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Abstract

In image classification, visual separability between dif-
ferent object categories is highly uneven, and some cate-
gories are more difficult to distinguish than others. Such dif-
ficult categories demand more dedicated classifiers. How-
ever, existing deep convolutional neural networks (CNN)
are trained as flat N-way classifiers, and few efforts have
been made to leverage the hierarchical structure of cate-
gories. In this paper, we introduce hierarchical deep CNNs
(HD-CNNs) by embedding deep CNNs into a two-level cat-
egory hierarchy. An HD-CNN separates easy classes us-
ing a coarse category classifier while distinguishing diffi-
cult classes using fine category classifiers. During HD-
CNN training, component-wise pretraining is followed by
global fine-tuning with a multinomial logistic loss regular-
ized by a coarse category consistency term. In addition,
conditional executions of fine category classifiers and layer
parameter compression make HD-CNNs scalable for large-
scale visual recognition. We achieve state-of-the-art results
on both CIFAR100 and large-scale ImageNet 1000-class
benchmark datasets. In our experiments, we build up three
different two-level HD-CNNs, and they lower the top-1 er-
ror of the standard CNNs by 2.65%, 3.1%, and 1.1%.

1. Introduction

Deep CNNs are well suited for large-scale supervised vi-
sual recognition tasks because of their highly scalable train-
ing algorithm. It only needs to cache a small chunk of the
potentially huge volume of training data during sequential
scans. One of the complications that arises in large datasets
with a large number of categories is that the visual sepa-
rability of object categories is highly uneven. Some cate-
gories are much harder to distinguish than others. Take the
categories in CIFAR100 as an example. It is easy to tell an
Apple from a Bus, but harder to tell an Apple from an Or-
ange. In fact, both Apples and Oranges belong to the same

coarse category fruit and vegetables, while Buses belong to
another coarse category, vehicles 1, as defined within CI-
FAR100. Nonetheless, most deep CNN models nowadays
are flat N-way classifiers, which share a set of fully con-
nected layers. This makes us wonder whether such a flat
structure is adequate for distinguishing all the difficult cat-
egories. A very natural and intuitive alternative organizes
classifiers in a hierarchical manner according to the divide-
and-conquer strategy. Although hierarchical classification
has been proven effective for conventional linear classifiers
[38, 8, 37, 22], few attempts have been made to exploit cat-
egory hierarchies [3, 29] in deep CNN models.

Since deep CNN models are large models themselves,
organizing them hierarchically imposes the following chal-
lenges. First, instead of a handcrafted category hierarchy,
how can we learn such a category hierarchy from the train-
ing data itself so that cascaded inferences in a hierarchical
classifier will not degrade the overall accuracy while ded-
icated fine category classifiers exist for hard-to-distinguish
categories? Second, a hierarchical CNN classifier consists
of multiple CNN models at different levels. How can we
leverage the commonalities among these models and effec-
tively train them all? Third, it would also be slower and
more memory consuming to run a hierarchical CNN clas-
sifier on a novel testing image. How can we alleviate such
limitations?

In this paper, we propose a generic and principled hierar-
chical architecture, Hierarchical Deep Convolutional Neu-
ral Network (HD-CNN), that decomposes an image clas-
sification task into two steps. First, easy classes are sep-
arated by a coarse category CNN classifier. Second, chal-
lenging classes are routed downstream to fine category clas-
sifiers. HD-CNN is modular and is built upon a building
block CNN, which can be chosen to be any of the state-
of-the-art single CNN. An HD-CNN follows the coarse-to-
fine classification paradigm and probabilistically integrates
predictions from fine category classifiers. We show that
HD-CNN can achieve lower error than the corresponding
building block CNN, at the cost of a manageable increase
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Figure 1: (a) A two-level category hierarchy where the classes are taken from ImageNet 1000-class dataset. (b) Hierarchical
Deep Convolutional Neural Network (HD-CNN) architecture.

in memory footprint and classification time.
In summary, this paper has the following contributions.

First, we introduce HD-CNN, a novel hierarchical architec-
ture for image classification. Second, we develop a scheme
for learning the two-level organization of coarse and fine
categories, and demonstrate that various components of an
HD-CNN can be independently pretrained. The complete
HD-CNN is further fine-tuned using a multinomial logis-
tic loss regularized by a coarse category consistency term.
Third, we make the HD-CNN scalable by compressing the
layer parameters and conditionally executing the fine cat-
egory classifiers. We demonstrate state-of-the-art perfor-
mance on both CIFAR100 and ImageNet.

2. Related Work
Our work is inspired by rapid progress in CNN design

and integration of category hierarchy with linear classifiers.
The main novelty of our method is the scalable HD-CNN
architecture that integrates a category hierarchy with deep
CNNs.

2.1. Convolutional Neural Networks

CNN-based models hold state-of-the-art performance in
various computer vision tasks, including image classifca-
tion [18], object detection [10, 13], and image parsing [7].
Recently, there has been considerable interest in enhanc-
ing CNN components, including pooling layers [36], acti-
vation units [11, 28], and nonlinear layers [21]. These en-
hancements either improve CNN training [36], or expand
the network learning capacity. This work boosts CNN per-
formance from an orthogonal angle and does not redesign a
specific part within any existing CNN model. Instead, we
design a novel generic hierarchical architecture that uses an
existing CNN model as a building block. We embed multi-
ple building blocks into a larger hierarchical deep CNN.

2.2. Category Hierarchy for Visual Recognition

In visual recognition, there is a vast literature exploit-
ing category hierarchical structures [32]. For classifica-
tion with a large number of classes using linear classi-
fiers, a common strategy is to build a hierarchy or taxon-
omy of classifiers so that the number of classifiers evalu-

ated given a testing image scales sublinearly in the num-
ber of classes [2, 9]. The hierarchy can be either prede-
fined [23, 33, 16] or learned by top-down and bottom-up
approaches [25, 12, 24, 20, 1, 6, 27]. In [5], the prede-
fined category hierarchy of the ImageNet dataset is utilized
to achieve trade-offs between classification accuracy and
specificity. In [22], a hierarchical label tree is constructed to
probabilistically combine predictions from leaf nodes. Such
a hierarchical classifier achieves significant speedup at the
cost of certain accuracy loss.

One of the earliest attempts to introduce a category hier-
archy in CNN-based methods is reported in [29], but their
main goal was transferring knowledge between classes to
improve the results for classes with insufficient training ex-
amples. In [3], various label relations were encoded in a
hierarchy. Improved accuracy is achieved only when a sub-
set of training images is relabeled with internal nodes in
the hierarchical class tree. They are not able to improve
accuracy in the original setting where all training images
are labeled with leaf nodes. In [34], a hierarchy of CNNs
is introduced, but they experimented with only two coarse
categories, mainly due to scalability constraints. HD-CNN
exploits the category hierarchy in a novel way in that we
embed deep CNNs into the hierarchy in a scalable man-
ner and achieve superior classification results over standard
CNN.

3. Overview of HD-CNN

3.1. Notations

The dataset consists of a set of pairs {xi, yi}, where xi

is an image and yi its category label. C denotes the num-
ber of fine categories, which will be automatically grouped
into K coarse categories. {Sf

j }Cj=1 and {Sc
k}Kk=1 are parti-

tions of image indices based on fine and coarse categories.
Superscripts f and c denote fine and coarse categories.

3.2. HD-CNN Architecture

HD-CNN is designed to mimic the structure of category
hierarchy, where fine categories are grouped into coarse cat-
egories, as in Fig 1(a). It performs end-to-end classification,
as illustrated in Fig 1(b). It mainly comprises four parts: (i)



shared layers, (ii) a single component B to handle coarse
categories, (iii) multiple components {Fk}Kk=1 (one for each
group) for fine classification, and (iv) a single probabilistic
averaging layer.

Shared layers (left of Fig 1 (b)) receive raw image pixels
as input and extract low-level features. The configuration of
shared layers is set to be the same as the preceding layers in
the building block CNN.

On the top of Fig 1(b) are independent layers of coarse
category component B, which reuses the configuration of
rear layers from the building block CNN and produces an
intermediate fine prediction {Bf

ij}Cj=1 for an image xi. To
produce a coarse category prediction {Bik}Kk=1, we append
a fine-to-coarse aggregation layer (not shown in Fig 1(b)),
which reduces fine predictions into coarse using a mapping
P : [1, C] 7→ [1,K]. The coarse category probabilities
serve two purposes. First, they are used as weights for com-
bining the predictions made by fine category components
{Fk}Kk=1. Second, when thresholded, they enable condi-
tional execution of fine category components whose corre-
sponding coarse probabilities are sufficiently large.

In the bottom right of Fig 1 (b) are independent layers
of a set of fine category classifiers {Fk}Kk=1, each of which
makes fine category predictions. As each fine component
only excels in classifying a small set of categories, they pro-
duce a fine prediction over a partial set of categories. The
probabilities of other fine categories absent in the partial
set are implicitly set to zero. The layer configurations are
mostly copied from the building block CNN except that the
number of filters in the final classification layer is set to be
the size of a partial set instead of the full set of categories.

Both coarse (B) and fine ({Fk}Kk=1) components share
common layers. The reason is threefold. First, it is shown
in [35] that preceding layers in deep networks response to
class-agnostic low-level features such as corners and edges,
while rear layers extract more class-specific features such
as a dog’s face and bird’s legs. Since low-level features are
useful for both coarse and fine classification tasks, we allow
the preceding layers to be shared by both coarse and fine
components. Second, the use of shared layers reduces both
the total floating point operations and the memory footprint
of network execution. Both are of practical significance to
deploy HD-CNN in real applications. Last but not least, it
can decrease the number of HD-CNN parameters, which is
critical to the success of HD-CNN training.

On the right side of Fig 1 (b) is the probabilistic averag-
ing layer, which receives fine as well as coarse category pre-
dictions and produces a final prediction based on weighted
average

p(yi = j|xi) =

∑K
k=1Bikpk(yi = j|xi)∑K

k=1Bik

(1)

where Bik is the probability of coarse category k for

image xi predicted by the coarse category component B.
pk(yi = j|xi) is the fine category prediction made by the
fine category component Fk.

We stress that both coarse and fine category components
reuse layer configurations from the building block CNN.
This flexible modular design allows us to choose the state-
of-the-art CNN as a building block, depending on the task
at hand.

4. Learning a Category Hierarchy
Our goal of building a category hierarchy is to group

confusing fine categories into the same coarse category for
which a dedicated fine category classifier will be trained.
We employ a top-down approach to learn the hierarchy from
the training data.

We randomly sample a held-out set of images with bal-
anced class distribution from the training set. The rest of the
training set is used to train a building block net. We obtain
a confusion matrix F by evaluating the net on the held-out
set. Then we construct a distance matrix D as:

D =
1

2
[(I − F) + (I − F)T ] (2)

with all diagonal entries set to zero. Spectral clustering is
performed on D to cluster fine categories intoK coarse cat-
egories. The result is a two-level category hierarchy rep-
resenting a many-to-one mapping P d : [1, C] 7→ [1,K]
from fine to coarse categories. Superscript d denotes that
the coarse categories are disjoint.
Overlapping coarse categories With disjoint coarse cat-
egories, the overall classification depends heavily on the
coarse category classifier. If an image is routed to an in-
correct fine category classifier, then the mistake cannot be
corrected, as the probability of ground truth label is implic-
itly set to zero there. Removing the separability constraint
between coarse categories can make the HD-CNN less de-
pendent on the coarse category classifier.

Therefore, we add more fine categories to the coarse cat-
egories. For a certain fine classifier Fk, we prefer to add
those fine categories {j} that are likely to be misclassfied
into the coarse category k. Therefore, we estimate the like-
lihood uk(j) that an image in fine category j is misclassified
into a coarse category k on the held-out set.

uk(j) =
1∣∣∣Sf
j

∣∣∣
∑
i∈Sf

j

Bd
ik (3)

Bd
ik is the coarse category probability that is obtained by

aggregating fine category probabilities {Bf
ij}j according to

the mapping P d: Bd
ik =

∑
j|Pd(j)=k B

f
ij . We threshold the

likelihood uk(j) using a parametric variable ut = (γK)−1

and add all fine categories j to the partial set Sc
k such that

uk(j) ≥ ut. Note that each branching component gives a



full set prediction when ut = 0 and a disjoint set prediction
when ut = 1.0. With overlapping coarse categories, the cat-
egory hierarchy mapping P d is extended to be a many-to-
many mapping P o, and the coarse category predictions are
updated accordingly: Bo

ik =
∑

j|k∈P o(j)Bij . Superscript
o denotes coarse categories are overlapping. Note the sum
of {Bo

ik}Kk=1 exceeds 1, and hence, we perform L1 normal-
ization. The use of overlapping coarse categories was also
shown to be useful for hierarchical linear classifiers [24].

5. HD-CNN Training

As we embed fine category components into HD-CNN,
the number of parameters in rear layers grows linearly in
the number of coarse categories. Given the same amount of
training data, this increases the training complexity and the
risk of over-fitting. On the other hand, the training images
within the stochastic gradient descent mini-batch are prob-
abilistically routed to different fine category components. It
requires to use a larger mini-batch to ensure parameter gra-
dients in the fine category components are estimated by a
sufficiently large number of training samples. A large train-
ing mini-batch both increases the training memory footprint
and slows down the training process. Therefore, we decom-
pose the HD-CNN training into multiple steps instead of
training the complete HD-CNN from scratch, as outlined in
Algorithm 1.

5.1. Pretraining HD-CNN

We sequentially pretrain the coarse category component
and fine category components.

5.1.1 Initializing the Coarse Category Component

We first pretrain a building block CNNF p using the training
set. Subscript p denotes the CNN is pretrained. As both the
preceding and rear layers in the coarse category component
resemble the layers in the building block CNN, we initialize
the coarse category component B with the weights of F p.

5.1.2 Pretraining the Rear Layers of Fine Category
Components

Fine category components {Fk}Kk=1 can be independently
pretrained in parallel. Each Fk should specialize in classify-
ing fine categories within the coarse category k. Therefore,
the pretraining of each Fk only uses images {xi|i ∈ Sc

k}
from the coarse category. The shared preceding layers are
already initialized and kept fixed in this stage. For each Fk,
we initialize all the rear layers except the last convolutional
layer by copying the learned parameters from the pretrained
model F p.

Algorithm 1 HD-CNN training algorithm

1: procedure HD-CNN TRAINING
2: Step 1: Pretrain HD-CNN
3: Step 1.1: Initialize coarse category component
4: Step 1.2: Pretrain fine category components
5: Step 2: Fine-tune the complete HD-CNN

5.2. Fine-tuning HD-CNN

After both coarse and fine category components are
properly pretrained, we fine-tune the complete HD-CNN.
As the category hierarchy and the associated mapping P o

are learned, each fine category component focuses on clas-
sifying a fixed subset of fine categories. During fine-tuning,
the semantics of coarse categories predicted by the coarse
category component should be kept consistent with those
associated with fine category components. Thus we add a
coarse category consistency term to regularize the conven-
tional multinomial logistic loss.
Coarse category consistency. The coarse category con-
sistency term ensures the mean coarse category distribu-
tion {tk}Kk=1 within the mini-batch is preserved during the
fine-tuning. The learned fine-to-coarse category mapping
P : [1, C] 7→ [1,K] provides a way to specify the tar-
get coarse category distribution {tk}Kk=1. Specifically, tk
is set to be the fraction of all the training images within the
coarse category k under the assumption that the distribution
over coarse categories across the training set is close to that
within a training mini-batch.

tk =

∑
j|k∈P (j)

∣∣∣Sf
j

∣∣∣∑K
k′=1

∑
j|k′∈P (j)

∣∣∣Sf
j

∣∣∣ ∀k ∈ [1,K] (4)

The final loss function we use for fine-tuning the HD-
CNN is shown below.

E = − 1

n

n∑
i=1

log(pyi
) +

λ

2

K∑
k=1

(tk −
1

n

n∑
i=1

Bik)
2 (5)

where n is the size of a training mini-batch. λ is a regular-
ization constant and is set to λ = 20.

6. HD-CNN Testing
As we add fine category components into the HD-CNN,

the number of parameters, memory footprint, and execution
time in rear layers, all scale linearly in the number of coarse
categories. To ensure HD-CNN is scalable for large-scale
visual recognition, we develop conditional execution and
layer parameter compression techniques.
Conditional execution. At test time, for a given im-
age, it is not necessary to evaluate all fine category clas-
sifiers, as most of them have insignificant weights Bik, as



in Eqn 1. Their contributions to the final prediction are neg-
ligible. Conditional execution of top relevant fine compo-
nents can accelerate the HD-CNN classification. Therefore,
we thresholdBik using a parametric variableBt = (βK)−1

and reset Bik to zero when Bik < Bt. Those fine category
classifiers with Bik = 0 are not evaluated.
Parameter compression. In HD-CNN, the number of pa-
rameters in rear layers of fine category classifiers grows lin-
early in the number of coarse categories. Thus, we com-
press the layer parameters at test time to reduce the mem-
ory footprint. Specifically, we choose product quantiza-
tion [14] to compress the parameter matrix W ∈ Rm×n.
We first partition it horizontally into segments of width s
such that W = [W 1, ...,W (n/s)]. Then k-means clustering
is used to cluster the rows in W i,∀i ∈ [1, (n/s)]. By only
storing the nearest cluster indices in an 8-bit integer ma-
trix Q ∈ Rm×(n/s) and cluster centers in a single-precision
floating number matrix C ∈ Rk×n, we can achieve a com-
pression factor of (32mn)/(32kn + 8mn/s), where s and
k are hyperparameters for parameter compression.

7. Experiments

7.1. Overview

We evaluate HD-CNN on CIFAR100 [17] and Ima-
geNet [4]. HD-CNN is implemented on the widely de-
ployed Caffe [15] software. The network is trained by back
propagation [18]. We run all the testing experiments on a
single NVIDIA Tesla K40c card.

7.2. CIFAR100

The CIFAR100 dataset consists of 100 classes of natu-
ral images. There are 50K training images and 10K test-
ing images. We follow [11] to preprocess the dataset (e.g.,
global contrast normalization and ZCA whitening). Ran-
domly cropped and flipped image patches of size 26 × 26
are used for training. We adopt a NIN network 1 with three
stacked layers [21]. We denote it as CIFAR100-NIN, which
will be the HD-CNN building block. Fine category com-
ponents share preceding layers from conv1 to pool1, which
accounts for 6% of the total parameters and 29% of the total
floating point operations. The remaining layers are used as
independent layers.

For building the category hierarchy, we randomly choose
10K images from the training set as the held-out set. Fine
categories within the same coarse categories are visually
more similar. We pretrain the rear layers of fine category
components. The initial learning rate is 0.01, and it is de-
creased by a factor of 10 every 6K iterations. Fine-tuning
is performed for 20K iterations with large mini-batches of

1https://github.com/mavenlin/cuda-convnet/blob/
master/NIN/cifar-100_def

size 256. The initial learning rate is 0.001 and is reduced by
a factor of 10 once after 10K iterations.

For evaluation, we use 10-view testing [18]. We ex-
tract five 26 × 26 patches (the 4 corner patches and the
center patch) as well as their horizontal reflections and av-
erage their predictions. The CIFAR100-NIN net obtains
35.27% testing error. Our HD-CNN achieves a testing er-
ror of 32.62%, which improves the building block net by
2.65%.
Category hierarchy. During the construction of the cate-
gory hierarchy, the number of coarse categories can be ad-
justed by the clustering algorithm. We can also make the
coarse categories either disjoint or overlapping by varying
the hyperparameter γ. Thus, we investigate their impacts
on the classification error. We experiment with 5, 9, 14,
and 19 coarse categories and vary the value of γ. The best
results are obtained with 9 overlapping coarse categories
and γ = 5, as shown in Fig 2 left. A histogram of fine
category occurrences in 9 overlapping coarse categories is
shown in Fig 2 right. The optimal value of coarse cate-
gory number and hyperparameter γ are dataset dependent,
mainly affected by the inherent hierarchy within the cate-
gories.
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Figure 2: Left: HD-CNN 10-view testing error against
the number of coarse categories on CIFAR100. We pick
9 coarse categories and γ = 5. Right: Histogram of fine
category occurrences in 9 overlapping coarse categories.

Shared layers. The use of shared layers makes both the
computational complexity and memory footprint of HD-
CNN sublinear in the number of fine category classifiers
when compared to the building block net. Our HD-CNN
with 9 fine category classifiers based on CIFAR100-NIN
consumes less than three times as much memory as the
building block net without parameter compression. We
also want to investigate the impact of the use of shared
layers on the classification error, memory footprint, and
the net execution time (Table 2). We build another HD-
CNN, where coarse category component and all fine cate-
gory components use independent preceding layers initial-
ized from a pretrained building block net. Under single-
view testing where only a central cropping is used, we ob-

https://github.com/mavenlin/cuda-convnet/blob/master/NIN/cifar-100_def
https://github.com/mavenlin/cuda-convnet/blob/master/NIN/cifar-100_def


Table 1: 10-view testing errors on CIFAR100 dataset. No-
tation CCC=coarse category consistency.

Method Error

Model averaging (2 CIFAR100-NIN nets) 35.13

DSN [19] 34.68

CIFAR100-NIN-double 34.26

dasNet [30] 33.78

Base: CIFAR100-NIN 35.27

HD-CNN, no fine-tuning 33.33

HD-CNN, fine-tuning 32.62

HD-CNN+CE+PC, fine-tuning 32.79

serve a minor error increase from 34.36% to 34.50%. But
using shared layers dramatically reduces the memory foot-
print from 1356 MB to 459 MB and testing time from 2.43
seconds to 0.28 seconds.
Conditional execution. By varying the hyperparameter β,
we can effectively affect the number of fine category com-
ponents that will be executed. There is a trade-off between
execution time and classification error. A larger value of β
leads to higher accuracy at the cost of executing more com-
ponents for fine categorization. By enabling conditional ex-
ecutions with hyperparameter β = 6, we obtain a substan-
tial 2.8x speedup with merely a minor increase in error from
34.36% to 34.57% (Table 2). The testing time of HD-CNN
is about 2.5x as much as that of the building block net.
Parameter compression. As fine category CNNs have in-
dependent layers from conv2 to cccp6, we compress them
and reduce the memory footprint from 447MB to 286MB
with a minor increase in error from 34.57% to 34.73%.
Comparison with a strong baseline. As our HD-CNN
memory footprint is about two times as much as the building
block model (Table 2), it is necessary to compare a stronger
baseline of similar complexity with HD-CNN. We adapt
CIFAR100-NIN and double the number of filters in all con-
volutional layers, which accordingly increases the memory
footprint by three times. We denote it as CIFAR100-NIN-
double and obtain an error of 34.26%, which is 1.01% lower
than that of the building block net but is 1.64% higher than
that of HD-CNN.
Comparison with model averaging. HD-CNN is funda-
mentally different from model averaging [18]. In model av-
eraging, all models are capable of classifying the full set
of the categories, and each one is trained independently.
The main sources of their prediction differences are differ-
ent initializations. In HD-CNN, each fine category clas-
sifier only excels at classifying a partial set of categories.
To compare HD-CNN with model averaging, we indepen-
dently train two CIFAR100-NIN networks and take their av-
eraged prediction as the final prediction. We obtain an error

of 35.13%, which is about 2.51% higher than that of HD-
CNN (Table 1). Note that HD-CNN is orthogonal to the
model averaging and an ensemble of HD-CNN networks
can further improve the performance.
Coarse category consistency. To verify the effectiveness
of coarse category consistency term in our loss function (5),
we fine-tune a HD-CNN using the traditional multinomial
logistic loss function. The testing error is 33.21%, which is
0.59% higher than that of a HD-CNN fine-tuned with coarse
category consistency (Table 1).
Comparison with state-of-the-art. Our HD-CNN im-
proves on the current two best methods [19], and [30],
by 2.06% and 1.16%, respectively, and sets new state-of-
the-art results on CIFAR100 (Table 1).

7.3. ImageNet 1000

The ILSVRC-2012 ImageNet dataset consists of about
1.2 million training images, 50, 000 validation images. To
demonstrate the generality of HD-CNN, we experiment
with two different building block nets. In both cases, HD-
CNNs achieve significantly lower testing errors than the
building block nets.

7.3.1 Network-In-Network Building Block Net

We choose a public 4-layer NIN net2 as our first building
block, as it has a greatly reduced number of parameters
compared to AlexNet [18] but similar error rates. It is de-
noted as ImageNet-NIN. In HD-CNN, various components
share preceding layers from conv1 to pool3, which account
for 26% of the total parameters and 82% of the total floating
point operations.

We follow the training and testing protocols as in [18].
Original images are resized to 256 × 256. Randomly
cropped and horizontally reflected 224 × 224 patches are
used for training. At test time, the net makes a 10-view av-
eraged prediction. We train ImageNet-NIN for 45 epochs.
The top-1 and top-5 errors are 39.76% and 17.71%, respec-
tively.

To build the category hierarchy, we take 100K training
images as the held-out set and find 89 overlapping coarse
categories. Each fine category CNN is fine-tuned for 40K
iterations while the initial learning rate 0.01 is decreased
by a factor of 10 every 15K iterations. Fine-tuning the
complete HD-CNN is not performed, as the required mini-
batch size is significantly higher than that for the building
block net. Nevertheless, we still achieve top-1 and top-5 er-
rors of 36.66% and 15.80% and improve the building block
net by 3.1% and 1.91%, respectively (Table 3). The class-
wise top-5 error improvement over the building block net is
shown in Fig 4 left.

2https://gist.github.com/mavenlin/
d802a5849de39225bcc6

https://gist.github.com/mavenlin/d802a5849de39225bcc6
https://gist.github.com/mavenlin/d802a5849de39225bcc6
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Figure 3: Case studies on ImageNet dataset. Each row represents a testing case. Column (a): test image with ground truth
label. Column (b): top 5 guesses from the building block net ImageNet-NIN. Column (c): top 5 Coarse Category (CC)
probabilities. Column (d)-(f): top 5 guesses made by the top 3 fine category CNN components. Column (g): final top 5
guesses made by the HD-CNN. See text for details.

Table 2: Comparison of testing errors, memory footprint
(MB) and testing time (seconds) between building block
nets and HD-CNNs on CIFAR100 and ImageNet datasets.
Statistics are collected under single-view testing. Three
building block nets, CIFAR100-NIN, ImageNet-NIN, and
ImageNet-VGG-16-layer, are used. The testing mini-batch
size is 50. Notations: SL=Shared layers, CE=Conditional
execution, PC=Parameter compression.

Model top-1, top-5 Memory Time

Base:CIFAR100-NIN 37.29 188 0.04
HD-CNN w/o SL 34.50 1356 2.43
HD-CNN 34.36 459 0.28
HD-CNN+CE 34.57 447 0.10
HD-CNN+CE+PC 34.73 286 0.10

Base:ImageNet-NIN 41.52, 18.98 535 0.19
HD-CNN 37.92,16.62 3544 3.25
HD-CNN+CE 38.16, 16.75 3508 0.52
HD-CNN+CE+PC 38.39, 16.89 1712 0.53

Base:ImageNet-VGG-
16-layer

32.30, 12.74 4134 1.04

HD-CNN+CE+PC 31.34,12.26 6863 5.28

Case studies. We want to investigate how HD-CNN cor-
rects the mistakes made by the building block net. In Fig 3,
we collect four testing cases. In the first case, the building
block net fails to predict the label of the tiny hermit crab
in the top 5 guesses. In HD-CNN, two coarse categories,
#6 and #11, receive most of the coarse probability mass.
The fine category component #6 specializes in classifying
crab breeds and strongly suggests the ground truth label. By
combining the predictions from the top fine category clas-

sifiers, the HD-CNN predicts hermit crab as the most prob-
able label. In the second case, the ImageNet-NIN confuses
the ground truth hand blower with other objects of close
shapes and appearances, such as plunger and barbell. For
HD-CNN, the coarse category component is also not confi-
dent about which coarse category the object belongs to and
thus assigns even probability mass to the top coarse cate-
gories. For the top 3 fine category classifiers, #74 strongly
predicts ground truth label while the other two ,#49 and
#40, rank the ground truth label at the 2nd and 4th place,
respectively. Overall, the HD-CNN ranks the ground truth
label at the 1st place. This demonstrates HD-CNN needs
to rely on multiple fine category classifiers to make correct
predictions for difficult cases.
Overlapping coarse categories.To investigate the impact
of overlapping coarse categories on the classification, we
train another HD-CNN with 89 fine category classifiers us-
ing disjoint coarse categories. It achieves top-1 and top-5
errors of 38.44% and 17.03%, respectively, which is higher
than those of the HD-CNN using an overlapping coarse cat-
egory hierarchy by 1.78% and 1.23% (Table 3).
Conditional executions. By varying the hyperparameter
β, we can control the number of fine category components
that will be executed. There is a trade-off between execu-
tion time and classification error, as shown in Fig 4 right. A
larger value of β leads to lower error at the cost of more
executed fine category components. By enabling condi-
tional executions with hyperparameter β = 8, we obtain
a substantial 6.3x speedup with merely a minor increase of
single-view testing top-5 error from 16.62% to 16.75% (Ta-
ble 2). With such speedup, the HD-CNN testing time is less
than 3 times as much as that of the building block net.
Parameter compression. We compress independent layers
conv4 and cccp7, as they account for 60% of the parame-
ters in ImageNet-NIN. Their parameter matrices are of size



Table 3: Comparisons of 10-view testing errors between
ImageNet-NIN and HD-CNN. Notation CC=Coarse cate-
gory.

Method top-1, top-5

Base:ImageNet-NIN 39.76, 17.71
Model averaging (3 base nets) 38.54, 17.11
HD-CNN, disjoint CC 38.44, 17.03

HD-CNN 36.66, 15.80
HD-CNN+CE+PC 36.88, 15.92

1024 × 3456 and 1024 × 1024 and we use compression
hyperparameters (s, k) = (3, 128) and (s, k) = (2, 256).
The compression factors are 4.8 and 2.7. The compres-
sion decreases the memory footprint from 3508MB to
1712MB and merely increases the top-5 error from 16.75%
to 16.89% under single-view testing (Table 2).
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Figure 4: Left: Class-wise HD-CNN top-5 error improve-
ment over the building block net. Right: Mean number of
executed fine category classifiers and top-5 error against hy-
perparameter β on the ImageNet validation dataset.

Comparison with model averaging. As the HD-CNN
memory footprint is about three times as much as the build-
ing block net, we independently train three ImageNet-NIN
nets and average their predictions. We obtain a top-5 error
17.11%, which is 0.6% lower than the building block but is
1.31% higher than that of HD-CNN (Table 3).

7.3.2 VGG-16-layer Building Block Net

The second building block net we use is a 16-layer CNN
from [26]. We denote it as ImageNet-VGG-16-layer3. The
layers from conv1 1 to pool4 are shared, and they account
for 5.6% of the total parameters and 90% of the total float-
ing number operations. The remaining layers are used as
independent layers in coarse and fine category classifiers.
We follow the training and testing protocols as in [26]. For
training, we first sample a size S from the range [256, 512]
and resize the image so that the length of the short edge
is S. Then a randomly cropped and flipped patch of size
224 × 224 is used for training. For testing, dense evalua-
tion is performed on three scales {256, 384, 512}, and the
averaged prediction is used as the final prediction. Please

3https://github.com/BVLC/caffe/wiki/Model-Zoo

refer to [26] for more training and testing details. On the
ImageNet validation set, ImageNet-VGG-16-layer achieves
top-1 and top-5 errors of 24.79% and 7.50% respectively.

We build a category hierarchy with 84 overlapping
coarse categories. We implement multi-GPU training on
Caffe by exploiting data parallelism [26] and train the fine
category classifiers on two NVIDIA Tesla K40c cards. The
initial learning rate is 0.001, and it is decreased by a fac-
tor of 10 every 4K iterations. HD-CNN fine-tuning is not
performed. Due to the large memory footprint of the build-
ing block net (Table 2), the HD-CNN with 84 fine category
classifiers cannot fit into the memory directly. Therefore,
we compress the parameters in layers fc6 and fc7 as they
account for over 85% of the parameters. Parameter matrices
in fc6 and fc7, are of size 4096 × 25088 and 4096 × 4096.
Their compression hyperparameters are (s, k) = (14, 64)
and (s, k) = (4, 256). The compression factors are 29.9
and 8, respectively. The HD-CNN obtains top-1 and top-5
errors of 23.69% and 6.76% on the ImageNet validation set
and improves over ImageNet-VGG-16-layer by 1.1% and
0.74%, respectively.

Table 4: Errors on ImageNet validation set.

Method top-1, top-5

GoogLeNet,multi-crop [31] N/A,7.9
VGG-19-layer, dense [26] 24.8,7.5
VGG-16-layer+VGG-19-layer,dense 24.0,7.1

Base:ImageNet-VGG-16-layer,dense 24.79,7.50
HD-CNN+PC,dense 23.69,6.76
HD-CNN+PC+CE,dense 23.88,6.87

Comparison with state-of-the-art. Currently, the two best
nets on the ImageNet dataset are GoogLeNet [31] (Table 4)
and VGG 19-layer network [26]. Using multi-scale multi-
crop testing, a single GoogLeNet net achieves a top-5 error
of 7.9%. With multi-scale dense evaluation, a single VGG
19-layer net obtains top-1 and top-5 errors of 24.8% and
7.5% and improves the top-5 error of GoogLeNet by 0.4%.
Our HD-CNN decreases the top-1 and top-5 errors of VGG
19-layer net by 1.11% and 0.74%, respectively. Further-
more, HD-CNN slightly outperforms the results of averag-
ing the predictions from VGG-16-layer and VGG-19-layer
nets.

8. Conclusions and Future Work
We demonstrated that HD-CNN is a flexible deep CNN

architecture to improve over existing deep CNN models.
We showed this empirically on both CIFAR-100 and Image-
Net datasets using three different building block nets. As
part of our future work, we plan to extend HD-CNN archi-
tectures to those with more than 2 hierarchical levels and
also verify our empirical results in a theoretical framework.

https://github.com/BVLC/caffe/wiki/Model-Zoo
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