Under review as a conference paper at ICLR 2022

BRAIN INSIGHTS IMPROVE RNNS’ ACCURACY AND
ROBUSTNESS FOR HIERARCHICAL CONTROL OF CON-
TINUALLY LEARNED AUTONOMOUS MOTOR MOTIFS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of learning dynamics that can produce hierarchically or-
ganized continuous outputs consisting of the flexible chaining of re-usable motor
motifs from which complex behavior is generated. Can a motif library be effi-
ciently and extendably learned without interference between motifs, and can these
motifs be chained in arbitrary orders without first learning the corresponding mo-
tif transitions during training? This requires (i) parameter updates while learning
a new motif that do not interfere with the parameters used for the previously ac-
quired ones; and (ii) successful motif generation when starting from the network
states reached at the end of any of the other motifs, even if these states were not
present during training (a case of out-of-distribution generalization). We meet the
first requirement by designing recurrent neural networks (RNNs) with specific ar-
chitectures that segregate motif-dependent parameters (as customary in continual
learning works), and try a standard method to address the second by training with
random initial states. We find that these standard RNNSs are very unreliable during
zero-shot transfer to motif chaining. We then use insights from the motor thalam-
ocortical circuit, featuring a specific module that shapes motif transitions. We de-
velop a method to constrain the RNNs to function similarly to the thalamocortical
circuit during motif transitions, while preserving the large expressivity afforded
by gradient-based training of non-analytically tractable RNNs. We then show that
this thalamocortical inductive bias not only acts in synergy with gradient-descent
RNN training to improve accuracy during in-training-distribution motif produc-
tion, but also leads to zero-shot transfer to new motif chains with no performance
cost. Besides proposing an efficient, robust and flexible RNN architecture, our
results shed new light on the function of motor preparation in the brain.

1 INTRODUCTION AND RELATION TO OTHER WORKS

Animals have the remarkable ability to efficiently learn and compose elaborate continuous behav-
iors, which often relies on the flexible chaining of ‘motifs’ - reproducible bouts of behavior - in
response to hierarchical commands (Zimnik & Churchland, [2021} |Geddes et al., 2018; Merel et al.,
2019b). The mechanisms behind this are however not fully understood, and engineering controllers
for dynamical systems that could perform such complex and structured continuous behaviors in the
real world has been a long-standing challenge of robotics (Brooks, 1986} Prescott et al.,|1999; Merel
et al., 2019b). Such tasks involve two different computational operations: first, at coarse temporal
intervals, the flexible selection of discrete and abstract action commands by a ‘high-level controller’;
and, second, the transmission of each abstract command to a ‘lower-level controller’ that continu-
ously produces a corresponding command - a ‘motif” - for the motor effector.

Many lines of work have used artificial neural networks (ANNs) to solve the first - discrete - compu-
tational operation (notably using tools from deep reinforcement learning, e.g. (Merel et al., 20194
Frans et al.| [2018; Dennis et al.| 2020)) and have leveraged the ability of ANNs to perform well
when using a rich training set that includes many motif sequences (Frans et al.l 2018} |Dennis et al.,
2020;|OpenAl et al.| [2021; |Xu et al.,2020). However, to the best of our knowledge, in the context of
the second computational operation, there is a gap in the literature about how to design ANN mecha-
nisms that enable zero-shot transfer to performing new continuous motif sequences from a library of

Under review as a conference paper at ICLR 2022

independently learned motifs. Here we will focus on this latter task, which notably highlights a re-
markable human skill, as we can - for instance - learn to pronounce a new word and then immediately
include it in arbitrary sentences. While this biological relevance has led the neuroscience community
to start investigating related questions, this literature has focused on a hand-designed ‘bottom-up’
approach. This approach studies how networks can function in spite of strong constraints introduced
e.g. to mimic the brain activity patterns or connectivity, and/or to ensure analytical tractability (Kao
et al.| [2020; [Logiaco et al.| 2019 |Sussillo et al.| 2015} |[Zimnik & Churchland, 2021} [jspeert et al.,
2013; Kulvicius et al., 2012). Importantly, this approach cannot determine whether specific network
features are more generally advantageous for solving a task - instead, with this bottom-up approach,
these chosen features could reflect constraints that arose through random evolutionary idiosyncra-
cies, or could become irrelevant for networks that cannot be designed through analytical insights but
that can still be successfully trained with modern machine learning algorithms. Overcoming these
limitations has implications for engineering and can provide new neuroscientific insight.

To address this knowledge gap, here, we use Recurrent Neural Networks (RNNs) whose computa-
tional power is not arbitrarily constrained. An RNN is a type of ANN which is a generic dynamical
system, and which therefore naturally fits the desired characteristics of motor outputs. Consequently,
ANNS are indeed regularly used for tasks requiring the production of continuous outputs, including
in the context of robotics (Wyftels & Schrauwen, 2009} Sussillo & Abbott, [2009; |Tani} [2003; [Liu
et al., 2019} [Merel et al.l 2019a; Maheswaranathan et al., [2019). We will examine the ability of
RNNSs to (i) independently learn motor motifs in order to to build a continuously expandable motif
library; and (ii) flexibly chain motifs in arbitrary orders (Fig.[Th and see Appendix [A.T]|for a formal
definition). In order to better dissect the mechanisms by which RNNs can fail or succeed at this task,
we focus on the purest form of motor control through dynamics: the production of trajectories with-
out needing the external anchor of a time-dependent sensory input. We refer to this as autonomous
control, which is especially relevant when sensory input is too unreliable (Yeo et al., [2016; Shenoy
et al.,|2013;Brembs}, 2021)), but also in other cases such as the above-mentioned speech production.
We will show that while it is possible to engineer RNNs to independently, extendably and efficiently
learn to produce single motifs in response to discrete input commands, these RNNs are limited in
their generalization ability during improvisation of motif sequences. We will then use insights from
the mammalian thalamocortical motor system - notably the presence of a motor preparation phase
before each motif (Zimnik & Churchland, 2021} |[Nashef et al., 2021} [Logiaco et al., [2019). We will
show that weaving in these insights into performance-optimized RNNs leads to both improved mo-
tif production accuracy (through a positive synergy with single motif gradient-descent training) and
excellent robustness during generalization to motif sequencing.

2 TASK AND ARCHITECTURE DESIGN

Here, we study the ability of RNNs to fulfill the first requirement of our task: the ability to acquire
an extendable library of autonomous motifs (Fig. 1a, left column). However, before describing these
analyses, we want to clarify how we chose the motifs that the RNNs have to learn. First, we chose
motifs of long durations — on the order of a thousand timesteps — so that they strongly leverage the
above-mentioned autonomous capabilities of RNNs. Second, because we are interested in assessing
the relative expressive power of the RNNs we study, we have designed two different types of mo-
tor motifs so that they constitute two ‘difficulty’ levels for the RNNs. Following recent analytical
approaches for studying RNN dynamics (Schuessler et al., 2020bza; Logiaco et al., 2019), we char-
acterize the difficulty of motifs as the number of certain basis functions - complex exponentials that
act similarly as different frequencies of a Fourier transform - needed to approximate a motif well
through linear combination. Therefore, we define a set of oscillatory motifs that are relatively easy
to produce, and a set of more difficult ‘step’ motifs (Fig. [Id.f-g, see Appendix [A.2]for the full list of
motifs used in this paper). We train motifs using gradient descent — specifically, ADAM (Kingma &
Bal 2015)). Our objective function is the mean square error between desired and actual output.

We will now study how RNNs can meet the requirement to learn a new motif without ‘catastrophic
interference’ with the memory of previously learned motifs - which relates to the literature on con-
tinual learning (Kirkpatrick et al.l 2017} [Parisi et al. 2019} [Yoon et al., 2020; |[Farajtabar et al.,
2019). This line of work emphasizes avoiding interference between gradient updates used to train
a network on many sub-tasks, while promoting the re-use of neural resources across sub-tasks (so
that the network makes efficient use of its parameters). We will use an ‘architectural’ approach to

Under review as a conference paper at ICLR 2022

a b C 5" = mean rms, add. architecture
Learn library of motifs String in arbitrary orders] = mean rms, control
o
o v
. (g " 93 Training all E5.
=Y O(N,,2) transitions EZ
me—_— - - 3 T2 £5
< - =g
] 1, 10
a2, =
M 2 1 S 4 m
A e gi/g
100 timescales PREART 0
AR n-—,
: 5 o
. X motif 1 L = = mean rms, control
Learn new motif Introduce it in a string _|0,_|,_|3_|’_J-\ $
without interference with other motifs : E8
53
[y N Eg e
Cc,
S5
=]
£ o
=
°
3 i
/g
Oscillating motif: eas Step motif: hard inii
d o Y P __Training single From random From other motifs g From random From other motifs
10y [——— 3 motifs to test generalization
Tty Ny

I M T

Figure 1: Task and candidate networks. a) Task. Left: learning an extendable library of motifs
without interference. Right: without additional training, stringing the motifs into chains with arbi-
trary orders. b) Additive and multiplicative architectures, who may succeed in the task in a because
they segregate parameters into motif-specific sets (schematized in colors) while benefiting from fixed
shared recurrent and readout weights (schematized in black). ¢) Minimum root mean square error
over training with overcomplete training set, depending on the gain hyperparameters g*¢, g™, and

ggtb. Dots are individual networks, the line is the average. In red, we show the mean minimum root
mean square error in the control architecture (averaged over five individually trained networks for
each ¢;"). d) Examples easy oscillatory motif and hard step motif; fitting the latter requires a larger
number of basis functions (complex exponentials) of varied oscillation frequencies. e) ‘Classical’
strategy to promote zero-shot transfer in order to produce a chain of motifs: train ANNs to produce
the motifs starting from random initial network states X;,i; that emulate the variability of network
states at the end of motifs x/! ; (where p indexes the motif). f) Increased inaccuracy during zero-
shot transfer to chains of motifs compared to when starting from random X;,;; drawn from the same
distribution as during training (additive architecture). g) As in f but for oscillatory motifs. Note that
the target trajectory (black) is buried below the output of the network (colored lines), because the
latter is almost perfectly accurate with random Xipj;.

I I A .)
Time (neuronal timescales) ‘Time (neuronal timescales)

continual learning that consists in segregating tuned parameters across the different motifs, because
it will later facilitate the weaving of biological insights in our networks. With this approach, in-
terference is fully prevented during sequential learning; but the proposed architectures may not be
efficient, which is what we investigate below. To do so, we will compare these architectures to a
‘standard’” RNN with no segregation of tuned parameters. This RNN (‘control architecture’) (i) is
fully-tuned, (ii) receives a static input b,, to instruct the motif ;» (Maheswaranathan et al., 2019}
Sussillo & Abbott, [2009; |Tani, 2003)), and (iii) is trained in a plausible noise-robust regime imposed
by a random initialization of its state (see[A.6.3). As expected given that this RNN has no protection
against catastrophic interference (Kirkpatrick et al.}2017), we indeed find that when learning motifs
sequentially, this RNN immediately forgets previously learned motifs when learning a new one (not
shown) — even though it is possible to learn motifs by simultaneously including all of them in each
training batch (Fig. [Tk, and see below). This ‘control architecture’ obeys the following dynamics:

T%x=—x+gg Jtanh(x) + b,.

The output y = wT tanh(x) = wTr is produced through the vector w that is initialized from a cen-
tered Gaussian distribution with std 1/+/N°" — where here N°" = 50 is the number of recurrent units
of this control network, so that its outputs have appropriate maximal positive or negative magnitude
scaling as v N°". Also, the recurrent interactions weights J are initialized with iid elements taken
from a standard Gaussian as previous work has shown that when choosing a gain gg" > 1 this leads
to rich dynamical regimes appropriate for complex computations (Sompolinsky et al., [1988} Sus-
sillo & Abbott, 2009} Sussillo et al.| [2015; Schuessler et al., | 2020b). We performed hyperparameter
tuning on go. The dynamics are discretized using Euler’s integration method where dt = 0.17.

Under review as a conference paper at ICLR 2022

Table 1: Number of neurons and number of parameters in the different architectures

Additive Multiplicative Control
of recurrent units N 300 100 50
of learned parameters for 10 motifs 3000 3000 3050
of motif-specific parameters per motif 300 300 (input: 100, loop: 200) 50

We now consider modifications of this control RNN that address this issue of catastrophic forgetting
by segregating the parameters involved in learning different motifs while sharing common computa-
tional resources across motifs (Parisi et al.|[2019;Merel et al., 2019alb)). Here, we will share (i) fixed
readout weights (with the above-mentioned centered Gaussian distribution with std 1/ \/N as this is
sufficient to ensure the successful production of our motifs); and (ii) the recurrent weights as they
can set rich ‘baseline dynamics’ that can be modulated by some motif-specific weights. We globally
adjust the shared recurrent weights through tuning their above-mentioned gain hyperparameter g (a
similar alternative could be to pre-tune these recurrent weights to an original set of motifs and to
then freeze them, but - as we will see - our chosen approach leads to good results).

First, we consider an ‘additive’ architecture (Fig. [Ib, top). Here, each motif 4 is produced in re-
sponse to learning the input vector b,,, leading to the following dynamics for the network activities:

7% = —x+ ¢ Jtanh(x) + b,

where the input acts as a motif-specific controller of the dynamics. Note that this occurs because the
gradient of the loss with respect to the input weights propagates through the recurrent connections
- whereas if different outputs weights would be learned for different motifs (Jaeger, [2007), the
dynamics would not be affected by learning.

Second, we consider a ‘multiplicative’ architecture (Fig.[Ib, bottom), that is inspired by both previ-
ous machine learning literature (Sutskever et al.l| 2011} Schuessler et al.,|2020b) and the anatomy of
the brain’s motor system (Guo et al., 2017; [Logiaco et al.l[2019). Here, each motif y is produced
in response to both a learned input vector b, and a learned rank-one perturbation of the connec-
tivity u, v]. The latter is equivalent to a loop through an instantaneous ‘unit’ receiving input from
the recurrent network through the weights v,, and feeding back through the weights u,,. Here, this
motif-specific loop participates to modulating the dynamics (Logiaco et al.l 2019), in a way that
yields more computational flexibility compared to networks with random feedback weights (Sus-
man et al.l 2021). Interestingly, learning the full recurrent weights in randomly initialized RNNs
can yield a low-rank weight update (Schuessler et al.| 2020b). Therefore, by imposing that the
motif-specific learning is restricted to a low-rank weight perturbation, we expect to get close to
full-weight learning while enabling segregation of the learned weights per motif. The dynamics are:

TXx=-x+ (9™ J +u,v]) tanh(x) + by,

where ¢™ and J are defined as for the additive network, and u, and v, are each learned and
initialized iid from a centered Gaussian with std ggtb / \/N (i.e. expected norm ggtb).

To test the baseline relative accuracies of the additive, multiplicative and control networks, we
trained them on all the possible chains of motifs of length two (excluding repetitions of the same
motif) for the ten step motifs (Fig. [Ic left). Consistent with the continual learning aspect of our
task — which values limiting the number of parameters that need to be tuned and stored per motif
— we equalized the number of tunable parameters across architectures (Collins et al.l 2017). In-
terestingly, after optimizing over hyperparameters (i.e., gad, g™, ggtb, and g§"), we found that all
networks had similar accuracy (Fig. E};, reminiscent of (Collins et al., 2017)). This suggests that our
strategy of segregating tunable parameters in the additive and multiplicative networks do not lead to
drastic decrease in per-tuned-parameter expressivity, while by construction preventing interference
when learning motifs sequentially (while the control network suffers from forgetting of previously
learned motifs when learning new ones as expected, not shown). On the other hand, we note that
the multiplicative architecture, which is closer to models constrained to mimic brain dynamics and
architecture (Logiaco et al.| [2019), appears to have similar accuracy as the additive network while
requiring fewer neurons. This echoes recent results suggesting that more biologically-plausible

Under review as a conference paper at ICLR 2022

object-recognition ANNs tend to have architectures that require fewer neurons (Nayebi et al.|[2021).
We now turn to investigate the robustness of these different architectures when improvising motif
sequences after being trained on single motifs — a training strategy which, by construction, enables
learning new motifs without interference for the additive and multiplicative architectures.

3 BRITTLENESS OF STANDARD RNNS DURING GENERALIZATION

Here, we ask whether RNNss trained on single motifs can produce arbitrary chains of motifs — a form
of zero-shot transfer where the RNN’s internal state differs between training and testing due to the
RNN’s memory over several timesteps (a similar network mechanism as in (Lake & Baroni, 2017)).

We evaluate a standard technique used to promote both generalization and noise-robustness in
ANNS, that relies on leveraging randomness (e.g. (Vezhnevets et al.l [2017; |[Liu & Hodgins, 2017;
Merel et al, [2019a)) during training. Each motif is trained in isolation but with initial network ac-
tivities selected randomly according to a distribution that approximates the activities at the ends of
all other motifs (Fig.[Tk). In this scenario, if we can approximate the end-of-motifs distribution well
enough and if training succeeds, then all transitions should work with no transition-specific training.
Unfortunately, the end-of-motifs distribution is unknown, is training-dependent, and could be het-
erogeneous across motifs. However, since we are using networks with large [V, Gaussian weights,
and a tanh nonlinearity, it is known that an uncorrelated Gaussian vector can in some cases well-
approximate this unknown distribution (Landau & Sompolinsky} 2018)). Indeed, we observed that a
standard normal is a good choice for the marginal statistics (Fig. [2a and b, panels (ii)). Hence, we
tried training the RNNs to generate the step motifs one at a time when starting from random initial
network activities Xjp; drawn from a standard normal distribution. We set our hyperparameters to
the optima from Fig. |1 (¢! = 1.4, g™ = 1.4 and ggtb = 1.5) and otherwise trained as above. For
all architectures, training was successful (Fig.[2h and b panel (i), left; Fig. 2k left).

a (i) Additive architecture b ()

From random From other motifs From random From other motifs

T = S ~aa=—=
I [N, e |)

25 50 75 10 0 25 50 75 100 r__%ﬂ—_ 0 20 40 60 8 0 20 40 60 80 ? ?6 %%, 1
brad ~— [&=F — oL L AT
: - [T

|

| —

~a
o 2 w & w o 2 w e wx 1L [\ s W 0 25 50 75 100 0 25 50 75 100
Time (number of t,) Time (number of 7, AN Time (number of 7,) Time (number of 7,)
(i) . . (iii) . (ii) 5 . (iii) —
E Q cle—
O o8 g 08 o1
a Q Ll f g
g g %) _— e
2 “N(u=0,0-1) 2 N (u=0,0-1) =
Lo - end motif 1 T - end motif 1 oC @
2 =~ end motif 2 g . - end motif 2 o
Ex = end motif 5 £ = end motif 5 ol —r
S. D O — ———
R B Gaussian iid init. From other 7 3 T T 3 Gaussian iid init. From other
X (as in training) ‘W’ motifs (test) X (asin training) <——= motifs (test)
-~ p=0002
i s 10 10 o
(IV)'“ =N(u=0,6=12) (V) _ C
o . _
O oo |= end motif 1 e _— WS 04 A
5 |[|-endmotif2 2%
g o |7 endmotifs E g — additive, std=1, N=1000, step motifs
B c = — additive, std=1, N=300, oscill. motifs
R S o 02
=3 [>
=33 £0 — control, std =1, step motifs
=1 ~ =
O, = —e p=002
3 T T Gaussian iid init. From other 0, —— F h
X (asin training) «<——> motifs (test) Gaussian iid init. _From other
p=0002 (as in training) motifs (test)

Figure 2: Motif sequencing by RNNs trained on individual motifs from random initializations.
Step motifs are always used except in panel ¢. a) Additive architecture; b) multiplicative architec-
ture. Panels (i): Network output (black traces, compared to the desired motif shown in color) when
initial conditions Xj,; are randomly drawn from a standard Gaussian as during training vs. when
transitioning from other motifs (with example full motif chains shown on the right). Panels (ii): Af-
ter training with x;,; drawn from a standard Gaussian, ‘marginal’ cumulative distribution of network
states x/ ; at the end of example motifs. Panels (iii): for each motif, root mean square error taken
over 9 random initializations (left) vs. when transitioning from 9 other motifs. P-values from two-
sided Wilcoxon signed-rank test. Panels (iv) and (v): same as (ii) and (iii) but when training with
Xinit drawn from a Gaussian with standard deviation 1.2. ¢) Average root mean square error over
motifs during training conditions vs. during zero-shot transfer, for different architectures, network
sizes, motif types, and variance of the random initialization. All comparisons are significant.

Under review as a conference paper at ICLR 2022

We then asked our networks to chain two motifs (the first one starting from random initial activities
as in training), and found that the performance of the second motif was substantially degraded
compared to the same motif produced when starting from random (Fig. 2h,b panels (i) and (iii);
see also Fig. g right). Each transition from a given first motif leads to a relatively reproducible
output for the second motif because the network variability is low at the end of the first motif.
However the second motif’s output can vary substantially from the target when following certain
first motifs. Moreover, the inaccuracies are not restricted to the start of the second motif; rather, the
whole output is either clearly shifted or even more grossly wrong. Note that these issues are also
present in the control architectures and are therefore not caused by our strategy of segregating the
tuned parameters per motif to tackle catastrophic interference (Fig. 2k, Appendix [A.3.3).

Interestingly, the shape of the marginal distribution of the elements of x at the end of a given motif
p (x%) was not a good predictor of whether transitions from this motif would lead to worse perfor-
mance. For instance, in the case of the additive network, the transition from motif 1 to motif 2 leads
to poor performance for motif 2 (Fig. 2 (i), top right), even though the marginal distribution of x_
at the end of motif 1 appears extremely similar to a standard Gaussian (Fig. 2 (ii), red curve). Con-
versely the distribution of x2, ; at the end of motif 5 is wider than the standard Gaussian (Fig. 2f (ii),
purple curve), but the transition from motif 5 to motif 2 leads to a more accurate output (Fig.[2a (i),
second chain from top right). This strongly suggests that between-unit correlations impact transition

success, which complicates sampling the various x’ ; when initializing motifs during training.

Figs. 2h,b panels (i) show that the standard deviation of the marginal distribution of the values
of x! , slightly exceeds 1 for some motifs. To ensure that the transition failures we observed when
initializing with the standard normal were not due to this mismatch in scale, we retrained our additive
network with initial x values sampled from a Gaussian with std of 1.2 (Fig. [2h panels (iv) and
(v)). We observe that the end-of-motif distributions still have standard deviations around 1 for all
motifs (Fig.[2p panel (iv)). Despite training with a wider distribution, performance impairment after
transitioning still occurred with even slightly greater errors compared to training with a standard
normal (Fig. [Zh panel (iv) Fig. 2k dashed cyan line).

In addition, we verified that the decreased performance during zero-shot transfer was not a conse-
quence of using our relatively difficult step motifs for which accuracy is limited even when starting
from random. Using our oscillatory motifs instead (as in Fig. [Tiz), we see that performance when
starting from random improves significantly, but zero-shot transfer is again unsuccessful with rela-
tively large second motif errors during motif chaining (the light blue line in Fig. 2k, notice that the
increase of error during zero-shot transfer is of similar amount as for the step motifs).

Finally, we also investigated whether larger networks would somehow be more regularized in a
way that would favor zero-shot transfer performance. However, increasing the network size from
N = 300 to N = 1000 did not improve the performance during zero-shot transfer; instead, as
expected, it only improved accuracy when the network was initialized from random as in training
(Fig. 2k, cyan line vs. dark blue line).

The failure to robustly transition between motifs when training on single motifs that are randomly
initialized is a particular instance of an out-of-distribution generalization limitation, a general feature
of ANNSs (Russin et al} [2019; [D’ Amour et al.l [2020). Not only is the shape of the true marginal
distribution of the values of x/ ; at the end of a given motif not exactly matched to the statistics of
the Gaussian distribution used during training, but we also neglect the correlations and other higher
order interactions between the values of x4 ;. As these complex x/ ; statistics are shaped during

training, there is a self-consistency issue between initialization during training and resulting x%, ;.

Note that trying to avoid this issue by including all transitions between motifs in the training set
(Fig. [Tk, left) would scale quadratically with the number of motifs and is thus ultimately prohibitive.
Further, even including a few motifs transitions in the training set would disrupt the sequential learn-
ing strategy that prevents the training set to grow over time in a continual learning setting. Indeed, on
the one hand, sequential training would require motif parameters to only be trained for transitioning
from previously learned motifs - which would compromise the robustness of the motifs that were
learned earlier, especially if the motifs’ properties change over the ’life’ of the agent. On the other
hand, re-training earlier-learned motifs to improve their accuracy when they are initialized from
later-learned motifs causes the training set to grow with the number of learned motifs, and runs the
risk of modifying the network’s end-of-motif activity for these re-trained motifs, which could in turn

Under review as a conference paper at ICLR 2022

affect the transitioning from these motifs to any others. Another naive attempt to solve the transition
issue would be to train all motifs from a fixed arbitrary network state, and to implement a hard reset
to this state before each motif. However, this strategy would introduce detours at transitions in case
of discrepancy between two motif’s end and start points — and would more generally prevent the
RNN’s dynamics to use the implicit information about the previous motif’s shape encoded into its
internal state in order to implement a smooth transition to the next motif. As a side note, training
single motifs initialized with a reset from a noiseless fixed state would not be noise robust (Fig.[I6h),
while using a noisy reset actually corresponds to testing and training our networks on random ini-
tial conditions — and we will show below that, besides introducing detours at transitions, this naive
strategy leads to impaired learning and poorer performance compared to our biologically-inspired
solution. To address these issues, we will now leverage insights from the brain’s motor network.
This is promising because human behavior demonstrates that the brain has acquired inductive biases
that enable zero-shot motor sequence improvisation with agile transitions between motifs.

4 BRAIN-INSPIRED INDUCTIVE BIASES IMPROVE ACCURACY & ROBUSTNESS

Recordings from the brain’s motor cortex during flexible sequencing indicate that a period of mo-
tor preparation precedes every motif in a sequence (Zimnik & Churchland, |2021)). This preparation
leads the activity to quickly converge towards a motif-specific pattern (Lara et al.,2018)). This motor
preparation process involves interactions between the recurrent motor cortex and thalamus (Nashef]
et al. [2021) — a brain region whose neurons quickly respond to cortical input and then projects
back to cortex, forming feedback loops that effectively act as perturbations of the effective cortical
connectivity (Kao et al., 2020; [Logiaco et al} 2019). In a computationally limited linear regime,
previous work has shown that this preparatory perturbation can be linked to the optimal control so-
lution to bring the cortical activity towards the unique motif-specific stable state instructed by an
external input provided to cortex (Kao et al.,[2020; Logiaco et al.,[2019). However, the dynamics of
the continuously nonlinear RNNs that we and modern ML practitioners consider (Maheswaranathan
et al.l 2019; Wytfels & Schrauwen, [2009; |Sussillo & Abbott, [2009; Tani, [2003}; Liu et al., 2019}
Merel et al., 2019a) are richer and qualitatively different from this linear regime, and do not allow
setting the parameters through analytics as done in the former neuroscience works (Kao et al.,[2020;
Logiaco et al.,[2019)). Indeed, in this limited linear regime, (i) single motifs could not be produced in
response to a simple static input (Logiaco et all 2019) — whereas the RNNs can (Fig. [2); (ii) spon-
taneous activity decays to zero, whereas units are spontaneously active in our networks (Fig. 3p,
‘prior learning’ curves, (Sompolinsky et al.,|1988)); and (iii) a single stable fixed point exists, while
continuously nonlinear RNNs can exhibit multistability (Maheswaranathan et al.,[2019). Therefore,
it is unclear whether such a preparatory connectivity perturbation can be successfully trained with
gradient descent to shape a convergence phase in the more powerful performance-optimized contin-
uously nonlinear RNNs. Also, to draw conclusions about the functionality and applicability of the
preparatory connectivity perturbation, it is critical to determine whether it can act in synergy with
gradient descent training of the motif-specific parameters in the continuously nonlinear RNNs. To
answer these questions, we first design a training protocol for a preparatory connectivity perturba-
tion (that we call ‘preparatory module’, Fig. [3a left). This training is done once and for all before
learning any motif; details are in[A.5.T|and we summarize the procedure below. We want to train the
weights Upep Ve that can shape fast convergence to zero activity in the absence of input in non-
linear RNNs. To do so, we initialized the network activities with standard random initial x values
and trained using the cost function), ||r(t) I (Fig.), while the dynamics of our networks obey:

% = —x+ (¢*T + UprepVgrep) tanh(x)

where g% is g* or g™ for the additive and multiplicative networks respectively. We initialized the

weights Upep and Vi, with centered Gaussian with std 4/0.05/v P N, with P = 50 (though
smaller values of P give similar results as long as P/N is more than a few percent).

Then, with the thalamic preparatory modules in hand (whose weights are then fixed), we trained
additive and multiplicative networks on individual motifs with the network activities x randomly
initialized with a standard Gaussian, but starting each motif with a motif preparation period now
also involving a motif-specific input (Fig.[3p). For the additive network, our only modification from
before is that we included the thalamic preparatory module in the network dynamics for the first 57:

TX = —X + (gad.] +]lt§5TUprepVgrep) tanh(x) + bH'

Under review as a conference paper at ICLR 2022

a min [[tanh(x)]|2 dt pﬁor \ia{mng C
— - prep
Y= — T aﬂer learning
Tx= =X+ (gJ+U V',) tanh(x) e & Vi — add,; N=300; std=1; oscill. motifs
- - add. with prep; N=300; std =1; oscill. motifs
g
_, - = 04
e S)
SeEE £
5 03
3
~ *%
w 02
wv
£ /
0 5 10 c 01 5
preparatory module Time (number of 7)) g -------------- ©
moufz Gauss\an iid init. From other motifs (test)
With preparation Without preparatlon ’_U‘[rﬂ —ru_lqrﬁ
d __ From random From other motifs From random From other motifs e
;7/\/_\/ /\/\/ ?/\/_/ —03
y = g°
rmse: 0.074 rmse: 0.038 rmse: 0.128 rmse: 0.440 o FR*
£ "0
® =
> go2
l —_ | — N
shN — \ . 2
° S N/ - w
-] N\ rmse: 0.043 _/ rmse:0.038 | | " rmse: 0.112 ~ rmse: 0.227 A
N = - two-inputs; N=150
| N <01 300 params OB St =1 s p motifs
7 1 5
| v £
rmse: 0.411 } M rmse: 0.410
o Gaussian iid init. From other (interrupted)
N motifs (test)
f (i, i)
w Ve r_ﬂ Panrn B n
mse: 0332 M e 033 i

Figure 3: Improvisation of motif sequences by RNNs with thalamocortical insights.a) Training
a preparatory module consisting of P loops weights forming a perturbation Upyep, Vrep Of the con-
nectivity, for a strongly nonlinear network. b) Training the motif-specific parameters in the additive,
multiplicative and two-input architectures. ¢) Average root mean square error over motifs during
training conditions vs. during transitioning, in the additive and multiplicative architectures; and with
or without preparatory module. Ten step motifs are used. d) Example network performance when
initializing the network state with the same random distribution as during training, as opposed to
when transitioning from another motif. e) Same as ¢ but comparing additive and two-inputs archi-
tectures using more motif transitions. Stars indicate a significant error increase (signed rank test).

For the multiplicative network, to make a more direct comparison with the thalamocortical model
(Appendix @, we set the dynamics such that the input b, and loop u,,v], were only active during
the preparatory and post-preparatory periods respectively:

)X = —x+ (g™JI + Li<s5r Uprep Virep +]lt>57uuvl) tanh(x) + Li<s-b,.

First, the RNNs trained with a preparatory module are much more accurate even during the pro-
duction of single motifs initialized with the same distribution as used during training, especially
for the more difficult step motifs (=~ 50%, Fig. 3t and d, left). This strongly suggests that, when
training with random initialization, the imposition of fast network dynamics by the preparatory mod-
ule allows the tuned preparatory input to more efficiently steer the dynamics to explore and find a
motif-specific network state that leads to more accurate motif production (Kemeth et al.,|2021). Ac-
cordingly, we find that the preparatory module speeds up learning (see [A.6.4). After training, the
preparatory module also helps converging quickly to the correct motif-specific network state. Con-
versely, without the preparatory module, the motif-specific parameters appear to struggle to support
accurate motif production on their own (create fast dynamics at motif start, shape the pattern towards
which activity must converge, and modulate the shared RNN dynamics during motif production).

Second, the RNNs trained with a preparatory module are now able to tackle zero-shot transfer to
chains of motifs at no performance cost, while driving smooth interpolating transitions (Fig[Bk-e,
Fig[T4] top right). This strongly argues that the preparatory module shapes a wide attractive land-
scape at motif start that includes the complex correlated network states reached at the end of motifs.

Third, through nonlinear interactions between the preparatory input and the rich dynamics of the
RNNs, our networks can match the motifs’ shapes during preparation (Fig. 3, first two rows). This
is another advantage of our RNNs over the above-mentioned dynamically limited models (which can
only implement a motif-independent interpolation during preparation, besides having more limited
expressivity (Kao et al| (2020); Logiaco et al.| (2019) and Appendix @) This enables robust,
accurate and plausible motif transitions without any tuning of the duration of the preparatory period.

Under review as a conference paper at ICLR 2022

Finally, we want to stress the advantages of the preparatory connectivity perturbation Uprep Vrep
compared to possible alternative approaches that would only try to match the apparent timecourse of
the neural activity during preparation in the brain (Sussillo et al.| 2015} Zimnik & Churchland,[2021).
First, the preparatory loops can modulate the dynamics in a unit-specific way to create efficient
convergence with a subtle modulation of the RNN connectivity (Fig.[12p,d). This is the reason why
the preparatory input can still interact with the rich RNN’s recurrent connectivity, which allows this
input to shape the output into the desired motif even during preparation. Second, because these loops
are not tuned for any particular motif, they can be optimized once and for all, and do not impose any
additional cost when learning new motifs. Instead, when considering naive ways of setting specific
dynamics at the beginnings of motifs such as using a second motif-specific input at the start of each
motif (‘two-inputs’ approach, Fig. [3k), any parameter used for preparation scales with the number
of motifs. We made this ‘two-inputs’ approach comparable to our preparatory module approach by
applying the first input the network for the first 57 of the motifs and then a second input during
the remainder of the motif, and by equalizing the number of parameters involved (as we had done
between the additive and multiplicative network) by setting N = 150. We found that this strategy
led to both decreased accuracy and robustness compared to using our preparatory module, with both
effects combining to a large (= 40%) increase in RMSE during transitioning. We could precisely
assess the transitions robustness in these networks this by using an extended motif transition data set
(Fig.[3p). More precisely, we considered transitions between pairs of step motifs where the transition
occurs at fractions of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 of the total duration of the first motif (e.g. Fig.
right, bottom). This is a more challenging task — that involves a larger variety of network states
from which to transition than before (then, we only considered the 100% scenario where all motifs
ended at the same value: zero). For these transitions, the ‘two-inputs’ network showed a significant
increase in error — including occasional very large errors for some transitions, see Appendix[A.5.2]—
compared to initializing motifs with the randomness used during training. In contrast, the additive
network had equally robust performance in both conditions (Fig. [3f). Thus, our results argue that
using brain insights to constrain the architectures of networks has advantages, even beyond taking
inspiration from the biological activity patterns (Li et al.,|2019; |Sinz et al., 2019} |Zador, 2019).

5 DISCUSSION

We found that when trained on many randomly initialized single motifs, gradient-trained nonlinear
RNNSs struggle during zero-shot transfer to new sequence orders. This is relatively surprising given
that such RNNs are known to be able to learn attractive trajectories (Laje & Buonomanol 2013;
Sussillo & Abbott, 2009; Pollock & Jazayeri, |2020). This suggests that training mostly constrains
the readout dimension in our setting. This is both a blessing - as it is the ultimate reason why dif-
ferent motifs can efficiently share parameters and thus benefit from a common dynamical baseline
that is only partially modulated, without being hurt by irrelevant aspects of the dynamics (Logiaco
et al., |2019; Russo et al., |2018) - and a curse as it makes flexible motif chaining difficult. In this
context, we show that using a preparatory module whose architecture is brain-inspired and who im-
poses a dynamics that mimics motor cortical activity during hierarchical motor sequencing (Zimnik
& Churchland| 2021)) can efficiently enable zero-shot transfer to new sequence orders. Even more
surprisingly, introducing the preparatory module in the nonlinear RNNs actually sizably improves
single motif training such that the motifs are also more accurate during training conditions. These
results reveal a general function for motor preparation specifically for flexible chaining of motor
motifs, and show that it is not a byproduct of arbitrary biological hardware constraints or of the
restricting assumptions made by previous models to allow for analytical tractability (Logiaco et al.|
2019; Kao et al.| [2020). Therefore, ultimately, for the application to robotics control - at least in a
context where intrinsic dynamics matter (Liu et al., 2019;|Yeo et al.,[2016) - this preparatory module
could be very useful (i) to increase accuracy, (ii) to enable smooth transitions governed by dynamics
that can be tuned to avoid passing through undesirable states, and (iii) to offer a mechanism for
learning appropriate transition times by gradient descent - which are all current challenges for state-
of-the-art networks (Merel et al. 2019aib). In addition, our approach is extendable to combining
recurrent dynamics - useful in contexts where sensory feedback is not fully reliable (Yeo et al., 2016
Liu et al.l 2019) - with corrections driven by sensory inputs (Guo et al., 2019). Our work therefore
joins several recent calls outlining the need to infuse ANNs with more expert domain knowledge in
order to achieve good generalization in real-world scenarios involving out-of-distribution general-
ization and zero-shot transfer (Russin et al., 2019; D’ Amour et al., 2020; Zador, [2019).

Under review as a conference paper at ICLR 2022

REFERENCES

Bjorn Brembs. The brain as a dynamically active organ. Biochemical and Biophysical Research
Communications, 564:55-69, July 2021. doi: 10.1016/j.bbrc.2020.12.011. URL https://
doi.org/10.1016/7.bbrc.2020.12.011!.

R. Brooks. A robust layered control system for a mobile robot. IEEE Journal on Robotics and
Automation, 2(1):14-23, 1986. doi: 10.1109/jra.1986.1087032. URL https://doi.org/
10.1109/9ra.1986.1087032,

Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. Capacity and trainability in recur-
rent neural networks. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=BydARw9ex.

Alexander D’ Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdi-
ari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yian Ma,
Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan,
Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica
Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymy-
rov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, and D. Sculley.
Underspecification presents challenges for credibility in modern machine learning, 2020.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre M. Bayen, Stuart Russell, Andrew
Critch, and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised envi-
ronment design. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
can, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
985e9a46e10005356bbafl194249f6856-Abstract.html.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for contin-
ual learning. CoRR, abs/1910.07104, 2019. URL http://arxiv.org/abs/1910.07104.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
URLhttps://openreview.net/forum?id=SyX0IeWAW.

Claire E. Geddes, Hao Li, and Xin Jin. Optogenetic editing reveals the hierarchical organization of
learned action sequences. Cell, 174(1):32—43.e15, June 2018. doi: 10.1016/j.cell.2018.06.012.
URL https://doi.org/10.1016/7.cell1.2018.06.012.

Jian-Zhong Guo, Britton Sauerbrei, Jeremy D. Cohen, Matteo Mischiati, Austin Graves, Ferruccio
Pisanello, Kristin Branson, and Adam W. Hantman. Dynamics of the cortico-cerebellar loop fine-
tune dexterous movement. bioRXiv, May 2019. doi: 10.1101/637447. URL https://doi.
org/10.1101/637447.

Zengcai V. Guo, Hidehiko K. Inagaki, Kayvon Daie, Shaul Druckmann, Charles R. Gerfen, and
Karel Svoboda. Maintenance of persistent activity in a frontal thalamocortical loop. Nature,
545(7653):181-186, May 2017. doi: 10.1038/nature22324. URL https://doi.org/10.
1038 /nature22324.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical
Movement Primitives: Learning Attractor Models for Motor Behaviors. Neural Computation, 25
(2):328-373, 02 2013. ISSN 0899-7667. doi: 10.1162/NEC0O_a_00393. URL https://doi.
org/10.1162/NECO_a_00393.

Herbert Jaeger. Echo state network. Scholarpedia, 2(9):2330, 2007. doi: 10.4249/scholarpedia.
2330. URL https://doi.org/10.4249/scholarpedia.2330.

10

https://doi.org/10.1016/j.bbrc.2020.12.011
https://doi.org/10.1016/j.bbrc.2020.12.011
https://doi.org/10.1109/jra.1986.1087032
https://doi.org/10.1109/jra.1986.1087032
https://openreview.net/forum?id=BydARw9ex
https://proceedings.neurips.cc/paper/2020/hash/985e9a46e10005356bbaf194249f6856-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/985e9a46e10005356bbaf194249f6856-Abstract.html
http://arxiv.org/abs/1910.07104
https://openreview.net/forum?id=SyX0IeWAW
https://doi.org/10.1016/j.cell.2018.06.012
https://doi.org/10.1101/637447
https://doi.org/10.1101/637447
https://doi.org/10.1038/nature22324
https://doi.org/10.1038/nature22324
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.4249/scholarpedia.2330

Under review as a conference paper at ICLR 2022

Ta-Chu Kao, Mahdieh S. Sadabadi, and Guillaume Hennequin. Optimal anticipatory control as a
theory of motor preparation: a thalamo-cortical circuit model. bioRxiv, 2020. doi: 10.1101/
2020.02.02.931246. URL https://www.biorxiv.org/content/early/2020/02/
06/2020.02.02.931246.

Matthew T Kaufman, Mark M Churchland, Stephen I Ryu, and Krishna V Shenoy. Cortical activity
in the null space: permitting preparation without movement. Nature Neuroscience, 17(3):440-
448, February 2014. doi: 10.1038/nn.3643. URL https://doi.org/10.1038/nn.3643.

Felix P. Kemeth, Tom Bertalan, Nikolaos Evangelou, Tianqi Cui, Saurabh Malani, and loan-
nis G. Kevrekidis. Initializing Istm internal states via manifold learning. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 31(9):093111, Sep 2021. ISSN 1089-7682. doi:
10.1063/5.0055371. URL http://dx.doi.org/10.1063/5.0055371.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forget-
ting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521-3526,
2017. ISSN 0027-8424. doi: 10.1073/pnas.1611835114. URL https://www.pnas.org/
content/114/13/3521.

Tomas Kulvicius, KeJun Ning, Minija Tamosiunaite, and Florentin Worgtter. Joining movement se-
quences: Modified dynamic movement primitives for robotics applications exemplified on hand-
writing. IEEE Transactions on Robotics, 28(1):145-157,2012. doi: 10.1109/TRO.2011.2163863.

Rodrigo Laje and Dean V Buonomano. Robust timing and motor patterns by taming chaos in
recurrent neural networks. Nature Neuroscience, 16(7):925-933, May 2013. doi: 10.1038/nn.
3405. URL https://doi.org/10.1038/nn.3405.

Brenden M. Lake and Marco Baroni. Still not systematic after all these years: On the compositional
skills of sequence-to-sequence recurrent networks. CoRR, abs/1711.00350, 2017. URL http:
//arxiv.org/abs/1711.00350.

Itamar Daniel Landau and Haim Sompolinsky. Coherent chaos in a recurrent neural net-
work with structured connectivity. PLOS Computational Biology, 14(12):¢1006309, December
2018. doi: 10.1371/journal.pcbi.1006309. URL https://doi.org/10.1371/journal.
pcbi.1006309.

Antonio H Lara, Gamaleldin F Elsayed, Andrew J Zimnik, John P Cunningham, and Mark M
Churchland. Conservation of preparatory neural events in monkey motor cortex regardless of
how movement is initiated. eLife, 7, August 2018. doi: 10.7554/elife.31826. URL https:
//doi.org/10.7554/elife.31826.

Zhe Li, Wieland Brendel, Edgar Y. Walker, Erick Cobos, Taliah Muhammad, Jacob Reimer,
Matthias Bethge, Fabian H. Sinz, Xaq Pitkow, and Andreas S. Tolias. Learning from brains
how to regularize machines. CoRR, abs/1911.05072, 2019. URL http://arxiv.org/abs/
1911.05072.

Libin Liu and Jessica Hodgins. Learning to schedule control fragments for physics-based characters
using deep g-learning. ACM Transactions on Graphics, 36(3):1-14, July 2017. doi: 10.1145/
3083723. URL|https://doi.org/10.1145/3083723.

Vincent Liu, Ademi Adeniji, Nathaniel Lee, Jason Zhao, and Mario Srouji. Recurrent control nets

for deep reinforcement learning. CoRR, abs/1901.01994, 2019. URL http://arxiv.org/
abs/1901.01994.

11

https://www.biorxiv.org/content/early/2020/02/06/2020.02.02.931246
https://www.biorxiv.org/content/early/2020/02/06/2020.02.02.931246
https://doi.org/10.1038/nn.3643
http://dx.doi.org/10.1063/5.0055371
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.pnas.org/content/114/13/3521
https://www.pnas.org/content/114/13/3521
https://doi.org/10.1038/nn.3405
http://arxiv.org/abs/1711.00350
http://arxiv.org/abs/1711.00350
https://doi.org/10.1371/journal.pcbi.1006309
https://doi.org/10.1371/journal.pcbi.1006309
https://doi.org/10.7554/elife.31826
https://doi.org/10.7554/elife.31826
http://arxiv.org/abs/1911.05072
http://arxiv.org/abs/1911.05072
https://doi.org/10.1145/3083723
http://arxiv.org/abs/1901.01994
http://arxiv.org/abs/1901.01994

Under review as a conference paper at ICLR 2022

Laureline Logiaco, L.F. Abbott, and Sean Escola. A model of flexible motor sequencing
through thalamic control of cortical dynamics. bioRxiv, 2019. doi: 10.1101/2019.12.17.
880153. URL https://www.biorxiv.org/content/early/2019/12/18/2019.
12.17.880153.

Niru Maheswaranathan, Alex H. Williams, Matthew D. Golub, Surya Ganguli, and David Sussillo.
Universality and individuality in neural dynamics across large populations of recurrent networks,
2019.

Josh Merel, Arun Ahuja, Vu Pham, Saran Tunyasuvunakool, Siqi Liu, Dhruva Tirumala, Nicolas
Heess, and Greg Wayne. Hierarchical visuomotor control of humanoids. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019a. URL https://openreview.net/forum?id=BJfYvo09Y7.

Josh Merel, Matthew Botvinick, and Greg Wayne. Hierarchical motor control in mammals and
machines. Nature Communications, 10(1), December 2019b. doi: 10.1038/s41467-019-13239-6.
URL https://doi.org/10.1038/s41467-019-13239-6.

Nima Mohajerin and Steven L. Waslander. Multistep prediction of dynamic systems with recurrent
neural networks. IEEE Transactions on Neural Networks and Learning Systems, 30(11):3370—
3383, 2019. doi: 10.1109/TNNLS.2019.2891257.

Abdulraheem Nashef, Rea Mitelman, Ran Harel, Mati Joshua, and Yifat Prut. Area-specific tha-
lamocortical synchronization underlies the transition from motor planning to execution. Pro-
ceedings of the National Academy of Sciences, 118(6):¢2012658118, February 2021. doi:
10.1073/pnas.2012658118. URL https://doi.org/10.1073/pnas.2012658118|

Aran Nayebi, Javier Sagastuy-Brena, Daniel M. Bear, Kohitij Kar, Jonas Kubilius, Surya Ganguli,
David Sussillo, James J. DiCarlo, and Daniel L. K. Yamins. Goal-driven recurrent neural network
models of the ventral visual stream. bioRXiv, February 2021. doi: 10.1101/2021.02.17.431717.
URLhttps://doi.org/10.1101/2021.02.17.431717.

OpenAl OpenAl, Matthias Plappert, Raul Sampedro, Tao Xu, Ilge Akkaya, Vineet Kosaraju, Peter
Welinder, Ruben D’Sa, Arthur Petron, Henrique Ponde de Oliveira Pinto, Alex Paino, Hyeonwoo
Noh, Lilian Weng, Qiming Yuan, Casey Chu, and Wojciech Zaremba. Asymmetric self-play for
automatic goal discovery in robotic manipulation, 2021.

German 1. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54-71, May 2019. doi:
10.1016/j.neunet.2019.01.012. URL https://doi.org/10.1016/7j.neunet.2019.
01.012.

Eli Pollock and Mehrdad Jazayeri. Engineering recurrent neural networks from task-relevant mani-
folds and dynamics. PLOS Computational Biology, 16(8):e1008128, August 2020. doi: 10.1371/
journal.pcbi.1008128. URL https://doi.org/10.1371/journal.pcbi.1008128.

Tony J. Prescott, Peter Redgrave, and Kevin Gurney. Layered control architectures in robots and
vertebrates. Adaptive Behavior, 7(1):99-127, 1999. doi: 10.1177/105971239900700105. URL
https://doi.org/10.1177/105971239900700105.

Jacob Russin, Randall C. OReilly, and Yoshua Bengio. Deep learning needs a prefrontal cortex. In
Yoshua Bengio and Yann LeCun (eds.), 8th International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2020, Workshop on Bridging Al and Cognitive
Science, 2019.

Abigail A. Russo, Sean R. Bittner, Sean M. Perkins, Jeffrey S. Seely, Brian M. London, Antonio H.
Lara, Andrew Miri, Najja J. Marshall, Adam Kohn, Thomas M. Jessell, Laurence F. Abbott,
John P. Cunningham, and Mark M. Churchland. Motor cortex embeds muscle-like commands in
an untangled population response. Neuron, 97(4):953-966.e8, February 2018. doi: 10.1016/j.
neuron.2018.01.004. URL https://doi.org/10.1016/j.neuron.2018.01.004.

12

https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.880153
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.880153
https://openreview.net/forum?id=BJfYvo09Y7
https://doi.org/10.1038/s41467-019-13239-6
https://doi.org/10.1073/pnas.2012658118
https://doi.org/10.1101/2021.02.17.431717
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1371/journal.pcbi.1008128
https://doi.org/10.1177/105971239900700105
https://doi.org/10.1016/j.neuron.2018.01.004

Under review as a conference paper at ICLR 2022

Friedrich Schuessler, Alexis Dubreuil, Francesca Mastrogiuseppe, Srdjan Ostojic, and Omri Barak.
Dynamics of random recurrent networks with correlated low-rank structure. Physical Review
Research, 2(1), February 2020a. doi: 10.1103/physrevresearch.2.013111. URL https://doi.
org/10.1103/physrevresearch.2.013111.

Friedrich Schuessler, Francesca Mastrogiuseppe, Alexis Dubreuil, Srdjan Ostojic, and Omri
Barak. The interplay between randomness and structure during learning in rnns. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 13352-13362. Curran Asso-
ciates, Inc., 2020b. URL https://proceedings.neurips.cc/paper/2020/file/
9acl382fd8fc4d4b631594aal3bdload/5-Paper.pdfl

K. V. Shenoy, M. Sahani, and M. M. Churchland. Cortical control of arm movements: a dynamical
systems perspective. Annu. Rev. Neurosci., 36:337-359, Jul 2013.

Fabian H. Sinz, Xaq Pitkow, Jacob Reimer, Matthias Bethge, and Andreas S. Tolias. Engineering
a less artificial intelligence. Neuron, 103(6):967-979, September 2019. doi: 10.1016/j.neuron.
2019.08.034. URL https://doi.org/10.1016/j.neuron.2019.08.034.

H. Sompolinsky, A. Crisanti, and H. J. Sommers. Chaos in random neural networks. Phys. Rev.
Lett., 61:259-262, Jul 1988. doi: 10.1103/PhysRevLett.61.259. URL https://link.aps.
org/doi/10.1103/PhysRevLett.61.2509.

Lee Susman, Francesca Mastrogiuseppe, Naama Brenner, and Omri Barak. Quality of inter-
nal representation shapes learning performance in feedback neural networks. Physical Re-
view Research, 3(1), February 2021. doi: 10.1103/physrevresearch.3.013176. URL https:
//doi.org/10.1103/physrevresearch.3.013176.

D. Sussillo, M. M. Churchland, M. T. Kaufman, and K. V. Shenoy. A neural network that finds a
naturalistic solution for the production of muscle activity. Nat. Neurosci., 18(7):1025-1033, Jul
2015.

David Sussillo and L.F. Abbott. Generating coherent patterns of activity from chaotic neural
networks. Neuron, 63(4):544-557, August 2009. doi: 10.1016/j.neuron.2009.07.018. URL
https://doi.org/10.1016/j.neuron.2009.07.018.

Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent neural networks.
In Lise Getoor and Tobias Scheffer (eds.), Proceedings of the 28th International Conference on
Machine Learning (ICML-11), ICML 11, pp. 1017-1024, New York, NY, USA, June 2011.
ACM. ISBN 978-1-4503-0619-5.

Jun Tani. Learning to generate articulated behavior through the bottom-up and the top-down inter-
action processes. Neural Networks, 16(1):11-23, January 2003. doi: 10.1016/s0893-6080(02)
00214-9. URL|https://doi.org/10.1016/s0893-6080(02)00214-9.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70
of Proceedings of Machine Learning Research, pp. 3540-3549. PMLR, 2017. URL http:
//proceedings.mlr.press/v70/vezhnevetsl7a.html.

Francis Wyffels and Benjamin Schrauwen. Design of a central pattern generator using reservoir
computing for learning human motion. In 2009 Advanced Technologies for Enhanced Quality of
Life, pp. 118-122, 2009. doi: 10.1109/AT-EQUAL.2009.32.

Kelvin Xu, Siddharth Verma, Chelsea Finn, and Sergey Levine. Continual learning of control
primitives : Skill discovery via reset-games. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
4999-5010. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/3472ab80b6dff70c54758fd6dfc800c2—-Paper.pdf.

13

https://doi.org/10.1103/physrevresearch.2.013111
https://doi.org/10.1103/physrevresearch.2.013111
https://proceedings.neurips.cc/paper/2020/file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf
https://doi.org/10.1016/j.neuron.2019.08.034
https://link.aps.org/doi/10.1103/PhysRevLett.61.259
https://link.aps.org/doi/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/physrevresearch.3.013176
https://doi.org/10.1103/physrevresearch.3.013176
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1016/s0893-6080(02)00214-9
http://proceedings.mlr.press/v70/vezhnevets17a.html
http://proceedings.mlr.press/v70/vezhnevets17a.html
https://proceedings.neurips.cc/paper/2020/file/3472ab80b6dff70c54758fd6dfc800c2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3472ab80b6dff70c54758fd6dfc800c2-Paper.pdf

Under review as a conference paper at ICLR 2022

Sang-Hoon Yeo, David W. Franklin, and Daniel M. Wolpert. When optimal feedback control is
not enough: Feedforward strategies are required for optimal control with active sensing. PLOS
Computational Biology, 12(12):¢1005190, December 2016. doi: 10.1371/journal.pcbi.1005190.
URLhttps://doi.org/10.1371/journal.pcbi.1005190.

Jaehong Yoon, Sachoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust con-
tinual learning with additive parameter decomposition. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=r1gdj2EKPB.

Anthony M. Zador. A critique of pure learning and what artificial neural networks can learn from
animal brains. Nature Communications, 10(1), August 2019. doi: 10.1038/s41467-019-11786-6.
URL https://doi.org/10.1038/s41467-019-11786-6.

Andrew J. Zimnik and Mark M. Churchland. Independent generation of sequence elements by motor
cortex. Nature Neuroscience, 24(3):412—424, February 2021. doi: 10.1038/s41593-021-00798-5.
URLhttps://doi.org/10.1038/s41593-021-00798-5.

A APPENDIX

A.1 FORMAL DEFINITION OF OUR PROBLEM SETTING

Here is how we formally define the task solved in our paper:

-Given a dynamical system D with (i) internal variables h (i.e., h(t) is defined through its derivative
with respect to the continuous time variable ¢) and (ii) the property that D can be in one of M
different states indexed by p (with p € 1... M, and M is large and a priori unknown), each lasting
a fixed duration ¢, such that whenever D is in state y, a function of the internal states I (h) exactly
follows a fixed continuous function g, (of length ¢,) that we term a ‘motif’. (Concretely, if a
particular trajectory of states [sa, s1, s3] is visited, F' (h(t)) is formed of the concatenation of three
continuous “motifs’ indexed by [s9, s1, S3].)

- Given a sequence of indices I = [py, ...px] that label a sequence of states undergone by D, where
Vi,p; € {1,...,M}

- Given labeled training examples that only contain a finite number T}, of discrete samples from
each continuous function g,,, and given that the learning from different g, can occur sequentially
and extendably without interference

- Find a function f which, for each function gy, is parameterized by a vector V,, of size Ny < T,
(where Ny is as small as possible) such that f(I;,Vi,...,Vas,dt) produces a time series cor-
responding to F' (h) when D undergoes the sequence of states ordered by I, with an adjustable
sampling interval given by d¢ (such that a smaller d¢ leads to a smoother time series).

Finally, we note that is also desirable that f be noise-robust.

In our work, we solve this problem using an RNN to implement the function f — a natural choice
given that it models a dynamical system D. In addition, the tunable motif-specific parameters V),
are either the input b, for the additive network, or the concatenation of the input b, and the loop
parameters u,, and v, in the multiplicative network. As we mention in the text, given that we work
in a continual learning setting where we would like to learn an extendable library of many motifs,
we are trying to limit the number of tuned parameters per motif Ny (table[I). This is important
for our networks to constitute viable solutions that can be built on for designing motor controllers,
because it is then desirable to limit both the memory requirements and the time needed to update the
state of the network.

Note that we ensured noise-robustness in our work by injecting noise during training in the hidden
state of our RNN (which, by a simple transformation of variable, is equivalent to injecting a trans-
formed noise into the input b,, received by the network). The larger component of the noise we
used consists in a random initialization of the network state, and this noise then propagates to later
timesteps through the recurrent dynamics (see section[A.6.3).

14

https://doi.org/10.1371/journal.pcbi.1005190
https://openreview.net/forum?id=r1gdj2EKPB
https://doi.org/10.1038/s41467-019-11786-6
https://doi.org/10.1038/s41593-021-00798-5

Under review as a conference paper at ICLR 2022

A.2 MOTIF GENERATION METHOD AND FULL LIST OF MOTIFS USED

For this study, we use two different types of motifs that challenge the dynamics of continuous time
RNNS: oscillatory motifs, that are easier to produce; and step motifs that are harder.

A.2.1 OSCILLATORY MOTIFS

To generate oscillatory motifs that would be relatively easy to produce by RNNs, we sampled the
output from a random Gaussian network with tanh nonlinearity set in the chaotic regime
sky et al.| [1988}; [Sussillo & Abbott, 2009} [Sussillo et al.} 2013). To make these motifs very easy and
possible to connect in ‘seamless’ chains, we also low-pass filtered the resulting trajectories.

Fig. []lists the oscillation motifs used in this paper.

motif: 1 motif: 2
2- 2 /\/\
°] ‘/\,_\/_/\ ’
-2 -2
motif: 3 motif: 4
] 2 A
04 /\/\/ 0
-2 -2
‘ motif: 5 ‘ ‘ ‘ ‘ ‘ ‘ motif: 6 ‘

o__/\/\ ,

motif: 7 motif: 8
24 2
° /\/\/\/ ’

motif: 9 motif: 10

_iﬁM N—

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
seconds seconds

Figure 4: Oscillatory motifs used in this paper.

A.2.2 STEP MOTIFS

These motifs consist of a series of positive and negative discrete jumps with intervening constant
periods. To generate a particular motif, we follow the following steps. First, we generate a centered

Ornstein—Uhlenbeck process z by running the dynamics dz/dt = —z + (’y/ \/%) x (t), where

x (t) is taken from a standard Gaussian independently at each timestep, dt=0.1 and v = 31/2 such
that the steady-state standard deviation of this process is 3. After a ‘warmup’ period of 200 dt that

15

Under review as a conference paper at ICLR 2022

we discard, we produce an additional 1000 dt of z-values that will be the basis for generating the
motif. Second, we draw random time intervals T} with a uniform probability between 50 dt and
500 dt and select the first few in a list [T7, 15, ..., Tj] such that Y7 _, T}, < 1000 d¢. Third, we set
the value of the motif between the start and time 7} to the average of the z-values over the same
time interval; and similarly for the subsequent intervals, the value of the motif between the times
[T;—1 + dt, Ti}ie[g,w %] is set to the average of the z-values over the corresponding interval. Finally,
we pad the end of the motif with zeros for 50dt and also reset the first value of the motif to 0.

Fig. B]lists the step motifs used in this paper.

motif: 1 motif: 2

motif: 3 motif: 4

|] |

— T

" motif. 5 ‘ ' ' ‘ "motif: 6

motif: 7 motif: 8

2 2
| ‘_\l—l—_r | 4\—’_L
2])
" motif. 9 ‘ ' ' ‘ ‘motif: 10

] | 1r

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
seconds seconds

Figure 5: Step motifs used in this paper.

A.3 PERFORMANCE OF ‘VANILLA’ RNNS

Here we show examples for the motif-by-motif performance of different ‘vanilla’ RNNss (i.e., with-
out a preparatory module) that relate to section 3 of the main text, where network training involves
producing single motifs from a random initialization of the network state. The networks are tested
both on new random initialization (in-distribution generalization) and during motif transitioning
(out-of-distribution generalization).

A.3.1 ADDITIVE NETWORK, N=300, STEP MOTIFS

In Fig. [6] we show an additive network of size 300 trained on the step motifs. This is a different
network than the one we show in the main text Fig. 2a (i)-(iii) but the conclusions are identical —

16

Under review as a conference paper at ICLR 2022

despite the presence of a small variability between different networks trained from different initial
seeds (see e.g. main text Fig. 1c).

When starting from random; When starting from other motifs:

(rmse) = 0.261 (rmse) = 0.392
JaY ¥ R
’ rmse: 0.309 rmse: 0.174 rmse: 0.492 rmse: 0.263
: A
’ rmse: 0.120 rmse: 0.144 rmse: 0.181 rmse: 0.208
5o PN
5 \ R 4 iy % U
mse: 0.275 rmse: 0.370 rmse: 0.476 rmse: 0.609
v : I
E I b v e Y7
rmse: 0.270 rmse: 0.197 rmse: 0.340 rmse: 0.313

Time (number of 7,)

Time (number of 7.)

Time (number of 7,)

Time (number of 7,)

Figure 6: Performance of an additive network, N=300, step motifs. Left: the network outputs for
each motif when starting from 9 different random x values. The saturations (light to dark) indicate
different trials. Right: network outputs for each motif when starting from the x values taken at the
end of the other 9 motifs. Colors indicate the identity of the prior motif (as labeled in the left panel).
Numbers indicate the root mean square errors (rmse) for each motif (and their average over motifs).

A.3.2 MULTIPLICATIVE NETWORK, N=100, STEP MOTIES

In Fig.[7] we show a multiplicative network of size 100 trained on the step motifs. This is a different
network than the one we show in the main text Fig. 2b but the conclusions are identical — despite the
presence of a small variability between different networks trained from different initial seeds (see
e.g. main text Fig. 1c). Note that the number of parameters tuned for motifs is adjusted relative to
the additive network of size 300 shown previously (main text table 1).

When starting from random: When starting from other motifs:
(rmse) = 0.255 (rmse) = 0.398

.
NS o W N« N A
50 L [S
: - >
rmse: 0.145 rmse: 0.661 rmse: 0.271 MD 964
’ rmse: 0.266 rmse: 0.201 rmse: 0.415 rmse: 0.226
3o O Y N —= T
: rmse; 0.101 rmse: 0.132 rmse: 0.305 rmse: 0.177
© e F 4 o -
rmse: 0.218 rmse: 0.410 rmse: 0.261 rmse: 0.754
»
S I AW s P~
T —v | | i
‘ rmse: 0.207 rmse: 0.211 rmse: 0.233 rmse: 0.372

Time (number of 7,) Time (number of 7.) Time (number of 7,) " Time (number of)

Figure 7:
Figure[6]

Performance of a multiplicative network, N=100, step motifs. Conventions as in

17

Under review as a conference paper at ICLR 2022

A.3.3 ADDITIVE NETWORK, N=1000, STEP MOTIFS

In Fig. [8] we show an additive network of size 1000 trained on the step motifs. Notice that while
increasing the network size improved the performance when starting from the random initialization
used during training, there are still large errors when transitioning from other motifs.

When starting from random When starting from other motifs
(rmse) = 0.201 (rmse) = 0.44

5 | N,
Rl U g = ;
? rmse: 0.140 rmse: 0.402 rmse: 0.296

S s =AY

rmse: 0.243 rmse: 0.130 rmse: 0.488

rmse: 0,108 rmse: 0.122 rmse: 0.230

"4 4
rmse: 0.210 rmse: 0.322 rmse: 0.425 rmse: 0.846

' [. - - B
:CR P \r m'— — 1Y%
Y rmse; 0.189 rmse: 0.140 : rmse: 0.413 rmse: 0267

)) Time (number of 1) Time (number of 7,)

Time (number of 7,) Time (number of 7,)

Figure 8: Performance of an additive network, N=1000, step motifs. Conventions as in Figure
6

A.3.4 ADDITIVE NETWORK, N=300, OSCILLATORY MOTIFS

In Fig.[9] we show an additive network of size 300 trained on the oscillatory motifs. Notice that
while, with these easier motifs, the performance is really good when starting from the random ini-
tialization used during training (as compared to the performance for the step motifs), there are still
large errors when transitioning from other motifs. Also, we want to stress that, during sequencing,
even when focusing on a particular first motif, the network performance can be very different de-
pending on the identity of the second motif. For instance, let’s focus on the light green motif in the
panel ‘When starting from random’, bottom row on the left - the sequences where this motif is the
first motif are shown as green traces in the panel “When starting from other motifs’. When this green
light motif is the first motif in a sequence, the performance is almost flawless for following the motif
in the panel “When starting from other motifs’, second line on the left. In contrast, the performance
is very poor for another following motif situated in the panel “When starting from other motifs’,
fourth line on the right.

A.3.5 CONTROL NETWORK, N=50, STEP MOTIFS

In Fig. we show a control network of size 50 trained on the step motifs. Like the additive and
multiplicative networks, this control network struggles when generalizing from single motif training
to motif sequencing.

A.4 ANALYTICALLY TRACTABLE THALAMOCORTICAL MODEL

Here, we summarize the insights that can be gained from an analytically tractable thalamocortical
model whose switching linear dynamics are constrained to stay in the linear regime during individ-
ual motif preparation and execution ((Logiaco et al.|[2019), see also (Kao et al.,|2020)). Importantly,
the constraints on the dynamics of this model largely limit its computational capacity, and no on-
line learning method has been suggested for this model so that the approach is strongly limited to
simple scenarios where analytical tractability is possible. The work set forth in the main text is
therefore critical to test and expand the ideas of this model in a setting that is amenable to solving
useful tasks in an engineering sense, and for determining whether the biological features included in

18

Under review as a conference paper at ICLR 2022

Figure 9:
Figure[6]

When starting from random:

When starting from other motifs:
0.221

s —~ M ~ o~ AN <
SV N o “

2 rmse: 0.106 rmse: 0.138 rmse: 0.175 rmse: 0.252
s, M /\ M M/\\
3. £

2 rmse: 0.113 rmse: 0.098 rmse: 0.126 rmse: 0.227
3 .

Performance of an additive network, N=300, oscillatory motifs. Conventions as in

rmse: 0.069

wuz

rmse: 0.154

M?N

—“rmse: 0.084

N

rmse: 0.128

%\"'r/m;e_{lil

A

rmse: 0.440

~_

rmse: 0.130

Mw

M

rmse: 0.218

T % @ w @ m
Time (number of 75)

I NGNS
Time (number of 75)

When starting from random:

T W @ w @ m
Time (number of T5)

NGNS
Time (number of t5)

When starting from other motifs:
0.533

2 i
© i
2 rmse: 0.182 rmse: 0.444 rmse: 0.214
2
\ —
. \ N7 "
30 b) N S
E m b~ L W J e NV
z rmse: 0.366 rmse: 0.196 v rmse: 1.060 rmse: 0.382
2
) . ~— N s
E I s U —_ o N
z rmse: 0.128 rmse: 0.161 rmse: 0.274 rmse: 0.241
5. 5y , Q R —
rmse: 0.239 ! rmse: 0.359 rmse: 0.571 rmse: 0.602
: "\ NAW',
ED | N o N 1
© | —-— {
2 rmse: 0.257 ! rmse: 0.246 rmse: 0.419 rmse: 0.366

T % @ & % I NS T & @ w @ wm NGNS
Time (number of 75) Time (number of 75) Time (number of 75) Time (number of T5)

Figure 10: Performance of a control network, N=50, step motifs. Conventions as in Figure[6]

this model might have been selected as generally useful rather than reflecting random evolutionary
idiosyncracies.

The model consists of a recurrent cortical module with connectivity J°° and activities x whose
projection through the readout weights w constitutes the output. This cortical module interacts
with a non-recurrent thalamic module through instantaneous loops consisting of corticothalamic
and thalamocortical weights. The basal ganglia, which provides inhibitory input into thalamus,
are modeled as selectively disinhibiting specific thalamic loops in order to cause execution of the
associated motif.

Motif execution: During motif i, a single thalamic loop is disinhibited leading to the dynamics:

Tk =J,x, where J,=g(J°—1I)+u,v], M

with motif-specific loop vectors u, and v]. We now consider how these dynamics can approx-
imate a desired output 3, knowing that in general a good approximation for g, can be reached
through a (preliminarily numerically identified) linear combination of a small number K of com-

plex exponentials: y,(t) ~ y,(t) = ZkK:I[du}ke[j‘“]kt (see main text Fig. 1d; (Logiaco et al.,

19

Under review as a conference paper at ICLR 2022

a « init. matrix & —Targetmort d Gaussianiid initialization Transitioning from
loperturb matrix A, — low-dim eigenmode approx. other motifs (test)
t, - -~ readout (no noise)
= desired X% ° — readout frandom uY_Init. noise " §
Ci o % s " o |— readoutiftunedu J 5% of signal rand. w Jfrom, w
u © o eof
o 8 ° " » ce : rand. frol
02 ° 02 % | init. mot3
_ 0 % 06°0 g ag e
Sl e o0 %% %, , rand.w from w
£ o % 5 "e'a o o init. motif 4
© P00, ® 4 a0 . from
0z o o0 5% ' rand: w motif 5 w
°, @
N 0 g 0w, .o X
o ® o9 °% rand. w from w
° o g B N init. motif 6
" S rand. from
1 08 06 04 02 0 4 > Py ® @ 0 init. motif 7
Real (1) Time (number of z,)
rand. from
. thalamic T init. motif8
transition module e Init.ma o
" . — expectation lated
(for any motif) 0 perturb matrix 2. . ! =: individual trials }‘:(«’n Tex rf'r.r:(d,' w n%oﬁ?g w
@) B L N “‘ — expectation }(cortex
B a b ° . - individual trials J \prep. thal, rand. frol
“ o £ init. motif 10
< 5 . 0 50 100 0 50 10
seady-state £ I3 - rand. L_J“—__— from m_.
steady-state = _ 5 init. motif1
- = .. . Z o
x it ° LS 02 —c rand. from
u Sl init. motif 2
/ T TR T o : h rand. L__f—__, from. m_,__
readout Real (1) Time (number of z,) init. mot
. rand. L__—fﬂ__— from L'J"—\.___—
C N(u=0,6-1) N(p=0,0=1) init. motif 4
initial 2 initial 2
& . rand. from
xoGes XU Ges and LI—_— froms va—__,
2 = readout 2 init. motif 6
= motif 1 d f
4 - a rand. Tom
: = motif2 md |~ fom, [
' rand. from
o . init. motif 8
2 rand. frol
' init. L.—f_—\"__’ mo;a?’wou_\'——
‘ o o = B ® o I 2o o 2 e o & o 2 @0 o 8
Time (number of 7,) Time (numberofz,) Time (number of z,) Time (number of z,)
e 05 _ f 205
= motif 1 ‘6
04 = motif 2 €04
- motif 5 o e s
: — multiplicative, std
; o2 — i E)/ 03 — tha\ar‘ﬂo(om(al
o —mm
o- b4 w — add. w/ prep. net.
<02 @ b w 0.2
- _ a b € e—
9 4 [~
0.1 c 0.1
©
9}
Gaussian iid init. From other Gaussian iid init. From other
ns, p>0.05 motifs (test) motifs (test)

Figure 11: Robust transitions in thalamocortical model. a) Adjusting a motif-specific loop
through the thalamic unit t5 (i.e. motor preparation, left), leading to the control of both eigenvalues
(middle) and eigenvectors of the dynamics x(¢) such that the readout robustly follows motif 2 (right).
b) Thalamic module used for all motif transitions (which involves preparation of the cortical state
to execute the next motif, left). After optimization, the thalamic module sets the eigenvalues of the
dynamics to be more negative (middle) which results in a fast decrease of the distance to steady-
state |0x| (right). ¢) Example sequences. d) Example trials starting from standard Gaussian random
initial conditions vs. when transitioning from other motifs. e) Change of root mean square error for
each motif between random initialization and zero-shot transfer to motifs transitions (not significant
as per signed rank test). f) Comparing the performance between the thalamocortical model and the
models presented in the main text, for both random initialization and zero-shot transfer to motifs
transitions.

2019)). The cortical readout can exactly match 7, if the eigenvalues of J contain the entries of
the vector A, and if the initial network activities xi;it are set correctly. We accomplish the former
(Fig.) by setting v,, = LT diag(Lu,,) "' Q™ 1, where L is the left eigenvector matrix of J°¢, and
Qr; = 1/([Aulk = Aj) where A; is an eigenvalue of g (J°¢ —I). Next, we set the initial activities at
the beginning of motif 1 to Xim =R, diag(Rlle)*la » where R, contains right eigenvectors of

J,, (with the first K columns corresponding to the eigenvalues in X,), and [,]r<x = [é,]x and
[a U] kE>K — O

The preceding two steps do not specify u,,, and with random u,, the readout will be highly sensitive
to noise in x* (pink trace in Fig. right; see (Logiaco et al., 2019)). However, if u,, is set
to minimize the analytically-computed expected readout deviation due to noise in xg’it by modify-

20

Under review as a conference paper at ICLR 2022

ing the eigenvectors of the dynamics, then robust readout is possible (cyan trace in Fig. [[Th right;
minimization of the cost C'(u) in (Logiaco et al., [2019)).

Motif transitions: To successfully transition to motif y, it is sufficient to implement a mechanism
by which x approaches xi?it, which will be the case if the dynamics during a so-called “preparatory
period” has xglit as its steady-state. Additionally, it is desirable that the transition dynamics are fast
and that they do not cause large transients values on the readout while relaxing to steady-state (Kauf-
man et al.; 2014). To achieve this, it is possible (Logiaco et al.,|2019) to employ a specific thalamic
subpopulation of size P which is disinhibited during all motif transitions, as well as a constant input
c,, specific to the upcoming motif y, leading to the dynamics:

X = Jprepx + Cps where Jprep =g (JCC - I) + Uprepvgrepy (2)
with N x P loop weights Upep, and Vp,. With these dynamics, the activity at steady-state will
match xIi if ¢, = —Jpepxii (Fig. [L1p). Note that the difference dx = x — xii'* between the

cortical activities and their steady state decays at a rate that is independent of c,, and therefore of the

upcoming motif: 70x = Jpepdx for all p. This allows us to optimize the same weights Upy, and
Vprep to favor rapid and smooth transitions between all pairs of motifs — even though this approach
is limited: this optimization has to be motif-independent, so that the shape of the readout cannot be
adjusted to the specific motif being prepared (while the continuously nonlinear RNNs can do this,
see Fig.). Following ref. (Logiaco et al. 2019), we achieve fast transitions by minimizing the
time-integral of the expected square norm of dx, with rates dxq at the beginning of the transition
period sampled iid. Here, we also augment our cost function with the time-integral of the expected
squared derivative of the readout to favor smoother transitions on average. Our total cost function is

therefore:
[e%e] 2
/ dt (i wTé x>
0 dt

oc Tr (RPFCP ((LPWP L[Irep) © A) Rgl’ep) + B N WTRPreP ((Lprep Lgrep) © F) RIIYEPW

where Ryrep and Ly, are the right and left eigenvectors of Jyep, and its eigenvalues AP*P are used
to compute Az = —1/(A]" + A\F*P) and T';; = AP ATPA;;. Finally, N is the number of cortical
units and S is a hyperparameter which trades off the relative importance of transition speed and
readout smoothness.

C(Upneps Vinep) = By [| ||6x||2] 1 BN E, 3)
0

Note that the model parameters can be adjusted through analytical and semi-analytical techniques
which do not require stochastic gradient descent on the simulated dynamics. This is an advantage
when strictly imposing linear dynamical regimes during each motor preparation and motor execution
for the fixed type of autonomous computation that it was designed for, but these restrictions can be
limiting to optimize the network for more complex objectives (for instance, including correcting
responses to sensory feedback).

We simulated the model on the same task as the gradient-trained RNNs, using our step motifs.
The motif-specific parameters scale as in the multiplicative architecture (main text table 1), but
the thalamocortical model does have a few more hyperparameters. To make sure that these did
not induce an inability to compare between approaches, we reduced the cortical size to N = 99.
Further, after exploring a few values, we set g/7 = 0.5, K = 10, P = 50, 8 = 1/20, and the motif
transition duration to 57. The readout weights w and recurrent weights J°© were sampled from a
centered Gaussian distribution with std 1/y/N. The approximations 1, were fit to the target motifs

under the constraints that §,,(0) = 0, that the elements of ;\u had negative real part and were at least
€ = 0.05 apart from each other, and that the magnitudes of the elements of ¢/, were not exceedingly

large (no larger than 3). The resulting 5\# and &, were then used to optimize u,, v,, and c, as
described above.

We generated sequences from the thalamocortical model after initializing with iid standard Gaussian
samples for the elements of x (this choice of a unit standard deviation indeed leads to readout values
within the same range as the target motifs, Fig. [TTk). Interestingly, the motifs were produced with
the same reliability when preceded by another motif in a sequence or when starting from random
initial conditions (Fig. [[Id,e). Also, choosing K = 10 pushed the network close to its limit in
terms of noise robustness, without allowing the constrained thalamocortical network to reach the
performance of nonlinear RNNs with the preparatory module (Fig. [TT[).

21

Under review as a conference paper at ICLR 2022

In conclusion, the constrained thalamocortical model is therefore limited in its expressivity, in its ca-
pacity to shape the readout during motif transitions, as well as by the rigid and unpractical procedure
by which its weights are adjusted.

We will now present additional results demonstrating that insights from this constrained thalamocor-
tical model can be weaved into RNNs to combine zero-shot transfer ability with large expressivity
and the flexibility afforded by gradient-based training.

A.5 WEAVING IN INSIGHTS FROM THE THALAMOCORTICAL MODEL IN GRADIENT-TRAINED
ANNSs

In Section 4 of the main text, we presented the results of augmenting each of the additive and
multiplicative networks with a 50-unit thalamic transition module that is active for the first 57 of
every motif. Here we present more detail about these results.

A.5.1 DYNAMICS OF THE RNNS INTERACTING WITH A THALAMIC TRANSITION MODULE

The dynamics of our nonlinear recurrent networks with the transition module but without any input
are:

Tx=-x+ ("I + UprepVgrep) tanh(x),

where g is g* or g™ for the additive and multiplicative networks respectively. The weights in Upyep

and V., were initialized with centered Gaussian with std 4/0.05/v/P * N. We trained the weights

of the transition modules with ADAM under the cost function 3, |r(¢)|* where r(t) = tanh(x(t)).
Minibatches consisted of 64 trials of length 207, each starting with random x values sampled iid
from the standard normal distribution. After 1,000 minibatches, both N = 300 and N = 100
networks were seen to have converged.

Figs. ,d show the eigenvalue distributions of g*J + Uprep V Jep after training. Importantly, though
the thalamic module is low rank (P < N), all eigenvalues have real part significantly less than 1
which causes decay of the network rates towards a 0 fixed-point in the vicinity of this fixed-point.
For comparison, we show the eigenspectrum of g*Jng + UprepVgrep for random matrix J,,q which
has the same statistics as J. In this case, there continues to be large eigenvalues that will prevent
fast rate decay. These results demonstrate that the solutions Up, and V., needed to negate the
amplifying dynamics of J are specific to that particular J.

In Figs. [IZb.e, we show the time evolution of the norm of the rate vector r during three sample
trajectories prior to learning and one post-learning (all post-learning samples are nearly identical).
On the scale plotted, the norms after learning are indistinguishable from zero after approximately
7T.

With the thalamic transition modules in hand, we retrained the additive and multiplicative networks
as described in the main text Sections 2 and 3. For the additive network, our only modification from
before is that we included the thalamic transition module in the network dynamics for the first 57:

TX = —X + (gadJ +]]-tSSTUprepVgrep) tanh(x) + b#«'

For the multiplicative network, to make a more direct comparison with the thalamocortical model
presented in the previous section of the Appendix, we set the dynamics such that the input b,, and
loop u,, v}, were only active during the transition and post-transition periods respectively:

TX = —X + (gm“J +]]-t§57‘UprepV|.3rrep +]lt>57u#vﬁ) tanh(x) +]]-t§5~rb,u-

Figs. [I2c,f show that both networks learn to perform the task and show no degradation in their
performance when tested on sequence generation (i.e., having initial x values given by the ends
of other motifs) rather than when starting them with standard Gaussian x values (which was their
training regime).

Similarly, Fig. |13|shows that training on smooth motifs using a preparatory module leads to robust
performance during zero-shot transfer to motif chaining in an example additive network (compare
to Fig.[0). Notice how the shape of the motif is also matched during the preparatory period, which
is enabled by the interaction between the motif-specific input b,, and the nonlinear tanh dynamics.

22

Under review as a conference paper at ICLR 2022

When starting from random: When starting from other motifs:
79 (r

ad . B 1 - —
15 o0+ UprepVprep — r;— 1 I 1[7 V’
o N+ Upep Vi RS 4 b 1! U i ‘
] r \
10 e 0123 [e 0009 e 0.410
05
L L
00 = l, d ¥ 1 g —r S
rmse: 0204 mse: 0.108 e 0.092
° . I — e
> ~
= a0 - S
= H e T -
S . e 0078 e 0108 e 00 e 0081
je]
< T T :
s N i
3 e V- P
10 L S]
mes 0182 mse: 0275 mse: 0178 mse: 0271
8
=6 B]
= - pre-learning sample trajectory 1 " L —
4 \ == prelearning sample trajectory 2 5. L - r - | — [e |
, . -~ pre-leaming sample trajectory 3 L - L L J =
~ —— sample trajectory after learning : mse: 0191 1 mse: 0.111 mse: 0174 rmse: 0,099
o — LI T R I] R I R NI
° 20 Time (number of .) Time (number of 7.) Time (number of 7.) Time (number of 7,)

5 10 I
Time (number of 7.)

When starting from random: When starting from other motifs:
(rmse) = 0.160) = 0154

F e e o T I R R R -
BT g Upe Vi S 1 [1 [
ER e [| il 9 L
J e .
Lo rmse: 0083 i e 030 A e 0333
0s .
R
S L - — " i
00 il | b v D U o
<I>) fmse: 0138 mse: 0.120 rmse: 0115
05 f—— —— e o
3
10 N — e
Qo F L — ! 1 - N 1
Q s rmse: 0074 mse: 0.093 mse: 0072 mse: 0075
=
56 y T 3 T =
= — s I - [N —
i e — —
e 0225 s 0268 mee 0221 mse 0275
4
= - pre-learning sample trajectory 1
- pre-leaming sample trajectory 2 2 r 1 o - i . —
2 ~~- pre-learning sample trajectory 3 Eh - v L — Lr
, B sample trajectory afer earming . e 0121 e 0116 e 0116 e 0111

o Time (umber of 7,)

e ey Tine (bl) Tine G o) Tone (b
Figure 12: Using a thalamic transition module rescues transitioning for nonlinear RNNs
trained with SGD. a,b,c Additive model. a. Eigenspectrum of ¢g*dJ + Uprep Virep after training
of Uprep and Ve (orange crosses) and when replacing J with a random matrix not used during
training (blue dots). Black circle has radius g. b. |r| versus time before (dotted lines) and after
(solid line) training of U and V. €. The grey bars indicate the time during which the transition

module was active. Other conventions as in Figure[6] d,e,f. As in a,b,c for the multiplicative model.

When starting from random: When starting from other motifs:
0.067 0.040

rmse: 0.073 rmse: 0.073 rmse: 0.039 rmse: 0.040
rmse: 0.075 rmse: 0.057 rmse: 0.042 rmse: 0.036
rmse: 0.055 W{)sa rmse: 0.040 WU‘l

ANy

Mw

A

~——Tmse: 0.066 rmse: 0.074 rmse: 0.038
V V/\/_\/ ;\ e B
rmse: 0.097 rmse: 0.043 rmse: 0.041 _/ rmse: 0.038

) o %0

Time (number of Ts)

%

T @ 6w
Time (number of ;)

3 %

NN
Time (number of Ts)

NI
Time (number of T¢)

Figure 13: Using a thalamic transition module rescues transitioning between oscillatory motifs
in an additive ANN. Conventions as in Figure[6]

23

Under review as a conference paper at ICLR 2022

A.5.2 COMPARING THE THALAMIC TRANSITION NETWORK TO OTHER WAYS OF
IMPLEMENTING A DIFFERENT DYNAMICAL REGIME AT TRANSITIONS

In the main text, at the end of section 4, we gave statistics about a comparison between using
transition module described above and an alternative approach for setting the RNN in a different
dynamical state at the beginning of a motif. More specifically, we considered a ‘two-inputs’ ap-
proach where we use a first motif-specific input during the first 57 of each motif to try to facilitate
transitions, and a second motif-specific input during the rest of the motif to facilitate the production
of the motif by the network.

Following the general approach in our article which adjusts the number of parameters tuned per
motif (main text table 1), we set the size of the recurrent network to N = 150 so that the two inputs
together lead to 300 parameters tuned per motif (and therefore 3000 parameters tuned in total when
learning the ten motifs).

We used an extended data set consisting of transitions between pairs of step motifs where the tran-
sition occurs at 50%, 60%, 70%, 80%, 90%, or 100% of the total duration of the first motif. This is
a more challenging task than before when we only considered the 100% scenario because all motifs
end at the same value (zero). As stated in the main text, we found that the ‘two-input’ network
did not perform as well as the matched additive network with a transition module (as described in
the previous subsection of the Appendix, this module is not tuned to particular motifs, so the size
of the recurrent network is here simply N = 300 to match the per-motif parameter count with the
‘two-input’ network).

In Fig. we show examples for the single-motif performance of the ‘two-input’ network and the
matched additive network, when transitioning from 70% vs. 100% of the duration of the previous
motif (the latter one being the same situation as considered elsewhere in this work).

Examining Fig.|14|reveals that the ‘two-inputs’ network behaves differently from the additive net-
work in two major ways. First, its overall motif accuracy is lower; and second, when transitioning
from 70% of the duration of the previous motif, their accuracy consistently decreased compared to
when initializing the motif at random as during training. This decrease in accuracy was seen consis-
tently when transitioning in all scenarios when the previous motifs interrupted before their ending
(which is zero-padded). This is probably because the larger variability of network outputs when
interrupting motifs is reflected in a larger variability of network states. Importantly, the additive net-
work with a transition module could handle this variability to allow the network to produce a more
accurate output when chaining an interrupted motif with a subsequent one.

These results strongly suggest that ‘engineering’ a fixed point in the dynamics at the start of motifs
(at a position that is adjusted with a preparatory input) is a particularly potent way of ensuring
accurate and robust motif performance. In addition, close to a fixed point (which is presumably a
good description of the dynamical regime close to the end of the preparatory period), the dynamics
is quasi-linear, in which case classical results from control theory indicate that feedback loops such
as those of the transition module are the optimal strategy to steer the network towards its target.
Therefore, these results further strengthen our conclusion that the transition module we propose is a
particularly potent strategy for zero-shot transfer during motif chaining.

A.6 NOTES ON TRAINING

A.6.1 ADAM PARAMETERS

We tested various parameters of ADAM. We identified the following as yielding successful training
in our setting: learning rate = 1073 — 1074, ; = o = 0.5, and € = 1078,

Default parameters for ADAM most often worked very well (especially for the additive networks),
but the parameters above could help training for the small control networks, or occasionally for the
multiplicative networks — whose training was often non-monotonous (see Fig. [T5] below), which
could be especially limiting when training easier motifs for which the errors are small and/or the
network activity varies little between different runs.

24

Under review as a conference paper at ICLR 2022

‘Two-inputs’ network Additive network
When starting trom random: When starting trom other motits: When starting trom random: When starting trom other motits:
(rmse) = 0.225 (rmse) = 0.257 (rmse) = 0.182 (rmse) = 0.174
=
5 Sol o [‘ U T U T I
E © rmse: 0.133 riefe” 0.495 rmse: 0.171 rgde: 0.506 rmse: 0.107 rifer 0.417 rmse: 0.105 e 0.411
>
v S \(—‘(%_/
L -
g © 1 L'J;}OZOB 1 % 1 L—!r_n;}OQEQ 1 i rmse: 0220 Lv—I:‘:}uzu ' rmse 0122 L'—!:.:}om LJM
53 B
L PR o | Y — —_—r | [
13 L rmse: 0.100 rmse: 0.105 rmse: 0121 ' rmse: 0.144 rmse: 0.113 rmse: 0.087 rmse: 0.087 rmse: 0.090
£ 2 ; i
& 22T dy 0 M st - L iod — Y =
[S—.L T R S mee QA0 LT I . 3 A S— 2] 1m0
=
S . . |
= 3 L b T [—\r —
@ © 1 ! mse: 0,182 1 mse: 0137 1 L_I_rms‘TO212 1 ! rmse: 0171 b rmse: 0186 rmse: 0.112 Lj*rms‘—evolﬂo rmse: 0.108
H RN EE R EEEE N E R EE N E TR RN EE N EEEE N E R EE NIRRT EX]
= Time (number of 7.) Time (number of 7,) Time (number of 7.) Time (number of .) Time (number of 7.) Time (number of 7,) Time (number of 7.) Time (number of 7.)
(rmse) = 0.224 (rmse) = 0.222 (rmse) = 0.178 (rmse) = 0.167

.
= B
S solp o - L N
€ w, rmse: 0.140 e 0.404 mse: 0.121 e 0.501 rmse: 0.112 0400 rmse: 0.006 rhEe0.410
>
[2
s S L_'j_{ —r
5 “’jL-ij:}om 1 rmse 0133 1‘——!:5}0249 1 T meth Jp—mmm 1 rmse 0.100 1 mse: 0.201 1%
L 2
1<) Sl —— L —_r g —_— | W —r
=] L mse: 0.080 rmse: 0.106 mse: 0.074 rmse: 0.097 rmse: 0.098 rmse: 0.003 mse: 0.071 rmse: 0.081
£ 2
s sidm o | [~ r,| 1 —D T ! - i) 1=t
b © 2 b —rmeE 0420 rmse: 0.397 26 rmse: 0.404 —rmsk: G485 rmse: 0.280 78 rmse: 0.270
=
o .2 . roa
=) L —e — 1 e N - ’
G © 11 ! rmse: 0.188 1 " rmse: 0.138 1 J}mjom 1 rmse: 0.157 1 ! rmse: 0191 rmse: 0.108 L_rlms\TOlN rmse: 0.100
s RN N RN N NI N IR RN EE R EEEE N E RN E TR
= Time (number of 7.) Time (number of 7,) Time (number of 7.) Time (number of .) Time (number of 7.) Time (number of 7,) Time (number of 7.) Time (number of 7.)

Figure 14: Comparing a ‘two-inputs’ vs. additive network. Left half: ‘two-inputs’ network; right
half: additive network, adjusted for the number of parameters tuned per motif. Top half: comparing
random initialization as experienced during training, and transitioning from 70% of the duration of
other motifs. As a reminder, in the panels ’when starting from other motifs’, colors indicate the
identity of the prior motif (as labeled in the panel ’when starting from random’ - where the motifs
in this panel are shown in full, even though here during transitioning they were interrupted at 70%
of the duration shown). Notice that, during sequencing, the networks smoothly interpolate between
the various output values at the moment when the first motif is interrupted, and the readout value
at the start of the next motif, without having to make a detour through a fixed readout value (as
would occur if the networks were reset to a fixed —i.e., non motif-specific — state before each motif).
In the additive network, this is because the preparatory module directly drives the RNN from its
state at the moment when the first motif is interrupted, to a state specific to the second motif (and
instructed by the motif-specific preparatory input) that corresponds to the readout at the end of the
preparatory period. Bottom half: comparing random initialization as experienced during training,
and transitioning from 100% of the duration of other motifs. For each quadrant, the two left vs. two
right columns differ in the initial state of the motif with conventions as in Figure [f]

A.6.2 DIFFERENCES IN LEARNING CURVES BETWEEN THE ADDITIVE AND THE
MULTIPLICATIVE NETWORKS

Our investigation through hyperparameter search of the performance of additive and mutliplicative
networks matched in number of tuned parameters (by fixing the size of the additive network to
N = 300 and the size of the multiplicative network to N = 100) suggests that they lead to simi-
lar errors on average when trained to produce the step motifs (main text Fig.1c). Interestingly, we
observed that these similar performances were typically reached through different types of learning
curves (Fig.[T3): the multiplicative networks tend to show discontinuous steps in the learning curve,
whereas the additive networks typically have smooth learning curves. This suggests that the per-
formance of the multiplicative networks may be limited by the ability of gradient descent to fully
optimize these networks to their best possible performance. In the future, it would be interesting to
investigate ways of improving the optimization of the multiplicative networks - for instance using
motif-specific learning rate schedules, or by increasing its size to N = 300 while only training one-
third of the weights of the loop and input vectors (so that it has as many untuned parameters as the
additive network).

25

Under review as a conference paper at ICLR 2022

g motir2 s” motif1o
g Bt motif 10 gj ¢ g o
.g § - umomn § o
= oo T e
g g bmomm 2
c o o
¢ N=300 & . N=100 S
s € g -
3 Q T T ww W e W Q =
o = g T e W e e
< & # of training minibatches & # of training minibatches

Figure 15: Representative example learning curves for the additive and multiplicative net-
works (without a preparatory module). These are chosen examples from the networks shown in
the main text Fig.1c. In this case, because we were trying to compare the small control network
(which was harder to train) with the additive and multiplicative networks, we used the non-default
ADAM parameters described in the previous section with a small learning rate (learning rate =
10~*) Note that all transitions are included in the training set here.

A.6.3 ADDING NOISE DURING TRAINING IS NECESSARY TO GET NOISE-ROBUST NETWORKS

The RNNs we propose need to be noise robust so that they can constitute viable solutions that can
be built upon for motor control in the real world.

First, a transition to a new motor motif can be triggered in order to correct a corrupted motor com-
mand that corresponds to a noisy network state.

Second, for more general applications of the current framework to motor control in the real world,
the dynamics often need to be modulated by sensory input — which is never perfectly reliable. In
particular, the triggering of motif transitions is likely to often depend on sensory input.

For these reasons, we imposed noise robustness through a relatively large noise at motif start, imple-
mented through a random initialization of the state of the network: at each run, the initial activities
x are sampled iid from a Gaussian distribution. Importantly, because of the recurrent dynamics, the
initial noise is also propagating at later times through the recurrent dynamics. Additionally, in most
of our simulations - including all the simulations with our preparatory module - we added a small
(Gaussian with std = 0.001) amount of noise to the dynamics at each timestep.

Here, we show that the inclusion of noise is indeed necessary for getting noise-robust solutions
(Fig.[16), illustrating this for additive networks. When training networks on single motifs initialized
from the origin without noise - as opposed to adding Gaussian noise to the origin as we did in the
main text - testing the networks with small amounts of noise leads to unreliable network outputs
(Fig. a, second column). In contrast, a network trained on motifs initialized from a standard
Gaussian as a more reliable output across a range of standard deviation of the initialization (Fig. [I6]
b, first three columns). Finally, we note that while training the vanilla additive network without
noise yields a higher accuracy in the noiseless conditions compared to a vanilla RNN handicapped
by the requirement of noise robustness during training (Fig. [I6] a left vs. Fig. [I6]b left), even in
these noiseless initialization conditions the vanilla additive network does not perform better than an
additive network with a preparatory period and a noisy initialization (Fig. [T6]a left vs Fig. [[2k).

Therefore, not only do our biologically-inspired networks with a preparatory period display robust
generalization to both in-distribution and out-of-distribution perturbations, they also do it at no ac-
curacy cost compared to networks that are much less noise robust, and at no additional cost in terms
of number of tuned parameters per motif. In addition, we will see in the following section that our
preparatory module also speeds up learning.

A.6.4 THE PREPARATORY MODULE COMBINED WITH RANDOM INITIALIZATION SPEEDS UP
LEARNING

In the last section of the main text results, we argued that the preparatory module - which intro-
duces fast convergence timescales at the beginning of motifs - helps single motif training. Indeed,
when initializing motifs from a standard Gaussian both during training and testing, we observed that
the networks with a preparatory module reach much lower error than the networks without such a
module (Fig. 3k left, dashed lines vs. full lines).

26

Under review as a conference paper at ICLR 2022

a) Trained when starting from the origin (additive network, without preparation):

| When starting from the origin: When starting from random Gaussian with std=0.01: When starting from random Gaussian with std=1: When starting from other motifs: |

0190 0227 1.035 1111

b) Trained when starting from the origin with noise: standard Gaussian initialization, i.e. std=1 (additive network, without preparation)

| When starting from the origin: When starting from random Gaussian with std=0.01: When starting from random Gaussian with std=1 When starting from other motifs: |
0.283 0263 0.399

Figure 16: Adding noise in the initial conditions during training improves noise robustness.
Comparing two additive networks (without preparation) when trained on single motifs that are: a)
initialized at the origin without noise; b) initialized with standard random Gaussian values (standard
deviation of 1), i.e. around a noisy origin. Both networks also receive a small additive noise at
each timestep (drawn iid from a Gaussian with standard deviation of 0.001). The first three columns
show the testing performance, when varying the standard deviation of the random initial conditions
used to initialize motif production (centered iid Gaussian, from left to right: no noise, i.e. std=0;
very small noise with std=0.01; standard: std=1). Last column: testing performance when motifs
are initialized from the activity of a previous motif during two-motif sequences (here, the first motif
is initialized from the origin without noise). Notice how training without noise leads to strong noise
sensitivity (in a, some trials are very inaccurate even in the very small noise condition), whereas
the networks trained when initializing motifs from a standard Gaussian do not lead to ‘catastrophic’
trials across all standard deviations of the random initialization (b, first three columns). Note that
while training the vanilla additive network without noise yields a higher accuracy in the noiseless
conditions compared to a vanilla RNN handicapped by the requirement of noise robustness during
training (a left vs. b left), even in these noiseless initialization conditions the vanilla additive network
does not perform better than an additive network with a preparatory period with a noisy initialization
(a left vs. I;ig. [T2k). Color conventions as in Fig.[f] Standard ADAM parameters with a learning
rate of 107°).

Here, we give more evidence of this by examining the learning dynamics of the networks with
or without a preparatory module. We find that networks trained with a preparatory module and
standard Gaussian initialization reach a performance plateau faster (Fig.[T7). Interestingly, not only
is this true compared to training without a preparatory module with the same a standard Gaussian
initialization (Fig.[T7)a middle and right; and Fig.[T7]b), but is is also true when compared to training
without a preparatory module from a noiseless origin (Fig.|17|a left).

Taken together, our results strongly argue that our preparatory module helps network performance
in two ways. First, when training single motifs from a fixed noisy initialization, the fast dynamics
timescales introduced by the preparatory module appear to help the training-induced changes in the
input to drive the exploration of different possible activity states until finding a motif-specific one
that leads to particularly accurate motif production (Mohajerin & Waslander}, 2019; [Kemeth et al.,
2021). Second, it helps filtering out noise and robustly converging to this motif-specific activity

27

Under review as a conference paper at ICLR 2022

pattern to start motif production. Therefore, the preparatory module helps the network implement
computations that are shared between motifs, and then acts as an inductive bias such that the motif-
specific parameters can be fully devoted to motif-specific functions (shape the motif-specific readout
and final activity pattern during the preparatory period, and modulate the network dynamics during
the remainder of motif production for accurate readout). This is why the preparatory module can be
trained once and for all before training any motif specific parameters, which leads to improvements
in accuracy and robustness at no per-motif cost in terms of tuned parameters and without introducing
any learning interference in a continual learning scenario.

a) Additive networks:

Without preparation, initialized from the origin Without preparation, initialized from noisy origin With preparation, initialized from noisy origin
(noiseless): (standard Gaussian: std=1): (standard Gaussian: std=1):
epoch 40:, mse: 0.043 epoch: 40, mse: 0.076 epoch: 40, mse: 0.036
08| 08 08|
07 root mean square error 07 root mean square error 0.7 root mean square error
06 —— mean square error 06 —— mean square error 06 —— mean square error
= 0.5
e 0.5 05
w 0.4 04 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
o 5 10 15 20 = 30 £ 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 a0
Training epoch number Training epoch number Training epoch number
b) Multiplicative networks:
Without preparation, initialized from noisy origin With preparation, initialized from noisy origin
(standard Gaussian: std=1): (standard Gaussian: std=1):
epoch: 100, mse: 0.080 epoch: 100, mse: 0.028
o7 root mean square error o7 root mean square error
06 —— mean square error 06 —— mean square error
05 0.5
S o4 04
i}
0.3 0.3
0.2 0.2
01 0.1
0.0
0 20 40 60 80 100 0 20 40 60 80 100

Training epoch number Training epoch number

Figure 17: Using a preparatory module along with a random initialization during training
speeds up learning. Evolution of the error (the mean square error - our objective function - in
blue, and its square root in orange) over training epochs (each of these consists of several training
batches), when training networks on single step motifs. Standard ADAM parameters with a learning
rate of 103 are used, and a small Gaussian iid noise (std = 0.001) is added to the dynamics at
each timepoint. a) Additive networks, without a preparatory module with either noiseless initializa-
tion (left) of standard Gaussian initialization (middle); or with a preparatory module and standard
Gaussian iid initialization of motifs (right). b) Multiplicative networks, with standard Gaussian ini-
tialization, either without (left) or with (right) a preparatory module. The preparatory module speeds
up learning in both additive and multiplicative networks.

28

	Introduction and relation to other works
	Task and architecture design
	Brittleness of standard RNNs during generalization
	Brain-inspired inductive biases improve accuracy & robustness
	Discussion
	Appendix
	Formal definition of our problem setting
	Motif generation method and full list of motifs used
	Oscillatory motifs
	Step motifs

	Performance of `vanilla' RNNs
	Additive network, N=300, step motifs
	Multiplicative network, N=100, step motifs
	Additive network, N=1000, step motifs
	Additive network, N=300, oscillatory motifs
	Control network, N=50, step motifs

	Analytically tractable thalamocortical model
	Weaving in insights from the thalamocortical model in gradient-trained ANNs
	Dynamics of the RNNs interacting with a thalamic transition module
	Comparing the thalamic transition network to other ways of implementing a different dynamical regime at transitions

	Notes on training
	ADAM parameters
	Differences in learning curves between the additive and the multiplicative networks
	Adding noise during training is necessary to get noise-robust networks
	The preparatory module combined with random initialization speeds up learning

