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Searching for Anomalies Over
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Abstract—The problem of detecting anomalies in multiple pro-
cesses is considered. We consider a composite hypothesis case, in
which the measurements drawn when observing a process follow a
common distribution with an unknown parameter (vector), whose
value lies in normal or abnormal parameter spaces, depending on
its state. The objective is a sequential search strategy that mini-
mizes the expected detection time subject to an error probability
constraint. We develop a deterministic search algorithm with the
following desired properties. First, when no additional side infor-
mation on the process states is known, the proposed algorithm is
asymptotically optimal in terms of minimizing the detection delay
as the error probability approaches zero. Second, when the pa-
rameter value under the null hypothesis is known and equal for all
normal processes, the proposed algorithm is asymptotically optimal
as well, with better detection time determined by the true null
state. Third, when the parameter value under the null hypothesis
is unknown, but is known to be equal for all normal processes,
the proposed algorithm is consistent in terms of achieving error
probability that decays to zero with the detection delay. Finally, an
explicit upper bound on the error probability under the proposed
algorithm is established for the finite sample regime. Extensive
experiments on synthetic dataset and DARPA intrusion detection
dataset are conducted, demonstrating strong performance of the
proposed algorithm over existing methods.

Index Terms—Anomaly detection, dynamic search, sequential
design of experiments.

I. INTRODUCTION

W E CONSIDER the problem of searching for an
anomalous process (or few abnormal processes) among

M processes. For convenience, we often refer to the processes as
cells and the anomalous process as the target which can locate in
any of the M cells. The decision maker is allowed to search for
the target over K cells at a time (1 ≤ K ≤ M ). We consider the
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composite hypothesis case, where the observation distribution
has an unknown parameter (vector). When taking observations
from a certain cell, random continuous values are measured
which are drawn from a common distribution f . The distribution
f has an unknown parameter, belonging to parameter spaces
Θ(0) or Θ(1), depending on whether the target is absent or
present, respectively. The objective is a sequential search
strategy that minimizes the expected detection time subject to
an error probability constraint. The anomaly detection problem
finds applications in intrusion detection in cyber systems for
quickly locating infected nodes by detecting statistical anoma-
lies, spectrum scanning in cognitive radio networks for quickly
detecting idle channels, and event detection in sensor networks.

A. Main Results

Dynamic search algorithms can be broadly classified into two
classes: (i) Algorithms that use open-loop selection rules, in
which the decision of which cell to search is predetermined
and independent of the sequence of observations. The stopping
rule, that decides when to stop collecting observations from the
current cell, and whether to switch to the next cell or stop the test,
however, is dynamically updated based on past observations. In
this class of algorithms, tractable optimal solutions have been
obtained under various settings of observation distributions (see
e.g., [2]–[5]). (ii) Algorithms that use closed-loop selection
rules, in which the decision of which cell to search is based
on past observations. The focus is on addressing the full-blown
dynamic problem by jointly optimizing both selection and stop-
ping rules in decision making (see e.g., [6]–[10]). In this setting,
however, tractable optimal solutions have been obtained only
for very special cases of observation distributions ([6], [7]). In
this paper we focus on the latter setting.

Since observations are drawn in a one-at-a-time manner, we
are facing a sequential detection problem over multiple compos-
ite hypotheses. Sequential detection problems involving multi-
ple processes are partially-observed Markov decision processes
(POMDP) [7] which have exponential complexity in general. As
a result, computing optimal search policies is intractable (except
for some special cases of observation distributions as in [6],
[7]). When dealing with composite hypotheses, computing op-
timal policies is intractable even for the single process case.
For tractability, a commonly adopted performance measure is
asymptotic optimality in terms of minimizing the detection time
as the error probability approaches zero (see, for example, classic
and recent results in [8]–[22]). The focus of this paper is thus
on asymptotically optimal strategies with low computational
complexity. Our main contributions are three fold, as detailed
below.

1) A General Model for Composite Hypotheses: Dynamic
search problems have been investigated under various models of
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observation distributions in past and recent years. Closed-loop
solutions have been obtained under known Wiener processes [6],
known symmetric distributions [7], known general distribu-
tions [8], known Poisson point processes with unknown param-
eters [9], and unknown distributions in which the measurements
can take values from a finite alphabet [10]. By contrast to these
works, in this paper the dynamic search is conducted over a
general known distribution model with unknown parameters that
lie in disjoint normal and abnormal parameter sets, and the mea-
surements can take continuous values. This distribution model
finds applications in traffic analysis in computer networks [23]
and spectrum scanning in cognitive radio networks [24] for
instance. Handling this observation model in the dynamic search
setting leads to fundamentally different algorithm design and
analysis as compared to existing methods.

2) Algorithm Development: In terms of algorithm devel-
opment, the proposed algorithm is deterministic and has
low-complexity implementations. Specifically, the proposed al-
gorithm consists of exploration and exploitation phases. During
exploration, the cells are probed in a round-robin manner for
learning the unknown parameters. During exploitation, the most
informative observations are collected based on the estimated
parameters. We point out that our algorithm uses only bounded
exploration time under the setting without side information
(Section III-A) and when the null hypothesis is assumed known
(Section III-B), which is of particular significance. It is in sharp
contrast with the logarithmic order of exploration time com-
monly seen in active search strategies (see, for example, [10],
[25] or even linear order of exploration time in [9]).

3) Performance Analysis: In terms of theoretical performance
analysis, we prove that the proposed algorithm achieves asymp-
totic optimality when no additional side information on the
process states is known, and a single location is probed at a
time (as widely assumed in dynamic search studies for purposes
of analysis, e.g., [6], [7], [9], [10], [26]–[28]). Furthermore,
when the parameter value under the null hypothesis is known
(i.e., as widely applied in anomaly detection cases, and also
assumed in [10] for establishing asymptotic optimality), we
establish asymptotic optimality as well, with better detection
time determined by the true null state. We also consider the
case where the parameter value under the null hypothesis is
unknown, but is identical for all normal processes. In this case,
the proposed algorithm is shown to be consistent in terms of
achieving error probability that decays to zero with time. In
addition to the asymptotic analysis, an explicit upper bound
on the error probability is established under the finite sample
regime. Extensive numerical experiments on synthetic dataset
and DARPA intrusion detection dataset have been conducted to
demonstrate the efficiency of the proposed algorithm.

B. Related Work

Optimal solutions for target search or target whereabout prob-
lems have been obtained under some special cases when a single
location is probed at a time. Modern application areas of search
problems with limited sensing resources include narrowband
spectrum scanning [29], [30], event detection by a fusion center
that communicates with sensors using narrowband transmis-
sion [31], [32], and sensor visual search studied recently by
neuroscientists [9]. Results under the sequential setting can be
found in [5], [6], [31]–[35]. Specifically, optimal policies were
derived in [6], [33], [34] for the problem of quickest search over

Wiener processes. In [5], [35], optimal search strategies were
established under the constraint that switching to a new process
is allowed only when the state of the currently probed process is
declared. Optimal policies under general distributions and un-
constrained search model remain an open question. In this paper
we address this question under the asymptotic regime as the error
probability approaches zero. Optimal search strategies when a
single location is probed at a time and a fixed sample size have
been established under binary-valued measurements [26]–[28],
and under known symmetric distributions of continuous obser-
vations [7]. In this paper, however, we focus on the sequential
setting and general composite hypothesis case.

Sequential tests for hypothesis testing problems have attracted
much attention since Wald’s pioneering work on sequential
analysis [36] due to their property of reaching a decision at
a much earlier stage than would be possible with fixed-size
tests. Wald established the Sequential Probability Ratio Test
(SPRT) for a binary hypothesis testing of a single process. Under
the simple hypothesis case, the SPRT is optimal in terms of
minimizing the expected sample size under given type I and
type II error probability constraints. Various extensions for
M-ary hypothesis testing and testing composite hypotheses were
studied in [12]–[15], [37] for a single process. In these cases,
asymptotically optimal performance can be obtained as the error
probability approaches zero. In this paper, we focus on asymptot-
ically optimal strategies with low computational complexity for
sequential search of a target over multiple processes. Different
models considered the case of searching for targets without
constraints on the probing capacity, whereas all processes are
probed at each given time (i.e., K = M , which is a special case
of the setting considered in this paper) [15], [21], [22], [34].

Since the decision maker can choose which cells to probe, the
anomaly detection problem has a connection with the classical
sequential experimental design problem first studied by Cher-
noff [11]. Compared with the classical sequential hypothesis
testing pioneered by Wald [36] where the observation model
under each hypothesis is predetermined, the sequential design
of experiments has a control aspect that allows the decision
maker to choose the experiment to be conducted at each time.
Chernoff has established a randomized strategy, referred to as the
Chernoff test which is asymptotically optimal as the maximum
error probability diminishes. Chernoff’s results were proved for
a finite number of states of nature, and in [38] Albert extended
Chernoff’s results to allow for an infinity of states of nature.
More variations and extensions of the problem and the Chernoff
test were studied in [8], [16]–[20], [39]. In particular, when the
distributions under both normal and abnormal states are com-
pletely known under the anomaly detection setting considered
here, a modification of the randomized Chernoff test applies and
achieves asymptotic optimality [17]. In our previous work [8],
we have shown that a simpler deterministic algorithm applies
and obtains the same asymptotic performance, with better per-
formance in the finite sample regime. A modified algorithm has
been developed recently in [29] for spectrum scanning with time
constraint. In this paper, however, we consider the composite
hypothesis case, which is not addressed in [8], [17], [29].

In [9], searching over Poisson point processes with unknown
rates has been investigated and asymptotic optimality has been
established when a single location is probed at a time. The
policy in [9] implements a randomized selection rule and also
requires to dedicate a linear order of time for exploring the
states of all processes. In our model, however, we consider
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general distributions (with disjoint parameter spaces) and show
that deterministic selection rule, with bounded exploration time
achieves asymptotic optimality. This result also extends a recent
asymptotic result obtained in [10] for non-parametric detection
when distributions are restricted to a finite observation space
(in contrast to the general continuous valued observations con-
sidered here), where asymptotic optimality was shown when
the distribution under the null hypothesis is known, a single
location is probed at a time, and a logarithmic order of time is
used for exploration. In [25], the problem of detecting abnormal
processes over densities that have an unknown parameter was
considered, where the process states are independent across cells
(in contrast to the problem considered in this paper, in which
there is a fixed number of abnormal processes). The objective
was to minimize a cost function in the system occurred by
abnormal processes, which does not capture the objective of
minimizing the detection delay considered here.

Another set of related works is concerned with sequential de-
tection over multiple independent processes [2]–[4], [25], [30],
[40]–[43]. In particular, in [2], the problem of identifying the first
abnormal sequence among an infinite number of i.i.d. sequences
was considered. An optimal cumulative sum (CUSUM) test has
been established under this setting. Further studies on this model
can be found in [3], [4], [42]. While the objective of finding rare
events or a single target considered in [2]–[4], [42] is similar to
that of this paper, the main difference is that in [2]–[4], [42] the
search is done over an infinite number of i.i.d processes, where
the state of each process (normal or abnormal) is independent of
other processes, resulting in open-loop search strategies, which
is fundamentally different from the setting in this paper.

Other recent studies include searching for a moving Marko-
vian target [44], and searching for correlation structures of
Markov networks [45].

Finally, we point out that our setup is different from the change
point detection setup. Our model is suitable to cases where a
system has already raised an alarm for event (based on change
point detection, for instance), but the location of the event is
unknown and needs to be located.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the problem of detecting a target located in one of
M cells quickly and reliably. An extension to detecting multiple
targets is discussed in Section III-C. If the target is in cell m,
we say that hypothesis Hm is true. The a priori probability that
Hm is true is denoted by πm, where

∑M
m=1 πm = 1. To avoid

trivial solutions, it is assumed that 0 < πm < 1 for all m.
We focus on the composite hypothesis case, where the ob-

servation distribution has an unknown parameter (or a vector of
unknown parameters). Let θm be the unknown parameter that
specifies the observation distribution of cell m. The vector of
unknown parameters is denoted by θ = (θ1 . . . θM ). At each
time, only K (1 ≤ K ≤ M ) cells can be observed. When cell
m is observed at timen, an observation ym(n) is drawn indepen-
dently from a common density f(y|θm), θm ∈ Θ, where Θ ⊂ R

is the parameter space for all cells.
If the target is not located in cell m, then θm ∈ Θ(0); oth-

erwise, θm ∈ (Θ\Θ(0)). The overall parameter space is the
Cartesian product ΘM . Thus, under hypothesis Hm, the true
vector of parameters θ ∈ Θm ⊂ ΘM , where

Θm = {θ : θi ∈ Θ(0), ∀i �= m, θm ∈ Θ\Θ(0)}.

Let Θ(0), Θ(1) be disjoint subsets of Θ, where I = Θ\(Θ(0) ∪
Θ(1)) �= ∅ is an indifference region.1 Whenθ(1) ∈ I , the detector
is indifferent regarding the location of the target. Hence, there are
no constraints on the error probabilities for all θ ∈ I . Shrinking
I increases the sample size. We also assume that Θ(0), Θ(1) are
open sets. Let Pm be the probability measure under hypothesis
Hm and Em be the operator of expectation with respect to the
measure Pm.

We define the stopping rule τ as the time when the decision
maker finalizes the search by declaring the location of the
target.2 Let δ ∈ {1, 2, . . .,M} be a decision rule, where δ = m
if the decision maker declares that Hm is true. Let φ(n) ∈
{1, 2, . . .,M}K be a selection rule indicating which K cells are
chosen to be observed at time n. The time series vector of selec-
tion rules is denoted by φ = (φ(n), n = 1, 2, . . .). Let yφ(n)(n)
be the vector of observations obtained from cells φ(n) at time n
and y(n) = {φ(t),yφ(t)(t)}nt=1 be the set of all cell selections
and observations up to time n. A deterministic selection rule
φ(n) at timen is a mapping fromy(n− 1) to {1, 2, . . .,M}K . A
randomized selection rule φ(n) is a mapping from y(n− 1) to a
probability mass function over {1, 2, . . .,M}K . An admissible
strategy Γ for the anomaly detection problem is given by the
tuple Γ = (τ, δ,φ).

We adopt a Bayesian approach as in [11], [13], [16], [36]
by assigning a cost of c for each observation and a loss of 1
for a wrong declaration. Let Pe(Γ) =

∑M
m=1 πmαm(Γ) be the

probability of error under strategy Γ, where αm(Γ) = Pm(δ �=
m|Γ) is the probability of declaring δ �= mwhenHm is true. Let
E(τ |Γ) =∑M

m=1 πmEm(τ |Γ) be the average detection delay
under Γ. The Bayes risk under strategy Γ when hypothesis Hm

is true is given by: Rm(Γ) � αm(Γ) + cEm(τ |Γ). Note that c
represents the ratio of the sampling cost to the cost of wrong
detections. The average Bayes risk is given by:

R(Γ) =

M∑

m=1

πmRm(Γ) = Pe(Γ) + cE(τ |Γ).

The objective is to find a strategy Γ that minimizes the Bayes
risk R(Γ):

inf
Γ

R(Γ), (1)

where the infimum is taken over all randomized and determin-
istic selection rules.

Definition 1: Let R∗ be the solution of (1). We say that
strategy Γ is asymptotically optimal if

lim
c→0

R(Γ)

R∗ = 1. (2)

We note that if the strategy that attains inf does not exist, the
definition of the first order asymptotic optimality would be:

lim
c→0

R(Γ)

infΓ R(Γ)
= 1. (3)

A shorthand notationf ∼ gwill be used to denote limc→0 f/g =
1.

1The assumption of an indifference region is widely used in the theory
of sequential composite hypothesis testing to derive asymptotically optimal
performance. Nevertheless, in some cases this assumption can be removed. For
more details, the reader is referred to [13].

2We point out that it is assumed that the target exists with probability 1. Our
model is suitable to cases where a security system has already raised an alarm
for event (based on change point detection, for instance), but the location of the
event is unknown and need to be located.
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A dual formulation (i.e., a frequentist approach) of the prob-
lem is to minimize the sample complexity subject to an error
constraint α, i.e.,

inf
Γ

Em(τ |Γ), s.t. Pe(Γ) ≤ α as α → 0 (4)

In Section III we develop an asymptotically optimal Determin-
istic Search (DS) algorithm for solving (1) and (4).

A. Notations

We provide next notations that will be used throughout the
paper. Let

θ̂m(n) � argmax
θ∈Θ

f (ȳm(n)|θ) (5)

be the maximum likelihood estimate (MLE) of the parameter
over the parameter space Θ (i.e., unconstrained MLE) at cell m,
where ȳm(n) = (ym(r1), . . ., ym(rk(n))) is the vector of k(n)
observations (indicated by times r1, . . ., rk(n)) collected from
cell m up to time n. Regularity conditions for consistency of the
MLE are given in Appendix A.1.

Let:

θ̂(0)m (n) � arg max
θ∈Θ(0)

f (ȳm(n)|θ),

θ̂(1)m (n) � arg max
θ∈Θ\Θ(0)

f (ȳm(n)|θ)
be the MLE for cell m to be in normal or abnormal state,
respectively.

Let 1m(n) be the indicator function, where 1m(n) = 1 if cell
m is observed at time n, and 1m(n) = 0 otherwise.

We now propose two optional statistics. Let

S
(r)
m,LGLLR(n)

Δ
=

n∑

t=1

1m(t) log
f(ym(t)|θ̂m(n))

f(ym(t)|θ̂(r)m (n))
(6)

be the sum of Local Generalized Log-Likelihood Ratio
(LGLLR) of cell m at time n used to reject hypothesis r (for r =
0, 1) regarding its state. We refer to the statistics as local since
it uses the observations from cell m solely. In Section III-C
we will define a statistics measure that uses observations from
multiple cells, referred to as Multi-process Generalized Log-
Likelihood Ratio (MGLLR). The LGLLR statistics is inspired
by the Generalized Likelihood Ratio (GLR) statistics used for se-
quential tests, first studied by Schwartz [12] for a one parameter
exponential family, who assigned a cost of c for each observation
and a loss function for wrong decisions. A refinement was
studied by Lai [13], [46], who set a time-varying boundary
value. Lai showed that for a multivariate exponential family this
scheme asymptotically minimizes both the Bayes risk and the
expected sample size subject to error constraints as c approaches
zero [46].

The second statistics that we propose to use is ob-
tained by replacing the parameter for the kth observation
with the estimator θ̂m(k − 1) built upon samples ỹm(n) =
(ym(r1), . . ., ym(rk−1(n))). The statistics is given by:

S
(r)
m,LALLR(n)

Δ
=

n∑

t=1

1m(t) log
f(ym(t)|θ̂m(t− 1))

f(ym(t)|θ̂(r)m (n))
, (7)

which we refer to as the sum of Local Adaptive Log Likeli-
hood Ratio (LALLR). The LALLR statistics is inspired by the
Adaptive Likelihood Ratio (ALR) statistics used for sequential
tests, first introduced by Robbins and Siegmund [47] to design

power-one sequential tests. Pavlov used it to design asymptoti-
cally (as the error probability approaches zero) optimal (in terms
of minimizing the expected sample size subject to error con-
straints) tests for composite hypothesis testing of the multivariate
exponential family [14]. Tartakovsky established asymptotically
optimal performance for a more general multivariate family of
distributions [15].

The advantage of using the LALLR statistics, is that it enables
us to upper-bound the error probabilities of the sequential test
by using simple threshold settings. Thus, implementing the
LALLR is much simpler than implementing the LGLLR. The
disadvantage of using the LALLR is that poor early estimates
(for small number of observations) can never be revised even
though one has a large number of observations. A numerical
comparison for the performance of the two statistics is presented
in Section IV-B.

Finally,

D(x||z) � Ef(y(n)|x)

(

log
f(y(n)|x)
f(y(n)|z)

)

denotes the KullbackLeibler (KL) divergence between two dis-
tributions, f(y(n)|x), f(y(n)|z).

III. A LOW-COMPLEXITY DETERMINISTIC SEARCH (DS)
ALGORITHM

Sequential detection problems involving multiple processes
are POMDP [7]. As a result, computing optimal search policies
is intractable in general. In this section we present the Determin-
istic Search (DS) algorithm, which has low complexity (linear
with the number of processes) used for solving the anomaly
detection problem asymptotically as the error approaches zero.
Both proposed statistics (LGLLR and LALLR) can be used in
the implementation of the algorithm.

We start by analyzing the case where no additional side
information on the process states is known in Section III-A.
Then, in Section III-B, we consider the case in which the
parameter value under the null hypothesis is known and equal
for all normal processes. In this case we show analytically
the gain achieved in the detection time, by utilizing the side
information on the normal state. Finally, in Section III-C, we
consider the case where the parameter value under the null
hypothesis is unknown, but is known to be equal for all normal
processes.

A. Anomaly Detection Without Side Information

We assume that K = 1 as widely assumed in dynamic search
problems for purposes of analysis (e.g., [5], [6], [9], [10],
[33]–[35]). In Section III-C we discuss the implementation under
more general settings. We also assume that the parameter space
is finite, and we assume a large-scale system where M >> 1 so
that D(θ(0)||θ(1))/D(θ(1)||θ(0)) < M − 1 for all θ(0) ∈ Θ(0),
θ(1) ∈ Θ(1). Let H1(n) = {m : θ̂m(n) �∈ Θ(0)} be the set of
cells whose MLEs lie outside Θ(0) at time n with cardinal-
ity |H1(n)| = NH1

(n). Let S(r)
m (n) be the S

(r)
m,LALLR(n) or

S
(r)
m,LGLLR(n) statistics defined in Section II-A. The DS algo-

rithm has a structure of exploration and exploitation epochs. We
start by addressing the Bayesian formulation, and we describe
the DS algorithm with respect to time index n.
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1) Exploration phase: If NH1
(n) �= 1, then probe the cells

one by one in a round-robin manner, i.e., φ(n) = [(φ(n−
1) + 1) mod M ] and go to Step 1 again. Otherwise, go
to Step 2.

2) Exploitation phase: Update θ̂m(n) for all m = 1, . . .,M ,
and let m̂(n) = {m : θ̂m(n) �∈ Θ(0)} be the index of the
cell whose MLE lies outside Θ(0) at time n (note that
this cell is unique at the exploitation phase). Probe cell
φ(n) = m̂(n) and go to Step 3.

3) Sequential testing: Update S(0)
φ(n)(n) based on the last ob-

servation. If S(0)
m̂(n)(n) ≥ −log c stop the test and declare

δ = m̂(τ) as the location of the target. Otherwise, go to
Step 1.

Note that the selection rule constructed by Steps 1, 2 is
deterministic and dynamically updated based on the current
value of the MLEs. The proposed DS algorithm is intuitively
satisfying. Consider first the simple hypothesis case (where
asymptotic optimality was shown in [8]), in which θ(0), θ(1) are
assumed known. When K = 1 and M >> 1, the DS algorithm
selects at each time the cell with the largest sum log likelihood
ratio. The intuition behind this selection rule is thatD(θ(1)||θ(0))
and D(θ(0)||θ(1))/(M − 1) determine, respectively, the rates at
which the state of the cell with the target and the states of the
M − 1 cells without the target can be accurately inferred. Since
M >> 1 such thatD(θ(0)||θ(1))/D(θ(1)||θ(0)) < M − 1 for all
θ(0) ∈ Θ(0), θ(1) ∈ Θ(1), the DS algorithm aims at identifying
the cell with the target (which is equivalent to probe the most
likely abnormal process as implemented during the exploita-
tion phase). When handling the composite hypothesis case and
θ(1) is unknown, the selection rule dedicates an exploration
phase for estimating the parameter and adjusts the estimated
KL divergences dynamically. Since the parameter spaces are
disjoint, the exploration phase yields an estimate for the lo-
cation of the abnormal process (i.e., the cell whose MLE lies
outsideΘ(0)). The exploitation phase keeps taking samples until
S
(0)
m̂(n)(n) ≥ −log c first occurs to ensure a sufficiently accurate

decision, i.e., error probability of order O(c) as shown in the
analysis.

Theorem 1: Assume that the DS algorithm is implemented
under the anomaly detection setting described in this section.
Let R∗ and R(Γ) be the Bayes risks under the DS algorithm and
any other policy Γ, respectively. Then, the following statements
hold:

1) Finite sample error bound: The error probability is upper
bounded by (M − 1)c for all c.

2) Asymptotic optimality: The Bayes risk satisfies:

R∗ ∼ −c log c

D(θ(1))
∼ inf

Γ
R(Γ) as c → 0,

where D(θ(1)) � minϕ∈Θ(0) D(θ(1)||ϕ).
3) Bounded exploration time: The total expected time spent

during the exploration phase (i.e., Step 1 in the DS
algorithm) is O(1).

The proof is given in Appendix C.
We point out that bounded exploration time of the DS algo-

rithm is of particular significance. It is in sharp contrast with the
logarithmic order of exploration time commonly seen in active
search strategies (see, for example, [10], [25]).

B. Anomaly Detection Under a Known Model of Normality

Here, we assume that the parameter under null hypothesis θ =
θ(0) ∈ Θ(0) is known, and equal for all empty cells, whereΘ(0) is
an open set that contains θ(0). This setting models many anomaly
detection situations, in which the distribution of the observations
under a normal state is known, while there is uncertainty in the
distribution under an abnormal state. To utilize this information,
we adjust the LALLR statistics used to reject hypothesis H0 as
follows:

S̃
(0)
m,LALLR(n)

Δ
=

n∑

t=1

1m(t) log
f(ym(t)|θ̂m(t− 1))

f(ym(t)|θ(0)) . (8)

We define S̃
(0)
m,LGLLR(n) similarly.

In the following theorem we establish a finite-sample upper
bound on the error probability and prove asymptotic optimality
of the algorithm for the Bayesian formulation using the adjusted
LALLR statistics, where only O(1) order of time is spent during
the exploration phase. The proof is given in Appendix A.

Theorem 2: Assume that the DS algorithm is implemented
under the anomaly detection setting described in this section,
using the adjusted LALLR statistics. Let R∗ and R(Γ) be the
Bayes risks under the DS algorithm and any other policy Γ,
respectively. Then, the following statements hold:

1) Finite sample error bound: The error probability is upper
bounded by (M − 1)c for all c.

2) Asymptotic optimality: The Bayes risk satisfies:

R∗ ∼ −c log c

D(θ(1)||θ(0)) ∼ inf
Γ

R(Γ) as c → 0.

3) Bounded exploration time: The total expected time spent
during the exploration phase (i.e., Step 1 in the DS algo-
rithm) is O(1).

We point out that the side information on the true null hypoth-
esis strengthens the algorithm performance. The improvement in
the performance is clearly seen by the fact that D(θ(1)||θ(0)) ≥
D(θ(1)). Hence, the risk in Theorem 2 is smaller then the risk in
Theorem 1. Note also that in this setting we do not restrict Θ(0)

to be a singleton set (the parameter still lies in an open set). The
side information is utilized when constructing the statistics in
(8).

For the frequentist formulation, in step 3 of the DS algorithm
(i.e., sequential testing step) we define the threshold as a, i.e.,
if S(0)

m̂(n)(n) ≥ a we stop the test and declare δ = m̂(τ) as the
location of the target. We now present Theorem 3, which claims
that the DS algorithm is first order asymptotically optimal in the
sense of criterion (4). The proof is given in Appendix B.

Theorem 3: Assume that the DS algorithm is implemented
under the anomaly detection setting described in this section,
using the adjusted LALLR statistics. We define the class of tests:

C(α) = {Γ : Pe(Γ) ≤ α).

Let Em(τ |Γ∗) and Em(τ |Γ) be, the detection time under the
DS algorithm, and any other policy, respectively. Then, the
following statement holds for each m = 1, . . . ,M :

Em(τ |Γ∗) ∼ inf
Γ∈C(α)

Em(τ |Γ) = | logα|
D(θ(1)||θ(0)) (1 + o(1)),

as α → 0,
(9)

and Γ∗ ∈ C(α).
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C. Anomaly Detection Under Identical Parameter for All
Normal Cells

Next, we consider the case where both parameter values under
normal and abnormal states θ(0) and θ(1) are unknown. However,
it is known that the unknown parameter is identical for all
normal cells. Therefore, under hypothesis Hm, the true vector
of parameters satisfy θ ∈ Θm ⊂ ΘM , where

Θm = {θ : θi = θ(0) ∈ Θ(0), ∀i �= m, θm = θ(1) ∈ Θ\Θ(0)}.
Note that in contrast to Section III-A where observations from
cell m does not contribute any information about the param-
eter value of cell r, for m �= r, here the additional side in-
formation allows us to estimate the true value of θ(0) consis-
tently using observations from each normal cell. Specifically, let
yΘ(0)(n),yΘ\Θ(0)(n) be the set of all the observations collected

from the cells whose MLEs lie inside Θ(0) (i.e., θ̂m(n) ∈ Θ(0)),
and inside Θ \Θ(0) (i.e., θ̂m(n) ∈ Θ \Θ(0)) at time n, re-
spectively. The global MLE of θ(0) is computed based on the
observations from all the cells which are likely to be empty:

θ̂(0)(n) � argmax
θ∈Θ

f (yΘ(0)(n)|θ),
where the global MLE of θ(1) is computed based on the obser-
vations from all the cells which are likely to contain the target:

θ̂(1)(n) � argmax
θ∈Θ

f
(
yΘ\Θ(0)(n)|θ).

Intuitively, as more observations are collected from all cells,
only the MLE at the cell that contains the target is likely to lie
inside Θ \Θ(0). Next, we define the statistics accordingly. Let:

S
(r)
m,MGLLR(n)

Δ
=

n∑

t=1

1m(t) log
f(ym(t)|θ̂m(n))

f(ym(t)|θ̂(r)(n)) (10)

be the sum of Multi-process Generalized Log-Likelihood ratio
(MGLLR) of cell m at time n used to reject hypothesis r (for
r = 0, 1) regarding its state. The modified adaptive statistics is
defined by:

S
(r)
m,MALLR(n)

Δ
=

n∑

t=1

1m(t) log
f(ym(t)|θ̂m(t− 1))

f(ym(t)|θ̂(r)(n)) , (11)

which we refer to as the sum of Multi-process Adaptive Log-
Likelihood Ratio (MALLR).3

Let Ns = {n1, n2, . . .} be a sequence of time instants, where
O(|Ns|) has a logarithmic order of time, in which the cells
are selected in a round-robin manner during the algorithm.
Intuitively speaking, the role of n1, n2, . . ., is to explore all the
cells to infer the true value of θ(0) (which is not observed when
testing the target cell) during the algorithm. This allows us to
use the estimate values of both θ(0) and θ(1) when computing
the statistics used in the algorithm. We also define m(i)(n)
for i = 1, 2, . . .,M − 1 as the index of the cell with the ith

smallest sum MALLR S
(1)
j (n) for j �= m̂(n) at time n. The DS

algorithm has a structure of exploration and exploitation epochs.

3Note that the adaptive LLR statistics and generalized LLR statistics used
in sequential composite hypothesis testing of a single process contains a con-
strained MLE over the alternative parameter space in the denominator (see
Section IV-A for more details). Here, we use unconstrained MLEs (which are
computed over the entire parameter spaceΘ) in both numerator and denominator,
depending on the cells from which the observations were taken. Thus, we refer to
this statistics measure as a Multi-process Adaptive/Generalized LLR (MALLR/
MGLLR).

Let S(r)
m (n) be the statistics used in the algorithm which can be

the MALLR or MGLLR statistics. Next, we describe the DS al-
gorithm with respect to time index n. We describe the algorithm
for the general case where multiple processes can be probed at a
time (K ≥ 1), and D(θ(0)||θ(1))/D(θ(1)||θ(0)) < M − 1 does
not necessarily hold.

1) Exploration phase 1: Exploration phase 1 is similar to the
exploration phase described in Section III-B. IfNH1

(n) �=
1, then cells are probed one by one in a round-robin
manner. Otherwise, go to Step 2.

2) Exploration phase 2: Ifn ∈ Ns, the cells are probed one by
one in a round-robin manner. Otherwise, if NH1

(n) �= 1,
go to Step 1. Otherwise, go to Step 3.

3) Exploitation phase: Update θ̂m(n) for all m = 1, . . .,M ,
and let m̂(n) = {m : θ̂m(n) �∈ Θ(0)} be the index of the
cell whose MLE lies outside Θ(0) at time n (note that this
cell is unique at the exploitation phase). Then, probe cells
φ(n) which are given by:4

φ(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
m̂(n),m(1)(n),m(2)(n), . . .,m(K−1)(n)

)
,

if D(θ̂(1)(n)||θ̂(0)(n)) ≥ D(θ̂(0)(n)||θ̂(1)(n))
(M−1)

and n �∈ {exploration times}
(
m(1)(n),m(2)(n), . . .,m(K)(n)

)
,

if D(θ̂(1)(n)||θ̂(0)(n)) < D(θ̂(0)(n)||θ̂(1)(n))
(M−1)

and n �∈ {exploration times}
(12)

and go to Step 4.
4) Sequential testing: Update the sum MALLRs based on the

last observations. If S
(0)
m̂(n)(n) + S

(1)

m(1)(n)
(n) ≥ −log c

stop the test and declare δ = m̂(τ) as the location of the
target. Otherwise, go to Step 1.

The proposed DS algorithm under the general setting is intu-
itively satisfying. Since both θ(0), θ(1) might be unknown, the
selection rule dedicates exploration phases1, 2 for estimating the
parameters and adjusts the estimated KL divergences dynami-
cally. Since the parameter spaces are disjoint, exploration phase
1 yields an estimate for the location of the abnormal process (i.e.,
the cell whose MLE lies outside Θ(0)). The exploitation phase
keeps taking samples until S(0)

m̂(n)(n) + S
(1)

m(1)(n)
(n) ≥ −log c

first occurs, i.e., to ensure a sufficiently accurate decision. We
show in the appendix that this stopping rule achieves error
probability of order O(c) when the parameters are known under
both normal and abnormal states, and polynomial decay with
time is achieved under the general composite hypothesis testing
setting (though only consistency can be shown, where asymp-
totic optimality still remains open in the general setting), which
motivates the design of the stopping rule.

In the theorem below, we prove the consistency of the DS
algorithm using the MALLR statistics. The proof and regularity
assumptions are given in Appendix D.

Theorem 4: Assume that the DS algorithm is implemented
under the anomaly detection setting described in this section.
Assume also that the parameters θ(0), θ(1) can take a finite
number of values (where the observations are still continuous).

4Assume that K < M . Otherwise, all cells are probed.
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Fig. 1. The error probability as a function of the average detection delay under
the proposed DS algorithm. A case of Laplace distributions with parameters
θ(0) = 0, θ(1) = 1 under normal and abnormal states, respectively, with K =
2,M = 5. We averaged over 106 Monte Carlo runs.

Let Hm be true hypothesis. Then, m̂(n) → m as c → 0, and the
error probability decays polynomially with − log c.

It should be noted that the expected detection time is of
order O(− log c). Therefore, Theorem 4 implies that the error
probability decays polynomially with the expected detection
time. We point out that establishing asymptotic optimality for
K > 1 remains open. In this case, at each time slot the statistics
is based on a mixed of samples from cells that contain the target
and from cells that do not contain the target. As a result, bounding
the error probability byO(c)while achieving the asymptotically
optimal detection time is much more complex.

In Fig. 1 we present simulation results, demonstrating strong
performance of the DS algorithm under the setting considered in
this section. The sum MALLRs use the exact values of θ(0), θ(1)

when they are known, and the MLEs of θ(0), θ(1) when they are
unknown. Although theoretical asymptotic optimality remains
open when θ(0), θ(1) are unknown (and θ(0) is identical for all
normal cells), it can be seen by simulations that the DS algorithm
nearly achieves asymptotically optimal performance in this case
as well (since it approaches the performance of the DS algorithm
when θ(0), θ(1) are known).

Remark 1: Note that in Sections III-A and III-B the ex-
ploitation phase collects observations from cell m̂(n). As a
result, a sufficiently accurate MLE for θ(1) is computed based
on observations collected during the exploitation phase, while
exploration phase 2 is unnecessary. In the setting considered
in this section, however, exploration phase 2 is required to
guarantee a sufficiently accurate estimation of the unknown
parameter θ(0). Specifically, let NO(t) denote the number of
observations that have been collected in exploration phase 2, and
let τ (0)ML be the smallest integer such that θ̂(0)(n) = θ(0) for all

n > τ
(0)
ML. Then, exploring cells such that NO(t) >

2
I0

log(t) is

met for all t is sufficient to ensure consistency of θ̂(0)(n), where

I0 � inf
θ(0),θ∈Θ:θ(0) �=θ

sup
s>0

{
− logE∼f(y|θ(0))

[
es(−�(θ

(0),θ))
]}

(13)
is the Legendre-Fenchel transformation of

	(θ
(0),θ) = log

f(y|θ(0))
f(y|θ)

Below, we prove the statement (under hypothesis Hm w.l.o.g.):

Pm

(
τ
(0)
ML > n

)
≤

∞∑

t=n

Pm

(
θ̂(0)(t) �= θ(0)

)
.

By the definition of θ̂(0)(n), the event θ̂(0)(t) �= θ(0) implies:
t∑

i=1

	(θ
(0),˜θ(t))(i) < 0, (14)

for some θ̃(t) �= θ(0), where the index i refers to measurement i
taken from cells which are likely to be empty. Since the expected
exit time (say t′) from exploration phase 1 is bounded (see
Appendix A), applying the Chernoff bound for all t > t′ and
using the i.i.d property yields:

Pm

(
t∑

i=1

	(θ
(0),˜θ(t))(i) < 0

)

≤ min
s>0

{
E∼f(y|θ(0))

[
es(−�(θ

(0),θ̃(t))(i))
]}NO(t)

= min
s>0

{

e
−NO(t)

(

− logE∼f(y|θ(0))

[

es(−�(θ
(0),θ̃(t))(i))

])}

= e
−NO(t)

(

sups>0

{

− logE∼f(y|θ(0))

[

es(−�(θ
(0),θ̃(t))(i))

]})

.
(15)

Since NO(t) >
2
I0

log(t), E∼f(y|θ(0))[τ
(0)
ML] = O(1) is satisfied.

Remark 2: It should be noted that the proposed DS algorithm
can be extended to handle multiple (say L) abnormal processes
as well. The exploration phase can be implemented in a similar
manner until exactly L MLEs lie outside Θ(0). The exploitation
phase will prioritize processes which are likely to be abnormal
if the conditions on the first line of (12) hold. Otherwise, it
will prioritize processes which are likely to be normal if the
conditions on the second line of (12) hold. The test terminates
once all the abnormal processes are distinguished from the
rest M − L normal processes, i.e., when the Lth highest sum
MALLR among the processes which are likely to be abnormal
plus the smallest sum MALLR among the processes which are
likely to be normal is greater than − log c.

D. Comparison With Chernoff’s Test

In this section, we discuss the differences between our prob-
lem and the classical sequential experimental design problem
studied by Chernoff, first presented in [11]. While we presented
a deterministic algorithm search, Chernoff proposed a test with a
randomized selection rule. Specifically, let q = (q1, . . ., qN ) be a
probability mass function over a set of N available experiments
u = {ui}Ni=1 that the decision maker can choose from, where
qi is the probability of choosing experiment ui. For a general
M-ary sequential design of experiments problem, the action at
time n under the Chernoff test is drawn from a distribution
q∗(n) = (q∗1(n), . . ., q

∗
N (n)) that depends on the past actions and

observations:

q∗(n) = arg max
q

min
j∈M\{î(n)}

∑

ui

qiD
(
pui

î(n)
||pui

j

)
, (16)

where M is the set of the M hypotheses, î(n) is the MLE of the
true hypothesis at time n based on past actions and observations,
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and pui
j is the observation distribution under hypothesis j when

action ui is taken.
Chernoff’s results were proved only for a finite number of

states of nature (set of possible parameters). Albert [38] extended
Chernoff’s results to allow for an infinity of states of nature.
Beyond the differences in the deterministic versus randomized
selection rules, we will now discuss in details the connection
with the model considered by Chernoff and Albert. (i) Violating
the positivity assumption on the KL divergence: The asymptotic
optimality of the Chernoff test as shown in [11], [38] requires that
under any experiment, any pair of hypotheses are distinguishable
(i.e., has positive KL divergence). This assumption does not
hold in the anomaly detection settings considered in this paper.
For instance, under the experiment of searching the ith cell,
the hypotheses of the target being in the jth (j �= i) and the kth

(k �= i) cells yield the same observation distribution. In [17], the
authors relaxed this assumption, and developed a modified Cher-
noff test in order to handle indistinguishable hypotheses under
some (but not all) actions. The basic idea of the modified test is
to implement an exploration phase with a uniform distribution
for a subsequence of time instants that grows logarithmically
with time. Although asymptotic optimality was proved under
the modeified Chernoff test, its exploration time is unbounded,
and affects the finite-time performance. Nevertheless, in this
paper we have shown that the DS algorithm achieves asymptotic
optimality under both settings in Sections III-A, III-B, using a
bounded exploration time. (ii) Utilizing the side information in
the anomaly detection setting: The model in [11], [38] can be
embedded to the model in Section III-A (with the extension
in [17] as discussed earlier). This embedding does not con-
tain side information on the parameter values under different
hypotheses. The analysis in [11], [38] relies on rejecting the
alternative hypothesis with respect to the closest alternative.
Indeed, the DS algorithm achieves the same asymptotic opti-
mality as in [11], but with deterministic selection rule, with
better finite-time performance as demonstrated in the simulation
results. The asymptotically optimal Bayes risk is given in this
case by ∼−c log c/ infϕ∈Θ(0) D(θ(1)||ϕ) which matches with
the asymptotically optimal performance in [11], [38]. Asymp-
totic optimality of the Chernoff test is achieved under the model
setting in Section III-B by embedding the parameter set under
θ(0) to a singleton, and thus the same asymptotic performance
can be achieved, where the asymptotically optimal Bayes risk
is given in this case by ∼−c log c/D(θ(1)||θ(0)). Indeed, we
have shown that the DS algorithm achieves the same asymptotic
optimality as in [11], [38] in this case. However, asymptotic
optimality under the Chernoff test remains open in the setting
considered in Section III-C, since it cannot be embedded as in
Section III-B. The asymptotic analysis in [11], [38] is established
with respect to the entire parameter space (as in Section III-A),
while the lower bound on the risk must be developed with respect
to the true parameter values that satisfy the side information.
Nevertheless, intuitively, one can expect to improve performance
by estimating the parameter θ(0) consistently and improve
the detection performance by approaching the performance in
Section III-B. We indeed showed that the DS algorithm achieves
consistency in this setting.

Despite the differences between the two models, we extended
the randomized Chernoff test for the anomaly detection problem
over composite hypotheses as follows. We select cells from a
uniform distribution at exploration phase until only a single
MLE lies outside Θ(0). Then, the solution of (16) is executed in

Fig. 2. The error probability as a function of the average detection delay
under various algorithms: (i) The proposed DS algorithm that uses the MALLR
statistics (referred to as the proposed DS algorithm); and (ii) The modified
randomized Chernoff test as described in Section III-D. A case of exponential
distributions with parameters θ(0) = 1, θ(1) = 10 under normal and abnormal
states, respectively, where M = 15 and K = 5. We averaged over 4 · 107
Monte Carlo runs.

the exploitation phase. The randomized test in (16) chooses,
at each time, a probability distribution that governs the se-
lection of the experiment to be carried out at this time. This
distribution is obtained by solving a maximin problem so that
the next observation will best differentiate the current MLE
of the true hypothesis from its closest alternative, where the
distance is measured by the KL divergence. It can be shown that
when applied to the anomaly detection problem, the solution
of (16) works as follows. Consider for example the setting
in Section III-B (i.e., when the parameter under the null hy-

pothesis in known). When D(θ̂(1)(n)||θ(0)) ≥ D(θ(0)||θ̂(1)(n))
(M−1) ,

the Chernoff test selects cell m̂(n) and draws the rest K −
1 cells randomly with equal probability from the remaining

M − 1 cells. When D(θ̂(1)(n)||θ(0)) < D(θ(0)||θ̂(1)(n))
(M−1) , all K

cells are drawn randomly with equal probability from cells
{m(1)(n),m(2)(n), . . . ,m(M−1)(n)}. The same selection rule
is obtained when setting the alternative hypothesis according to
the settings in Sections III-A, III-C. We refer to this policy as
the modified Chernoff test. We present numerical examples to
illustrate the performance of the proposed deterministic policy
as compared to the randomized Chernoff test, under the setting
considered in Section III-C. It can be seen in Figs. 2 and 3 that the
proposed deterministic DS algorithm significantly outperforms
the randomized Chernoff test.

IV. EMPIRICAL STUDIES

In this section, we present additional numerical experiments5

for demonstrating the performance of the proposed DS algorithm
as compared to existing methods.

A. Comparison Between MALLR and LALLR Statistics

We first compare the proposed DS algorithm under the settings
of Section III-C, using the MALLR statistics defined in (11)
and the LALLR statistics defined in (7), which is a popular

5The indifference region in the simulations was set to I = [
θ(0) + θ(1)

2
−

10−3,
θ(0) + θ(1)

2
+ 10−3]. We ran Monte-Carlo experiments for generating

the simulation results.
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Fig. 3. The error probability as a function of the average detection delay
under various algorithms: (i) The proposed DS algorithm that uses the MALLR
statistics (referred to as the proposed DS algorithm); and (ii) The modified
randomized Chernoff test as described in Section III-D. A case of exponential
distributions with parameters θ(0) = 1, θ(1) = 10 under normal and abnormal
states, respectively, where M = 20 and K = 5. We averaged over 4 · 107
Monte Carlo runs.

Fig. 4. The error probability as a function of the average detection delay.
Performance comparison between the following algorithms: (i) The proposed DS
algorithm that uses the MALLR statistics as described in Section III-C (referred
to as the DS selection rule with MALLR); and (ii) The proposed DS algorithm
that uses the LALLR statistics as described in Section III-A. A case of Laplace
distributions with parameters θ(0) = 0, θ(1) = 1, under normal and abnormal
states, respectively, with K = 2, M = 5. We averaged over 106 Monte Carlo
runs.

method for performing sequential composite hypothesis testing,
first introduced by Robbins and Siegmund in [48] (variations can
be found in [14], [15], [49]). It can be seen that the proposed DS
algorithm using the MALLR statistics adopts a variation of the
LALLR statistics in the design of the stopping rule for anomaly
detection over multiple composite hypotheses. However, since
both empty cells and the cell that contains the target can be
observed by the decision maker, the unconstrained MLEs of
the unknown parameters θ(0) and θ(1) can be applied in both
numerator and denominator (which we referred to as MALLR).
We next simulate the case of searching for a target over pro-
cesses that follow Laplace distributions with unknown means,
where the observations yj are drawn from distribution f(yj |θ) =
1
2 exp{|y − θ|}. We note that by using the global MLE we expect
for better performance. The simulation results demonstrate the
performance gain that we can get in this setting. It can be seen
in Fig. 4 that implementing the DS algorithm with MALLR
statistics as proposed in Section III-C significantly outperforms
an algorithm that uses the selection rule of DS algorithm with the
LALLR statistics as proposed in Section III-A. It can be seen that

Fig. 5. The error probability as a function of the average detection delay.
Performance comparison between the following algorithms: (i) The proposed
DS algorithm that uses the MALLR statistics as described in Section III-C
(referred to as the DS selection rule with MALLR); and (ii) The proposed DS
algorithm that uses the MGLLR statistics. A case of Laplace distributions with
parameters θ(0) = 0, θ(1) = 1, under normal and abnormal states, respectively,
with K = 2, M = 5. We averaged over 106 Monte Carlo runs.

the error exponent is significantly better when using the MALLR
statistics in the algorithm design. Thus, the performance gain by
using the proposed DS algorithm is expected to further increase
as the error decreases.

B. Comparison Between MALLR and MGLLR

In Fig. 5, we compare the performance of the two proposed
statistics suggested in Section III-C. As discussed earlier, using
the MALLR statistics allows us to establish asymptotic optimal-
ity theoretically, whereas asymptotic optimality remains open
when using the MGLLR. However, in practice, we expect that
using the MGLLR will perform better since it uses all samples
when updating the MLE. It can be seen in Fig. 5 that the DS
algorithm using the MGLLR statistics slightly outperforms the
DS algorithm using the MALLR.

C. Network Traffic Analysis

Finally, we demonstrate the performance of the DS algorithm
using the MALLR statistics in intrusion detection applications,
by detecting statistical deviations in network traffic. We examine
anomaly detection in packet size statistics, which has been
mostly investigated using open loop strategies for detecting
malicious activity. We use the model in [23] that proposed
a sample entropy for packet-size modeling and demonstrated
strong performance in detecting anomalous data using the GLR
statistics in the sequential detection test. Specifically, for a
given interval, let S be the set of packet size values that have
arrived in this interval, and let q(i) be the proportion of number
of packets of size i to the total number of packets that have
arrived in that interval. The sample entropy y is thus computed
as y = −∑i∈S q

(i) log q(i). The sample entropy is modeled by
Gaussian distribution and given by:

p (y|μ, σ) = 1√
2πσ2

exp

[

− 1

2σ2
(y − μ)2

]

,

where θ(0) = (μ0, σ0), and θ(1) = (μ1, σ1), under normal state,
or abnormal state, respectively. We simulated a network with
M flows of data, in which a single flow is abnormal. We used
the DARPA intrusion detection data set [50], which contains
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Fig. 6. The average detection delay as a function of the number of processesM
using the DARPA intrusion detection dataset. Performance comparison between
the following algorithms: (i) The proposed DS algorithm that uses the MALLR
statistics as described in Section III-C (referred to as the proposed DS algorithm);
and (ii) a policy that applies an open loop selection rule when probing cells and
uses the GLR statistics for the packet size modeling in the stopping rule as
proposed in [23] (referred to as entropy-based GLR algorithm). We averaged
over 105 Monte Carlo runs.

5-million labeled network connections, for generating the nor-
mal and abnormal flows. When testing the algorithms, the
sample entropy has been learned online from the data. We
implemented both the proposed DS algorithm, and the entropy-
based algorithm with the GLR statistics that has been proposed
in [23]. We set the thresholds so that both algorithms satisfy error
probability 10−4. It can be seen in Fig. 6 that the DS algorithm
achieves strong performance and significantly outperforms the
entropy-based algorithm with the GLR statistics.

V. CONCLUSION

We considered the problem of searching for anomalies among
M processes (i.e., cells). The observations follow a common
distribution with an unknown parameter, belonging to disjoint
parameter spaces depending on whether the target is absent
or present. The decision maker is allowed to probe a subset
of the cells at a time and the objective is a sequential search
strategy that minimizes the expected detection time subject to an
error probability constraint. We have developed a deterministic
search algorithm to solve the problem that enjoys the following
properties. First, when no additional side information on the
process states is known, the proposed algorithm was shown to
be asymptotically optimal. Second, when the parameter value
under the null hypothesis is known and equal for all normal
processes, asymptotic optimality was shown as well, with better
detection time determined by the true null state. Third, when
the parameter value under the null hypothesis is unknown, but
is known to be equal for all normal processes, consistency was
shown in terms of achieving error probability that decays to
zero with the detection delay. Finally, an explicit upper bound
on the error probability under the proposed algorithm was es-
tablished under the finite sample regime. Extensive experiments
have demonstrated the efficiency of the algorithm over existing
methods.

APPENDIX

For purposes of presentation, we start by proving Theorem 2.
Then, we focus on the key steps for extending the results to the
other models presented in Section III.

A. Proof of Theorem 2

Without loss of generality we prove the theorem when hy-
pothesis m is true. For simplifying the presentation, we start
with proving the theorem when the parameter space is finite, so
that θ(0), θ(1) can take a finite number of values (but the mea-
surements can still be continuous). We will then extend the proof
for continuous parameter space under mild regularity conditions.
The proof is derived using the adjusted LALLR statistics defined

in (8), i.e., S(0)
m (n) =

∑n
t=1 1m(t) log f(ym(t)|θ̂m(t−1))

f(ym(t)|θ(0))
.

Step 1: Bounding the error probability: We first prove the
upper bound on the error probability for all c. Specifically, we
show below that the error probability is upper bounded by:

Pe =

M∑

m=1

πmαm ≤ (M − 1)c. (17)

Let

αm,j = Pm(δ = j)

for all j �= m. Thus,

αm =
∑

j �=m

αm,j .

Therefore, we need to show thatαm,j ≤ c for proving (17). Note
that αm,j can be rewritten as follows:

αm,j = Pm (δ = j)

= Pm

(
S
(0)
j (τ) ≥ −log c for some τ ≥ 1

)

≤ Pm

(

Z (Nj(τ)) ≥ 1

c
for some Nj(τ) ≥ 1

)

, (18)

where

Z (Nj(τ)) � eS
(0)
j (τ) =

Nj(τ)∏

i=1

f(yj(ri)|θ̂j(ri))
f(yj(ri)|θ(0)) , (19)

and r1, . . ., rNj(τ) are the time indices in which observations
are taken from cell j. Next, note that Z(Nj(τ)) is a nonnegative
martingale,

Eθ(0)

[
Z (Nj(τ)) | {yj(ri)}Nj(τ)−1

i=1

]

= Z (Nj(τ)− 1)Eθ(0)

[
f(yj(rNj(τ))|θ̂j(rNj(τ)))

f(yj(rNj(τ))|θ(0))

]

= Z (Nj(τ)− 1). (20)

Therefore, applying Lemma 1 in [48] for nonnegative martin-
gales yields:

Pm

(

Z (Nj(τ)) ≥ 1

c
for some Nj(τ) ≥ 1

)

≤ cEθ(0) [Z(1)] . (21)

Finally, since Eθ(0) [Z(1)] = 1, we have αm,j ≤ c, which com-
pletes Statement 1 of the theorem.

Next, we define the following major event:
Definition 2: τML is the smallest integer such that θ̂m(n) =

θ(1), and θ̂j(n) = θ(0) for all j �= m for all n > τML, when Hm

is the true hypothesis.
Remark 3: Note that for all n > τML only the exploitation

phase is implemented. As a result, the time spent during the
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round-robin exploration phase is upper bounded by τML. In the
next step of the proof we show that τML is bounded, which
also yields Statement 3 of the theorem. It should be noted that
τML is not a stopping time. The decision maker does not know
whether it has arrived. However, it is used to upper bound the
actual stopping time under the DS algorithm.

Remark 4: For evaluating the detection time under the DS
algorithm, we analyze the case where the DS algorithm is
implemented indefinitely. When we say that the DS algorithm
is implemented indefinitely we mean that we probe the cells as
described by the DS algorithm, while disregarding the stopping
rule. This analysis enables us to upper bound the actual detection
time when the stopping rule is applied.

Step 2: Bounding τML:
Lemma 1: Assume that the DS algorithm is implemented

indefinitely. Then, there exist C > 0 and γ > 0 such that

Pm (τML > n) ≤ Ce−γn. (22)

Proof: Note that event τML > n implies one of the following
events: (i) There exists a time instant t > n at the round-robin
exploration phase, in which θ̂m(t) �= θ(1), or θ̂j(t) �= θ(0) for
some j �= m. When such time t occurs we say thatE1(t) occurs.
(ii) At the beginning of an exploitation phase (say at time n′)
θ̂m(n′) = θ(1), and θ̂j(n

′) = θ(0) for all j �= m. However, there
exists a time instant t > nduring the exploitation phase, in which
θ̂m(t) �= θ(1). When such time t occurs we say thatE2(t) occurs.

We can rewrite (22) as follows:

Pm (τML > n) ≤ Pm (E1(t) occurs for some t ≥ n)

+Pm (E2(t) occurs for some t ≥ n)

≤
∞∑

t=n

Pm (E1(t) occurs) +
∞∑

t=n

Pm (E2(t) occurs) . (23)

Next, we upper bound the first term on the RHS of (23). It
suffices to show that there exist C > 0 and γ > 0 such that
Pm(E1(n) occurs) < Ce−γn. Let NRR(n) be the total number
of time instants spent during the round-robin exploration phase
up to time n, and fix 0 < r < 1. Then, Pm(E1(n) occurs) can
be rewritten as follows:

Pm (E1(n) occurs) = Pm (E1(n) occurs, NRR(n) ≥ rn)

+Pm (E1(n) occurs, NRR(n) < rn). (24)

We first upper bound the first term on the RHS of (24). Since that
more than rn observations were taken in a round-robin manner,
then at least rn/M observations were taken from each cell. Thus,

Pm (E1(n) occurs, NRR(n) ≥ rn)

≤ Pm

(
θ̂m(n) �= θ(1), Nm(n) ≥ rn/M

)

+
∑

j �=m

Pm

(
θ̂j(n) �= θ(0), Nj(n) ≥ rn/M

)
. (25)

Next, we show that the first term on the RHS of (25) decreases ex-
ponentially with n. Let (ym(r1), . . ., ym(rNm(n))) be the vector
of all Nm(n) observations (indicated by times r1, . . ., rNm(n))

collected from cell m up to time n, and let θ̃m(n′) = θ̂m(n)
denotes the MLE based on Nm(n) = n′ observations collected
from cell m up to time n. We can upper bound Pm(θ̂m(n) �=

θ(1), Nm(n) ≥ rn/M) by:

Pm

(
θ̂m(n) �= θ(1), Nm(n) ≥ rn/M

)

≤
∞∑

q=�rn/M�
Pm

(
θ̃m(q) �= θ(1)

)
. (26)

Then, by the definition of the MLE (5), the event θ̃m(n) �= θ(1)

implies:
n∑

i=1

	θ(1),θ̃m(n)(i) < 0, (27)

for some θ̃m(n) �= θ(1), where

	θ(1),θ̃m(n)(i) � log
f
(
ym(i)|θ(1))

f
(
ym(i)|θ̃m(n)

) .

Note that we only refer to the number of observations irrespec-
tive of the probing times due to i.i.d. property. Hence, it remains
to show that Pm(

∑n
i=1 	θ(1),θ̃m(n)(i) < 0) decreases exponen-

tially with n for each θ̃m(n) �= θ(1). Applying the Chernoff
bound and using the i.i.d. property yields:

Pm

(
n∑

i=1

	θ(1),θ̃m(n)(i) < 0

)

≤
[
Em

(
e
s(−�

θ(1),θ̃m(n)
(i))
)]n

. (28)

Note that a moment generating function (MGF) is equal
to one at s = 0. Furthermore, since Em(−	θ(1),θ̃m(n)(i)) =

−D(θ(1)||θ̃m(n)) < 0 is strictly negative, differentiating the
MGFs of −	θ(1),θ̃m(n)(i) with respect to s yields a strictly
negative derivative at s = 0. Hence, there exist s > 0 and γ′ > 0

such that Em(e
s(−�

θ(1),θ̃m(n)
(i))

) is strictly less than e−γ ′
< 1,

which yields the desired exponential decay. A similar argument
applies for showing that the second term on the RHS of (25)
decreases exponentially with n.

Next, we upper bound the second term on the RHS of (24).
Let NXT , NXT,j be the total number of time instants spent
during the exploitation phase up to time n at all cells and cell j,
respectively. Since NRR(n) < rn, then NXT ≥ (1− r)n. Fix
0 < r2 < 1. We can rewrite the second term on the RHS of (24)
as follows:

Pm (E1(n) occurs, NRR(n) < rn)

≤ Pm (E1(n) occurs, NXT (n) ≥ (1− r)n,

NXT,m(n) ≥ r2(1− r)n)

+Pm (E1(n) occurs, NXT (n) ≥ (1− r)n,

NXT,m(n) < r2(1− r)n). (29)

We first upper bound the first term on the RHS of (29). Note
that E1(n) occurs implies that there exists an exploitation time
t before time n, in which cell m has been probed, its MLE
was computed based on more than r2(1− r)n observations,
and error event was occurred, θ̂m(t) �= θ(1) (so that the algo-
rithm moved back to exploration phase and E1(n) occurred).
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Therefore, we can write:

Pm (E1(n) occurs, NXT (n) ≥ (1− r)n,

NXT,m(n) ≥ r2(1− r)n)

≤
∞∑

t=�r2(1−r)n�
Pm

(
θ̂m(t) �= θ(1), Nm(t) ≥ r2(1− r)n

)
.

(30)

By a similar argument as we developed when proving (25), each
of the terms in the summation decreases exponentially with n,
implying exponentially decreasing of the first term on the RHS
of (29).

Next, we upper bound the second term on the RHS of (29).
Since less than r2(1− r)n observations were taken from cell m
during exploitation and the total number of observations during
exploitation is more than (1− r)n, then there exists cell j �= m
that have been observed more than (1− r2)(1− r)n/(M − 1)
times during exploitation phase. This implies that there exists
an exploitation time t before time n, in which cell j has been
probed, its MLE was computed based on more than (1− r2)(1−
r)n/(M − 1) = qn observations, where 0 < q � (1− r2)(1−
r)/(M − 1) < 1, and θ̂j(t) �= θ(0) Therefore, we can write:

Pm (E1(n) occurs, NXT (n) ≥ (1− r)n,

NXT,m(n) < r2(1− r)n)

≤
∞∑

t=�qn�
Pm

(
θ̂j(t) �= θ(0), Nj(t) ≥ qn

)
. (31)

By a similar argument as we developed when proving (25),
each of the terms in the summation decreases exponentially
with n, implying exponentially decreasing of the second term
on the RHS of (29). Therefore, we have shown exponentially
decreasing of the first term on the RHS of (23).

It remains to show an exponentially decreasing of the second
term on the RHS of (23). It suffices to show that there exist
C > 0 and γ > 0 such that Pm(E2(n) occurs) < Ce−γn. Fix
0 < r < 1. We can rewrite Pm(E2(n) occurs) as follows:

Pm (E2(n) occurs) ≤ Pm (E2(n) occurs, Nm(n) ≥ rn)

+Pm (E2(n) occurs, Nm(n) < rn).
(32)

We first upper bound the first term on the RHS of (32). Since
E2(n) occurs and more than rn observations were taken from
cell m we have:

Pm (E2(n) occurs, Nm(n) ≥ rn)

≤ Pm

(
θ̂m(n) �= θ(1), Nm(n) ≥ rn

)
. (33)

By a similar argument as we developed when proving (25), the
RHS of (33) decreases exponentially with n.

Next, we upper bound the second term on the RHS of (32).
Since Nm(n) < rn then at least (1− r)n observations were
taken from other cells. Let ÑRR(n) be the total number of
observations collected from all cells excepts cell m during the
round-robin exploration phase up to time n, and fix 0 < r2 < 1.
Then, the second term on the RHS of (32) can be rewritten as

follows:

Pm (E2(n) occurs, Nm(n) < rn)

= Pm

(
E2(n) occurs, Nm(n) < rn, ÑRR(n) ≥ r2(1− r)n

)

+Pm

(
E2(n) occurs, Nm(n)<rn, ÑRR(n)<r2(1− r)n

)
.

(34)
Next, we upper bound the first term on the RHS of (34). Since
more than r2(1− r)n observations were taken from all cells
excepts cell m during round-robin exploration, then at least
r2(1− r)n/(M − 1) observations were taken from each cell
j �= m (and the same number of observations must have been
taken from cellm as well during round-robin exploration). Then,
at timen during exploration phase, its MLE was computed based
on more than r2(1− r)n/(M − 1) observations, and error event
was occurred, θ̂m(t) �= θ(1) (so that E2(n) occurred). Then,

Pm

(
E2(n) occurs, Nm(n) < rn, ÑRR(n) ≥ r2(1− r)n

)

≤ Pm

(
θ̂m(n) �= θ(1), Nm(n) ≥ r2(1− r)n/(M − 1)

)
.

(35)

By a similar argument as we developed when proving (25), the
RHS of (35) decreases exponentially with n.

Next, we upper bound the second term on the RHS of
(34). Since less than r2(1− r)n observations were taken from
all cells excepts cell m during round-robin exploration, then
there exists cell j �= m in which more than (1− r2)(1−
r)n/(M − 1) observations were taken from it during exploita-
tion phase. By subtracting all time instants in which the
test might switch between exploration to exploitation phases,
at least (1− r2)(1− r)n/(M − 1)− r2(1− r)n observations
were taken during exploitation, where θ̂j(t) �= θ(0). We can
choose small r2 (e.g., r2 = 1/(3(M − 1))) so that (1− r2)(1−
r)n/(M − 1)− r2(1− r)n = qn for 0 < q < 1. Thus,

Pm

(
E2(n) occurs, Nm(n) < rn, ÑRR(n) < r2(1− r)n

)

≤ Pm

(
θ̂j(n) �= θ(0), Nj(n) ≥ qn

)
. (36)

By a similar argument as we developed when proving (25),
the RHS of (35) decreases exponentially with n. Hence, (22)
follows. �

Note that the total time spent during the round-robin explo-
ration phase is upper bounded by τML. Hence, Statement 3 in
Theorem 2 follows.

Step 3: Bounding the detection time:
Definition 3: Assume that the DS algorithm is implemented

indefinitely. Then, τU denotes the first time that S
(0)
m (n) ≥

−log(c) for n > τML:

τU � inf
{
n > τML : S(0)

m (n) ≥ −log c
}
, (37)

and nU � τU − τML denotes the total amount of time between
τML and τU .

It should be noted that the actual detection time τ under DS
algorithm (when the stopping rule is applied) is upper bounded
by τU . In the next lemma we show thatnU cannot be significantly
larger than −(1 + ε) log c/D(θ(1)||θ(0)) with high probability.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on January 26,2026 at 22:52:04 UTC from IEEE Xplore.  Restrictions apply. 



HEMO et al.: SEARCHING FOR ANOMALIES OVER COMPOSITE HYPOTHESES 1193

Lemma 2: Assume that the DS algorithm is implemented
indefinitely and Hm is true. Then, for every fixed ε > 0 there
exist C > 0 and γ > 0 such that

Pm (nU > n) ≤ Ce−γn

∀n > −(1 + ε) log c/D
(
θ(1)||θ(0)

)
. (38)

Proof: We define

	̃m(t) � 	m(t)−D(θ(1)||θ(0)), (39)

where the MALLR 	m(t) at time n ≥ t is given by:

	m(t) � log
f(ym(t)|θ̂m(t))

f(ym(t)|θ̂(r)(n)) . (40)

Recall that the test statistics is given by S
(0)
m (n) =∑n

t=1 1m(t)	m(t). Since that for all t ≥ τML the DS algo-
rithm collects observations from cell m, then 1m(t) = 1 for all
t ≥ τML. Let ε1 = D(θ(1)||θ(0))ε/(1 + ε) > 0. Then, we can
write
τML+n∑

i=1

1m(i)	m(i) + log c

=

τML∑

i=1

1m(i)	m(i) +

τML+n∑

i=τML+1

	m(i) + log c

=

τML∑

i=1

1m(i)	m(i) +

τML+n∑

i=τML+1

	̃m(i) + nD(θ(1)||θ(0)) + log c

≥
τML∑

i=1

1m(i)	m(i) +

τML+n∑

i=τML+1

	̃m(i) + nε1, (41)

for all n > −(1 + ε) log c/D(θ(1)||θ(0)).
As a result,

τML+n∑

i=1

1m(i)	m(i) ≤ − log c. (42)

implies
τML∑

i=1

1m(i)	m(i) +

τML+n∑

i=τML+1

	̃m(i) ≤ −nε1. (43)

Hence, for any ε > 0 there exists ε1 > 0 such that

Pm (nU > n)

≤ Pm

(
τML+n∑

i=1

1m(i)	m(i) ≤ − log c

)

≤ Pm

(
τML∑

i=1

1m(i)	m(i) +

τML+n∑

i=τML+1

	̃m(i) ≤ −nε1

)

≤ Pm

(
τML∑

i=1

1m(i)	m(i) ≤ −nε1/2

)

+Pm

(
τML+n∑

i=τML+1

	̃m(i) ≤ −nε1/2

)

≤ Pm

(
τML∑

i=1

1m(i)	m(i) ≤ −nε1/2, τML > ε2n

)

+Pm

(
τML∑

i=1

1m(i)	m(i) ≤ −nε1/2, τML ≤ ε2n

)

+Pm

(
τML+n∑

i=τML+1

	̃m(i) ≤ −nε1/2

)

, (44)

for all n > −(1 + ε) log c/D(θ(1)||θ(0)), and 0 < ε2 < 1. The
first term on the RHS decreases exponentially by Lemma 1.
Since ε2 > 0 can be arbitrarily small, and 	m(i) has finite
expectation, then the second term decreases exponentially by
applying the Chernoff bound. Since 	̃m(i) has zero mean for all
i > τML, then the third term decrease exponentially by applying
the Chernoff bound. Hence, (38) follows. �

Next, we can upper bound the actual detection time under DS
algorithm by combining Lemmas 1, 2:

Em(τ) ≤ Em(τML) +Em(nU )

≤ − (1 + o(1))
log(c)

D(θ(1)||θ(0)) . (45)

Next, we can upper bound the Bayes risk under DS algorithm
By combining (45) and (17):

Rm(Γ) ≤ − (1 + o(1))
c log(c)

D(θ(1)||θ(0)) . (46)

Finally, Combining the upper bound on the Bayes risk
with the lower bound on the Bayes risk Rm(Γ) ≥ −(1 +

o(1)) c log(c)
D(θ(1)||θ(0))

that was obtained in [8] under simple hypothe-
ses completes the proof. �

1) Extending the Proof of Theorem 2 for Continuous Param-
eter Space: Next, we focus on the key steps used for extending
the proof of Theorem 2 for continuous parameter space. We
need the following requirement for the consistency of the MLE:
For all ε > 0, we require that Pm(|θ̃m(n)− θ(1)| > ε) decays
only polynomially with n. To achieve this, we require that the
parameters space Θ(0), Θ(1) are open sets. Then, the condition
holds for a wide class of distributions, including exponential
family distributions (see e.g., [51]).

Step 1: Bounding the error probability: Bounding the error
probability in Step 1 in Appendix A directly applies to continu-
ous parameter space.

Step 2: Bounding τML(ε3): Since the MLEs take continuous
values, instead of defining τML as in Appendix A, we define
τML(ε3) for some ε3 > 0 as the smallest integer such that
|θ̂m(n)− θ(1)| ≤ ε3, and |θ̂j(n)− θ(0)| ≤ ε3 for all j �= m for
all n > τML(ε3), when Hm is the true hypothesis. We require
that the parameters take values in the interior of the parameter
spaces. Then, we can choose a sufficiently small ε3 so that for
all n > τML(ε3) only the exploitation phase is implemented.
As a result, the time spent in a round-robin exploration phase
is upper bounded by τML(ε3) similarly to upper bounding the
round-robin exploration time by τML as in Appendix A.

We then modify Lemma 1 so that to show at least polynomial
decay of Pm(τML(ε3) > n) for any ε3 > 0 (since polyno-
mial decay is sufficient to guarantee a finite expected value of
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τML(ε3)). Proving the modified lemma requires similar steps
as in Appendix A with the following modification. Since the
MLEs take continuous values, instead of referring to the events
in which the MLEs are not equal to the true parameter values
θ̂m(n) �= θ(1), and θ̂j(n) �= θ(0) for all j �= m as in Appendix A,
we refer to the events in which the MLEs deviate from the true pa-
rameter values by ε3. As a result, for bounding Pm(τML(ε3) >
n) (as in equation (26)) we need to require only weak consistency
of the MLEs so that Pm(|θ̃m(n)− θ(1)| > ε3) decays only
polynomially with n as mentioned above.

Step 3: Bounding the detection time: Step 3 follows similar
steps as in Appendix A for any ε3 > 0. Since ε3 > 0 is arbitrarily
small, the theorem follows.

B. Proof of Theorem 3

We now prove the asymptotic optimality criterion given in (4).
Here we are interested in detection procedures that satisfy the
constraint Pe(Γ) ≤ α. The class of such detection algorithms
will be denoted by C(α).

By applying the same steps as in the proof of Theorem 1,
we can show that: Pe(Γ) ≤ (M − 1)e−a. It follows that a =
log(M−1

α ) implies that Γ ∈ C(α).
Next, the upper bound for τML holds with the same steps as

in Lemma 1. We define τU and nU as in Appendix A. To prove
the asymptotic optimality, first note that the lower bound on the
detection time is given by:

inf
Γ∈C(α)

Em(τ |Γ) ≥ | logα|
D(θ(1)||θ(0)) (1 + o(1)), α → 0, (47)

which can be derived following the same steps as in [52]. We
next provide the proof for the upper bound on the detection time.

Lemma 3: Assume that the DS algorithm is implemented
indefinitely. Then,

Em(τ |Γ∗) ≤ | logα|
D(θ(1)||θ(0)) (1 + o(1)), α → 0. (48)

Proof: We define the last exit times L(ε, θ). For all ε > 0:

L(ε, θ) = sup

{

n ≥ τML

∣
∣
∣
∣
∣

S
(0)
m (n)

n
−D(θ(1)||θ(0))

∣
∣
∣
∣
∣
> ε

}

.

(49)

Under Hm,

S(0)
m (nU − 1) ≥ (nU − 1)(D(θ(1)||θ(0))− ε)

on {nU > L(ε, θ) + 1},
and S(0)

m (nU − 1) < a, on {nU < ∞}.
Therefore, for every 0 < ε < D(θ(1)||θ(0)),

nU <

(

1 +
a

D(θ(1)||θ(0))− ε

)

1{nU>1+L(ε,θ)}

+ [1 + L(ε, θ)]1{nU<1+L(ε,θ)}

≤ 1 + L(ε, θ) +
a

D(θ(1)||θ(0))− ε
.

By using Chernoff bound we can show that E[L(ε, θ)] < ∞,
and by letting ε → 0 and choosing a = log(M−1

α ) we get:

Em[nU ] ≤ | logα|
D(θ(1)||θ(0)) (1 + o(1)) as α → 0,

and combining with the upper bound of τML derived in Lemma
1, we prove the Lemma. �

Finally, by combining Lemma 3, with (47) we complete the
proof.

C. Proof of Theorem 1

We focus on the key steps used for extending the proof of
Theorem 2 to the settings in which both parameters under normal
and abnormal states θ(0), θ(1) are unknown, and no additional
side information of the parameter values are given. Without loss
of generality we prove the theorem when hypothesis m is true,
and the proof is derived using the LALLR statistics defined in
(7), i.e., S(0)

m (n) = S
(0)
m,LALLR(n).

Step 1: Bounding the error probability: We begin by
upper bounding the error probability for all c. With
the same notation as in Step 1 in Appendix A, we
need to show that αm,j = Pm(δ = j) ≤ c. We first notice:

S
(0)
j (τ) =

τ∑

t=1

1j(t) log
f(yj(t)|θ̂j(t− 1))

f(yj(t)|θ̂(0)j (τ))

= min
ϕ∈Θ(0)

τ∑

t=1

1j(t) log
f(yj(t)|θ̂j(t− 1))

f(yj(t)|ϕ)

≤
τ∑

t=1

1j(t) log
f(yj(t)|θ̂j(t− 1))

f(yj(t)|θ(0)) .

Hence, we have:
αm,j = Pm(δ = j)

= Pm(S
(0)
j (τ) ≥ −log c for some τ ≥ 1)

≤ Pm

( τ∑

t=1

1j(t) log
f(yj(t)|θ̂j(t− 1))

f(yj(t)|θ(0))

≥ −log c for some τ ≥ 1

)

.

Next, we can use similar steps as in Appendix A, starting at
(18) onwards, to prove that αm,j ≤ c, which implies that the
error probability is upper bounded by (M − 1)c for all c. Thus,
Statement 1 in Theorem 1 follows.

Step 2: Bounding τML: Upper bounding τML (see (22))
follows the same steps as in Lemma 1. Hence, Statement 3 in
Theorem 1 follows.

Step 3: Bounding the detection time: We define τU and nU

similarly as in step 3 in Appendix A:
Definition 4: Assume that the DS algorithm is implemented

indefinitely. Then, τU denotes the first time that S
(0)
m (n) ≥

−log(c) for n > τML:

τU � inf
{
n > τML : S(0)

m (n) ≥ −log c
}
, (50)

and nU � τU − τML denotes the total amount of time between
τML and τU .
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We also define 	(θ,ϕ)
m (t) = log

f(ym(t)|θ)
f(ym(t)|ϕ) .

Note that S
(0)
m (n) =

∑n
t=1 1j(t)	

(θ(1),θ̂
(0)
m (n))

m (t) for
all n > τML. Define τU (ϕ) to be the first time that
∑n

t=1 1m(t)	
(θ(1),ϕ)
m (t) ≥ −log c for n > τML, and define

nU (ϕ) = τU (ϕ)− τML. Clearly, nU ≤ nU (ϕ) for each
ϕ ∈ Θ(0). We now bound nU (ϕ) for each ϕ ∈ Θ(0).

Lemma 4: Assume that the DS algorithm is implemented
indefinitely and Hm is true. Then, for each ϕ ∈ Θ(0) and for
every fixed ε > 0 there exist C > 0 and γ > 0 such that

Pm (nU (ϕ) > n) ≤ Ce−γn

∀n > −(1 + ε) log c/D
(
θ(1)
)
. (51)

Proof: Define 	̃
(θ(1),ϕ)
m (t) = 	

(θ(1),ϕ)
m (t)−D(θ(1)||ϕ). Us-

ing the same steps as in the proof of Lemma 2 (choosing this
time ε1 = D(θ(1)||ϕ)ε/(1 + ε) > 0), equation (44) holds with

	
(θ(1),ϕ)
m (t) and 	̃

(θ(1),ϕ)
m (t) instead of 	m(t) and 	̃m(t), respec-

tively. Again, since 	̃
(θ(1),ϕ)
m (t) has zero mean for all t > τML,

all the three terms can be bounded as done in (44).
Since D(θ(1)||ϕ) ≥ D(θ(1)), ∀ϕ ∈ Θ(0), (51) follows.
Using Lemma 4 we have: �
Pm(nU > n) ≤ Pm(nU (ϕ) > n) ≤ Ce−γn

∀n > −(1 + ε) log c/D(θ(1)),
thus, the actual detection time is upper bounded by:

Em(τ) ≤ Em(τML) +Em(nU ) ≤ −(1 + o(1))
log(c)

D(θ(1))
,

and using the bound on the error probability obtained in step 1,
the Bayes risk is upper bounded by:

Rm(Γ) ≤ − (1 + o(1))
c log(c)

D(θ(1))
.

Combining the upper bound with the lower bound from [11]
completes the proof. �

D. Proof of Theorem 4

For purposes of analysis we require that the stopping rule does
not stop the test before −ε log c samples have been taken, where
ε > 0 is arbitrarily small. Also, when updating the sum MALLRs
at time t, we use the current estimates for all n = 1, . . ., t.

Without loss of generality, let Hm be the true hypothesis. Let
Pe =

∑M
m=1 πmαm be the error probability, where

αm,j = Pm(δ = j)

for all j �= m. Thus,

αm =
∑

j �=m

αm,j .

Therefore, we need to show that αm,j decays polynomially with
− log c. Note that αm,j can be rewritten as follows:

αm,j = Pm (δ = j) = Pm (δ = j, τML > τ)

+Pm (δ = j, τML ≤ τ). (52)

Since the stopping rule does not stop the test before −ε log c
samples have been taken, the first term on the RHS is up-
per bounded by Cτ−γ ≤ C(−ε log c)−γ , for some constants
C, γ, ε > 0, resulting in a polynomial decay with − log c. Thus,

it remains to show that the second term on the RHS decreases
polynomially with − log c.

Accepting Hj at time n implies S
(0)
j (n) + S

(1)

m(1)(n)
(n) ≥

−log c, which implies S(0)
j (n) + S

(1)
m (n) ≥ −log c. Hence, for

all j �= m we obtain:

Pm (δ = j, τML ≤ τ)

≤ Pm

(
S
(0)
j (n) + S(1)

m (n) ≥ −log c, τML ≤ τ
)

≤ cPj

(
S
(0)
j (n) + S(1)

m (n) ≥ −log c, τML ≤ τ
)
≤ c,

(53)

where changing the measure in the second inequality follows by
the fact that S(0)

j (n) + S
(1)
m (n) ≥ −log c, and that the estimates

are given by the true parameters for all τ ≥ max{τML, τ̃ML}
(where the current estimates are updated for all n = 1, . . ., τ ).
As a result, the theorem follows. �
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