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ABSTRACT

Machine learning plays an increasingly important role in computational chemistry
and materials science, complementing computationally intensive ab initio and
first-principles methods. Despite their utility, machine-learning models often lack
generalization capability and robustness during atomistic simulations, yielding
unphysical energy and force predictions that hinder their real-world applications.
We address this challenge by introducing a physics-informed, weakly supervised
approach for training machine-learned interatomic potentials (MLIPs). We in-
troduce two novel loss functions, extrapolating the potential energy via a Taylor
expansion and using the concept of conservative forces. Our approach improves
the accuracy of MLIPs applied to training tasks with sparse training data sets
and reduces the need for pre-training computationally demanding models with
large data sets. Particularly, we perform extensive experiments demonstrating
reduced energy and force errors—often lower by a factor of two—for various
baseline models and benchmark data sets. Moreover, we demonstrate improved
robustness during MD simulations of the MLIP models trained with the pro-
posed weakly supervised loss. Finally, we show that our approach facilitates
MLIPs’ training in a setting where the computation of forces is infeasible at the
reference level, such as those employing complete-basis-set extrapolation. An
implementation of our method and scripts for executing experiments are available
at https://anonymous.4open.science/r/PICPS-ML4Sci-1E8F.

1 INTRODUCTION

Ab initio and first-principles methods are inevitable for the computer-aided exploration of molecular
and material properties used in the chemical sciences and engineering (Parrinello, 1997; Carloni et al.,
2002; Iftimie et al., 2005). However, commonly employed ab initio and first-principles approaches—
such as coupled cluster (CC) (Purvis & Bartlett, 1982; Bartlett & Musiał, 2007) and density functional
theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965), respectively—require substantial
compute resources. Thus, they typically allow only for atomistic simulations of small- to medium-
sized atomic systems and restrict the accessible simulation times, which affects the accuracy of
estimated molecular and material properties. Classical force fields can extend these length and time
scales, providing a computationally efficient alternative to first-principles approaches, but often lack
accuracy. Machine-learning-based models hold promise to bridge the gap between first-principles and
classical approaches, yielding computationally efficient and accurate machine-learned interatomic
potentials (MLIPs) (Smith et al., 2017; Chanussot et al., 2021; Unke et al., 2021; Merchant et al.,
2023; Kovács et al., 2023; Batatia et al., 2023).

These MLIPs, however, face several challenges. They require the generation of training data sets that
sufficiently cover configurational (atom positions) and compositional (atom types) spaces using, e.g.,
molecular dynamics (MD) simulations based on ab initio or first-principles approaches. Given the
high computational cost of the commonly used data generation approaches, the resulting training data
sets are often sparse and prevent the application of MLIPs to new molecular and material systems.
Active learning can be used to address this challenge (Li et al., 2015; Vandermause et al., 2020;
Zaverkin et al., 2024b), but still requires generating a non-negligible number of first-principles (i.e.,
DFT) data to train the initial model, which is then used to explore the phase space with sufficiently
long MD simulations. Hence, a strong motivation for the proposed method is its use in combination
with active learning to acquire additional training data. Furthermore, MLIPs often lack sufficient
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Figure 1: Schematic illustration of physics-informed weakly supervised losses used in this work.
(a) Taylor-expansion-based weak label (WL) loss with approximate labels obtained from reference
energies and atomic forces (Cooper et al., 2020). (b) Physics-inspired Taylor-expansion-consistency
(PITC) loss with approximate labels obtained from energies and atomic forces predicted by an MLIP.
(c) Physics-inspired spatial consistency (PISC) loss with approximate labels obtained from energies
and atomic forces predicted by an MLIP. Here, E(S;θ) and Fi(S;θ) denote the potential energy
and atomic forces predicted by an MLIP parametrized by θ, S and Sδr define the original atomic
structure and the one perturbed by δr.

generalization capability and robustness during MD simulations, i.e., they are sensitive to outliers
and local perturbations of atomic structures. This sensitivity of ML models is caused by existing
data sets and data generation techniques not providing sufficient coverage of configurational and
compositional spaces.

Contributions. This paper addresses these challenges using a physics-informed weakly supervised
learning (PIWSL) approach. Our method is designed to learn an MLIP, which can accurately
predict the potential energy and atomistic forces for an atomic system exposed to local perturbations.
In particular, our contributions are as follows: (i) We introduce PIWSL based on basic physical
principles, such as the concept of conservative forces. We combine it with extrapolating the potential
energy via a Taylor expansion and derive two novel physics-informed loss functions, schematically
illustrated in figure 1 (b) and (c). Particularly, we obtain physics-informed Taylor-expansion-based
consistency (PITC) and physics-informed spatial consistency (PISC) losses, which build the basis
for the PIWSL approach. (ii) By conducting extensive experiments, we demonstrate that PIWSL
facilitates the training of MLIPs without access to large training data sets. Furthermore, we show
that MLIPs trained with PIWSL are more robust during MD simulations compared to those trained
without it. (iii) We also observe that PIWSL improves accuracy in predicted total energies and
atomic forces, even without access to force labels. This scenario is expected when training MLIPs
with reference methods for which calculating atomic forces is infeasible (Smith et al., 2019; 2020;
Zaverkin et al., 2023). Thus, our results open new possibilities for training MLIPs using highly
accurate energy labels, such as those obtained by extrapolating CCSD(T) energies to the complete
basis set (CBS) limit (Hobza & Šponer, 2002; Feller et al., 2006). (iv) Finally, PIWSL mitigates
sensitivity issues associated with limited sizes of available data sets by taking into account the
potential energy response to local perturbations in atomic structures.

2 RELATED WORK

Machine-Learned Interatomic Potentials. There is a growing interest in using ML-based models
for investigating molecular and material systems as they allow performing atomistic simulations with
an accuracy on par with first-principles methods but at a fraction of the computational cost. The
field of machine-learned interatomic potentials (MLIPs) emerged over two decades ago (Blank et al.,
1995) and has been one of the most active research directions since then (Behler & Parrinello, 2007;
Artrith et al., 2011; Artrith & Urban, 2016; Smith et al., 2017; Shapeev, 2016; Schütt et al., 2017;
Thomas et al., 2018; Unke & Meuwly, 2019; Drautz, 2019; Zaverkin & Kästner, 2020; Zaverkin et al.,
2021; Thomas et al., 2018; Schütt et al., 2021; Shuaibi et al., 2021a; Passaro & Zitnick, 2023; Liao
et al., 2023; Batzner et al., 2022; Musaelian et al., 2023; Batatia et al., 2022; Zaverkin et al., 2024a).
The development of local higher-body-order representations (Shapeev, 2016; Drautz, 2019; Zaverkin
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& Kästner, 2020; Zaverkin et al., 2021) and the emergence of equivariant message-passing neural
networks (MPNNs) (Thomas et al., 2018; Schütt et al., 2021; Shuaibi et al., 2021a; Passaro & Zitnick,
2023; Liao et al., 2023; Batzner et al., 2022; Musaelian et al., 2023; Batatia et al., 2022; Zaverkin
et al., 2024a) significantly advanced the field. These methods enable the cost-efficient generation
of accurate MLIPs for modeling interactions in many-body atomic systems and account for crucial
inductive biases as the invariance of the potential energy under rotation.

Physics-Informed Machine Learning. Physics-informed ML aims to model physical systems using
data-driven techniques and incorporates physics principles into ML-based models. For example,
MLIPs based on equivariant MPNNs enforce the invariance of the potential energy under rotation and
use equivariant features to enrich the building of many-body contributions to it (Thomas et al., 2018;
Batzner et al., 2022; Batatia et al., 2022; Musaelian et al., 2023; Liao et al., 2023). Furthermore,
physics constraints can be integrated via auxiliary loss functions, prompting ML models to learn im-
portant physical relationships, as demonstrated for physics-informed neural networks (PINNs) (Raissi
et al., 2019; Cai et al., 2022), which learn to model solutions of partial differential equations by
minimizing residuals during training. Applying physics-informed ML to molecular modeling has
gained attraction in both ML and computational chemistry communities (Godwin et al., 2022; Ni
et al., 2024). As such, prior work (Cooper et al., 2020) has motivated our current research and is
discussed in more detail in subsequent sections.

3 BACKGROUND AND PROBLEM DEFINITION

Machine-Learned Interatomic Potentials. An atomic configuration, denoted as S = {ri, Zi}Nat
i=1,

contains Nat atoms and is defined by atom positions ri ∈ R3 and atom types Zi ∈ N. We consider
mapping atomic configurations to scalar energies, i.e., fθ : S 7→ E ∈ R with θ denoting trainable
parameters. We define E(S;θ) as the energy predicted by an MLIP for an atomic configuration
S. For most MLIPs, atomic forces are computed as the negative gradients of the potential energy
with respect to atom positions, i.e., Fi (S;θ) = −∇riE (S;θ). In this way, these MLIPs ensure that
the resulting forces are conservative (curl-free) and the total energy is conserved during a dynamic
simulation. However, some models are designed to predict atomic forces directly (Hu et al., 2021;
Passaro & Zitnick, 2023; Liao et al., 2023; Chanussot et al., 2021). While this approach avoids
expensive gradient computations, it violates the law of energy conservation (Chmiela et al., 2017).

Trainable parameters θ are optimized by minimizing loss functions on training data D comprising a
total of Ntrain atomic configurations {S(k)}Ntrain

k=1 as well as their energies {Eref
S }S∈D and atomic

forces {{Fref
i,S}Nat

i=1}S∈D

L (D;θ) =
∑
S∈D

L (S;θ) =
∑
S∈D

[
Ceℓ

(
E (S;θ) , Eref

S
)
+ Cf

Nat∑
i=1

ℓ
(
Fi(S;θ),Fref

i,S
) ]

. (1)

Here, ℓ denotes a point-wise loss function such as the absolute and squared error between the predicted
and reference total energies and atomic forces. Typically, reference energies Eref

S and atomic forces
Fref

i,S are provided by ab initio or first-principles methods such as CC or DFT, respectively. The
relative contributions of energies and forces in Eq. (1) are balanced with the coefficients Ce and Cf .

Weakly Supervised Learning. Generating many reference labels with a first-principles approach is
challenging due to the high computational cost. Furthermore, the calculation of atomic forces can
be infeasible for some high-accuracy ab initio methods, e.g., for CCSD(T)/CBS. In this work, we
focus on weakly supervised learning methods to improve the performance of MLIPs in scenarios
when only a limited amount of data is available. These involve the generation of approximate but
physically motivated total energies for atomic structures generated by small perturbations of their
atomic positions, i.e., Sδr = {ri + δri, Zi}Nat

i=1 with a perturbation vector δr, where δri is the
perturbation vector for atom i. Approximate labels are computed with MLIPs during their training.

4 PHYSICS-INFORMED WEAKLY SUPERVISED LEARNING

For MLIPs, the generation of approximate labels employed in weakly supervised losses is highly
non-trivial. Small perturbationss in atomic structures can lead to significant changes in energies and
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atomic forces. Thus, standard approaches that are effective for many ML tasks (Yang et al., 2022)
are typically not applicable to MLIPs. To address this problem, we propose a physics-informed
weakly supervised learning approach that involves (i) a Taylor expansion of the potential energy for
computing the response to atomic perturbations and (ii) spatial consistency to estimate the displaced
potential energy based on the concept of conservative forces. We finally introduce the PIWSL loss
term, combining both classes of weakly supervised loss functions with the supervised loss.

4.1 PHYSICS-INFORMED TAYLOR-EXPANSION-BASED CONSISTENCY LOSS

This section introduces the physics-informed Taylor-expansion-based consistency (PITC) loss. Partic-
ularly, we relate the energy predicted directly for a displaced atomic configuration with the energy
obtained by the Taylor expansion from the original configuration; see figure 1 (b). We estimate the
energy for an atomic structure S drawn from the training data set with atomic positions displaced by
a vector δr: Sδr = {ri + δri, Zi}Nat

i=1. For this atomic configuration, we expand the energy predicted
by an MLIP in its first-order Taylor series around the atomic perturbation vector δri and obtain

E (Sδr;θ) ≈ E (S;θ)−
Nat∑
i=1

⟨δri,Fi (S;θ)⟩+O
(
∥δr∥2

)
, (2)

where ⟨·⟩ denotes the inner product. Here, we used that atomic forces are defined as the negative
gradients of the potential energy. For small magnitudes of δri, the second order term O

(
∥δr∥2

)
in

Eq. (2) can be neglected. Using approximate labels E (Sδr;θ), we define the PITC loss as

LPITC (S;θ) = ℓ
(
E (Sδr;θ) , E (S;θ)−

Nat∑
i=1

⟨δri,Fi (S;θ)⟩
)
, (3)

where ℓ denotes a point-wise loss for regression problems and δr is randomly-sampled or determined
adversarially; see section 4.4 for more details. Hence, whenever we encounter a structure S in a batch
during training, a new δr is computed for each S.

4.2 PHYSICS-INFORMED SPATIAL-CONSISTENCY LOSS

This section introduces a physics-informed approach for generating weak labels based on the concept
of conservative forces. Thus, we leverage that the energy difference between two points on the
potential energy surface is independent of the path taken between them. We consider two paths
from a reference point to the same target point, composed of three perturbation vectors in total. We
estimate the potential energy at the target point via Eq. (2). An example of two paths is demonstrated
in figure 1 (c). The figure relates the energy obtained when displacing atomic positions of the
original configuration S (denoted by A in the figure) by δr (from configuration A to C) with the
energy obtained through consecutive perturbations δr′ (from configuration A to B) and δr′′ (from
configuration B to C).

For the first path, we directly predict the energy with an MLIP, i.e., E (Sδr;θ), which is related to the
approximated energy at r + δr using Eq. (3) through PITC loss. For the second path, we directly
compute the energy E (Sδr′ ;θ) for atomic positions displaced by δr′ and use it to approximate
E (Sδr;θ) after applying the second perturbation vector δr′′ ≡ δr − δr′. The physics-informed
spatial consistency (PISC) loss can be defined as

LPISC (S;θ) = ℓ
(
E (Sδr;θ) , E (Sδr′ ;θ)−

Nat∑
i=1

⟨δr′′i ,Fi (Sδr′ ;θ)⟩
)
, (4)

where δr is randomly-sampled or determined adversarially; see section 4.4. After joint training of
PITC and PISC losses, the three different estimations at Sδr become spatially consistent. Note that
our conservative forces-based approach is not limited to relations between two perturbation paths or
three perturbation vectors. We discuss several other possible configurations in section F.3.
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4.3 COMBINED PHYSICS-INFORMED WEAKLY SUPERVISED LOSS

Together with the usual MLIP loss function given in Eq. (1), the overall objective, which we refer to
as the PIWSL loss, can be written as

argmin
θ

L̃ (D;θ) = argmin
θ

∑
S∈D

(L (S;θ) + CPITCLPITC (S;θ) + CPISCLPISC (S;θ)) , (5)

where CPITC and CPISC are the weights of the weakly supervised PITC and PISC losses.

4.4 DETERMINING PERTURBATION DIRECTIONS AND MAGNITUDES

The effectiveness of the proposed approach depends on appropriate choices of the perturbation vectors
δr. We introduce and justify various strategies for generating the perturbations used in Eq. (3) and
Eq. (4). Any vector δr can be written as δr ≡ ϵg/∥g∥2, where ϵ is the magnitude of δr and g/∥g∥2
is the direction of δr. Physical constraints can limit ϵ. Specifically, we can obtain the maximum
perturbation length from the validity of the Taylor expansion in Eq. (2), which, as discussed in
section 5.3, is typically given as at most 30% of the original bond length whose shortest example
is the bond between carbon and hydrogen atoms, about 1.09 Å; see also figure 2 (c) and (d). The
specific values of ϵ chosen for our experiments are provided in section D.1.

To determine g/∥g∥2 we explore two strategies. First, we compute it as the unit vector of a
perturbation vector sampled from the uniform distribution on the interval (−1, 1) for each direction

δrrnd ≡ ϵg/∥g∥2. (6)

Second, we compute an adversarial direction, as proposed by Goodfellow et al. (2014); Miyato et al.
(2018), which involves defining it as the direction (the gradients) in which the loss error increases the
most at the current atom coordinates r and for the current predicted energy. Assuming the norm of
adversarial perturbation as L2, the adversarial direction can be approximated by (Miyato et al., 2018)

δradv ≡ ϵg/∥g∥2, where g = ∇rLdist(y
pred,yref), (7)

where Ldist is a distance measure function to be maximized by adding δradv, with ypred and yref

being the ML model prediction and the reference values. Due to their computational efficiency, we
mainly use Eq. (6) in our experiments. A quantitative comparison between the random and adversarial
directions is provided in section 5.5.

5 EXPERIMENTS

We evaluate our method through extensive experiments with the following objectives: (1) comparing
PIWSL with existing baselines, (2) analyzing the impact of the PIWSL using the aspirin molecule,
including MD simulations, (3) assessing PIWSL’s ability to improve energy and force predictions
when force labels are inaccessible, (4) comparing with a prior weakly supervised approach, (5) an
ablation study, and (6) comparing random and adversarial generation of the perturbation vector. We
focus on the data-scarce setting where the number of training samples is between 100 and 1000, as
generating large datasets using ab initio and first-principles approaches is computationally expensive.

5.1 MODELS AND DATA SETS

We trained the following representative models that are provided in the Open Catalyst code base
(Chanussot et al., 2021): SchNet (Schütt et al., 2017), PaiNN (Schütt et al., 2021), SpinConv (Shuaibi
et al., 2021a), eSCN (Passaro & Zitnick, 2023), and Equiformer v2 (Liao et al., 2023), covering MLIPs
with a smaller (SchNet, SpinConv, PaiNN) and larger number of parameters (eSCN, Equiformer v2).
Moreover, we also considered the MACE model (Batatia et al., 2022), a popular state-of-the-art model
that we use to evaluate the impact of PIWSL on the MD22 data set. Unless otherwise mentioned and
except for SchNet, forces are directly predicted and not computed through the negative gradient of the
energy. The results where forces are computed as negative energy gradients are analyzed in section 5.4
and section F.9. To evaluate the effect and dependency of the physics-informed weakly supervised
approach in detail, we performed the training on various data sets: ANI-1x as a heterogeneous
molecular data set (Smith et al., 2020), TiO2 as a data set for inorganic materials (Artrith & Urban,
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Table 1: Energy (E) and force (F) root-mean-square errors (RMSEs) for the ANI-1x data set.
The results are obtained by averaging over three independent runs. Energy RMSE is given in kcal/mol,
while force RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 1000
Baseline Noisy Nodes PIWSL Baseline Noisy Nodes PIWSL

SchNet E 65.09 ± 2.42 57.39 ± 0.05 60.30 ± 1.77 31.49 ± 0.01 31.10 ± 0.00 31.50 ± 0.00
F 29.06 ± 0.19 25.62 ± 0.01 28.20 ± 0.60 18.94 ± 0.01 18.10 ± 0.00 18.93 ± 0.00

PaiNN E 168.01 ± 1.22 464.55 ± 6.91 109.89 ± 11.46 56.62 ± 2.80 305.76 ± 33.93 24.53 ± 0.48
F 21.33 ± 0.10 20.82 ± 0.03 18.76 ± 0.30 12.96 ± 0.06 14.25 ± 0.18 11.43 ± 0.05

SpinConv E 162.14 ± 7.55 147.73 ± 2.23 130.97 ± 8.58 43.59 ± 1.71 299.33 ± 419.10 39.44 ± 1.31
F 21.22 ± 0.43 21.08 ± 0.43 21.61 ± 0.44 14.51 ± 1.07 15.83 ± 0.75 13.59 ± 0.20

eSCN E 214.52 ± 7.55 521.92 ± 12.05 183.70 ± 9.79 59.59 ± 8.92 241.34 ± 20.16 21.03 ± 0.56
F 20.07 ± 0.27 23.68 ± 0.11 19.69 ± 0.05 12.50 ± 0.78 14.42 ± 0.84 11.83 ± 0.12

Equiformer E 398.71 ± 13.69 632.38 ± 0.11 154.98 ± 8.83 54.52 ± 4.52 854.33 ± 317.7 20.89 ± 0.50
F 20.71 ± 0.05 21.82 ± 0.01 20.55 ± 0.05 10.10 ± 0.00 24.79 ± 2.05 9.68 ± 0.03

2016), the revised MD17 (rMD17) data set containing small molecules with sampled configurational
spaces for each (Chmiela et al., 2017; 2018; Christensen & von Lilienfeld, 2020), the MD22 data set
containing large molecules Chmiela et al. (2023), and LMNTO as another material data set (Cooper
et al., 2020); the results for rMD17, MD22, and LMNTO are provided in section F.1. The detailed
description of each data set is provided in section D.3.

5.2 BENCHMARK RESULTS

We compare models trained using the PIWSL loss (see Eq. (5)) with baseline models trained using
the standard supervised loss only (see Eq. (1)). We also compare our approach to a recently proposed
data augmentation method that incorporates the task of denoising random perturbations of the atomic
coordinates into the learning objective (NoisyNode) (Godwin et al., 2022). More details on the setup
are provided in section D.1. In the following, all evaluation metrics are computed for the test data set.

Heterogeneous Molecular Data Set (ANI-1x). The results provided in Table 1 show that our
approach improves the baseline models’ performance in almost all cases. In particular, the error
reduction for the predicted energies is often between 10 % and more than 50 %. Interestingly, we
observe an improved accuracy for potential energies and atomic forces because we include force
prediction in PITC and PISC losses, different from the previous work (Cooper et al., 2020). In most
cases, except for SchNet, the data augmentation method (NoisyNode) deteriorates the accuracy of the
MLIPs because it does not incorporate the proper response of the energy and atomic forces to the
perturbation of atomic positions.

Training Data Set Size Dependence (ANI-1x). We train MLIPs with training set sizes of
[50, 102, 103, 104, 105, 106, 5 × 106]1. The results are plotted in figure 2 (a) and (b). Although
the observed error reduction depends strongly on the type of MLIP used, the benefit of the weakly
supervised losses often decreases slightly with the number of training samples. This result can
be expected as the area covered by the weakly supervised losses is also gradually covered by the
reference data as the number of training samples increases. Moreover, the gain in accuracy of energy
predictions is more significant than that for forces trained only indirectly through the consistency
constraint in PITC; see Eq. (3). Finally, it is shown that the improvement is more significant for
highly parameterized MLIPs, which benefit the most from increasing the training data size through
PIWSL.

Inorganic Bulk Materials (TiO2). Titanium dioxide (TiO2) is a highly relevant metal oxide for
industrial applications, featuring several high-pressure phases. Thus, ML models should be able
to predict total energies and atomic forces for various high-pressure phases of TiO2, considering
periodic boundaries (relevant when aggregating over the local atomic neighborhood). The results for
trained models are provided in Table 2. Similar to the ANI-1x data set, our approach improves the
accuracy of predicted energies and atomic forces. Interestingly, although the error in the potential

1The results for training data sizes of 105, 106, and 5× 106 are provided in section F.1.
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Table 2: Energy (F) and force (F) root-mean-square errors (RMSEs) for the TiO2 data set. The
results are obtained by averaging over three independent runs. Energy RMSE is given in kcal/mol,
while force RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 1000
Baseline Noisy Nodes PIWSL Baseline Noisy Nodes PIWSL

SchNeta E 17.21 ± 0.00 19.68 ± 0.00 17.08 ± 0.00 9.56 ± 0.00 9.60 ± 0.00 9.51 ± 0.00
F 2.84 ± 0.00 2.70 ± 0.00 2.83 ± 0.00 2.14 ± 0.00 2.15 ± 0.00 2.13 ± 0.00

PaiNNb E 14.41 ± 0.16 n/ab 13.95 ± 0.09 4.49 ± 0.15 n/ab 3.63 ± 0.20
F 1.59 ± 0.01 n/ab 1.56 ± 0.01 0.41 ± 0.02 n/ab 0.34 ± 0.01

SpinConv E 20.00 ± 0.42 18.76 ± 0.74 16.98 ± 0.99 4.17 ± 0.76 4.09 ± 0.65 2.50 ± 0.40
F 1.58 ± 0.03 1.53 ± 0.03 1.59 ± 0.03 0.65 ± 0.02 0.71 ± 0.16 0.58 ± 0.05

eSCN E 16.41 ± 1.10 20.92 ± 0.00 12.63 ± 0.78 3.31 ± 1.18 20.90 ± 0.01 1.40 ± 0.10
F 1.57 ± 0.04 1.66 ± 0.00 1.44 ± 0.03 0.46 ± 0.23 1.66 ± 0.00 0.21 ± 0.00

Equiformer E 18.21 ± 0.02 19.06 ± 0.02 13.93 ± 0.09 3.67 ± 0.03 18.75 ± 0.05 1.82 ± 0.34
F 1.56 ± 0.01 1.64 ± 0.00 1.51 ± 0.19 0.17 ± 0.01 1.58 ± 0.00 0.17 ± 0.01

a We used a larger batch size of 32 for SchNet since we obtained extremely high errors for the batch size of 4. A
more detailed discussion of the experimental results for SchNet is provided in section F.1.
b Because of a numerical instability of PaiNN when perturbing atomic coordinates, the cutoff radius is reduced
from 12 Å to 5 Å in this experiment. Predicted values become n/a when atomic configurations are perturbed.
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Figure 2: (a, b) Relative performance gains for MLIPs trained with PIWSL compared to those
trained without it and (c, d) Potential energy profiles for a C–H bond of the aspirin molecule.
Relative performance gains are evaluated for (a) energy (E-) and (b) force (F-) RMSEs. These
results are presented for the ANI-1x data set. Potential energy profiles for a C–H bond of the aspirin
molecule are presented for models trained using (c) 100 and (d) 200 configurations. The red and blue
arrows indicate the direction from the original structure (E(S;θ)) to the perturbed one (E(Sδr;θ)),
as defined by Eq. (2), for the baseline and PIWSL model predictions, respectively.

energy for 1000 training configurations reaches small RMSE values, from 2 to 4 kcal/mol in predicted
energy, the PIWSL still provides a further error reduction. This observation indicates strong evidence
of the effectiveness of PIWSL applied to bulk materials.

5.3 QUALITATIVE IMPACT OF PIWSL

We evaluate the prediction variance and robustness of an MLIP model trained with PIWSL using
the aspirin molecule, focusing on the potential energy’s dependence on the C–H bond length. In this
work, robustness refers to the prediction robustness of an MLIP to perturbations in atomic coordinates.
In the literature, the robustness of MLIPs also means their stability during MD simulations.

We train PaiNN on the rMD17 aspirin data set using 100 and 200 configurations with and without
the PIWSL loss. The detailed training setup and errors of the used MLIPs are summarized in
section F.4.1. We examine the potential energy varying the length of a C–H bond from 0.9 Å to 1.4 Å.
The equilibrium C–H bond length is about 1.09 Å. The results in figure 2 (c) and (d) demonstrate that
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Figure 3: Stability analysis of the MLIP models during MD simulations. Stability during MD
simulations is assessed for the baseline MLIP models and those trained with PIWSL. Left: The direct
force prediction model. Right: The gradient-based force prediction model. All results are obtained
for the aspirin molecule and MD simulations in the microcanonical (NVE) statistical ensemble. We
measure stability during MD simulations according to Fu et al. (2023).

the PIWSL method improves the predicted potential energy profile, indicating improved robustness
under perturbations of atom coordinates.

Although the estimated potential energies do not always match the reference values, the direction
between the original and perturbed configurations, indicated by arrows in figure 2, consistently follows
the gradient of the reference potential energy, corresponding to the negative force. In figure 2, we use
a perturbation length of ||δr|| = 0.01 Å. This consistency with the energy gradient underscores the
PIWSL method’s effectiveness, ensuring the alignment between predicted total energies and force
and improving the corresponding RMSE values. As discussed in section 4.2, PIWSL also addresses
the limitation of MLIPs that employ separate force branches and do not guarantee the prediction
of conservative forces. The proposed method reduces the curl of predicted forces, as detailed in
section F.10, although complete elimination of the curl remains a challenge. In summary, PIWSL
minimizes individual energy and force errors, improving the overall accuracy of MLIPs.

To further assess PIWSL’s impact, we evaluate the robustness during MD simulations of the MLIP
models trained with and without PIWSL. We consider MD simulations of the aspirin molecule, with
corresponding results presented in figure 3. We measured stability following the approach proposed
in Fu et al. (2023). A detailed experimental setup is provided in section F.4.2. The results demonstrate
that PIWSL improves the stability of MD simulations for both the direct and gradient-based force
prediction models. The simulation times in figure 3 are shorter than those reported by Fu et al. (2023).
This difference arises from our choice to perform MD simulations in the microcanonical (NVE)
statistical ensemble instead of the canonical (NVT) statistical ensemble in Fu et al. (2023) to assess
stability more accurately without the influence of a thermostat. Results for MD simulations conducted
in the canonical statistical ensemble are provided in section F.4.2.

5.4 TRAINING MLIPS WITHOUT REFERENCE FORCES

In the following, we explore scenarios where only potential energy labels are available. This situation
commonly arises when calculating energy labels with chemically accurate approaches, such as
CCSD(T)/CBS (Hobza & Šponer, 2002; Feller et al., 2006), for which force calculation is infeasible.
To consider practical applications, we examine two cases: (1) predicting force by a force branch (FB)
and (2) predicting force as a gradient of the potential energy (GF). The former enables fast force
prediction and is popular in the machine learning community, while the latter requires additional
gradient calculation but yields curl-free force predictions. It is popular in computational chemistry as
it ensures the conservation of the total energy during MD simulations. The results are provided in
Table 3; training without reference forces is achieved by setting the relative force contribution to zero
in Eq. (1). The PIWSL method consistently performs better than the baseline for the FB and GF cases.
However, a more significant improvement in the force prediction performance is observed in the GF
case. We attribute this phenomenon to the inherent nature of PIWSL, which requires consistency
between the potential energy and atomic forces, as discussed in section 5.3. This result aligns with
our expectations, confirming the capability of our PIWSL method to enable ML models to reduce
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the error in the predicted forces. Overall, PIWSL opens a new possibility for training MLIP models
using highly accurate reference methods, such as CCSD(T)/CBS.

Table 3: Results for models trained on the ANI-
1x data set without reference forces. All models
are trained using 1000 training samples. FB refers
to the setting where the force branch estimates the
force, and GF denotes the setting where the force
is estimated by the gradient of the potential energy
with respect to the atomic coordinates.

Model Case Baseline PIWSL

PaiNN

FB E 42.36 ± 0.30 25.42 ± 0.72
F 24.25 ± 0.00 20.54 ± 0.08

GF E 41.83 ± 1.81 29.71 ± 0.55
F 83.36 ± 2.85 24.02 ± 0.95

Equiformer

FB E 43.14 ± 0.86 29.48 ± 0.51
F 24.25 ± 0.00 21.99 ± 0.49

GF E 42.55 ± 0.99 32.66 ± 1.11
F 35.70 ± 0.78 21.83 ± 0.27

Table 4: Results for models trained on the ANI-
1x data set with ablated weakly supervised
losses. All models are trained using 1000 training
samples. All results are obtained by averaging
over three independent runs. Energy RMSE is
given in kcal/mol, while force RMSE is given in
kcal/mol/Å.

Model PITC PISC E F

PaiNN

✗ ✗ 56.62 ± 2.80 12.96 ± 0.06
✓ ✗ 24.60 ± 0.18 11.51 ± 0.03
✗ ✓ 58.30 ± 2.10 13.18 ± 0.29
✓ ✓ 24.53 ± 0.48 11.43 ± 0.05

Equiformer

✗ ✗ 54.52 ± 4.52 10.10 ± 0.00
✓ ✗ 32.64 ± 26.48 9.64 ± 0.03
✗ ✓ 48.96 ± 4.96 10.30 ± 0.06
✓ ✓ 20.89 ± 0.50 9.68 ± 0.03

5.5 FURTHER ANALYSES OF PIWSL

The following provides further analyses of our approach. We provide the results for Equiformer v2
and PaiNN since these models employ equivariant features and demonstrate a high accuracy on the
ANI-1x data set when trained using 1000 configurations.

Comparing PITC with the Taylor-Expansion-Based Weak Label Loss. We compare the PIWSL
method with the Taylor-expansion-based weak label (WL) approach (Cooper et al., 2020), whose loss
function is presented in Eq. (A3). For simplicity, we only consider the PITC loss in Eq. (3). For a fair
comparison, we consider the following two cases. First, we train with reference forces and energies
(w. RF). Second, we train the methods without reference forces and use only the reference energies.
For the training with reference forces, we set the numeric coefficient of the PITC loss to 1.0; for
the training without reference forces, the coefficient is set to 0.1. Note that the WL loss without the
reference force is calculated using the predicted force labels. The results are provided in Table 5.

Our PITC loss demonstrates the best accuracy in all cases, with and without the reference forces.
Interestingly, PaiNN failed to learn the potential energy with the WL loss and reference forces.
We hypothesize this to be due to the imbalance of the training between the energies and forces.
Specifically, the WL loss trains only the potential energy, resulting in an inconsistency between
the energy and force branches, which share the same readout layer that experiences more frequent
updates using the potential energy. This hypothesis is supported by the results for the training without
reference forces, where the error in energy is reduced compared to the baseline. A further validation
in a similar experiment in the case of GF is provided in section F.9. However, the proposed PITC loss
still performs better here. In summary, the PITC loss enables MLIPs to learn energies and forces
consistent with each other and does it better than the previously proposed WL method.

Ablating the Impact of PITC and PISC Losses. We conduct an ablation experiment to analyze
the impact of PITC and PISC losses. Results in Table 4 indicate that the PITC loss predominantly
improves the accuracy of resulting models, especially for PaiNN. Using just the PISC loss does not
consistently improve accuracy but stabilizes training when combined with PITC. This combined
approach notably benefits Equiformer v2. For Equiformer v2, we repeated the experiment five times
to reduce the effect from an outlier on the PITC loss.

Adversarial Directions for Perturbing Atomic Positions. The following discusses the dependence
of the PIWSL’s performance on selecting the vector δr in Eq. (5) employed to perturb atomic positions.
The detailed implementation and setups are provided in section D.1. Table 6 compares the results
obtained for a randomly-sampled vector δr and for the one determined adversarially. The results
demonstrate that both approaches improve the performance compared to the baseline without weak
supervision, though the results might depend on the employed model.
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Table 5: Comparison of PITC and the Taylor-expansion-based weak label loss. WL (+FP)
denotes the Taylor-expansion-based method using reference energies and either reference (w. RF)
or predicted (w/o. RF) forces; see Eq. (A3). The listed values are the RMSE values for energies in
kcal/mol and atomic forces in kcal/mol/Å. All models are trained on the ANI-1x data set using 1000
configurations, with (w.) and without (w/o.) reference atomic forces (RF).

Model Case Baseline PITC WL (+FP)

PaiNN

(w. RF) E 56.62 ± 2.80 30.94± 0.56 81.86± 9.39
F 12.96± 0.06 12.04± 0.04 14.54± 0.12

(w/o. RF) E 42.36± 0.30 25.42± 0.72 41.77± 4.82
F 24.25± 0.00 20.54± 0.08 24.68± 0.54

Equiformer

(w. RF) E 54.52± 4.52 23.16± 0.19 31.02± 3.99
F 10.10± 0.00 10.03± 0.05 13.43± 0.92

(w/o. RF) E 43.14± 0.86 29.48± 0.51 88.59± 11.36
F 24.25± 0.00 21.99± 0.49 293.41± 26.96

Table 6: PIWSL’s performance dependence on the atomic position perturbation vector. The
numerical values are RMSEs for the energy in kcal/mol and force in kcal/mol/Å. All results are
provided for the ANI-1x data set and models trained using 1000 configurations.

Baseline Random (Eq. (6)) Adversarial (Eq. (7))

PaiNN E 56.62 ± 2.80 24.53 ± 0.48 33.67 ± 1.12
F 12.96 ± 0.18 11.43 ± 0.05 12.74± 0.14

Equiformer E 54.52 ± 4.52 23.16 ± 0.50 20.54± 0.21
F 10.10 ± 0.00 10.03 ± 0.03 9.93± 0.04

6 DISCUSSION AND LIMITATIONS

This work introduces the PIWSL method, encompassing two distinct physics-informed weakly
supervised loss functions, for learning MLIPs. These losses provide the physics-informed weak
labels based on the Taylor expansion (PITC loss) and the spatial consistency (PISC loss) of the
potential energy. These physics-informed weak labels enable any MLIP to improve its accuracy
and robustness, particularly in scenarios characterized by sparse training data, which are common
when investigating a new molecular or material system. The improved accuracy and robustness of
MLIPs can allow running sufficiently long MD simulations, resulting in a more effective use of
active learning approaches. Our extensive experiments demonstrate notable efficacy and efficiency
of our method from various aspects: (i) dependence on the training data set size, (ii) the potential
energy prediction variance and robustness in terms of a perturbation on a C–H bond length as well
as robustness during MD simulations, and (iii) selection of the perturbation vector. In particular, it
is shown that our PIWSL method enables ML models to improve the force prediction even without
force labels, thereby opening a new possibility for training MLIPs using highly accurate reference
methods, such as CCSD(T)/CBS.

Limitations. The proposed PIWSL method is tailored to ML models that predict atomic forces
and total energies of atomic systems. It cannot be applied to other ML problems unrelated to
computational chemistry or materials science applications. Although this work uses the first-order
Taylor expansion to obtain weak labels in Eq. (2), employing a more sophisticated higher-order
ordinary differential equation solver is a viable alternative.
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A APPENDIX

B POTENTIAL BROADER IMPACT AND ETHICAL ASPECTS

This paper presents work whose goal is to advance the field of machine learning, in particular,
machine learning for science. Due to the generic nature of pure science, there are many potential
societal consequences of our work in the far future, none of which we feel must be specifically
highlighted here.

C RELATED WORK

Addressing Data Sparsity in MLIPs. Generating training data sets suitable for learning reliable
MLIPs is challenging, especially when considering unexplored molecular and material systems. Nu-
merous computationally expensive calculations with either ab initio or first-principles approaches are
required for the latter. To mitigate this challenge, active learning (AL) methods, which utilize predic-
tion uncertainty, can be applied (Li et al., 2015; Podryabinkin & Shapeev, 2017; Vandermause et al.,
2020; Shuaibi et al., 2021b; Briganti & Lunghi, 2023; Zaverkin et al., 2024b). Furthermore, equivari-
ant MLIPs often reduce required training data set sizes through improved data efficiency (Batzner
et al., 2022; Batatia et al., 2022).

D EXPERIMENTAL SETUP, BASELINES, AND DATA SETS

D.1 EXPERIMENTAL SETUP

Code for Experiments. The code used to run our experiments builds upon the recent work (Fu
et al., 2023) and extends it to integrate the latest Open Catalyst Project code (Chanussot et al., 2021).
We adopt hyper-parameters from the Open Catalyst (OC) project, tuned to the corresponding OC
data set. Note that we do not use this data set in the presented work, whose main focus is training
general-purpose MLIPs that can be used to run molecular dynamics (MD) simulations and geometry
optimization. However, the OC data set has been designed to investigate the latter, making it less
suitable for the current study. Our modifications include adjusting the learning rate scheduler, details
of which can be found in our repository. For potential energy and force prediction, we utilize mean-
absolute error (MAE) and L2-norm (L2MAE) losses with coefficients of 1 and 100, respectively.
More details on the model hyperparameters are provided in our repository. For the PITC and PISC
loss functions, we use the mean square error (MSE) loss based on an experiment in section F.5.

Training Details. For training MLIPs, we followed the setup in the Open Catalyst Project. We
kept the mini-batch size consistent across all models, as shown in Table A1. We have chosen the
mini-batch size based on the maximum memory needed by the most demanding models, such as
eSCN and Equiformer v2. All experiments are performed on a single NVIDIA A100 GPU with
81.92 GB memory. To avoid overfitting, we stopped training when the validation loss stopped
improving—the specific number of training iterations is provided in Table A2.

We used perturbation vectors δr drawn from a uniform random distribution; see also section 4.4.
Particularly, we defined δr ≡ ϵg, with each component of g drawn from a uniform random distribution
in the interval (−1, 1). The magnitude ϵ is also drawn from a uniform random distribution and

Table A1: Employed mini-batch sizes. We provide mini-batch sized for all data sets and models
employed in this work.

ANI-1x TiO2
a rMD17 LMNTO

Mini-batch size 6 4 16 4
a As explained in Table 2, the mini-batch size of the SchNet model was changed to 32 due to high RMSE values
observed with a mini-batch size of four as the training data set size increased. A more detailed discussion of the
results for SchNet is provided in section F.1.
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Table A2: Total number of training iterations. We provide the total number of training iterations for
all data sets and training set sizes employed in this work. The number in the parentheses demonstrates
the corresponding total number of training epochs.

Ntrain ANI-1x TiO2 rMD17 LMNTO

50 7500 (900) – – –
100 10,000 (600) 10,000 (400) 7500 (1200) 10,000 (400)

1000 40,000 (240) 10,000 (100) 10,000 (160) 10,000 (100)
10,000 100,000 (60) – – –

100,000 400,000 (30) – – –
1,000,000 400,000 (3) – – –
5,000,000 420,000 (1) – – –

Table A3: Hyper-parameters for the PIWSL loss. We selected the following hyper-parameter
combinations using Optuna (Akiba et al., 2019): (CPITC, CPISC, ϵmax)= Case A: (1.2, 0.8, 0.025),
Case B: (1.0, 0, 0.01), Case C: (0.1, 0.01, 0.01), Case D: (1.2, 0.01, 0.025), Case E: (1.2, 0.01, 0.01),
Case F: (1.2, 0.01, 0.015), Case G: (0.01, 0.001, 0.025), and Case H: (0.1, 0.01, 0.025).

Dataset Size Equiformer v2 eSCN PaiNN SpinConv SchNet

ANI-1x

50 A C B A A
100 A C A D A

1000 D D D B B
10,000 G C B C C

100,000 – – C – –
1,000,000 – – C – –
5,000,000 – – C (E) – –

TiO2 100 A A A A H
1000 G A C A C

rMD17 100 E B F D A
(Aspirin) 1000 B B B B B

rMD17 100 B B B B B
(Benzene) 1000 G B B B B

rMD17 100 G B B B B
(Naphthalene) 1000 G B B B B

LMNTO 100 B B B A B
1000 B A B B B

ϵ < ϵmax. This definition of δr differs from the one in Eq. (6), improving the computational
efficiency of PIWSL by avoiding the calculation of square root and division.

The remaining hyper-parameters are the coefficients for the PITC and PISC losses (CPITC, CPISC)
and the maximum magnitude ϵmax of the perturbation vector δr; see Table A3. These hyper-
parameters are tuned using Optuna (Akiba et al., 2019) for PaiNN and Equiformer v2. We used
1000 configurations drawn randomly from the original ANI-1x data set for training. Due to multiple
local minima, Optuna identified several optimal hyper-parameter sets in each run. We selected the
following representative combinations (CPITC, CPISC, ϵmax) = Case A: (1.2, 0.8, 0.025), Case B:
(1.0, 0, 0.01), Case C: (0.1, 0.01, 0.01), Case D: (1.2, 0.01, 0.025), Case E: (1.2, 0.01, 0.01), Case
F: (1.2, 0.01, 0.015), Case G: (0.01, 0.001, 0.025), and Case H: (0.1, 0.01, 0.025). We selected the
hyper-parameters listed in Table A3 based on the validation dataset performance.

Splitting Data Sets. We split the original data sets into training, validation, and test sets for our
experiments. We shuffled the original data sets using a random seed and selected the training data sets
of predefined sizes. For validation, we selected the same number of configurations as in the training
data set if it exceeded 100 configurations; otherwise, we used 100 configurations to ensure sufficient
validation size. For the rMD17 data set, following (Fu et al., 2023), we used 9000 configurations as

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

a validation data set and another 10,000 for testing. We used the same test data set across different
sizes of the training data sets for a fair performance comparison. We used 10,000 test configurations
for ANI-1x and 1000 for TiO2 and LMNTO.

Training with Adversarial Directions. In our experiments, which defined perturbation vectors
adversarially (see section 5.5), we determined adversarial directions using Eq. (7). More concretely,
we only considered the potential energy, i.e., ypred and ylabel, to avoid Hessian calculations. In
addition, we considered the loss function for the potential energy as Ldist in Eq. (7). The expression
of g = ∇rLdist is then

gS = ∇ri

√
(E (S;θ)− Eref

S )2 = − 1

2Ldist
(Fi (S;θ)− Fref

i,S)(E (S;θ)− Eref
S ). (A1)

Note that we used the relation ∇riE
ref
S = −Fref

i,S to obtain the final expression. Though Eref can
also be interpreted as a constant regarding atom positions. We have chosen this expression to avoid
the case where the adversarial direction g points to Fref

i,S other than the very beginning of the training.
Our experiments indicate that the employed expression is slightly better than its alternative. In our
experiment, we also randomly flip the sign of gS to avoid overfitting to adversarial directions.

D.2 BASELINE METHODS

Data Augmentation with NoisyNode. In our experiments, we used the NoisyNode approach (God-
win et al., 2022) as one of the baseline methods. This method aims to improve the performance
of ML models by adding a perturbation to node features, i.e., atomic coordinates, and makes ML
models recover original labels. This approach enables ML models to be more robust to noise in the
data. Although the original method recommends adding a decoder network to learn the denoising
process, we do not utilize it following previous work (Liao et al., 2023) and add the perturbation
vector to atomic coordinates similar to PIWSL losses, fixing energy and force labels. We implement
the NoisyNode approach in our code. Thus, we can expect slightly different behavior compared to
the recent work (Godwin et al., 2022; Liao et al., 2023) 2.

Taylor-Expansion-Based Weak Labels. Recent work proposed a similar Taylor-expansion-based
weak label approach (Cooper et al., 2020). Nonetheless, the loss is different from the one in Eq. (3)
as the authors used reference energy and atomic force labels to estimate weak energy labels Eref

Sδr
for

perturbed atomic configurations Sδr

Eref
Sδr

≈ Eref
S −

Nat∑
i=1

〈
δri,F

ref
i,S
〉
+O

(
||δr||2

)
. (A2)

The trainable parameters of MLIPs are optimized by minimizing the weak label (WL) loss

LWL (S;θ) = ℓ

(
E (Sδr;θ) , E

ref
S −

Nat∑
i=1

〈
δri,F

ref
i,S
〉)

. (A3)

Figure 1 (a) illustrates the corresponding approach (Cooper et al., 2020), which computes the energy
of a perturbed atomic configuration using a Taylor expansion based on reference energy and atomic
force labels. This approach was originally applied to train MLIPs without explicit force labels.

D.3 DESCRIPTION OF THE DATA SETS

ANI-1x Data Set. The ANI-1x data set is a heterogeneous molecular data set and includes 63,865 or-
ganic molecules (with chemical elements H, C, N, and O) whose size ranges from 4 to 64 atoms (Smith
et al., 2020). The ML model requires learning total energies and atomic forces for various molecules
and their conformations. Total energies and atomic forces are obtained through DFT calculations.

TiO2 Data Set. Titanium dioxide (TiO2) is an industrially relevant and well-studied material. TiO2

dataset includes 7815 bulk structures of several TiO2 phases whose reference energies and forces
2Note that NoisyNode assumes the unperturbed state to be the equilibrium structure, which may have

contributed to the limited performance improvements observed in our experiments. Recently, efforts have been
underway to develop an extended version of NoisyNode tailored for non-equilibrium structures, such as (Liao
et al., 2024).
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are obtained through DFT calculations (Artrith & Urban, 2016). The number of atoms in a single
configuration ranges from 6 to 95.

rMD17 Data Set. The rMD17 data set includes ten small organic molecules, including 100,000
configurations obtained by running MD simulations for each (Christensen & von Lilienfeld, 2020).
The ML model requires learning the total energies and atomic forces for each molecule. In this revised
version of the MD17 data set, the molecules are taken from the original MD17 data set (Chmiela
et al., 2017; 2018). However, the energies and forces are recalculated at the PBE/def2-SVP level of
theory using very tight SCF convergence and a very dense DFT integration grid.

LMNTO Data Set. The Li-Mo-Ni-Ti oxide (LMNTO) is of technological significance as a potential
high-capacity positive electrode material for lithium-ion batteries. It exhibits substitutional disorder,
with Li, Mo, Ni, and Ti all sharing the same sublattice. This data set includes LMNTO with the
composition Li8Mo2Ni7Ti7O32 and configurations obtained from an MD simulation, resulting in
approximately 2600 structures in total (Cooper et al., 2020).

MD22 Data Set. The MD22 data set (Chmiela et al., 2023) includes seven larger organic molecules,
such as a small peptide and a double-walled nanotube, whose atom number ranges from 42 to 370.
The data set consists of MD trajectories sampled at temperatures between 400 and 500 K. The ML
model requires learning the total energies and atomic forces for each molecule. The energies and
forces are calculated at the PBE+MBD level of theory.

E DIFFERENCES IN GRADIENTS FOR PHYSICS-INFORMED LOSSES

The following considers the gradients of the proposed two losses. First, considering squared errors,
we obtain the following gradients of the loss in Eq. (A2) with respect to trainable parameters

dLWL

dθ
= 2

(
E (Sδr;θ)− Eref

S +

Nat∑
i=1

⟨δri,Fref
i,S⟩
)
dE (Sδr;θ)

dθ
. (A4)

In contrast, for the PITC loss in Eq. (3) we obtain

dLPITC

dθ
=2

(
E (Sδr;θ)− E (S;θ) +

Nat∑
i=1

⟨δri,Fi (S;θ)⟩
)
×(

dE (Sδr;θ)

dθ
− dE (S;θ)

dθ
+

Nat∑
i=1

d⟨δri,Fi (S;θ)⟩
dθ

)
.

(A5)

The above equations indicate that the direction of the derivative of the PITC loss in Eq. (A5) is
different from that of the weak label loss because of the incorporation of the predicted potential
energy at the original and the force at the reference point. The gradient of PISC loss in Eq. (4) reads

dLPISC

dθ
= 2

(
E (S;θ)−

Nat∑
i=1

⟨δri,Fi (S;θ)⟩ − E (Sδr′ ;θ) +

Nat∑
i=1

⟨δr′′i ,Fi (Sδr′ ;θ)⟩
)

×
(
dE (S;θ)

dθ
−

Nat∑
i=1

d⟨δri,Fi (S;θ)⟩
dθ

− dE (Sδr′ ;θ)

dθ
+

Nat∑
i=1

d⟨δr′′i ,Fi (Sδr′ ;θ)⟩
dθ

)
.

(A6)

F EXPERIMENTS

F.1 BENCHMARK RESULTS

The following section provides additional results, complementing those provided in the main text.

Additional Results for ANI-1x. Table A4 provides results for ANI-1x data set and a training set sizes
of 50 or 10,000; see also figure 2. The table demonstrates a considerable reduction of energy and
force RMSEs for models trained using small training data set sizes of 50 configurations. Furthermore,
we find around 5 to 25 % error reduction for a larger training set size of 10,000, indicating the
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Table A4: Energy (E) and force (F) root-mean-square errors (RMSEs) for the ANI-1x data
set. The results are obtained by averaging over three independent runs. Energy RMSE is given in
kcal/mol, while force RMSE is in kcal/mol/Å.

Ntrain = 50 Ntrain = 10, 000
Baseline Noisy Nodes PIWSL Baseline Noisy Nodes PIWSL

Schnet E 90.08 ± 1.24 76.83 ± 0.75 83.90 ± 2.82 24.88 ± 0.01 24.86 ± 0.00 24.88 ± 0.00
F 35.49 ± 0.36 31.13 ± 0.13 35.30 ± 0.87 13.36 ± 0.01 13.36 ± 0.00 13.36 ± 0.00

PaiNN E 212.64 ± 1.14 440.11 ± 11.68 121.36 ± 4.13 19.14 ± 0.38 165.25 ± 4.87 14.10 ± 0.14
F 22.61 ± 0.04 22.50 ± 0.22 20.83 ± 0.28 8.24 ± 0.10 9.22 ± 0.09 7.89 ± 0.02

SpinConv E 222.75 ± 7.12 219.85 ± 6.99 175.38 ± 9.77 19.42 ± 0.67 46.31 ± 10.31 18.81 ± 0.60
F 24.88 ± 0.88 24.61 ± 0.35 25.12 ± 0.58 10.31 ± 0.33 10.78 ± 0.66 9.94 ± 0.12

eSCN E 517.17 ± 31.98 583.90 ± 33.04 454.40 ± 11.10 12.65 ± 0.63 165.30 ± 33.11 10.66 ± 0.31
F 22.51 ± 0.09 24.04 ± 0.15 22.28 ± 0.08 5.11 ± 0.30 11.51 ± 0.23 4.35 ± 0.15

Equiformer E 498.58 ± 17.44 630.32 ± 0.32 433.88 ± 79.63 8.03 ± 0.21 970.95 ± 236.90 7.77 ± 0.14
F 22.86 ± 0.04 22.92 ± 0.00 22.72 ± 0.04 2.97 ± 0.00 29.28 ± 5.63 2.98 ± 0.00

Table A5: Energy and force erorrs of PaiNN model trained on the ANI-1x data set with 100,000,
1,000,000, and 5,000,000 samples. The results are obtained by averaging over three independent
runs. Energy errors are given in kcal/mol, while force errors are in kcal/mol/Å.

Ntrain Force MAE Force RMSE Energy MAE Energy RMSE

Baseline 100,000 0.92 ± 0.00 3.70 ± 0.01 4.28 ± 0.15 6.14 ± 0.21
PIWSL 0.91 ± 0.01 3.72 ± 0.04 4.07 ± 0.17 5.83 ± 0.20
Baseline 1,000,000 0.67 ± 0.00 2.74 ± 0.01 4.90 ± 0.23 6.56 ± 0.26
PIWSL 0.68 ± 0.00 2.77 ± 0.04 4.48 ± 0.05 6.06 ± 0.01
Baseline 5,000,000a 0.53 2.18 3.94 5.24

PIWSL (C)b 0.52 2.16 3.85 5.18
PIWSL (E)b 0.55 2.24 3.45 4.92

a Because of the computational cost, we performed only one training in the case of 5,000,000 training samples.
b This symbol denote the hyper-parameter set defined in Table A3

effectiveness of the PIWSL method for relatively large training set sizes. Finally, we provide a result
of PaiNN model trained on ANI-1x data set with 100,000, 1,000,000 and 5,000,000 samples in
Table A5, which demonstrates that PIWSL still improves the performance around 5% to 10%of the
energy RMSE.

Additional Results for SchNet Applied to TiO2. In Table 2, we set the mini-batch size to 32
for training the SchNet model. This adjustment was made because training SchNet with a small
mini-batch size of four increases RMSE values with a growing training data set size. Table A6
demonstrates the performance of the SchNet model for a mini-batch size of four. Table A7 provides
the results obtained for the SchNet model with a mini-batch size of four for the following training set
sizes: 100, 200, 500, and 1000. This figure demonstrates that SchNet, with a mini-batch size of four,
reaches its best performed with Ntrain = 200. These results indicate the difficulty of learning training
data statistics from small mini-batches, probably due to the limited expressive power of SchNet.

Results for LMNTO. Table A8 presents RMSE errors for LMNTO (Cooper et al., 2020). PIWSL
shows the error reduction for most cases for this benchmark data set, especially for small training set
sizes (i.e., a training set of 100 configurations).

Molecular Dynamics Trajectories (rMD17). Table A9 analyzes the effect of the PIWSL on data
sets containing conformations of a single small molecule, different from the heterogeneous ANI-1x
data set. For this purpose, we have chosen the benzene (natom = 12), naphthalene (natom = 18),
and aspirin (natom = 21) molecules because these represent molecules of different sizes. The
results in Table A9 indicate that our approach is still effective in this scenario. However, the PIWSL

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table A6: Energy (F) and force (F) root-mean-square errors (RMSEs) for the TiO2 data set
obtained for the SchNet model with a mini-batch size of four. The results are obtained by averaging
over three independent runs. Energy RMSE is given in kcal/mol, while force RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 1000
Baseline Noisy Nodes PIWSL Baseline Noisy Nodes PIWSL

SchNet E 18.85 ± 0.00 17.48 ± 0.00 17.58 ± 0.00 35.58 ± 0.00 58.08 ± 18.44 15.28 ± 0.12
F 2.74 ± 0.00 2.51 ± 0.00 2.74 ± 0.00 6.54 ± 0.00 18.40 ± 0.00 3.61 ± 0.27

Table A7: Training data set size dependence of SchNet with a mini-batch size of four. The results
are presented for the TiO2 data set and are obtained by averaging over three independent runs. Energy
RMSE is given in kcal/mol, while force RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 200 Ntrain = 500 Ntrain = 1000

SchNet E 18.85 ± 0.00 16.28 ± 0.00 24.42 ± 0.00 35.58 ± 0.00
F 2.74 ± 0.00 2.56 ± 0.00 4.43 ± 0.00 6.54 ± 0.00

performance in the case of benzene has nearly no gain. This observation can be attributed to
only a small variation of atomic coordinates in the benzene data set, simplifying the learning task.
We also note that the obtained results for SchNet and PaiNN are somewhat worse than originally
reported (Schütt et al., 2017; Schütt et al., 2021), attributed to the modified implementation in the
Open Catalyst project code and the use of the force-branch instead of the gradient-based forces. The
effect of the gradient-based forces is investigated in section F.9.

Molecular Dynamics Trajectories for Large Molecules (MD22). Table A10 evaluates the impact
of PIWSL on data sets containing conformations of a single large molecule. For this purpose, we
selected the buckyball catcher molecule (natom = 148) because of its large size and non-trivial
structure. To demonstrate the applicability of PIWSL, we trained a MACE model (Batatia et al.,
2022), to prove that PIWSL enhances even the performance of a recent state-of-the-art model. The
model structure and training configuration were based on those provided in the official repository3

with slight modifications: “max_L” was set to one and mini-batch size was adjusted to 4. Following
the original training setup (Chmiela et al., 2023), we randomly sampled 600 configurations for the

3https://mace-docs.readthedocs.io/en/latest/examples/training_examples.
html

Table A8: Energy (E) and force (F) root-mean-square errors (RMSEs) for the LMNTO data
set. The results are obtained by averaging over three independent runs. Energy RMSE is given in
kcal/mol, while force RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 1000
Model Baseline NoisyNode PIWSL Baseline NoisyNode PIWSL

SchNet E 4.46 ± 0.00 6.10 ± 0.00 4.45 ± 0.00 3.09 ± 0.00 3.25 ± 0.00 3.09 ± 0.00
F 9.24 ± 0.00 8.31 ± 0.00 9.24 ± 0.00 5.09 ± 0.00 5.21 ± 0.00 5.09 ± 0.00

PaiNN E 6.91 ± 0.02 7.09 ± 0.04 5.99 ± 0.02 3.26 ± 0.01 4.61 ± 0.03 2.98 ± 0.01
F 4.75 ± 0.00 7.20 ± 0.01 4.75 ± 0.00 2.03 ± 0.00 2.55 ± 0.00 2.03 ± 0.00

SpinConv E 7.90 ± 0.00 7.83 ± 0.04 7.83 ± 0.01 4.90 ± 0.33 7.20 ± 0.06 3.95 ± 0.02
F 4.63 ± 0.01 5.14 ± 0.04 4.71 ± 0.02 1.81 ± 0.01 2.33 ± 0.00 1.74 ± 0.00

eSCN E 7.92 ± 0.00 7.92 ± 0.00 7.92 ± 0.00 7.93 ± 0.00 7.93 ± 0.00 6.40 ± 0.14
F 4.67 ± 0.01 7.59 ± 0.02 4.64 ± 0.01 1.54 ± 0.00 1.98 ± 0.06 1.53 ± 0.00

Equiformer v2 E 7.40 ± 0.03 7.92 ± 0.00 7.32 ± 0.08 3.57 ± 0.05 7.04 ± 0.03 3.60 ± 0.02
F 4.26 ± 0.00 7.60 ± 0.02 4.24 ± 0.02 1.34 ± 0.00 1.99 ± 0.00 1.34 ± 0.00
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Table A9: Energy (E) and force (F) root-mean-square errors (RMSEs) for the rMD17 data set.
We have chosen benzene, naphthalene, and aspirin for our experiments. The results are obtained by
averaging over three independent runs. Energy RMSE is given in kcal/mol, while force RMSE is in
kcal/mol/Å.

Ntrain = 100 Ntrain = 1000
Dataset Model Baseline NoisyNode PIWSL Baseline NoisyNode PIWSL

Schnet E 0.23 ± 0.00 0.58 ±0.00 0.23 ±0.00 0.17 ± 0.00 0.32 ± 0.00 0.17 ± 0.00
F 2.32 ± 0.00 3.61 ± 0.00 2.32 ± 0.00 1.27 ± 0.00 2.51 ± 0.00 1.27 ± 0.00

PaiNN E 0.90 ± 0.02 2.29 ± 0.50 0.89 ±0.03 0.47 ± 0.03 0.75 ± 0.02 0.49 ± 0.03
F 0.57 ± 0.00 5.33 ± 0.16 0.57 ± 0.00 0.23 ± 0.00 2.50 ± 0.00 0.30 ± 0.00

Benzene SpinConv E 2.27 ± 0.09 2.32 ± 0.00 1.61 ±0.28 0.90 ± 0.12 2.35 ± 0.01 1.07 ± 0.00
F 0.61 ± 0.01 3.56 ± 0.00 0.65 ± 0.01 0.39 ± 0.00 2.33 ± 0.00 0.43 ± 0.00

(natom = 12) eSCN E 0.59 ± 0.01 3.47 ± 0.04 0.58 ± 0.03 0.20 ± 0.00 1.01 ± 0.01 0.19 ± 0.00
F 0.74 ± 0.01 8.43 ± 0.18 0.75 ± 0.02 0.14 ± 0.00 2.99 ± 0.01 0.14 ± 0.00

Equiformer E 1.55 ± 0.01 2.08 ± 0.01 1.52 ± 0.01 0.281 ± 0.01 1.68 ± 0.02 0.276 ± 0.01
F 0.72 ± 0.00 10.32 ± 0.04 0.72 ± 0.01 0.15 ± 0.00 2.89 ± 0.00 0.13 ± 0.00

Schnet E 1.41 ± 0.00 1.92 ± 0.00 1.41 ± 0.00 1.05 ± 0.00 1.49 ± 0.00 1.05 ± 0.00
F 5.76 ± 0.00 5.96 ± 0.00 5.76 ± 0.00 3.80 ± 0.00 4.08 ± 0.00 3.80 ± 0.00

PaiNN E 3.63 ± 0.01 5.13 ± 0.06 3.54 ± 0.02 1.37 ± 0.02 2.22 ± 0.04 1.33 ± 0.01
F 1.98 ± 0.01 10.99 ± 0.05 1.99 ± 0.00 0.72 ± 0.00 2.56 ± 0.01 0.72 ± 0.00

Naphthalene SpinConv E 2.96 ± 0.22 5.73 ± 0.00 2.88 ± 0.02 1.80 ± 0.02 3.39 ± 0.00 2.40 ± 0.18
F 2.04 ± 0.01 3.91 ± 0.00 1.99 ± 0.01 0.97 ± 0.00 2.46 ± 0.00 0.96 ± 0.00

(natom = 18) eSCN E 2.07 ± 0.03 7.63 ± 0.05 2.12 ± 0.01 0.56 ± 0.01 2.15 ± 0.29 0.58 ± 0.01
F 2.28 ± 0.01 9.68 ± 0.23 2.32 ± 0.23 0.42 ± 0.01 2.86 ± 0.03 0.42 ± 0.01

Equiformer E 4.37 ± 0.03 5.70 ± 0.05 4.27 ± 0.01 0.71 ± 0.02 3.70 ± 0.10 0.72 ± 0.02
F 1.93 ± 0.03 12.73 ± 0.06 1.89 ± 0.00 0.43 ± 0.02 3.20 ± 0.02 0.38 ± 0.06

Schnet E 3.76 ± 0.00 3.56 ± 0.00 3.74 ± 0.00 2.77 ± 0.00 3.08 ± 0.00 2.77± 0.00
F 12.32 ± 0.00 11.59 ± 0.00 12.20 ± 0.00 6.63 ± 0.00 7.03 ± 0.00 6.63 ± 0.00

PaiNN E 6.55 ± 0.03 9.36 ± 0.08 5.64 ± 0.02 4.07 ± 0.01 4.10 ± 0.01 3.99± 0.01
F 7.38 ± 0.02 20.37 ± 0.04 7.36 ± 0.03 2.17 ± 0.00 2.17 ± 0.00 2.16 ± 0.01

Aspirin SpinConv E 5.71 ± 0.04 6.11 ± 0.00 5.03 ± 0.01 4.04 ± 0.09 4.12 ± 0.06 3.42 ± 0.20
F 8.68 ± 0.03 10.17 ± 0.00 8.94 ± 0.02 1.88 ± 0.00 1.89 ± 0.00 1.83± 0.01

(natom = 21) eSCN E 5.14 ± 0.02 6.44 ± 0.04 4.82± 0.13 1.28 ± 0.03 1.28 ± 0.02 1.29 ± 0.01
F 6.14 ± 0.03 13.88± 0.16 6.10 ± 0.03 1.30 ± 0.01 1.29± 0.02 1.30 ± 0.01

Equiformer E 4.79 ± 0.02 5.75 ± 0.08 4.66 ± 0.04 1.83 ± 0.04 1.83 ± 0.06 1.75 ± 0.01
F 4.86 ± 0.03 16.80 ± 0.05 4.86 ± 0.03 1.00 ± 0.03 1.00 ± 0.00 0.94 ± 0.08

Table A10: Energy (E) and force (F) mean-absolute errors (MAEs) for the MD22 data set. We
have chosen buckyball-catcher for our experiments. The results are obtained by averaging over three
independent runs. Energy MAE is given in kcal/mol/atom, while force MAE is in kcal/mol/Å. Note
that "SWA" denotes stochastic weight averaging and potential energy is measured per atom number.

Ntrain = 50 Ntrain = 600
Dataset Model Baseline PIWSL Baseline PIWSL

Buckyball-Catcher MACE E 0.163 ± 0.015 0.155 ± 0.036 0.091 ± 0.017 0.085 ± 0.005
F 6.780 ± 0.038 6.758 ± 0.049 1.886 ± 0.011 1.899 ± 0.009

MACE w.t. SWA E 0.150 ± 0.014 0.106 ± 0.005 0.080 ± 0.005 0.069 ± 0.002
F 6.844 ± 0.064 6.807 ± 0.034 2.056 ± 0.079 2.052 ± 0.106
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training dataset, 400 for the validation dataset, and retained the remaining 5102 configurations for
testing. To further validate PIWSL’s effectiveness in sparse data scenarios, we prepared an additional
smaller training dataset comprising only 50 configurations, while keeping the validation dataset size
unchanged. The model was trained for 450 and 800 epochs for the 600-sample and 50-sample training
datasets, respectively, with stochastic weight averaging (Izmailov et al., 2018) applied over the final
200 epochs. The results presented in Table A10 demonstrate that our approach remains effective on
average, particularly in the sparse data regime. In this study, the coefficient of the PITC and PISC
losses are set as 0.01 and 0.001 with ϵmax = 0.01.

F.2 TRAINING TIME ANALYSIS

Table A11: Training time comparison for experiments with and without PIWSL. We measure
the time required for a single training epoch and provide the results obtained as an average over five
epochs. We use 1000 configurations from the ANI-1x data set. All training times are provided in
seconds.

SchNet PaiNN SpinConv eSCN Equiformer v2

Baseline 7.51 8.02 33.46 100.71 57.79
PIWSL 12.84 23.48 86.28 328.48 177.55

Table A11 provides training times measured for experiments with and without PIWSL. The training
time is measured for a single training epoch and is averaged over five epochs in total. The experiments
were performed using 1000 training configurations from the ANI-1x data set. We used a mini-batch
of six. The table indicates that PIWSL increases the training time by a factor of two to three compared
to the baseline (due to the additional gradient calculations). This is primarily because our PITC and
PISC losses effectively double or triple the number of data labels, resulting in a proportional increase
in training time due to the expanded set of training labels. We emphasize that the PIWSL approach
only alters training time; the inference time is unaffected.

F.3 DIFFERENT CONFIGURATIONS FOR THE PHYSICS-INFORMED SPATIAL-CONSISTENCY
LOSS

F.3.1 TRIANGLE-BASED

Table A12: Results for different configurations of the PISC loss. The presented numerical values
are the root mean square errors (RMSEs) for the ANI-1x data set (Smith et al., 2020). Energy (in
kcal/mol) and force (in kcal/mol/Å) errors are obtained by averaging over three independent runs. All
models are trained using 1000 configurations. The case 1, 2, and 3 correspond to Eq. (4), Eq. (A8)
and Eq. (A9), respectively.

Model Baseline PISC (Case 1) PISC (Case 2) PISC (Case 3)

PaiNN E 60.11 45.24 46.32 57.29
F 13.10 12.33 12.42 13.28

In section 4.2, we consider the following form of the PISC loss

LPISC (S;θ) = ℓ

(
E (Sδr;θ) , E (Sδr′ ;θ)−

Nat∑
i=1

⟨δr′′i ,Fi (Sδr′ ;θ)⟩
)
, (A7)
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where δr, δr′, δr′′ are related as δr′ + δr′′ = δr. In this section, as a variant of Eq. (4), we also
consider the following three PISC losses

LPISC,Case 2 (S;θ) = ℓ

(
E (S;θ)−

Nat∑
i=1

⟨δri,Fi (S;θ)⟩, E (Sδr′ ;θ)−
Nat∑
i=1

⟨δr′′i ,Fi (Sδr′ ;θ)⟩
)
,

(A8)

LPISC,Case 3 (S;θ) = ℓ

(
E (Sδr′ ;θ) , E (Sδr;θ)−

Nat∑
i=1

⟨−δr′′i ,Fi (Sδr;θ)⟩
)
, (A9)

where the point at r + δr is the point where PIRC loss is imposed (see Eq. (3)). The results are
provided in Table A12 and indicate that Eq. (4) (Case 1) shows a better performance than the other
cases for both the potential energy and the force predictions. In this study, we used the ANI-1x data
set with 1000 training samples different from the one used to train the model used in the main body
to avoid overfitting on the test data set. For the coefficient of the PITC and PISC losses, we used 0.1
and 0.001 with ϵmax = 0.01.

F.3.2 FURTHER VARIATIONS

The flexibility of the PISC loss allows us to explore additional forms of spatial consistency. For
example, instead of using a triangular configuration, we can impose spatial consistency between two
points at r and r+ δr, leading to the following expression:

LPISC,2pt (S;θ) = ℓ

(
E (S;θ) , E (Sδr;θ)−

Nat∑
i=1

⟨−δri,Fi (Sδr;θ)⟩
)
. (A10)

While not thoroughly investigated, we empirically observed that this loss delivers competitive
performance when applied with the same coefficient value as the PITC loss.

Another potential direction is enforcing a reduction in the curl of the forces. This can be achieved by
leveraging Stokes’ theorem:

∫
Σ
∇× F · dS =

∮
∂Σ

F · dl = 0 where Σ represents a specific surface
regime, and ∂Σ denotes its boundary. Similar to the PISC loss, the right-hand side of this equation
can be effectively described by considering a triangular configuration, where the midpoints of the
three sides correspond to r, r+ δr, r+ δr′.

F.4 DETAILED SETUPS FOR QUALITATIVE ANALYSIS

F.4.1 C–H POTENTIAL ENERGY PROFILE OF ASPIRIN

Table A13: Performance of PaiNN employed in figure 2 (c, d). All the models other than the
reference model (Ntrain = 1000) use the OC20’s hyper-parameters. For the reference model, we
tuned the hyper-paramters of PaiNN model following the original paper (Schütt et al., 2021).

Ntrain = 100 Ntrain = 200 Ntrain = 1000
Baseline PIWSL Baseline PIWSL Baseline

PaiNN E 6.55 5.64 5.11 4.48 0.68
F 7.38 7.36 3.95 3.97 1.44

This section describes the detailed setup and procedure for section 5.3. First, we trained PaiNN
with and without PIWSL losses using the aspirin data from rMD17 with training set sizes of 100
and 200. For PIWSL, we used (CPITC, CPISC, ϵmax) = (1.2, 0.01, 0.015). The other experimental
setups are the same as for rMD17 experiments presented in section D.1. We used the PaiNN model
with gradient-based forces to obtain the reference model and tuned the model hyper-parameter with
Optuna (Akiba et al., 2019). The obtained models’ performance is provided in Table A13. Then, we
prepared the aspirin molecule structures, including the corresponding atomic coordinates and atomic
types. For these structures, we perturbed one of the C-H bonds with a bond length from 0.8 Å to 1.8
Å. We prepared 100 structures and estimated the corresponding potential energy with the pre-trained
models. The aspirin data is provided in our publicly available source code.
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F.4.2 MD SIMULATION STABILITY ANALYSIS

NVE-Ensembles This section describes the detailed setup and the procedure for our analysis of
MD simulations in section 5.3. Because our implementation builds upon the source code provided by
Fu et al. (2023), we used their scripts for performing MD simulations. However, we added a minor
modification to enable MD simulations in the microcanonical (NVE) statistical ensemble, i.e., the
particle position and velocity are updated with velocity Verlet algorithm(Verlet, 1967) 4. We set the
initial temperature to 300 K and the integration time step to 0.5 fs for all simulations. As defined
by Fu et al. (2023), the stability of an MD simulation for a target molecule is defined as the time T
during which the bond lengths satisfy the following condition

max
(i,j)∈B

|(||xi(T )− xj(T )||)− bi,j | > ∆ , (A11)

where B denotes the set of all bonds, {i, j} denote the pair of bonded atoms, and bi,j denotes the
equilibrium bond length. Following Fu et al. (2023), we set ∆ = 0.5Å. This definition indicates
when the molecule experiences significant structural changes during the MD simulation.

We trained PaiNN and Equiformer v2 models with and without PIWSL losses using the aspirin
data from rMD17. We used training set sizes of 100, 200, 500, and 1000. The corresponding
stability values are presented in Table A14. The hyperparameters for the PIWSL loss are provided in
Table A15. For the training set size of 1000, the hyperparameters are the same as those in Table A3.
The results for the stability of the PaiNN (direct and gradient-based force) and Equiformer v2 models
are shown in Table A16. To select the hyperparameters in Table A15, a series of MD simulations
with a fixed random number seed for the initial atomic velocities was used. For our final stability
results in Table A14, a series of MD simulations with three different random seeds for velocities and
the selected hyperparameters was used. As the correlation between stability and energy/force errors
can be rather weak (see also Fu et al. (2023)), models with stability improved through PIWSL do not
necessarily outperform the baseline models in terms of their accuracy. figure A1 presents the total
energy difference during MD simulations reported in figure 3, which is measured by the following
equation: |E(tf)− E(tinit)|/E(tinit), where tf and tinit denote the final and initial time steps. Here
tf is defined as half of the time step at which the simulation is deemed unstable, corresponding to
the reported time step in Table A14. These results indicate that PIWSL slightly enhances the energy
conservation capability of MLIP models in most cases, though the improvement is relatively modest
due to the small deviations observed.

NVT-Ensembles To investigate the effect of thermostats, we also performed MD simulations in
the canonical (NVT) statistical ensemble, where temperature is maintained constant. To keep the
temperature constant, we used Nosé-Hoover thermostat (Nosé, 1984; Hoover, 1985). The initial and
target temperatures were both set to 300 K for all simulations. The integration time step was set
to 0.5 fs and the characteristic parameter τ for the thermostat is set to 20 fs. The result, shown in
figure A2, demonstrate that the thermostat stabilizes the simulations by mitigating the increase in
kinetic energy.

F.5 METRIC DEPENDENCE OF PITC

Table A17 provides the result of the metric dependence of PIWSL. For simplicity, we only consider
the PITC loss (the coefficient of the PITC and PISC losses are set as 0.1 and 0). For the ReLU metric,
we consider

LReLU (S;θ) = ReLU

(∣∣∣∣∣E (S;θ)−
Nat∑
i=1

⟨δri,Fi (S;θ)⟩ − E (Sδr;θ)

∣∣∣∣∣− E (Sδr;θ) ||δr||2
)
.

(A12)

This metric is zero when the difference between the two terms is less than the second-order term
in δr. The results indicate that taking the second-order term into account does not improve the
performance (see PITC MAE Loss and PITC ReLU Loss results), and the MSE loss function shows

4Note that the total energy conservation necessary for the microcanonical statistical ensemble is in general
not perfectly satisfied due to the numerical error, in particular, when the force is not calculated as the curl of the
force.
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Table A14: Stability of the models employed in the MD analysis. The presented numerical values
are the stability defined by Eq. (A11) measured in ps. The results are obtained as an average over
three different random seeds for the initial velocity of the atoms in the target aspirin molecule. "GF"
denotes the gradient-based force prediction.

Ntrain = 100 Ntrain = 200 Ntrain = 500 Ntrain = 1000

PaiNN Baseline 0.60 ± 0.00 1.35 ± 0.00 1.45 ± 0.00 1.70 ± 0.10
PIWSL 0.70 ± 0.00 1.43 ± 0.03 2.55 ± 0.52 2.35 ± 0.22

Equiformer Baseline 1.05 ± 0.00 1.45 ± 0.00 2.28 ± 0.49 4.18 ± 0.33
PIWSL 1.17 ± 0.10 2.43 ± 0.06 3.20 ± 0.33 5.77 ± 1.84

PaiNN-GF Baseline 3.25 ± 3.98 220.5 ± 137.7 – –
PIWSL 15.07 ± 10.09 267.7 ± 56.0 – –

Table A15: Hyper-parameters for the PIWSL loss used in the MD analysis. We used the following
hyper-parameter for MD simulation analysis: (CPITC, CPISC, ϵmax)= Case α: (0.01, 0.001, 0.025),
Case β: (1.2, 0.01, 0.01), Case γ: (1.2, 0.01, 0.025), Case δ: (1.2, 0.01, 0.015), Case ϵ: (0.1, 0.01,
0.01), and Case ζ: (1.0, 0., 0.01). "GF" denotes the gradient-based force prediction.

Dataset Size Equiformer v2 PaiNN PaiNN-GF

rMD17 100 α δ ϵ
(Aspirin) 200 β β ζ

500 γ γ –

the best performance. In this study, we used the ANI-1x data set and the 1000 training samples.
These samples differ from the one used to train the model in the main text to avoid overfitting the test
data set.

F.6 PERTURBATION MAGNITUDE DEPENDENCE OF PITC

In this section, we provide the result of the perturbation magnitude dependence of PIWSL, i.e.,
∥δr∥ = ϵ. For simplicity, we only consider the PITC loss (the coefficient of the PITC and PISC
losses are set as 0.1 and 0.0). The results are provided in Table A18 and demonstrate that the longer
perturbation vector length is fruitful for force predictions. However, values that are too large are
harmful to predicting potential energy. In this study, we used the ANI-1x data set and the 1000
training samples. These samples differ from the one used to train the model in the main text to avoid
overfitting the test data set.

F.7 DEPENDENCE OF PITC ON THE NUMBER OF PERTURBED ATOMS

This section provides the result of the perturbed atom number dependence of PIWSL. For sim-
plicity, we only consider the PITC loss (the coefficient of the PIRC and PISC losses are set as
0.1 and 0). In this study, we randomly selected atoms in a training sample following the ratio of
0 %, 10 %, 20 %, 50 %, 75 %, 90 %, 100 %. The results are provided in Table A19, which indicates
that around 75% to 100% ratio cases result in the best performance for the force and the potential
energy prediction. However, the number dependence is rather complicated. Therefore, in the main
text, we perturbed all the atoms (100 %) as a conservative choice. In this study, we used the ANI-1x
data set and the 1000 training samples. These samples differ from the one used to train the model in
the main text to avoid overfitting the test data set.

F.8 DEPENDENCE ON THE NUMBER OF TRAINING ITERATIONS

To show the effectiveness of our approach even in the case of longer training, we provide the result of
the dependence of PIWSL on the number of training iterations. In this study, we performed training
twice as long as in the main text, that is, 80,000 iterations for ANI-1x with 1000 training samples.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table A16: Energy and force errors for the models employed in the MD analysis. The presented
numerical values are the root-mean-square errors (RMSEs) of energy (E) and force (F). Energy
RMSE is given in kcal/mol, while force RMSE is in kcal/mol/Å. "GF" denotes the gradient-based
force prediction.

Ntrain = 100 Ntrain = 200 Ntrain = 500
Baseline PIWSL Baseline PIWSL Baseline PIWSL

PaiNN-DF E 6.55 6.49 5.11 4.56 4.50 4.64
F 7.38 7.37 3.95 3.99 2.55 2.51

Equiformer v2 E 4.79 4.64 4.92 4.82 3.37 3.77
F 4.86 4.90 2.50 2.42 1.91 1.91

PaiNN-GF E 6.05 6.03 6.01 6.02 – –
F 6.41 6.33 3.50 3.53 – –
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Figure A1: Analysis of the total energy conservation uring MD simulations with MLIP models.
The amount of the change of the total energy during MD simulations is assessed for the baseline
MLIP models and those trained with PIWSL. The total energy is measured at the inital and final
time-step and the difference is normalized by the total energy at the initial time-step. All results
are obtained for the aspirin molecule and MD simulations in the microcanonical (N V E) statistical
ensemble.

The results are provided in Table A20 and indicate that our approach performs better in the longer
training case. On the other hand, the training without PIWSL shows an overfitting to the validation
data set, reducing its performance compared to the shorter training case. In this study, we used the
ANI-1x data set and the 1000 training samples. These samples differ from the one used to train the
model in the main text to avoid overfitting the test data set. The coefficients of the PITC and PISC
losses are 1.2 and 0.01, respectively.

F.9 ADDITIONAL EXPERIMENTS WITH GRADIENT-BASED FORCES

In this section, we provide the result of the training with the gradient-based force predictions. The
results are provided in Table A21 and demonstrate that our PIWSL loss enables a better force
prediction, even in the case of gradient-based force predictions. These results also indicate that
our PIWSL method can improve the ML model performance in the case of MLIPs commonly
applied in computational chemistry and materials science. We consider that this is partly due to the
effectiveness of the weak label at r+ δr as indicated by the WL results, which show an improvement
of the performance different from the case with the direct force branch (see also section 5.5). We
hypothesize that the further improvement results from the additional gradient calculation as indicated
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Figure A2: Stability analysis of the MLIP models during MD simulations. Stability during MD
simulations is assessed for the baseline MLIP models and those trained with PIWSL. All results are
obtained for the aspirin molecule and MD simulations in the canonical (N V T) statistical ensemble.
We measure stability during MD simulations according to (Fu et al., 2023).

Table A17: Metric dependence of PITC. The presented numerical values are the root mean square
errors (RMSEs) for the ANI-1x data set (Smith et al., 2020). Energy (in kcal/mol) and force (in
kcal/mol/Å) errors are obtained by averaging over three independent runs. All models are trained
using 1000 configurations. MAE refers to the mean absolute error, and MSE denotes the mean square
error.

Model Baseline PITC MAE Loss PITC MSE Loss PITC ReLU Loss

PaiNN E 60.11 58.84 47.09 60.47
F 13.10 13.18 12.19 13.06

in Eq. (A5) and Eq. (A6). This observation also indicates that our PIWSL method can potentially
improve other generic property prediction tasks by calculating their first derivatives in terms of the
atomic coordinate and utilizing the proposed loss functions. In this study, the coefficient of the PITC
and PISC losses are set as 0.1 and 0.01 with ϵmax = 0.01. The weak label loss coefficient is set as
0.1.

F.10 REDUCING CURL OF FORCES FOR MODELS WITH THE FORCE BRANCH

In this section, we study the effect of our loss functions on the curl of forces in the case of the
model with the force branch. The results are provided in Table A22, which shows that our PITC loss
reduces the curl of the predicted forces, allowing potentially better energy conservation during MD
simulations. In this study, we used the ANI-1x data set and the 1000 training samples. These samples
differ from the one used to train the model in the main text to avoid overfitting the test data set. The
hyper-parameters of the PITC and PISC losses are (CPITC, CPISC, ϵmax) = (1.2, 0.01, 0.025). It is
theoretically possible to define a loss function aimed at directly minimizing the absolute value of the
curl of forces. However, this approach necessitates calculating the Hessian matrix, which requires
a substantial memory cost given the limitations of current computational resources. Developing
a method to train with such a loss function while mitigating memory requirements is a promising
direction for future research.
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Table A18: Perturbation magnitude dependence of PITC. The presented numerical values are the
root mean square errors (RMSEs) for the ANI-1x data set (Smith et al., 2020). Energy (in kcal/mol)
and force (in kcal/mol/Å) errors are obtained by averaging over three independent runs. All models
are trained using 1000 configurations.

Model Baseline ϵmax = 0.0005 ϵmax = 0.005 ϵmax = 0.05

PaiNN E 60.11 60.43 47.09 109.17
F 13.10 12.75 12.19 11.70

Table A19: Dependence of PITC on the number of perturbed atoms. The presented numerical
values are the root mean square errors (RMSEs) for the ANI-1x data set (Smith et al., 2020). Energy
(in kcal/mol) and force (in kcal/mol/Å) errors are obtained by averaging over three independent runs.
All models are trained using 1000 configurations.

Model Baseline 10% 20% 50% 75% 90% 100 %

PaiNN E 60.11 46.68 52.37 54.51 46.94 45.92 46.32
F 13.10 13.03 12.62 12.16 12.14 12.24 12.42

Table A20: Dependence on the number of training iterations. The presented numerical values
are the root mean square errors (RMSEs) for the ANI-1x data set (Smith et al., 2020). Energy (in
kcal/mol) and force (in kcal/mol/Å) errors are obtained by averaging over three independent runs.
All models are trained using 1000 configurations.

Model Iteration Number Baseline PIWSL

PaiNN

40,000 E 56.62 ± 2.80 24.53 ± 0.16
F 12.96 ± 0.18 11.43 ± 0.05

80,000 E 59.92 ± 1.47 23.78 ± 0.16
F 13.10 ± 0.19 11.50 ± 0.04

Table A21: Results of PIWSL with gradient-based force predictions. The presented numerical
values are the root mean square errors (RMSEs) for the ANI-1x data set (Smith et al., 2020). Energy
(in kcal/mol) and force (in kcal/mol/Å) errors are obtained by averaging over three independent runs.
All models are trained using 1000 configurations.

Model Baseline (GF) PIWSL (GF) WL (GF)

PaiNN E 23.57 ± 0.62 20.23 ± 0.18 22.61 ± 0.50
F 11.32 ± 0.08 11.13 ± 0.04 11.72 ± 0.06

Equiformer E 29.07 ± 2.32 19.53 ± 0.32 21.07 ± 0.86
F 11.90 ± 0.13 11.99 ± 0.03 11.90 ± 0.20

Table A22: Curl of forces for models with the force branch. The presented numerical values
are the absolute values of the total curl of the force evaluated for the ANI-1x data set (Smith et al.,
2020). Energy (in kcal/mol) and force (in kcal/mol/Å) errors are obtained by averaging over three
independent runs. All models are trained using 1000 configurations.

Model Baseline PITC

PaiNN 45.18 ± 4.07 39.06 ± 0.58
Equiformer 29.62 ± 0.28 23.42 ± 0.09
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