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Abstract
Interpreting scattered acoustic and electromag-
netic wave patterns is a computational task that
enables remote imaging in a number of impor-
tant applications, including medical imaging, geo-
physical exploration, sonar and radar detection,
and nondestructive testing of materials. How-
ever, accurately and stably recovering an inho-
mogeneous medium from far-field scattered wave
measurements is a computationally difficult prob-
lem, due to the nonlinear and non-local nature
of the forward scattering process. We design a
neural network, called Multi-Frequency Inverse
Scattering Network with Refinement (MFISNet-
Refinement), and a training method to approx-
imate the inverse map from far-field scattered
wave measurements at multiple frequencies. Our
method is inspired by the recursive linearization
method — a commonly used technique for stably
inverting scattered wavefield data — that progres-
sively refines the estimate with higher frequency
content. MFISNet-Refinement outperforms exist-
ing methods in regimes with high-contrast, het-
erogeneous large objects, and inhomogeneous un-
known backgrounds.

1. Introduction
Wave scattering is an important imaging technology with ap-
plications in medical and seismic imaging, sonar and radar
detection, and nondestructive testing of materials. In this
setting, a known source transmits incident waves through
a penetrable medium, and due to an inhomogeneity in the
spatial region of interest, the incident waves are scattered.
Several receivers measure the scattered wave field at distant
locations. We are interested in the inverse wave scattering
problem: given a set of scattered wave field measurements,
we want to recover the inhomogeneity in the spatial region
of interest that produced the measurements. In this paper, we
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focus on the inverse wave scattering problem with unknown
medium and full-aperture measurements at multiple inci-
dent wave frequencies. This problem is characterized by a
highly nonlinear forward measurement operator, making the
recovery of the scattering potential challenging. We propose
a machine learning solution to this problem: given a training
set of pairs of scattering potentials and scattered wavefield
measurements, we seek to approximate the inversion map
with a deep neural network that predicts a scattering po-
tential from scattered wavefield measurements at multiple
frequencies. We design a new training method and a new
neural network architecture to achieve this goal.

The aforementioned inverse wave scattering problem has
been widely studied. While the measurement operator is
known to be injective when there are infinitely many sen-
sors positioned in a ring around the scattering potential
(Colton & Kress, 2018), computational approaches must
always operate in the ill-posed case where finite receivers
are present. Thus, past research has focused on optimization
approaches to solving the inverse problem. Simple gradient-
based optimization approaches to this problem face two
major difficulties: computing a gradient requires solving a
partial differential equation (PDE), which can be compu-
tationally expensive; additionally, the nonlinearity of the
forward model induces a non-convex objective function.
Therefore, convergence of local search methods such as gra-
dient descent is not guaranteed without careful initialization.

To remedy this, many machine learning approaches have
proposed constructing data-driven approximations of the
inverse map. These methods often use general-purpose ar-
chitectures (Wei & Chen, 2019; Chen et al., 2020) which
ignore the field’s deep understanding of the forward scat-
tering map. Recently, Khoo & Ying (2019); Fan & Ying
(2022); Li et al. (2022) proposed to leverage knowledge of
the forward map by making a global linearization assump-
tion about the relationship between the scattering potential
and the measurements. A natural alternative is integrat-
ing machine-learning models into iterative reconstruction
methods, which are computationally demanding relative to
a global linear approximation but can provide higher quality
reconstructions.

A standard approach, which has been successful in the
strongly nonlinear scattering regime, is to use data col-
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Multi-Frequency Progressive Refinement for Learned Inverse Scattering

lected at multiple incoming wave frequencies. Recursive lin-
earization methods (Chen, 1995; Bao & Liu, 2003; Borges
et al., 2017) use multi-frequency measurements to solve a
sequence of sub-problems, starting at the lowest frequency
to provide an initial estimate of the scattering potential and
refining that estimate at progressively higher frequencies
using warm-started local search methods. Algorithms in this
family offer two benefits: first, they alleviate the need for
careful initialization since the loss landscape of the lowest
frequency sub-problem is typically well-behaved; second,
they greatly reduce the number of PDE solves by relying
on first-order approximations of the forward model that are
relatively inexpensive to invert. However, these methods
require measurements at a large number of incident wave
frequencies and still involve solving large-scale PDEs and
least-squares problems for each frequency. This requires,
for example, multiple CPU core-hours to recover a single
image, even with a state-of-the-art PDE solver (Borges et al.,
2017).

In light of these advances, we propose a new architecture
and training method inspired by the recursive linearization
algorithm. Our approach is based on a residual update ar-
chitecture and training method that ensures specific network
blocks solve specific sub-problems.

1.1. Contributions & paper outline

In Section 2, we formally define the inverse scattering prob-
lem and the machine learning objective. We present stan-
dard results about inverse scattering and survey related work
in Section 3. In Section 4, we review the recursive lin-
earization algorithm and introduce our method, MFISNet-
Refinement. Finally, we present a numerical evaluation of
our method in Section 5. Our main contributions can be
summarized as follows:

1. We introduce “MFISNet-Refinement”, short for “Multi-
Frequency Inverse Scattering Network with Refine-
ment”, a neural network architecture and training
method that is inspired by recursive linearization algo-
rithms (Chen, 1995; Bao & Liu, 2003; Borges et al.,
2017). (Section 4)

2. We show that our network achieves lower errors than
single-frequency methods (Fan & Ying, 2022) and
multi-frequency methods (Li et al., 2022) in a high-
contrast, noiseless, full-aperture setting. (Section 5.1)

3. We consider alternative training strategies and find that
the proposed progressive training strategy made possi-
ble by the MFISNet-Refinement architecture is impor-
tant to its performance. (Section 5.2)

2. Problem Setup and Notation
The forward model for our imaging setup is implicitly de-
fined by a PDE problem involving the Helmholtz equa-
tion. Let x ∈ R2 be the spatial variable. Suppose
uin(x; s) = eikx·s is an incoming plane wave with di-
rection s ∈ S1, wavelength λ, and angular wavenumber
k = 2π/λ. We normalize the problem’s units so this
wave travels at speed c0 ≡ 1 in free space. The incom-
ing wave interacts with a real-valued scattering potential
q(x) to produce an additive perturbation, called the scattered
wave field uscat[q](x; s). We define q(x) = c20/c

2(x) − 1
where c(x) is the wave speed at x. The total wave field
u[q](x; s) = uscat[q](x; s) + uin(x; s) solves the following
inhomogeneous Helmholtz equation:

∆u[q](x; s) + k2(1 + q(x))u[q](x; s) = 0, x ∈ R2, (1a)

subject to the Sommerfield radiation boundary condition:

∂uscat[q](x; s)

∂∥x∥ − ikuscat[q](x; s) = o(∥x∥−1/2),

as ∥x∥ → ∞.

(1b)

We assume q(x) is supported on a square domain Ω =
[−0.5, 0.5]2, and we work with q ∈ RNq×Nq , the discretiza-
tion of q(x) onto a regular grid with (Nq, Nq) grid points.
We place the receivers equally spaced around a large ring
of radius R ≫ 1, centered at the origin. We identify in-
dividual receivers by their unit-vector directions rj ∈ S1.
We compute the solution for a set of Nr receiver directions
and Ns incoming wave directions sℓ equally-spaced about
the unit circle. This results in a set of (Nr, Ns) observa-
tions, {uscat[q](Rrj ; sℓ)}j,ℓ∈[Nr]×[Ns], which we arrange
in a data array dk ∈ CNr×Ns . We call the mapping from q
to dk the forward model with incoming wave frequency k:

(dk)j,ℓ = Fk[q]j,ℓ ≡ uscat[q](Rrj ; sℓ) (2)

Because we are interested in multi-frequency algorithms, we
are interested in observations of the forward model evaluated
on the same q but with a set of incoming wave frequencies
[k1, . . . , kNk

]. In particular, our goal is to approximate the
following mapping:

[
Fk1 [q], . . . ,FkNk

[q]
]
7→ q. (3)

Our goal is to train a neural network gθ with parameters θ
to approximate the mapping: gθ(Fk1

[q], . . . ,FkNk
[q]) ≈ q.

Given a distribution D over scattering potentials q, we draw
a training set of n independent samples from D to generate
data to train the neural network. After evaluating the forward
model nNk times, we have a training set

Dn :=
{
(q(j),Fk1

[q(j)], . . . ,FkNk
[q(j)])

}n

j=1
(4)
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We evaluate networks by measuring the relative ℓ2 error:

Eq∼D



∥gθ

(
Fk1

[q], . . . ,FkNk
[q]

)
− q∥2

∥q∥2


 (5)

In practice, we approximate the expected relative ℓ2 error in
(5) by an empirical mean over a held-out test set of 1,000
samples drawn independently from D.

3. Background and Related Work
3.1. Background

In this section, we review standard results about Fk relevant
to our study. In particular, we focus on a linear approxi-
mation of Fk that gives insights into the inverse scattering
problem.

The first result is that Fk becomes more nonlinear as the
magnitude of the scatterer ∥q∥ or the wavenumber k in-
creases. Indeed, the solution to (1a)-(1b) can be equivalently
defined as the solution to the Lippmann-Schwinger integral
equation:

uscat[q](x; s)

= k2
∫

Ω

Gk(∥x− x′∥)q(x′)uin(x
′; s)dx′

+ k2
∫

Ω

Gk(∥x− x′∥)q(x′)uscat[q](x
′; s)dx′

(6)

where Gk is the Green’s function for the homogeneous
Helmholtz operator. This recursive equation provides a non-
linear map from q(x) to uscat[q](·; s) and therefore Fk[q].

One way to view this nonlinearity is to interpret the
Lippmann-Schwinger equation as a power series in q(x)
by iteratively substituting the value of uscat[q](x) into its
appearance on the right-hand side of (6). For example, per-
forming this substitution once yields a linear and a quadratic
term in q(x) that are independent of uscat[q], as well as a
“remainder” term involving the unknown uscat[q] that ac-
counts for higher-order terms. This power series does not
converge for general q(x), but it helps illustrate which parts
of the problem drive the nonlinearity of the operator Fk: as
∥q∥ or k grow, the size of these nonlinear terms will also
grow, and as a result Fk becomes highly nonlinear.

The next result is that, under a linear approximation, the
far-field measurements are diffraction-limited and can only
capture frequency components of q up to 2k. Equiva-
lently, the measurements depend on q to a spatial resolution
of λ/2. We consider the first-order Born approximation
(Born et al., 1999), which approximates (6) by dropping the
uscat[q](x

′; s) term from the right-hand side. This is further
simplified with an approximation of the Green’s function in

the far-field limit (Born et al., 1999), yielding

dk(r, s) ≈ k2
∫

Ω

e−ik(r−s)·x′
q(x′)dx′. (7)

We will refer to this linear approximation of the map from
q(x) to dk(r, s) as Fk. Note that Fkq is proportional to the
Fourier Transform of q evaluated at frequency vectors of the
form k(r − s). Since r, s ∈ S1 range over the unit circle,
the frequency vectors k(r − s) take on values throughout
a disk with radius 2k centered at the origin. Thus, evalu-
ations of the linearized forward model Fkq only contain
the low-frequency components of q, while high-frequency
components are in the kernel of Fk (Chen, 1995).

Owing to its simplicity, (7) is often used as inspiration for
the design of neural network architectures approximating
the inverse map dk 7→ q. The networks emulate the filtered
back-projection (FBP) method (Natterer, 2001), which pro-
duces an estimate q̂ of the scattering potential q as

q̂ = (F ∗
kFk + µI)−1F ∗

k dk, (8)

where F ∗
k is the adjoint of Fk. The operator (F ∗

kFk+µI)−1

can be implemented as a two-dimensional spatial convolu-
tion (Khoo & Ying, 2019; Fan & Ying, 2022; Li et al., 2022),
while novel network architectures have been proposed to
emulate F ∗

k ∈ CN2
q×NrNs in a parameter-efficient manner.

In particular, Fan & Ying (2022) and Zhang et al. (2023)
suggest leveraging the rotational equivariance of the forward
model to emulate F ∗

k with one-dimensional convolutions,
after applying a far-field scaling and an appropriate coor-
dinate transformation in (Fan & Ying, 2022, Equation 6)).
We refer to the network described by Fan & Ying (2022) as
FYNet.

3.2. Related Work

Deep learning has revolutionized linear inverse problems in
imaging, advancing methods for superresolution, inpainting,
deblurring, and medical imaging. Many of these advances
stem from methods combining deep neural networks with
optimization algorithms. For example, the deep unrolling
paradigm (Monga et al., 2021) performs a fixed number of
steps of an iterative algorithm and replaces certain opera-
tions with learnable mappings, which are parameterized by
neural networks whose weights are learned from data. Com-
ponents that remain fixed throughout training may reflect
prior knowledge of problem parameters, such as explicit
knowledge of the forward measurement model. In this set-
ting, the network is usually trained end-to-end by minimiz-
ing the Euclidean distance between the network outputs and
the true data. Another paradigm, called plug-and-play de-
noising (Venkatakrishnan et al., 2013), suggests that general
image denoisers can be used in place of proximal opera-
tors for regularization functions, an important subroutine
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in many optimization routines for linear inverse problems
in imaging. In this setting, neural network blocks are often
trained to solve a different task, such as denoising corrupted
signals, and then used inside the inversion algorithm. Ongie
et al. (2020) provides a review of deep learning for inverse
problems in imaging.

Several works in the wave scattering literature attempt to
solve the inverse scattering problem by augmenting an opti-
mization algorithm with components learned from data. At
inference time, these methods require running an iterative
optimization algorithm. Kamilov et al. (2017) develop a
plug-and-play algorithm for inverse scattering, and show
that various off-the-shelf denoisers can be applied as proxi-
mal operators. Zhao et al. (2023) use an encoder network
paired with a network emulating the forward model and
suggest optimizing a latent representation of the scatter-
ing potential using stochastic gradient descent. When only
phaseless measurements of the scattered wave field uscat

are available, Deshmukh et al. (2022) propose a network
unrolling proximal gradient descent, where the proximal
operator is a neural network learned from data. For the in-
verse obstacle scattering problem in two dimensions, Zhou
et al. (2023) propose using a fully-connected neural net-
work to warm-start a Gauss-Newton algorithm. Ding et al.
(2022) train a neural network to approximately invert a for-
ward scattering process depending on temporal data, and
use this approximate inverse as a nonlinear preconditioner
for a nonlinear least squares optimization routine.

Other methods propose to learn the inverse map directly
from data. Recently, neural networks that are approximately
invariant to discretization size have been proposed as meth-
ods of learning maps between general function spaces (Li
et al., 2021b; Lu et al., 2021) and these general-purpose
networks have been applied to inverse scattering (Ong et al.,
2022). Other networks have been designed to invert the for-
ward scattering model in particular; see Chen et al. (2020)
for a broad review of such approaches. One particularly suc-
cessful approach has been to emulate the FBP method (Khoo
& Ying, 2019; Fan & Ying, 2022). In our work, we consider
how to combine multiple such network blocks to invert the
multi-frequency forward map in (3). One way of combin-
ing these blocks is to learn each adjoint operator F ∗

kt
as a

separate neural network block and combine data to jointly
emulate the learned filtering operators (F ∗

kt
Fkt + µI)−1.

This strategy is employed in Zhang et al. (2023). Another
strategy is to use the Wide-Band Butterfly Network (Li et al.,
2022; 2021a), which hierarchically merges information from
different frequencies in the network block emulating F ∗

kt
.

Finally, we note in passing that the design of our method
is inspired by homotopy methods (Watson & Haftka, 1989).
These methods solve a sequence of sub-problems of in-
creasing difficulty, gradually transforming a simple (but

uninformative) optimization problem to the optimization
problem of interest and using solutions to a given sub-
problem to warm-start local search methods for subsequent
sub-problems. Such a sequence can be constructed explic-
itly (e.g., by varying regularization levels) or implicitly; for
example, curriculum learning (Bengio et al., 2009) progres-
sively adjusts the training data distribution from “easy” to
“hard” samples and has been used to train physics-informed
neural networks in challenging problem settings (Krish-
napriyan et al., 2021; Huang et al., 2022).

4. Recursive Linearization and Our Method
We propose a neural network that learns to approximate
the multi-frequency inversion map from training data. To
design the network and training algorithm, we draw inspi-
ration from the recursive linearization method for inverse
scattering, which we briefly review below.

4.1. Recursive Linearization

Recursive linearization is a classical method for solving the
inverse scattering problem, introduced by Chen (1995). In
spite of the nonlinearity of the true forward scattering model
described in (6), recursive linearization breaks the inverse
problem into a series of simpler problems, each of which
corresponds to a linear inverse problem. In this section we
discuss the intuition behind this strategy.

Recall from our discussion in Section 3.1 that the forward
map evaluated at low incident wave frequencies k acts ap-
proximately like a low-pass filter with cutoff frequency 2k.
At first glance, this suggests that observing Fk[q] for a high
value of k is sufficient for high-resolution recovery of q.
However, when viewed from an optimization perspective, it
becomes clear that this problem is increasingly challenging
for large values of k. For example, one might consider the
nonlinear least-squares problem

minimize
q̂

∥dk −Fk[q̂]∥22. (9)

To illustrate the challenges for the optimization formulation
with increasing values of k, we consider a simple exam-
ple where q is known to be a Gaussian bump with a given
spread parameter and unknown amplitude. Given observa-
tions dk = Fk[q] and a numerical PDE solver to calculate
Fk[·], one could estimate the amplitude of q by solving a
minimization problem similar to (9), but only searching over
the unknown amplitude. In Figure 1, we plot this objective
as a function of the amplitude of q̂ for a range of values of
k. For large values of k, the objective function is highly
oscillatory and contains many spurious local minima. When
optimizing using high-frequency data, convergence to the
global optimum is only guaranteed with careful initializa-
tion. That is, if we want to use measurements Fk[q] with
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high k to find a high-resolution reconstruction, we need a
careful initialization near the ground-truth q.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

5

10

15

20

25

β = amplitude of q̂

‖F
k
[q
]
−
F k

[q̂
]‖

2

k = 4π
k = 8π
k = 16π
k = 32π

Figure 1: Even in a highly stylized setting, accurately and
reliably inverting Fk is difficult for high frequencies k.
Suppose the ground-truth scattering potential is q(x) =

β exp(−∥x∥2

2σ2 ), a Gaussian bump with known spread param-
eter σ = 0.1 but unknown amplitude β. We show the opti-
mization landscape that arises from searching over different
amplitudes. At low incident wave frequencies, this optimiza-
tion landscape is smooth and has a large basin of attraction.
However, as the incident wave frequency increases, the opti-
mization landscape becomes highly oscillatory, requiring a
nearly exact initialization to guarantee convergence to the
ground truth. In experimental settings, the parameteriza-
tion of q is often high-dimensional, which requires higher
frequency data to resolve high-frequency information in q.
This numerical example was inspired by Bao & Liu (2003).

The recursive linearization algorithm leverages this insight
by solving a sequence of inversion problems at increasing
wave frequencies k. Crucially, each sub-problem uses the
output of the previous sub-problem to initialize a new op-
timization problem. This method was introduced in Chen
(1995) and further developed in Bao & Liu (2003); Borges
et al. (2017). At iteration t, the algorithm uses the previous
estimate q̂kt−1

along with a new set of observations dkt
, and

it calculates an update δq that minimizes the ℓ2 distance in
measurement space:

argmin
δq

∥dkt
−Fkt

[q̂kt−1
+ δq]∥22 (10)

The value of q̂kt−1 may make it possible to avoid spurious
local minima, but this problem is still difficult since an
iterative optimizer would require solving a PDE at each of its
iterations. However, Fkt

[q̂kt−1
+ δq] is well-approximated

by a first-order Taylor expansion about q̂kt−1
when δq is

small or when it does not contain low-frequency information
(Chen, 1995). This motivates the following surrogate for
the optimization problem in (10):

argmin
δq

∥dkt
−

(
Fkt

[q̂kt−1
] +DFkt

[q̂kt−1
]δq

)
∥22, (11)

where DFkt
[q̂kt−1

] denotes the Fréchet derivative of the
forward model at q̂kt−1 . The action of DFkt [q̂kt−1 ] and its
adjoint, DF∗

kt
[q̂kt−1 ], can be computed using the adjoint-

state method (Bao & Liu, 2003; Borges et al., 2017). The
resulting algorithm is akin to a Gauss-Newton method; criti-
cally, each sub-problem of the form shown in (11) is a linear
least-squares problem. We outline a sketch of the recursive
linearization algorithm in Algorithm 1.

The recursive linearization algorithm is very demanding
computationally. Each iteration requires solving Ns large-
scale PDEs and a high-dimensional least-squares problem,
which quickly creates a large computational burden when
producing high-resolution solutions. In a classical setting
without machine learning, the frequencies should be spaced
close to each other for best results. Chen (1997) uses k =
1, 2, . . . , 9 in their numerical experiments, while Borges
et al. (2017) uses k = 1, 1.25, . . . , 70, which they report
takes around 40-50 hours per sample to produce a single
241× 241 pixel image.

Algorithm 1 Recursive Linearization for Inverse Scattering
based on Chen (1995; 1997); Bao & Liu (2003); Borges
et al. (2017)

1: Input: Multi-frequency data {dk1 , dk2 , . . . , dkNk
}

2: q̂k1
←

(
F ∗
k1
Fk1

+ µI
)−1

F ∗
k1
dk1

3: for t = 2, . . . , Nk do
4: Compute Fkt [q̂kt−1 ] and DFkt [q̂kt−1 ].
5: Compute δqkt

by solving (11)
6: q̂kt

← q̂kt−1
+ δqkt

.
7: end for
8: Result: Final estimate q̂kNk

.

Although recursive linearization is computationally expen-
sive as stated, we believe that one of the key features of
recursive linearization is the way that it breaks the recov-
ery process into multiple steps, each of which refines the
estimate from the previous step using data of a higher fre-
quency. We will refer to this step-wise recovery strategy as
progressive refinement.

Progressive refinement facilitates the recovery process, since
each step is only responsible for a correction to the estimate
of the scattering potential within a frequency band. Focusing
on this strategy also allows us to look for machine learning
methods that do not explicitly emulate Fk[·] or DFk[·],
which are expensive to compute. To this end, we consider a
generalization of recursive linearization where we replace
lines 4 and 5 in Algorithm 1 with a generic refinement step:
for t = 2, . . . , Nk,

δqkt = RefinementStepkt
(q̂kt−1 , dkt), (12)

where RefinementStepkt
(q̂kt−1 , dkt) refers to the update cal-
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culated for estimate q̂kt−1
given data dkt

and can be imple-
mented using a neural network. We will propose and discuss
a network architecture in the next section.

4.2. Our Method

We use Algorithm 1 as inspiration for the design of our
neural network architecture and training method. In particu-
lar, we focus on the following two crucial aspects of Algo-
rithm 1:

Progressive refinement: The algorithm builds intermedi-
ate estimates of the scattering potential which are pro-
gressively refined with the introduction of new data.

Homotopy through frequency: The iterative refinements
from the first step form a homotopy from low to high-
frequency measurements. As a result, updates at step t
contain high-frequency information relative to kt−1.

To emulate the progressive refinement structure, we propose
a network with a residual structure and skip connections.
The network comprises multiple blocks, one for each in-
cident wave frequency kt, t = 1, . . . , Nk. The input to
each block is measurement data dkt

collected at a particu-
lar incident wave frequency kt. The input passes through
an FYNet block (Fan & Ying, 2022), which approximately
inverts the forward model. The output of the FYNet block
is then concatenated with the output of the previous block,
q̂kt−1 , and the concatenation is passed to 2D convolutional
layers for a second filtering step. Finally, a skip connection
adds q̂kt−1

to the output of the last convolutional layer of the
block, producing the next estimate q̂kt

. The network’s archi-
tecture is shown in Figure 2; we call the resulting network
“MFISNet-Refinement.” Note that, under this construction,
the FYNet blocks could be replaced by any other neural net-
work architecture designed for the single-frequency inverse
scattering problem.

To emulate the homotopy through frequency, we design
a training method to ensure each successive block adds
higher-frequency information to the estimate of the scat-
tering potential. Under the Born approximation (7), we
know dk contains information about q up to frequency limit
2k. This suggests that given data dkt , we should be able to
reconstruct the frequency components of q up to 2kt. To
reflect this, we train the output of block t with the following
loss function:

Lt(q̂kt
; q) = Eq∼Dn

[
∥q̂kt
− LPF2kt

q∥2
]

(13)

In (13), LPF2kt
is a low-pass filter with approximate cutoff

frequency 2kt, implemented as a Gaussian filter to avoid
ringing artifacts. To train the network, we first adjust the
weights of each block in a sequential fashion and then

dk1

dk2

dk3

FYNetθ1

RefinementBlockθ2

RefinementBlockθ3

q̂k1

q̂k2

q̂k3

Training
targets
Training
targets

(a) MFISNet-Refinement Architecture

q̂kt−1

dkt
FYNetθt,1

concat

2D-conv
layers θt,2

q̂kt

RefinementBlockθt

(b) Refinement Block

Figure 2: Our MFISNet-Refinement architecture is de-
signed to emulate the recursive linearization algorithm. Fig-
ure 2a shows that our network proceeds by making an initial
low-frequency reconstruction and then making a series of
updates given higher-frequency data and an estimate of the
scattering potential. The network is trained to match the
intermediate reconstructions to low-pass filtered versions
of scattering potentials from the training set. One example
collection of such filtered scattering potentials is shown.
Figure 2b shows that our refinement block is a simple exten-
sion of the FYNet architecture from Fan & Ying (2022). By
using a skip connection in this block, we ensure the network
only needs to predict an update to the estimated scattering
potential.

perform a final training step which fine-tunes all of the
blocks jointly; the training procedure is summarized in Al-
gorithm 2.

5. Experiments
In this section, we describe the setting and results for our nu-
merical investigation of the efficacy of our proposed method.
We test the methods on a new distribution of scattering po-
tentials with high contrast and a smoothly-varying unknown
background, described in Figure 3a and Appendix B.

5.1. Stabilizing Reconstruction by Adding Frequencies

First, we test whether the intuition built in Section 4 is true
in a machine learning context. We test whether machine
learning methods that operate on data with multiple incom-
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Algorithm 2 Training Procedure

Input: Randomly-initialized neural network param-
eters {θ1, . . . , θNk

}; Training data samples Dm :={
(q(j), d

(j)
k1

, . . . , d
(j)
kNk

)
}n

j=1
.

for t = 1, ..., Nk do
Set θt as trainable, and freeze all other weights.
if t < Nk then

Train θt by optimizing Lt. { Equation (13) }
else

Train θt by optimizing ∥q̂kNk
− q∥22.

end if
end for
Set all weights as trainable.
Train all weights by optimizing ∥q̂kNk

− q∥22.
Result: Trained neural network parameters {θ1, ..., θNk

}.

(a) Scattering
potential q

(b) Measured
dk, k = 4π

(c) Measured
dk, k = 32π

Figure 3: Figure 3a shows a typical example from our dis-
tribution of scattering potentials, drawn from the test set.
Our distribution of scattering potentials has a random low-
frequency background field, occluded by piecewise constant
geometric shapes. We reconstruct these scattering potentials
on a regular grid with (Nq, Nq) = (192, 192) pixels. Fig-
ures 3b and 3c show the output of the forward model applied
to this scattering potential. The real part of uscat is shown,
which we sample on a grid of size (Nr, Ns) = (192, 192)
equally-spaced directions on the unit circle.

ing wave frequencies are more accurate and stable than
single-frequency machine learning methods. To make this
comparison fair, we create a sequence of training datasets
with number of incident wave frequencies Nk ∈ {1, 2, 3}
and keep the amount of training data, nNk, constant for
each dataset by suitably adjusting the number of training
samples n. We wish to compare our method, MFISNet-
Refinement, with other methods of learning an inverse to
the single-frequency or multi-frequency forward map. We
give details about the FYNet and Wide-Band Butterfly Net-
work architectures in Appendix A.1.

For the Nk = 1 dataset, we train an FYNet model, and
for Nk > 1, we train our model MFISNet-Refinement, as
well as the Wide-Band Butterfly Network (Li et al., 2022).
For each model, we train for a fixed number of epochs and
choose the model weights at the epoch at which a validation

set of size n/10 is minimized. We also use the validation set
to search over various hyperparameters, such as the size of
1D and 2D convolutional kernels, the number of channels in
the convolutional layers, and optimization hyperparameters,
such as step size and weight decay (Appendix C.)

We present the quantitative results of this experiment in
Table 1; see also Figures 4 and 6 for a qualitative compar-
ison on representative test samples. The relatively poor
performance of FYNet confirms our belief that we are in a
challenging nonlinear problem regime. As more frequen-
cies are added, the multi-frequency methods improve. All of
tested methods are uniformly outperformed by our method,
MFISNet-Refinement, at all values of Nk. The Wide-Band
Butterfly Network underperforms the other methods. We
hypothesize that the weaker performance of the Wide-Band
Butterfly Network may be attributed to several factors: first,
the butterfly factorization was inspired by analysis in a
weak (linear) scattering regime, but our experiments are
in a strong (nonlinear) scattering regime. Additionally,
the Wide-Band Butterfly Network was previously tested
in low-contrast settings with sub-wavelength scatterers and
a known background, while we are in an experimental set-
ting with high contrast and an unknown, inhomogeneous
background.

Nk [k1, k2, ...] n Method Name Relative ℓ2 Error

1 [32π] 10, 000 FYNet 0.261± 0.036

2 [16π, 32π] 5, 000 Wide-Band Butterfly Network 0.227± 0.047
MFISNet-Refinement (Ours) 0.154± 0.034

3 [8π, 16π, 32π] 3, 333 Wide-Band Butterfly Network 0.160± 0.037
MFISNet-Refinement (Ours) 0.098± 0.020

Table 1: When holding the number of forward model evalu-
ations = nNk constant, methods trained on more frequen-
cies outperform methods with fewer frequencies. The final
column reports the relative ℓ2 error mean ± one standard
deviation computed over 1, 000 held-out test samples. The
lowest mean for each incident frequency set is marked in
boldface font.

5.2. Investigating the Training Method

We hypothesize that our method is successful because it ef-
fectively breaks the reconstruction problem into a sequence
of simpler frequency-dependent refinement steps. This emu-
lates the sequential, frequency-dependent structure of the re-
cursive linearization method. A natural question is whether
the success of our method is primarily driven by emulat-
ing sequential refinement steps or can be attributed to the
residual architecture alone. To test this question, we inves-
tigate two different changes to our training method which
remove the progressive refinement structure. We describe
each adjustment below.

7
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Figure 4: Sample predictions from models trained on dif-
ferent datasets. Predictions and errors on one held-out test
sample are shown for single-frequency methods (FYNet)
and multi-frequency methods (Wide-Band Butterfly Net-
work and MFISNet-Refinement). The first row shows the
ground-truth scattering potential. See Figure 6 in the ap-
pendix for outputs on additional test samples.

No Homotopy through Frequency Rather than sequen-
tially training each network block after the previous blocks
have been optimized, we jointly train all of the blocks by

optimizing the loss function

∥q̂kNk
− q∥2 +

Nk−1∑

t=1

γNk−t∥q̂kt
− LPF2kt

q∥2 (14)

Here γ is a hyperparameter which controls the relative im-
portance of the different loss terms. We tuned over a few
choices of γ; see Table 5 for details.

No Progressive Refinement Instead of using the inter-
mediate loss terms ∥q̂kt

− LPF2kt
q∥2, designed to promote

specific network blocks learning different parts of the recon-
struction, we train the network by only optimizing the final
loss term ∥q̂kNk

− q∥2. This is the standard training loss
used in most other works, including Khoo & Ying (2019);
Fan & Ying (2022); Li et al. (2022).

Training Method [k1, k2, k3] Relative L2 Error

No Progressive Refinement [8π, 16π, 32π] 0.110± 0.021
No Homotopy through Frequency [8π, 16π, 32π] 0.103± 0.021
Our Method [8π, 16π, 32π] 0.098± 0.020

Table 2: Our training method, described in Algorithm 2,
produces better results than the other methods, which were
designed to remove parts of the recursive linearization struc-
ture. We describe these alternate training methods in Sec-
tion 5.2.

6. Conclusion
This paper investigates the use of multi-frequency data in
deep learning approaches to the inverse medium scattering
problem in a highly nonlinear, full-aperture regime. We re-
view standard optimization results for this problem, identify
recursive linearization as an algorithm particularly well-
suited for this problem, and use this insight to design a
neural network architecture and training method. Our exper-
imental evaluations suggest that our method outperforms ex-
isting approaches that combine multi-frequency data across
a wide range of data settings.

Our work leaves open important questions about machine
learning in different multi-frequency data settings, which
we defer to future work. The first setting is seismic imaging,
where sources and receivers are located on one side of the
scattering potential, resulting in limited-aperture measure-
ments. Another setting to consider is full-aperture measure-
ments, with a small fixed or frequency-dependent number
of source and receiver directions, as Ns and Nr drive real-
world costs when implementing an imaging system. Finally,
we suggest a distribution of scattering potentials with an un-
known, smoothly varying background occluded by strongly
scattering shapes. We note that an important open problem
is to learn to segment the reconstruction into disjoint regions,
containing only background or only the strong scatterers.

8
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Figure 5: A diagram of Wide-Band Butterfly Network, adapted from Li et al. (2021a; 2022). All blocks in dark green
contain trainable parameters.

A. Architecture Details
A.1. FYNet

We implement the inversion network described in (Fan & Ying, 2022) and call it FYNet. This method suggests applying the
far-field scaling and a transformation from the receiver and source direction coordinates (r, s) to a new set of variables as
summarized in (Fan & Ying, 2022, Equation (6)), which we perform using bicubic interpolation. We split the complex-valued
input into real and imaginary parts along a channel dimension. To implement the action of the adjoint operator F ∗

k , we use a
composition of three 1-dimensional convolutional layers. We implement the convolutional layers as learnable in the Fourier
domain because the expression for F ∗

k derived in (Fan & Ying, 2022) is local in frequency, but not space. To implement the
filtering operator (F ∗

kFk + µI)
−1, we use a composition of three 2-dimensional convolutional layers. All layers but the last

one use ReLU activations. This network outputs an estimate of the scattering potential on a regular polar grid, in coordinates
(ρ, ϕ). Following (Fan & Ying, 2022), we train the network by minimizing the difference between predictions and targets on
the polar grid. We transform to Cartesian coordinates for visualization and computing final test statistics.

A.2. Wide-Band Butterfly Network

The Wide-Band Butterfly Network is introduced and defined in Li et al. (2022; 2021a). This architecture jointly parameterizes
the adjoint operators F ∗

k1
, . . . , F ∗

kNk
, but it leverages the complementary low-rank property of F ∗

kt
(Khoo & Ying, 2019)

to hierarchically merge the data using a butterfly network. For this network, we use code provided by the authors.1 The
reference implementation is limited to using data at three incident frequencies, and we have modified it to also accept data at
two incident frequencies.

B. Data Generation
B.1. Distribution of Scattering Potentials

We define a distribution of scattering potentials D which has nonzero spatial support on the disk of radius 0.4, with a
smoothly varying random background occluded by three randomly placed and randomly sized piecewise-constant shapes.
We normalize the scattering potential so the background has minimum and maximum values 0 and 2 respectively, and we
normalize the piecewise-constant shapes to have value 2. Figure 3a shows one such scattering potential from our distribution.

Notably, the contrast of these scattering potentials ∥q∥∞ = 2, which is much larger than the contrast used in distributions
to evaluate other machine learning methods in the shape reconstruction regime Fan & Ying (2022); Li et al. (2022). The
high-contrast regime is an important experimental setting because it ensures the nonlinearity of the forward model, which is
the difficult and interesting problem setting, is captured. The non-constant background also adds to the difficulty of the
problem by increasing ∥q∥2, which adds to the nonlinearity of the forward model. It also adds much more entropy to D.
We use this model to reflect experimental conditions in imaging tasks, wherein backgrounds are rarely known, constant, or
homogeneous.

To generate samples from D, our distribution of scattering potentials, we draw a random smoothly-varying background
and three shapes with random sizes, positions, and rotations. This section provides details about the generation of these

1https://github.com/borongzhang/ISP_baseline
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scattering objects.

The random low-frequency backgrounds were generated by drawing random Fourier coefficients and filtering out the high
frequencies using LPF4.0. The resulting background was transformed to Cartesian coordinates, and then shifted and scaled
so the maximum value was 2.0 and the minimum value was 0.0. The background was truncated to 0.0 outside of the disk of
radius 0.4. Three shapes were randomly chosen among equilaterial triangles, squares, and ellipses. The three shapes had
randomly-chosen centers and rotations, constrained to be non-overlapping and fit inside the disk of radius 0.4. The side
lengths of the squares and triangles were uniformly sampled from [0.1, 0.15]. The major axis lengths of the ellipses were
uniformly sampled from [0.1, 0.15], and the minor axis lengths were uniformly sampled from [0.05, 0.1]. Finally, LPF32π

was applied to the scattering potential.

B.2. Implementation of F
To implement the forward model, we implement a numerical PDE solver to compute solutions of (1a)-(1b). We implement
this by discretizing the scattering domain Ω with a (Nq, Nq) regular grid, with Nq = 192. We transform (1a)-(1b) into
the Lippmann-Schwinger integral equation and recast the latter as a sparse linear system, which we solve with an iterative
method to approximate convergence. This formulation allows us to compute the solution uscat on a large, distant ring placed
at radius R = 100. We compute the solution at Nr = 192 equally-spaced positions on this ring, and we repeat this process
for Ns = 192 equally-spaced source directions. We use a Pytorch implementation of GMRES (Saad & Schultz, 1986)
through the CoLA library (Potapczynski et al., 2023) to facilitate batched computation over multiple source directions,
fast sparse linear system solves, and GPU acceleration; altogether, evaluating the full forward model for a given q only
takes about 5 seconds using our implementation, using one NVIDIA® A40 GPU. Figures 3b and 3c show the solution uscat

produced by our implementation for high and low incident wave frequencies.

We use bicubic interpolation to implement the data transformation described in (Fan & Ying, 2022, Equation (6)), resulting
in a transformed grid of size (Nm, Nh) = (192, 96) for the input data. The FYNet blocks reconstruct images on a regular
polar grid with (Nρ, Nϕ) = (96, 192) pixels, and the radial dimension of our polar grid extends to ρmax = 0.5. Finally, we
use bicubic interpolation to transform the model’s outputs to the (Nq, Nq) Cartesian grid for final visualization and error
measurement.

C. Hyperparameter Search
For our hyperparameter searches, we trained models on a grid of hyperparameters and evaluated them on a validation set
every 5 epochs. We found the epoch and hyperparameter setting which produced the lowest error on the validation set, and
used those model weights for final evaluation on a held-out test set.

C.1. MFISNet-Refinement and FYNet

We train all models using the Adam algorithm, with a batch size of 16 samples. The FYNet and MFISNet-Refinement
models tested have 3 1D convolutional layers followed by 3 2D convolutional layers; ReLU activations are used between
layers. We use 1D and 2D convolutional kernels with 24 channels following (Fan & Ying, 2022);. To train FYNet and
MFISNet-Refinement, we search over a grid of architecture and optimization hyperparameters. We report the optimal
hyperparameters we found in Tables 3 to 5.

1d kernel size This is the number of frequency components in the 1D convolutional filters emulating F ∗
k . We search over

values {20, 40, 60}.

2d kernel size This is the size (in pixels) of the 2D convolutional kernel used in the layers emulating (F ∗
kFk + µI)

−1. We
search over values {5, 7}.

Weight decay The weight decay parameter adds an ℓ2 weight regularization term to the loss function. This hyperparameter
determines the coefficient of this regularization term. We search over values {0.0, 1× 10−3}.

Learning rate This is the step size for the Adam optimization algorithm. We search over values {1× 10−4, 5× 10−4, 1×
10−3}.

LR decrease For MFISNet-Refinement models only, we decrease the learning rate each time we begin training a new

12
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network block. This parameter determines the multiplicative decrease that we apply to the learning rate. We search
over values {1.0, 0.25}.

Hyperparameter Data Setting (FYNet)
Nk = 1

1d kernel size 60
2d kernel size 7
Weight decay 1× 10−3

Learning Rate 1× 10−3

Table 3: Optimal hyperparameters for FYNet.

Hyperparameter Data Setting (MFISNet-Refinement)
Nk = 2 Nk = 3

1d kernel size 20 20
2d kernel size 5 5
Weight decay 1× 10−3 0.0
Learning rate 5× 10−4 1× 10−3

LR decrease 0.25 0.25

Table 4: Optimal hyperparameters for MFISNet-Refinement.

Hyperparameter Training Method
No Iterative Refinement No Homotopy through Frequency Our Method

1d kernel size 20 40 20
2d kernel size 5 7 5
Weight decay 0.0 1× 10−3 0.0
Learning rate 1× 10−3 1× 10−3 1× 10−3

LR decrease N/A N/A 0.25
γ N/A 1.1 N/A

Table 5: Optimal hyperparameters for the MFISNet-Refinement models in the training method experiment (Section 5.2).
Here, γ is the factor which weights different loss terms in the “No Homotopy through Frequency” condition (cf. (14)). We
searched over values γ = {0.9, 1.0, 1.1}. All of these models were trained with incident frequencies [8π, 16π, 32π] and
n = 3333 training samples.

C.2. Wide-Band Butterfly Network

To find the optimal Wide-Band Butterfly Network, we optimized over the following hyperparameters. We defined the grid of
hyperparameters by taking the original hyperparameter from Li et al. (2022) and adding both higher and lower values, where
possible. See Table 6 for the selected values.

Rank This parameter controls the rank of the compression of local patches in the butterfly factorization. Increasing this
rank parameter increases the number of learnable parameters in the part of the network emulating F ∗

k . We found that
increasing the rank decreased the train and validation errors, and we increased the rank until we were unable to fit the
model and data onto a single GPU. We searched over values {2, 3, 5, 10, 15, 20, 30, 50}.

Initial Learning Rate We decrease the learning rate by a multiplicative factor after 2, 000 minibatches, as suggested by Li
et al. (2022). This parameter is the initial learning rate for the optimization algorithm. We searched over values
{5× 10−4, 1× 10−3, 5× 10−3}.
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Learning Rate Decay This is the multiplicative decay parameter for the learning rate schedule. We searched over values
{0.85, 0.95}.

Sigma Li et al. (2022) suggest training the network to match slightly-filtered versions of the ground-truth q. This is
performed by applying a Gaussian filter to the targets q(i) before training. Sigma is the standard deviation of this
Gaussian filter. We do not blur the targets in the test set. We searched over values {0.75, 1.125, 1.5}.

Batch Size This is the number of samples per minibatch. We searched over values {16, 32}.

Hyperparameter Data Setting (Wide-Band Butterfly Network)
Nk = 2 Nk = 3

Rank 30 50
Initial Learning Rate 5× 10−4 5× 10−4

Learning Rate Decay 0.95 0.85
Sigma 1.5 1.5
Batch Size 16 16

Table 6: Optimal hyperparameters for Wide-Band Butterfly Networks.

D. Additional empirical results
In this section, we illustrate the predictions generated by the different models used in our experiments on four randomly-
selected test samples from our dataset. For each prediction, we include the associated error plot. The visualizations are
provided in Figure 6.
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Figure 6: Sample predictions from four randomly-selected test samples.
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