMA-3-7B-Instruct, executed via llama.cpp with a context window of approx-
imately 4096 tokens and temperature fixed at 0.0. Retrieval uses a default of k=15. Engineering
choices for this setup are also detailed in Appendix Section A.5.

The two pipelines therefore differ in critical ways. The commercial system integrates policy nodes
directly into the index, employs API embeddings, and relies on hosted inference. The open-source
system indexes only examples, uses Hugging Face embeddings, and performs inference locally.

Evaluation emphasizes recall on sensitive content. The primary metric is RecallFLAGGED = TP
TP+FN ,

with secondary metrics including accuracy, macro- and weighted-F1, and macro-F2, along with the
retrieval diagnostics described above. Statistical uncertainty is quantified via bootstrap confidence
intervals, while significance testing employs McNemar’s test, as detailed in Appendix Section A.7.

3.4 IMPROVING SAFETY-CRITICAL RECALL WITH CONTRASTIVE AUGMENTATION AND
COMMITTEE-BASED RETRIEVAL

The dominant failure mode in safety-critical moderation remains false negatives, where harmful
content escapes detection. To address this challenge, we introduce two complementary components.
The first is contrastive augmentation, a mechanism designed to expose the decision boundary by
generating boundary-focused hard positives and hard negatives while avoiding semantic drift. The
second is a committee-based retrieval strategy, which replaces reliance on a single neighborhood
of evidence with a diverse and balanced set of neighbors, thereby increasing the probability of
label-diagnostic retrievals.To visualize how these components are orchestrated within our system,
Figure 4 presents a detailed overview of the architecture, showing how contrastive augmentation and
committee-based retrieval interact within the recall-first classification pipeline.

We formalize these intuitions through three hypotheses. H1 (Boundary Exposure) predicts that
even small augmentation sizes, denoted |Ã|, should yield measurable gains in recall, such that
∂ RecallFLAGGED/∂|Ã| > 0. H2 (Evidence Diversity) asserts that retrieval diversity increases the
likelihood of observing at least one informative neighbor, quantified as Pr[∃r : Info(Nr(x)) ≥
τdiag] ↑. Finally, H3 (Thresholding) hypothesizes that setting a recall-oriented voting threshold
τ < 0.5 on the committee’s aggregate prediction p̂ = 1

C

∑C
c=1 1{ŷ(c) = FLAGGED} can produce

Pareto improvements in recall with only limited accuracy trade-offs.

The contrastive augmentation module operationalizes H1. For each FLAGGED seed, we generate p
hard positives that remain within the FLAGGED class and p hard negatives that are explicitly safe yet
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Figure 4: Overview of Recall-Oriented Classification Framework Enhanced by Contrastive
Augmentation and Committee-Based Retrieval: The figure illustrates our dual-module enhance-
ment: (i) contrastive augmentation generates semantically faithful hard positives and negatives to
better expose decision boundaries, and (ii) committee-based retrieval leverages diverse retrievers to
improve the chance of retrieving label-informative neighbors.

semantically close to the boundary. Each augmented row is linked to its parent instance and inherits
the parent’s train–test assignment to preclude leakage. Deterministic fallbacks and de-duplication
strategies are applied to ensure both coverage and semantic stability.

Building on H2, committee-based retrieval assembles a pool of complementary retrievers. Specif-
ically, we combine dense nearest-neighbor retrieval, Maximal Marginal Relevance (MMR) rerank-
ing, and a graph-aware selector that optimizes a multi-objective score. This score balances similarity
to the query, penalization of redundancy, and a label-balance bonus, formally expressed as

score(x; q, S) = α sim(q, x)− β redundancy(x, S) + γ balance bonus(ℓx).

Candidate pool construction and default settings are described in Appendix Section A.5. To convert
committee outputs into predictions, we compute the vote share p̂ = 1

C

∑
1[FLAGGED] and predict

FLAGGED whenever p̂ ≥ τ . For a recall-first orientation, we use τ = 0.40.

Finally, both Pipeline A and Pipeline B integrate these components within the broader classification
framework. Pipeline A uses API-provided embeddings, a chunked index, a hosted large language
model, and retrieval with k = 10. Pipeline B employs Hugging Face embeddings, a FAISS index, a
quantized local LLaMA model, and retrieval with k = 15. Despite these infrastructural differences,
both pipelines share the same augmented training data, committee-based retrieval, recall-oriented
vote thresholding, and evaluation protocol. Hyperparameters and logging conventions are consoli-
dated in Appendix Section A.4, while reproducible artifacts are archived in Appendix Section A.11.

3.5 TWO-CLASS ENSEMBLE PIPELINE WITH DISTILROBERTA TRAINING, CLASSIFIER
BLENDING, AND RANK+VETO GRID SEARCH

Our ensemble pipeline begins with the fine-tuning of distilroberta-base on JSONL data
where labels are defined over two classes, y ∈ {0, 1}, with FLAGGED mapped to 1. Training
optimizes cross-entropy loss, optionally with class-weighting, and the best checkpoint is selected
using macro-F1. At inference time, the classifier outputs the probability p1 = p(y=1 | x). To
enhance robustness, we introduce a blending strategy in which the predictions of two classifiers are
averaged at the probability level. In the default configuration, the two classifiers are identical, so
blending reduces to a no-op, though the framework allows for heterogeneous models. Full details of
training and inference procedures are provided in Appendix Section A.8. We illustrate the overall
architecture of this ensemble design in Figure 5, highlighting how blending and Rank+Veto fusion
are integrated into the pipeline.

To further integrate external systems, we introduce a Rank+Veto ensemble mechanism that fuses
the blended classifier with an external system B+. Fusion is based on a rank-dominant scoring rule
augmented with a confidence veto. Specifically, for each instance i, the combined score is computed
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Figure 5: Overview of the two-class ensemble pipeline: The architecture combines fine-tuned
DistilRoBERTa classifiers with probability-level blending and a Rank+Veto fusion strategy.

as
s(i) = 0.85

[
(1− α)r̃B(i) + αr̃C(i)

]
+ 0.15

[
(1− α)pB(i) + αpC(i)

]
,

where r̃B(i) and r̃C(i) denote normalized ranks, and pB(i) and pC(i) are the associated prob-
abilities. Decision control is delegated to the classifier C when its confidence margin satisfies
|pC − 0.5| ≥ δ, while otherwise predictions are obtained by thresholding s(i) at τ . The default
parameterization is (α, τ, δ) = (0.8, 0.6, 0.18), but these values are systematically tuned using grid
search. The search ranges, as well as the reporting methodology, are detailed in Appendix Sec-
tion A.8. Performance evaluation follows the same protocol as in Appendix Section A.7, including
statistical significance tests.

4 EXPERIMENTS AND RESULTS

We evaluate on two text corpora (therapy chatbot responses and résumés); full dataset description,
provenance, and preprocessing appear in Appendix A.1.

4.1 DATA AUGMENTATION RESULTS

We begin by assessing the statistical fidelity of the proposed augmentation procedure across the
two corpora. Validation follows the three complementary axes introduced in Section 3.2. In both
datasets, global divergences remain well below the indistinguishability tolerance of τJS = 0.05,
confirming that augmented distributions are nearly identical to their originals. Mixture weights
also match closely, indicating semantic balance is preserved. The only deviations appear in per-
component checks involving clusters with very low support, and these are attributable to small-
sample instability rather than substantive drift. Thus, augmentation successfully generates para-
phrases that remain statistically indistinguishable from the original corpora. Full definitions, exact
numerical values, and the supporting tables are available in Appendix A.12.

4.2 RETRIEVAL-AUGMENTED PIPELINES RESULTS

We next evaluate the retrieval-augmented pipelines under conditions that guarantee leakage-free data
preparation. Augmentations are always attached to their parent partitions with strict de-duplication,
ensuring that no paraphrase ever crosses the train–test boundary. The resulting splits contain 18,054
training samples (70.9% NOT FLAGGED, 29.1% FLAGGED) and 2,151 testing samples (73.2%
NOT FLAGGED, 26.8% FLAGGED), as detailed in Appendix A.13.

Both pipelines operate deterministically at temperature zero. Table 1 reports global performance,
while Table 2 gives per-class breakdowns. Pipeline A (commercial stack) attains an accuracy of
0.678 with macro-F1 of 0.599, whereas Pipeline B (open-source stack) substantially improves per-
formance with accuracy of 0.792 and macro-F1 of 0.698. Despite these differences in global utility,
both pipelines share a critical limitation: recall on the FLAGGED class remains at 0.44 (252 of
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576 unsafe examples detected), underscoring the persistent risk of false negatives in safety-critical
moderation.

Table 1: Global performance on the held-out test set for vanilla (baseline) Retrieval-Augmented
Pipelines (n = 2151).

Pipeline Acc Pmacro Rmacro F1macro Pweighted F2macro

A (Commercial) 0.6778 0.5970 0.6016 0.5989 0.6858 0.6004
B (Open-source) 0.7917 0.7438 0.6794 0.6978 0.7780 0.6843

Table 2: Per-class precision/recall/F1 and support for vanilla baselines (n = 2151). Both pipelines
achieve FLAGGED recall of 0.44.

Pipeline Class Precision Recall F1 Support
A FLAGGED 0.41 0.44 0.42 576
A NOT FLAGGED 0.79 0.77 0.78 1575
B FLAGGED 0.67 0.44 0.53 576
B NOT FLAGGED 0.82 0.92 0.87 1575

Complete per-class reports and confusion matrices are provided in Appendix A.14. Uncertainty
analyses support these findings. Bootstrap confidence intervals (95%) are (0.657, 0.697) for
Pipeline A’s accuracy versus (0.774, 0.809) for Pipeline B, with similar gaps in macro-F1. Mc-
Nemar’s test shows a decisive difference (b01=16, b10=261, p≈0.0000), confirming that Pipeline B
significantly reduces net errors compared to Pipeline A (Appendix A.15). We also conducted
a systematic ablation study to identify configurations that maximized classification and retrieval
performance across both pipelines. Starting from baseline runs with HuggingFace embeddings and
default parameters, we progressively varied the training data augmentation, embedding backends, la-
bel exposure settings, retrieval depth (top-k), and chunk sizes. For Pipeline A, the ablation revealed
that switching to OpenAI embeddings with exposed labels, a top-k of 10, and chunk size of 768
produced a clear improvement, raising accuracy and increasing both macro- and weighted-F1 scores
relative to the baseline. For Pipeline B, the best results were obtained under a complementary config-
uration: HuggingFace embeddings with exposed labels, top-k=15, and the same augmented training
set. Finally, retrieval diagnostics highlight architectural trade-offs. Pipeline A achieves perfect hit
and nDCG scores at k = 5 and k = 7, but with negligible diversity, indicating redundant neighbor-
hoods. Pipeline B retrieves more diverse and label-informative neighborhoods across k = 3, 5, 10,
with diversity rising to 0.362 at k = 10. This pattern mirrors earlier small-scale experiments: the
open-source baseline favors broader semantic coverage, while the commercial system empha-
sizes rank relevance. We continue to denote these baselines as vanilla RAGs, excluding contrastive
augmentation, committee voting, or ensemble enhancements. Detailed k-wise retrieval diagnostics
(Hit, Precision, nDCG, and Diversity) for both pipelines are reported in Appendix A.16.

4.3 IMPROVING SAFETY-CRITICAL RECALL WITH CONTRASTIVE AUGMENTATION AND
COMMITTEE-BASED RETRIEVAL RESULTS

We evaluate a recall-first configuration that integrates deterministic contrastive augmentation with a
committee-based retriever instantiated under either MMR or graph-aware selection. These enhanced
configurations, which we denote as PLUS, represent retrieval-augmented classifiers strengthened
through boundary-focused contrastive sampling and diverse evidence aggregation. All experiments
are conducted on the same leakage-safe splits as before, with a graph-aware variant operating over
a kNN graph comprising 168,667 edges (Appendix A.17). On the held-out set (n=2,175), Table 3
reports both PLUS variants operate at the same sensitive-class recall (RecallFLAGGED=0.4490). With
graph-aware retrieval, the open-source stack (B+) attains the strongest global utility (Accuracy
0.8510, Macro-F1 0.7635), substantially exceeding the commercial stack (A+). Under MMR, A+

and B+ report identical summary metrics due to an evaluator placeholder noted in the logs.1

1For MMR, the evaluator reused B+ outputs as A+ placeholders; see Appendix A.18. This does not affect
the graph-aware comparison.
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Table 3: PLUS summary on the test set (n=2,175). Entries are Accuracy / Macro-F1 /
RecallFLAGGED. A+: commercial stack with PLUS; B+: open-source stack with PLUS.

MMR Graph-aware
A+ 0.7825 / 0.7019 / 0.4371 0.7674 / 0.6790 / 0.4365
B+ 0.7903 / 0.7006 / 0.4490 0.8510 / 0.7635 / 0.4490

Comprehensive reports—including per-class metrics, confusion matrices, bootstrap confidence
intervals, McNemar tests, and retrieval diagnostics (hit@k, precision@k, nDCG@k, label-
precision@k)—are provided in Appendix A.18 (MMR) and Appendix A.19 (Graph).

4.4 TWO-CLASS ENSEMBLE PIPELINE WITH DISTILROBERTA TRAINING, CLASSIFIER
BLENDING, AND RANK+VETO GRID SEARCH RESULTS

Finally, we explore ensemble enhancements built upon DistilRoBERTa. We trained a two-class
DistilRoBERTa pipeline on the same splits as previous experiments and evaluated single-model
checkpoints, probability-level blending (C1+C2), and Rank+Veto fusion over a grid of (α, τ, δ)
parameters. The best single-model checkpoint reached Acc = 0.8819 and Macro-F1 = 0.8422.
Under the ensemble protocol, the top Rank+Veto setting was α=0.70, τ=0.58, δ=0.14.

Final comparison (blended C vs. Rank+Veto). Both ensembles increase sensitive-class recall
from the vanilla RAG baseline to RecallFLAGGED = 0.5781 while maintaining high global utility.
Pipeline A (blended C) attains Acc = 0.8466 and Macro-F1 = 0.7844; Pipeline B (Rank+Veto)
achieves Acc = 0.8438 and Macro-F1 = 0.7814. McNemar’s test favors Pipeline A (b01=6, b10=0,
p≈0.0498), indicating a small but statistically significant net-error reduction relative to Rank+Veto.
Full epoch trajectory, confidence intervals, and parameter sweep diagnostics are provided in Ap-
pendix A.20

Table 4: Final ensemble comparison on the test set (n=2,151). A = blended C, B = Rank+Veto (best
α, τ, δ).
Pipeline Accuracy Macro-P Macro-R Macro-F1 Macro-F2 Weighted-P Weighted-R Weighted-F1
A (blended C) 0.8466 0.8262 0.7614 0.7844 0.7688 0.8417 0.8466 0.8382
B (Rank+Veto) 0.8438 0.8204 0.7595 0.7814 0.7666 0.8384 0.8438 0.8357
FLAGGED recall: A = 0.5692, B = 0.5781

5 CONCLUSION

This work introduced a recall-first moderation framework designed to address the dominant fail-
ure mode of safety-critical NLP: missed detections of harmful content. Our approach unifies
distribution-preserving contrastive augmentation with committee-diverse retrieval, implemented un-
der a rigorously leakage-safe protocol. Across all experiments, these methods consistently shifted
performance toward higher recall without sacrificing global utility, raising FLAGGED recall from
≈ 0.44 to ≈ 0.56 in PLUS configurations and to 0.5781 in ensemble settings. An unexpected but
important outcome emerged from our dual-pipeline benchmarking. Although the commercial and
open-source stacks were initially intended as parallel testbeds, the open-source pipeline (FAISS +
local LLaMA) consistently outperformed its commercial counterpart on accuracy and macro-F1,
both in vanilla and augmented conditions. With graph-aware retrieval, open-source B+ reached
Acc 0.8510 and Macro-F1 0.7635, far above the commercial A+ baseline. These results high-
light not only the effectiveness of the proposed recall-first methods but also the broader viability of
open-source infrastructures for safer, auditable moderation. The implications are twofold. Method-
ologically, we demonstrate that boundary-focused augmentation and retrieval diversity provide a
principled means to reduce harmful false negatives. Practically, our findings show that open-source
pipelines can rival or surpass commercial APIs, enabling reproducible and cost-effective deploy-
ment in safety-critical domains. Future work should extend this framework to multilingual corpora,
integrate calibrated abstention and human-in-the-loop review, and assess robustness under adver-
sarial and fairness-sensitive settings. In summary, recall-first augmentation and retrieval strategies
yield safer moderation, and open-source pipelines provide a compelling path toward reproducibility,
transparency, and broad adoption in real-world applications.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement We have made extensive efforts to ensure that all experiments
presented in this paper are fully reproducible. The submission includes the complete source
code together with the two seed datasets (Sheet 1.csv, Sheet 2.csv) used in our bench-
marks. Each experimental component described in Section 3 and Section 4 of the paper
has a direct implementation in the repository: the data augmentation and validation pro-
cedures (data augmentation pipeline), the baseline commercial and open-source re-
trieval pipelines (rags pipelines), the contrastive augmentation with committee-diverse re-
trieval (contrastive augmentation pipeline), and the DistilRoBERTa ensemble with
Rank+Veto fusion (distilroberta pipeline). All random seeds, hyperparameters, and
thresholds are specified within the scripts, and leakage-safe data splits are enforced by construction.
A detailed README.md file is provided, which gives a step-by-step guide to running every experi-
ment reported in the paper, from data augmentation through evaluation. Together, the alignment of
paper sections, code modules, and documented instructions ensures complete reproducibility of our
results.
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A APPENDIX

A.1 DATA PREPROCESSING AND SPLITS

Dataset: We use the public DeepNLP collection hosted on Kaggle by samdeeplearning2 as a
general-purpose corpus for NLP experimentation. The Deep-NLP dataset consists of two com-
plementary CSV files designed for binary text classification tasks. The first file, Sheet 1.csv,
contains 80 user responses collected in a therapeutic chatbot setting. Each entry is stored in the
response text column, where the bot prompts the user with questions such as “Describe a time
when you have acted as a resource for someone else.” Responses are annotated as either flagged or
not flagged: if not flagged, the conversation proceeds; if flagged, the user is directed to seek help.
The second file, Sheet 2.csv, contains 125 résumés collected from Indeed.com using the query

2https://www.kaggle.com/datasets/samdeeplearning/deepnlp
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“data scientist” If a resume is ’not flagged’, the applicant can submit a modified resume version
at a later date. If it is ’flagged’, the applicant is invited to interview. Inputs are CSVs (therapy,
resumes). Text columns: response text/resume text; IDs: response id/resume id.
Encoding normalization: UTF-8 with fallback (sig, Latin-1). Control characters removed; whites-
pace squashed; newlines compacted. Labels mapped to {FLAGGED,NOT FLAGGED} by conserva-
tive rules. Only originals are stratified; augmented rows inherit parent splits.

A.2 AUGMENTATION ALGORITHM DETAILS

Figure 2 describes the detailed overview of the data augmentation & distribution validation
component where starting from the original corpora, texts are embedded (HashingVectorizer), re-
duced (SVD), and clustered (GMM). Integer class×component quotas preserve label priors and
latent structure. For each seed, length- and similarity-constrained paraphrases are generated within
the acceptance window sim ∈ [ℓ, h] and bounded deviations (τw, τc), with per-seed caps, dupli-
cate limits, adaptive relaxation, and quota rescue. Accepted rows keep lineage (aug of) and a
stable AUG id, producing augmented CSVs. Validation then compares originals vs. augments via
(i) word/char histograms (global form), (ii) GMM mixture-weight divergence (global semantics),
and (iii) per-component word/char histograms (local form). Augmentation is deemed distribution-
preserving when all JS divergences ≤ 0.05, with JSON/Markdown reports produced.

Semantic space. HashingVectorizer (1–2 n-grams, nfeat=4096, ℓ2, alternate sign=False)
→ TruncatedSVD to d=10 (augmentation) and d=50 (validation).

Clustering and k. GaussianMixture with full covariance; k = max(2,min(kmax, ⌊N/15⌋)),
kmax=6 (augmentation); fixed k=5 for validation. Responsibilities R ∈ RN×k, mixture weights
w = 1

N

∑
i Ri:.

Quotas. Class targets n̂(c) proportional to empirical class frequency, with rounding correction;
within each class, component targets n̂(c, j) proportional to mean responsibilities of that class in j.

Generator. Stochastic synonym substitutions (curated patterns) with optional minimal jitter.
Eligibility requires length tolerances and similarity window [ℓ, h]: defaults ℓ=0.84, h=0.99,
ℓmin=0.80; (τw, τc) = (0.15, 0.15) with adaptive widening to 0.30. Batching/attempts:
batch size= 64, max tries per item= 6, hard attempt budget= 10,000.

Acceptance & rescue. Per-seed production cap = 5 (auto-raise); per-seed duplicate cap =
2. Hard-guard: after budget exhaustion, accept best-so-far if length-ok and sim ≥ ℓ − 2 ·
nearest tol. Quota rescue reallocates infeasible buckets; global fallback after a few rescues.

Outputs. Preserve metadata, add source="augmented" and aug of; synthesize stable IDs
(AUG-tag). CSV written as UTF-8 with robust quoting/escaping.

A.3 VALIDATION WITH KL AND JS

Global form. Pooled-edge histograms (30 bins) of word and character counts; clip counts at 99.5th
percentile; compute JS and KL between originals vs. augmented.

Global semantics. Fit GMM on originals in SVD(d=50) space; compare mixture weights induced
by originals vs. augmented via JS/KL.

Per-component form. For each GMM component, compute JS on word/char histograms for (orig-
inals in j) vs. (augmented assigned to j); report mean and max.

Alerts and thresholds. Emit attention flags when any global or per-component JS > 0.05. Reports
are written as JSON and Markdown (counts, SVD dims, k, union-SVD flag).
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A.4 HYPERPARAMETERS (CONSOLIDATED)

Embedding HashingVectorizer (1–2 grams, 4096 feats, ℓ2)
SVD dims (augment / validate) 10 / 50
GMM components (augment / validate) k ∈ [2, 6] / 5
Similarity window [ℓ, h] [0.84, 0.99]; ℓmin=0.80
Length tolerances (τw, τc) (0.15, 0.15); cap 0.30
Batching / attempts 64 / 6 (budget 10,000)
Per-seed caps max 5 (auto-raise), duplicates ≤ 2
Histogram bins / EPS 30 / 10−8

JS alert threshold 0.05 (global & per-component)

A.5 RETRIEVAL COMMITTEE DETAILS

Dense retriever. FAISS over all-MiniLM-L6-v2 sentence embeddings; cosine similarity; de-
fault k ∈ {10, 15}.

MMR reranker.
argmax

x
λ · sim(q, x)− (1− λ) · redundancy(x, S), λ = 0.6,

with redundancy estimated by maximum cosine similarity against the selected set S.

Graph-aware retriever. Build a kNN graph (cosine); candidate pool size max(50, 5k); greedily
select items by

score = α sim(q, x)− β redundancy(x, S) + γ balance bonus(ℓx),

defaults (α, β, γ) = (1.0, 0.5, 0.6).

Label-balance filter. Optional greedy pass toward a target FLAGGED ratio ≈ 0.5.

A.6 DECISION POLICY

Committee vote-share:

p̂ =
1

C

C∑
c=1

1[ŷ(c) = FLAGGED],

thresholded at τ (default 0.40). Abstention if p̂ ∈ [0.45, 0.55]. Typical hyperparameters: k = 10
(A) / k = 15 (B); λMMR = 0.6; C ∈ {3, 5}; chunk size 512–768 (overlap ≈ 80); classification
temperature = 0.

A.7 EVALUATION DETAILS

Primary: FLAGGED recall. Secondary: accuracy, macro/weighted Precision/Recall/F1, macro-F2.
Retrieval diagnostics: Hit@k, Precision@k, nDCG@k, Label-precision@k, Diversity@k = 1−cos.

Uncertainty and significance. Bootstrapped 95% CIs for accuracy and macro-F1 (B = 10,000 in
RAG experiments; B = 2000 in ensemble experiments). Paired comparisons with McNemar’s test:

χ2 =
(|b01 − b10|)2

b01 + b10
and p = exp(−χ2/2).

A.8 TWO-CLASS ENSEMBLE AND GRID SEARCH

Data and training. Line-delimited JSON; tokenizer with truncation/padding;
distilroberta-base+linear head; dropout 0.1; AdamW (lr 3 × 10−5); linear warmup
(6%); grad accumulation 2; clip ℓ2 ≤ 1.0; AMP optional; seq len 256 train/128 infer; checkpoint
chosen by macro-F1 (evaluation each epoch).3

3For strict protocols, a separate validation set should replace the test file during training-time model selec-
tion.
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Inference/exports. Emit p1 and hard label at τ=0.5 to preds c.jsonl/preds c2.jsonl;
blending two classifiers gives pblend = w1p

(C1)
1 + w2p

(C2)
1 (default 0.5/0.5).

Rank+Veto with B+. Combine B+ and C via rank-dominant score
s(i) = 0.85 [(1− α)r̃B(i) + αr̃C(i)] + 0.15 [(1− α)pB(i) + αpC(i)],

with confidence veto: if |pC − 0.5| ≥ δ then use C; else threshold s(i) at τ . Defaults
(α, τ, δ)=(0.8, 0.6, 0.18).

Grid search. α ∈ {0.70, 0.80, 0.85, 0.90, 0.92}, τ ∈ {0.58, 0.60, 0.62, 0.64, 0.66}, δ ∈
{0.14, 0.16, 0.18, 0.20}. We log accuracy, FLAGGED recall, and a hash-based distinctness count
of decision sets.

A.9 COMPLEXITY AND TERMINATION

Mini-batch vectorization and cosine scoring; costs sublinear in vocabulary size and linear in batch
size. Termination when

∑
c,j n̂(c, j) = neach or per-seed caps are exhausted.

A.10 OUTCOME CRITERIA

Global word/char JS ≤ 0.05; GMM mixture-weight JS ≤ 0.05; per-component word/char JS max-
ima ≤ 0.05.

A.11 ARTIFACTS AND REPRODUCIBILITY

Scripts. run pipeline.sh → augment v5 semantic lenaware.py (exam-
ple config: n=2000, ℓ=0.74, ℓmin=0.72, nearest tol= 0.10, (τw, τc)=(0.25, 0.25),
batch size= 128, max tries per item= 12, k max= 2, swaps max= 12,
max per seed= 8, per seed dupe times= 3, hard attempt budget= 1500),
then kl validation v2.py (bins= 30, k=5, SVD= 50).

Logged outputs. Per-item predictions, retrieval diagnostics, CI summaries, McNemar statistics,
PR figures, and per-query retrieval IDs/scores are saved under outputs/. Indices persist embedder
configuration and self-check on reload to prevent mismatches.

A.12 AUGMENTATION VALIDATION DETAILS

Divergence definitions. Given P,Q: KL(P∥Q) =
∑

i pi log
pi

qi
, JS(P,Q) = 1

2KL(P∥M) +
1
2KL(Q∥M), M = 1

2 (P +Q). Semantic embeddings: HashingVectorizer (1–2-grams, 4096 feats)
→ SVD(d=50). GMM (k=5) on Zorig gives weights w.

Global validation (values).

JS(Horig
words, H

aug
words) =

{
7.5×10−3, Sheet 1
6.0×10−4, Sheet 2

, JS(Horig
chars, H

aug
chars) =

{
4.0×10−3, Sheet 1
4.5×10−3, Sheet 2

JS(worig, waug) =

{
0.0000, Sheet 1
5.3×10−4, Sheet 2

Per-component validation (values). For Sheet 1: maxc JS
(c)
words ≈ 9.37×10−2, maxc JS

(c)
chars ≈

9.98×10−2. For Sheet 2 (low-support comps {1, 2, 6}): maxc JS
(c)
chars ≈ 6.20×10−1; means:

Sheet 1 (word 0.053, char 0.057); Sheet 2 (word 0.0039, char 0.204).

Dataset JS(Hwords) JS(Hchars) JS(w) maxc JS
(c)
words maxc JS

(c)
chars Low-support comps

Sheet 1 7.5×10−3 4.0×10−3 0 9.37×10−2 9.98×10−2 {3, 8, 12, 16}
Sheet 2 6.0×10−4 4.5×10−3 5.3×10−4 1.15×10−2 6.20×10−1 {1, 2, 6}

Table 5: JS divergences across global and per-component dimensions.
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A.13 RAG SPLITS AND COMPOSITION

Table 6: Split sizes and label priors after de-duplication (new run; seed preserved).
Size NOT FLAGGED FLAGGED

Train 18,054 70.9% 29.1%
Test 2,151 73.2% 26.8%

Table 7: Composition by dataset and source (counts) — Train.
Train FLAGGED NOT FLAGGED
resumes augmented 2320 6800
resumes original 29 85
therapy augmented 2875 5875
therapy original 23 47

Table 8: Composition by dataset and source (counts) — Test.
Test FLAGGED NOT FLAGGED
resumes augmented 320 560
resumes original 4 7
therapy augmented 250 1000
therapy original 2 8

A.14 RAG METRICS

Classification performance for both pipelines is summarized in Tables 1–2. Confusion matrices are
given in Table 9.

Table 9: Confusion matrices (rows = truth, columns = prediction).
Pipeline A FLAGGED NOT FLAGGED
FLAGGED 252 324
NOT FLAGGED 369 1206
Pipeline B FLAGGED NOT FLAGGED
FLAGGED 252 324
NOT FLAGGED 124 1451

A.15 RAG UNCERTAINTY AND PAIRED TESTS

Bootstrap intervals and McNemar’s test confirm significant superiority of Pipeline B.

Table 10: Bootstrap 95% confidence intervals and McNemar test (A vs. B).
Metric Pipeline A Pipeline B
Accuracy 95% CI (0.6569, 0.6969) (0.7736, 0.8089)
Macro-F1 95% CI (0.5781, 0.6201) (0.6745, 0.7201)
McNemar: b01=16, b10=261, p≈0.0000

A.16 RAG RETRIEVAL DIAGNOSTICS

Retrieval behavior differs substantially. Pipeline A emphasizes rank relevance but collapses diversity
at larger k, while Pipeline B preserves diversity at moderate cost in rank quality.
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Table 11: Retrieval diagnostics averaged over test queries — Pipeline A (vanilla).
k Hit Precision nDCG Label-Precision Diversity
1 0.789 0.789 0.789 0.789 1.000
2 0.596 0.596 0.596 0.596 0.023
3 0.732 0.677 0.699 0.677 0.049
4 0.586 0.497 0.554 0.497 0.077
5 1.000 1.000 1.000 1.000 0.000
7 1.000 1.000 1.000 1.000 0.001

Table 12: Retrieval diagnostics averaged over test queries — Pipeline B (vanilla).
k Hit Precision nDCG Label-Precision Diversity
3 0.911 0.777 0.777 0.777 0.260
5 0.934 0.742 0.753 0.742 0.302
10 0.943 0.754 0.774 0.754 0.362

A.17 PLUS SETUP (LARGE SPLIT)

We include adversarial/contrastive rows in addition to distribution-preserving paraphrases. The final
splits are:

• Train: 18,262 rows; label prior NOT FLAGGED 0.707, FLAGGED 0.293.

• Test: 2,175 rows; label prior NOT FLAGGED 0.730, FLAGGED 0.270.

By dataset and source (Train):

• resumes: adv hard pos FLAGGED = 58, adv hard neg NOT FLAGGED = 58;
augmented FLAGGED = 2,320, NOT FLAGGED = 6,800; original FLAGGED = 29,
NOT FLAGGED = 85.

• therapy: adv hard pos FLAGGED = 46, adv hard neg NOT FLAGGED = 46;
augmented FLAGGED = 2,875, NOT FLAGGED = 5,875; original FLAGGED = 23,
NOT FLAGGED = 47.

By dataset and source (Test):

• resumes: adv hard pos FLAGGED = 8, adv hard neg NOT FLAGGED = 8; aug-
mented FLAGGED = 320, NOT FLAGGED = 560; original FLAGGED = 4, NOT
FLAGGED = 7.

• therapy: adv hard pos FLAGGED = 4, adv hard neg NOT FLAGGED = 4; aug-
mented FLAGGED = 250, NOT FLAGGED = 1,000; original FLAGGED = 2, NOT
FLAGGED = 8.

Graph construction over Train yields 18,262 nodes and 168,667 edges.

A.18 PLUS (MMR) DETAILS

Global metrics (Test n=2,175). A+: Accuracy 0.7903, Macro-F1 0.7006, RecallFLAGGED =
0.4490.
B+: Accuracy 0.7903, Macro-F1 0.7006, RecallFLAGGED = 0.4490.

Confidence intervals (95%). A: Acc (0.7733, 0.8074); Macro-F1 (0.6770, 0.7225).
B: Acc (0.7729, 0.8074); Macro-F1 (0.6779, 0.7231).

Paired test. McNemar (A vs. B): b01=0, b10=0, p≈1.0000 (identical predictions).
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Retrieval diagnostics (avg over queries). k=3/5/10: hit = 0.912/0.935/0.943, precision =
0.778/0.719/0.741, nDCG = 0.779/0.739/0.765, label-precision identical.

Evaluator note. For MMR, the evaluator reused B+ outputs as A+ placeholders (see run log),
yielding identical metrics. Re-evaluating A+ (MMR) would remove this artifact without affecting
graph-aware conclusions.

A.19 PLUS (GRAPH) DETAILS

Global metrics (Test n=2,175). A+: Accuracy 0.7674, Macro-F1 0.6790, RecallFLAGGED =
0.4490.
B+: Accuracy 0.8510, Macro-F1 0.7635, RecallFLAGGED = 0.4490.

Confidence intervals (95%). A: Acc (0.7499, 0.7857); Macro-F1 (0.6559, 0.7003).
B: Acc (0.8363, 0.8662); Macro-F1 (0.7409, 0.7860).

Paired test. McNemar (A vs. B): b01=0, b10=182, p≈0.0000 (B+ ≫ A+).

Retrieval diagnostics (avg over queries). A+ k=3/5/10: hit = 0.708/0.711/0.748, precision
= 0.704/0.702/0.709, nDCG = 0.704/0.703/0.723.
B+: the log repeats the MMR line; this likely reflects a script artifact. If needed, regenerate B+

graph diagnostics.

Confusion-matrix note. B+ exhibits zero false positives (NOT→FLAGGED) under graph-aware
retrieval, giving PrecisionFLAGGED=1.00 at fixed recall 0.4490; A+ shows more false positives, re-
ducing global utility.

A.20 DISTILROBERTA TRAINING AND ENSEMBLE DIAGNOSTICS

Table 13: Epoch-wise evaluation of the DistilRoBERTa classifier (test each epoch, best in bold).
Eval # Accuracy Macro-F1 P(FLAG) R(FLAG) F1(FLAG) P(NOT) R(NOT) F1(NOT)
1 0.8731 0.8334 0.79 0.72 0.75 0.90 0.93 0.91
2 0.8787 0.8395 0.81 0.72 0.76 0.90 0.94 0.92
3 0.8819 0.8422 0.82 0.71 0.76 0.90 0.94 0.92
4 0.8805 0.8400 0.82 0.70 0.76 0.90 0.94 0.92
5 0.8777 0.8357 0.82 0.69 0.75 0.89 0.94 0.92
6 0.8777 0.8357 0.82 0.69 0.75 0.89 0.94 0.92

Table 14: Uncertainty (95% bootstrap CIs) and McNemar (A vs. B).
Accuracy CI Macro-F1 CI

Pipeline A (0.8312, 0.8610) (0.7637, 0.8043)
Pipeline B (0.8280, 0.8596) (0.7599, 0.8017)
McNemar (A vs B): b01 = 6, b10 = 0, p ≈ 0.0498

Table 15: Rank+Veto selection summary (sweep).
Selected best α τ δ
Params 0.70 0.58 0.14
Achieved: Accuracy = 0.8438, RecallFLAGGED = 0.5781
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