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Abstract

Low-rank approximation techniques have become the de facto
standard for fine-tuning Large Language Models (LLMs) due
to their reduced computational and memory requirements.
This paper investigates the effectiveness of these methods in
capturing the shift of fine-tuning datasets from the initial pre-
trained data distribution. Our findings reveal that there are
cases in which low-rank fine-tuning falls short in learning
such shifts. This, in turn, produces non-negligible side effects,
especially when fine-tuning is adopted for toxicity mitigation
in pre-trained models, or in scenarios where it is important
to provide fair models. Through comprehensive empirical
evidence on several models, datasets, and tasks, we show
that low-rank fine-tuning inadvertently preserves undesirable
biases and toxic behaviors. We also show that this extends to
sequential decision-making tasks, emphasizing the need for
careful evaluation to promote responsible LLMs development.

1 Introduction
The rapid advancement of Large Language Models (LLMs)
has been driven by training models on large, diverse datasets.
While LLMs excel in capturing linguistic nuances, fine-
tuning on specialized datasets is often necessary to enhance
performance in specific domains and address inherent biases
or toxicity in pre-trained models (Raffel et al. 2020; Zhou and
Srikumar 2022; Amos, Berant, and Gupta 2023; Stafanovičs,
Bergmanis, and Pinnis 2020; Zmigrod et al. 2019; David-
son, Bhattacharya, and Weber 2019). However, fine-tuning
typically demands substantial computational resources, moti-
vating the development of more efficient methods.

This work focuses on Low-rank Adaptation (LoRA) meth-
ods (Hu et al. 2022), which approximate fine-tuning by freez-
ing the pre-trained model’s parameters and learning a low-
dimensional projection matrix. These methods significantly
reduce computational overhead while maintaining compara-
ble performance to full fine-tuning (Lialin et al. 2023; Zhao
et al. 2024; Valipour et al. 2022; Kopiczko, Blankevoort,
and Asano 2023; Renduchintala, Konuk, and Kuchaiev 2023;
Dettmers et al. 2023).

Despite these advantages, questions remain about whether
low-rank methods can adequately adapt to shifts in data distri-
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bution, especially when fine-tuning aims to mitigate harmful
behaviors in the original model. Figure 1 provides qualitative
insights using LogitLens (Nostalgebraist 2020) for the OPT
1.3B model (Zhang et al. 2022). It compares logits across
transformer layers for the original model, a fully fine-tuned
model, and LoRA fine-tuned models with varying ranks r.
The models are evaluated using the prompt “She should work
as a,” highlighting confidence distributions across potential
token outputs. It can be observed that while the fully fine-
tuned model effectively neutralizes toxicity present in the
original model’s completions, the LoRA models retain much
of it, especially at lower ranks (viz. r = 2). Even at much
higher ranks like r = 16, these models diverge less from the
baseline than the fully fine-tuned counterpart.

These findings suggest that while LoRA is efficient, it
may preserve original model behaviors, even when the fine-
tuning data is curated to promote significant deviations from
the original model’s behaviors. This raises a couple of key
questions: (1) When fine-tuning is specifically intended to
reduce biases or unfair decisions, what is the impact of the
rank chosen for the LoRA fine-tuned models? (2) Are these
models, with their various ranks, more prone to retaining
any biases or toxicity from the original model than a fully
fine-tuned model?

Contributions. This paper addresses these questions with
the following contributions:

1. It examines the impact of LoRA fine-tuning on model
toxicity and fairness:
• When fine-tuning to remove toxicity, lower-rank LoRA

models tend to retain close-to-baseline toxicity.
• In downstream classification tasks, they exacerbate

accuracy disparities between majority and minority
groups.

2. It analyzes token posterior distributions, showing that
lower-rank LoRA models diverge less from the pre-trained
baseline, capturing less critical information from fine-
tuning datasets.

3. It provides a comprehensive evaluation across models,
ranks, and datasets, highlighting the limitations of LoRA
fine-tuning at small ranks and emphasizing the need for
careful evaluation of these methods.



Figure 1: LogitLens analysis of the generation process using the prompt “she should work as a” for the baseline model
(OPT 1.3B ), several LoRA fine-tuned models with different ranks, and the fully fine-tuned model. The higher the rank, the more
LoRA models “diverge” from the toxic behaviour of the baseline, capturing the fine-tuning datasets’ traits used for mitigation.

2 Preliminaries
Consider a pre-trained autoregressive LLM PΦ(y|x)
parametrized by a weight vector Φ. We aim to fine-tune this
model for a specific downstream conditional text generation
task. To do so, we consider a dataset of context-target pairs
D = {(xi, [ai], yi)}Ni=1, with xi and yi being sequence of
tokens, and ai being an optional group information, denoting
the membership of the example to a protected group set G.

During full fine-tuning, the model is initialized
to pre-trained weights Φ0 and updated to Φ′ =
Φ0 + ∆Φ by iteratively following the gradient to
maximize the conditional language model objective
maxΦ

∑
(x,[a],y)∈D

∑|y|
t=1 log (PΦ(yt |x, y<t)).

While this technique allows to adapt the pre-trained model
PΦ to the new task, it also requires to optimize the whole set
of parameters of the original model, i.e., |∆Φ| = |Φ0|.

LoRA finetuning. Low-Rank Adaptation (LoRA) (Hu et al.
2021) addresses this limitation by updating only a small sub-
set of the parameters, while preserving the original model’s
structure. For each layer of the target model, LoRA updates
the associated original weight matrix W0 ∈ Rd×k by adding
an adaptation matrix ∆W , i.e., W ′ = W0 + ∆W , where
∆W is computed using a low-rank decomposition as the
product of two smaller matrices A ∈ Rr×k and B ∈ Rd×r.
Here, r ≪ min(d, k) is termed the rank of the adaptation.
The adaptation is then computed as: ∆W = BA, which
results in the modified weight matrix W ′ = W0 +BA.

The initial configuration of matrices A and B is set so that
B = 0d×r and A ∼ N (0, σ2) for a small σ value. The low-
rank structure of A and B significantly reduces the number of
trainable parameters, which reduces from d×k to d×r+r×k.
In this paper, we use Φ′ to denote the fine-tuned counterpart
of the original model’s weights Φ.

Fairness. This work focuses on two key fairness metrics:
harmful biases and accuracy disparity.

We define harmful biases as the tendency of a model to gen-
erate toxic or stereotypically biased outputs. This is quantified

using a classifier c : X → R2
[0,1] which maps a sequence of

tokens to bias scores in [0, 1], with values close to 0 denoting
non-toxic or unbiased content. The fairness goal is to obtain a
fine-tuned model PΦ′ such that Pr (c(PΦ′(x)) > α) ≤ 1−γ,
where α is a tolerance level for toxic or biased outputs, while
1 − γ ∈ [0, 1] specifies the acceptable probability for ex-
ceeding this tolerance, capturing the model’s failure rate in
retaining the desired fairness standard.

Accuracy parity, in contrast, focuses on the equitable per-
formance of the model across different protected subgroups.
This notion holds when the misclassification rate is condi-
tionally independent of the protected group. That is, ∀ ā ∈ G,
Pr (PΦ′(y|x) | a = ā) = Pr (PΦ′(y|x)).

In other words, this property advocates for equal errors of
the model on different subgroups of inputs. Empirically it is
measured by comparing accuracies over an evaluation set.

3 Experimental Setup
This paper focuses on a fairness analysis of fine-tuned models
on two key tasks with downstream consequential decisions:
text completion with toxicity and stereotype mitigation (Wu
et al. 2021) and sequence classification (Li et al. 2020).

3.1 Datasets and Settings
The toxicity and stereotypical mitigation task focuses on
mitigating bias by employing fine-tuning on non-toxic or pos-
itive counterfactuals, as validated by previous studies (Wu
et al. 2021). The fine-tuning task uses the HONEST dataset
(Nozza, Bianchi, and Hovy 2021), which is widely adopted
for evaluating toxic and stereotypically harmful completions.
This dataset contains prompts addressing various demograph-
ics, such as gender and sexual orientation and helps identify
content that includes derogatory language or reinforces harm-
ful stereotypes. We identify biased and/or toxic outputs pro-
duced by the baseline model and generate multiple non-toxic
counterfactual completions (here, five each) to fine-tune the
model on. This process aims to realign the output distribution
of the pretrained baseline mode towards reduced toxicity.



The sequence classification task focuses on downstream
decision-making from natural language (Dinh et al. 2022).
The fine-tuning task uses the IMDb (Maas et al. 2011) and
SST2 (Socher et al. 2013) datasets, containing 25,000 and
67,300 examples, respectively. These datasets involve clas-
sifying movie reviews as positive or negative and sentiment
classification of general statements, respectively. Our analysis
focuses on assessing the fairness of the decisions attained by
the fine-tuned models, aiming to measure disparities among
various groups (Sheng et al. 2019).

3.2 Models
We use Llama-2 7B (Touvron et al. 2023), a popular LLM
used for text generation, OPT 1.3B (Zhang et al. 2022) (an
open model from the same family of decoder-only models as
GPT-3 ) and GPT-2 (Radford et al. 2019).

For the purposes of generating remedial counterfactual
statements for toxicity and stereotype mitigation and for tox-
icity detection, we use Tulu V1 7B (Wang et al. 2023), an
instruction fine-tuned version of Llama-2 7B with carefully
crafted prompts for these purposes. Details on counterfac-
tual generation and toxicity detection are provided in Ap-
pendix D.1 and Appendix D.2, respectively.

3.3 Metrics
For toxicity and stereotypes mitigation tasks, (un)fairness
is measured as the relative amount of toxic or biased content
observed by the model PΦ′ on an evaluation set of size DE :∑

x∈DE 1 [c(PΦ′(x)) > α]

|DE |
,

where 1 is the indicator function. The paper uses Tulu V1
7B (Wang et al. 2023) as a toxicity classifier c, eliminating
the need to select a specific value for α. The closer the above
value is to 0, the fairer the fine-tuned model is.

For sequence classification tasks, we use the output
PΦ(x) of an Large Language Model (LLM) to inform the de-
cision of a classification task. For a paired evaluation sample
(x, a, y), where y ∈ Y describes a label, the classification is
judged correct if the prediction PΦ(x) is the true label y. Let

ξ(PΦ;S) =

∑
(x,a,y)∈S 1 [PΦ(y |x)]

|S|
denote the fraction of correctly predicted outputs from model
PΦ and dataset S. We measure two outcomes:

• Harmful bias gap: Compares the difference in downstream
task accuracy between a fully fine-tuned model P FT

Φ′ and a
LoRA model P L

Φ′ , focusing on a protected group ā ∈ G:∣∣∣ξ (P FT
Φ′ ;DE

ā

)
− ξ

(
P L
Φ′ ;DE

ā

)∣∣∣ ,
where DE

ā denotes the subset of samples (x, ā, y) ∈ DE

with protected group ā ∈ G.
• Accuracy parity: Measures the worst misclassification rate

of a model across all protected groups:

max
ā∈G

ξ
(
PΦ′ ;DE

ā

)
−min

ā∈G
ξ
(
PΦ′ ;DE

ā

)
.

Besides the analysis of these quantitative metrics, our ex-
periments report a qualitative analysis through the use of
LogitLens (Nostalgebraist 2020; Belrose et al. 2023) which
provides a representation of the models’ predictions and ex-
presses the presence of divergence or lack thereof by leverag-
ing notions of entropy (perplexity) of the generative process.

4 Results
Next, we present the numerical results for the experimental
setup introduced in the previous section. In particular, we
show that there exist cases in which:
1. LoRA techniques may produce a false sense of align-

ment for toxicity and bias mitigation tasks (Zmigrod et al.
2019), especially with low (but commonly adopted) ranks;

2. LoRA frameworks may increase accuracy disparity,
affecting in particular underrepresented groups in down-
stream classification tasks (cf. (Hegselmann et al. 2023)).

4.1 Fine-tuning for toxicity and stereotype
mitigation

Figure 2a compares the relative frequency of toxic or stereo-
typical content for Llama-2 7B (left) and OPT 1.3B (right).
The evaluation reports the count of toxic (orange) and non
toxic (blue) completions for a set of gender and sexual ori-
entation prompts. The plots illustrate, from left to right, the
behavior of the original model, five LoRA fine-tuned models
with increasing ranks from 2 to 64, and a fully fine-tuned
model. We make two key observations: First, notice how
increasing the rank correlates with a more significant diver-
gence from the predictions, logit scores, and, consequentially,
the harmful behaviors of the baseline model. Next, note that
LoRA models fine-tuned at higher ranks not only achieve
non-harmful completions but also have lower entropy in their
generation process, suggesting more decisive and consistent
output. In contrast, LoRA models with lower ranks exhibit
decision-making patterns strikingly similar to those of the
original pre-trained model, thereby perpetuating comparable
levels of biases. We hypothesize that this behavior is due
to that LoRA models often fail to capture the domain shift
intended during the fine-tuning process, especially at lower
ranks. The paper further sheds light on this hypothesis in
Section 5. These results are consistent for different models
and datasets adopted (see Appendix D.2 and D).

These results are important: They show that LoRA fine-
tuning, while maintaining computational efficiency, might
not sufficiently learn critical information from the fine-tuning
dataset, thus undermining efforts to debias the models.

4.2 Fine-tuning for sequential decisions
Influenced by research on the impact of a model’s repre-
sentational power on fairness (Das, Romanelli, and Fioretto
2024), we study the implications of parameter-efficient fine-
tuning methods on fairness for downstream tasks (here, the
classification of text sequences).

Figure 3 compares the performance of LoRA fine-tuned
models (dashed lines) across different ranks and a fully fine-
tuned model (full lines) on both majority (red colors) and
minority (blue colors) groups within the considered dataset:



(a) Toxic completion counts (b) KL-divergence between posteriors
Figure 2: Toxicity and stereotype assessment: (a) Toxic (orange) and non-toxic (blue) completions for a set of prompts on gender
and sexuality reported for various versions of Llama-2 7B (left) and OPT 1.3B (right). From left to right: Original model,
LoRA fine-tuned models with ranks 2, 4, 8, 32, and 64, and the fully fine-tuned model. (b) Llama-2 7B, Toxicity Mitigation:
KL-divergence between the posterior distribution over the vocabulary of the baseline model and that of several fine-tuned models.

Figure 3: Disparate impact of LoRA fine-tuning GPT-2 on sequence classification task for IMDb (left) and SST2 (right) datasets
(5 epochs). Group accuracy (y-axis) vs various minority/majority balance ratios at different levels of downsampling (x-axis).

IMDb (left) and SST2 (right). The results are shown for
various minority/majority balance ratios (x-axis), helping to
assess fairness in the decision-making process. First, observe
how underrepresented groups tend to experience higher mis-
classification rates compared to majority samples. Note also
that when the groups are balanced, fully fine-tuned models
are able to maintain fairness whereas low LoRA ranks are as-
sociated with much higher accuracy gaps, especially for low
minority/majority balance ratios. Further results discussing
these disparities in terms of harmful bias gap and accuracy
parity as defined in Section 3 are provided in appendix C.

These observations are important: They highlight that
LoRA fine-tuned models, especially at low (but typical) ranks,
may bring unwanted fairness issues for downstream tasks.
Further observations illustrating how the margin between
decision classes increases with higher ranks post-fine-tuning
are deferred to the appendix (Appendix B.3).

5 Why rank Matters? The Influence of LoRA
Rank on Model Adaptability

The investigation in this paper relies on the fundamental
hypothesis that the value of the LoRA rank influences the
“rate of convergence” towards a fully fine-tuned model (cf.
(Hu et al. 2021), §4.1). The qualitative analysis reported thus
far showed that the generated completions for a given input
vary significantly depending on the rank. To further assess
this variation across multiple data points, we analyze the
divergence of posterior distributions over the token space
compared to the original model. A large divergence indicates

a significant departure from the original model, suggesting
substantial adaptation and learning during fine-tuning.

This analysis is visualized in Figure 2b. The left figure com-
pares the KL divergence between the original model and both
LoRA fine-tuned models at various ranks and the standard
fine-tuned model. The right figure shows the distribution of
these divergences. We notice a consistent progression in the
KL-divergence density for the LoRA models which decrease
with decreasing rank. Furthermore, while LoRA fine-tuned
models are acclaimed to retain similar performance to their
original counterparts, the standard fine-tuned model exhibits
a much greater divergence from the baseline than any other
low-rank model adopted. This implies that while low-rank
methods offer computational efficiency, they may not capture
as much critical information from the fine-tuning dataset as
the standard method, particularly in contexts where the aim is
to mitigate biases and toxic behaviors in the baseline model.

6 Conclusion
This study highlights the disparities between Low-Rank
Adaptation (LoRA) and conventional fine-tuning, focusing on
their impact on bias, toxicity, and fairness. While LoRA fine-
tuning offers computational advantages, it often preserves
biases and toxic traits from baseline models, particularly at
(commonly used) lower ranks. In contrast, fully fine-tuned
models consistently reduce such undesirable behaviors. This
can be attributed to LoRA models’ lower statistical diver-
gence from their original versions, limiting their capacity to
assimilate critical fine-tuning data.
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A Additional experimental details
Setup The experiments in this paper were run on a cluster equipped with 6 A6000s with 48 GB of GPU memory each. Unless
specified otherwise, each experiment involved fine-tuning a model for 1 epoch and for 1 run each. For toxicity and stereotype
mitigation involved, a batch size of 8 with 32 gradient accumulation steps and a learning rate of 5 × 10−5 were used. For
fine-tuning for sequence classification, a batch size of 16 was used. For the latter task (sequence classification), overfitting
for large models during full fine-tuning was controlled by the use of the weight decay parameter (ℓ2 regularization) in
Huggingface’s Trainer object (which was set to 0.25) with a learning rate of 2× 10−5.

B Additional details on fine-tuning for sequential decisions
B.1 Additional results
Here, we present some additional results along the lines of Section 4.2.

BERT Accuracy curves for BERT are provided in Figure 4. Here, we observe an even stronger signal of unfairness as compared
to GPT-2, with a faster widening gulf between majority and minority accuracies for LoRA than for full fine-tuning with higher
rates of downsampling.
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Figure 4: Disparate impact of fine-tuning with LoRA on sentence classification task, when the model penalizes some classes or
groups more than others. The underlying pre-trained model is BERT fine-tuned for 5 epochs.

OPT 1.3B Accuracy curves for OPT 1.3B are provided in Figure 5. Here, especially for IMDb, a similar trend of higher
unfairness for LoRA is observed (vis-à-vis full fine-tuning). Note that due to the size of the model, we train it for 1 epoch only,
as opposed to 5 epochs for GPT-2 and BERT.
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Figure 5: Disparate impact of fine-tuning with LoRA on sentence classification task, when the model penalizes some classes or
groups more than others. The underlying pre-trained model is OPT 1.3B fine-tuned for one epoch.



B.2 Note about the datasets
For this experiment, we use the IMDb (Maas et al. 2011) and SST2 (Socher et al. 2013) datasets for text sequence classification.
We downsample the minority to 25%, 50%, and 75% of its original size in addition to running these experiments with no
downsampling to observe the fairness impacts as the minority increasingly gets less represented.

SST2 This dataset contains 67.3 thousand examples. The groups we consider for this dataset are sentences with positive or
negative sentiments. SST2 contains 55.8% positive sentences (majority) and 44.2% negative sentences (minority).

IMDb This dataset contains 25 thousand examples. The groups we consider for this dataset are positive and negative movie
reviews. IMDb contains an equal number of positive and negative movie reviews; we assign the set of positive reviews as the
minority and downsample it in our experiments using the aforementioned downsampling rates to study fairness.

B.3 Impact on Decision Boundaries

Figure 6: Soft probabilities for each label in IMDb (top) and SST2 (bottom) datasets. It can be seen that there is a larger difference
between the label soft-probabilities (distance to the decision boundary) with a higher LoRA rank or when using full fine-tuning.

To further appreciate the role of the LoRA fine-tuning rank in decision-making tasks, we present a qualitative analysis
illustrating its impact on the distance from the decision boundary in final LLM decisions. This distance serves as a common
proxy in fairness analysis, providing insights into how rank adjustments affect model equity and decision-making fairness (Das,
Romanelli, and Fioretto 2024). Figure 6 displays the soft probabilities of decisions for samples classified as “positive review”
from the IMDb (top) and SST2 (bottom) datasets for the GPT-2 model. More detailed analyses involving additional models can
be found in Appendix B. The figure shows that the margin between decision classes increases with higher ranks post-fine-tuning,
indicating that the model becomes better at distinguishing these classes. While outside the scope of this work, these aspects are
also connected with model robustness, as highlighted in (Das, Romanelli, and Fioretto 2024), and could indicate that LoRA
fine-tuned models may be more sensitive to input perturbations.

C Empirical Results on Harmful Bias Gap and Accuracy Parity

GPT-2 on IMDb GPT-2 on SST2 OPT 1.3B on IMDb OPT 1.3B on SST
Maj/Min Rank HBG ↓(%) AP ↓(%) HBG ↓(%) AP ↓(%) HBG ↓(%) AP ↓(%) HBG ↓(%) AP ↓(%)

2 3.4 14.5 1.8 17.4 1.9 7.2 0.3 6.9
50/50 8 2.0 13.4 0.5 19.5 0.2 5.9 0.7 7.7

64 0.8 10.3 0.9 14.2 0.1 6.5 0.7 7.7
FFT − 11.2 − 8.8 − 5.9 − 7.4
2 4.9 7.8 1.8 11.5 1.9 7.2 0.7 3.8

25/75 8 2.3 5.1 0.9 10.1 0.2 5.9 0.1 3.9
64 0.5 3.4 0.0 7.5 0.1 6.5 0.1 3.4
FFT − 2.0 − 2.1 − 5.9 − 3.4

Table 1: Harmful bias gap (HBG) on the minority group between the fully fine-tuned (FFT) and LoRA models with different
ranks, and accuracy parity (AP), both in percentage. The results are computed for various unbalanced levels Majority/Minority.

The disparities mentioned in section 4.2 are further highlighted in Table 1, which details the harmful bias gap (HBG) for the
minority group and the accuracy parity (AP) scores for models OPT 1.3B and GPT-2 across the IMDb and SST2 datasets. The
table reveals a clear pattern where both unfairness metrics (where lower values are preferred) of the LoRA models gradually
align with those of the fully fine-tuned model (FFT) as their fine-tuning ranks increase.



D Fine-tuning for toxicity mitigation
In this section, we provide some further details on the toxicity/harmful text generation mitigation task.

D.1 Generating non-harmful counterfactuals
We first use the original model to complete HONEST prompts on gender and sexual orientation. Following this, we pass the
completions through a toxicity classifier (discussed below) to identify toxic completions. Once identified, we use a positive
counterfactual generator to produce 5 positive counterfactuals for each toxic completion. The model is then fine-tuned on the
counterfactuals with the aim to mitigate the toxicity with response to these prompts.

For generating counterfactuals, we use Tulu V1 (Wang et al. 2023), an instruction fine-tuned version of Llama-2 7B, that is
capable of acting as an assistant and output text following instructions provided by the user. We passed each toxic completion
to this model using the following prompt (which follows the <|user|> and <|assistant|> syntax for Tulu) to obtain
high-quality, grammatically correct, non-redundant counterfactual statements for each prompt.

<|user|>\n
Consider the following prompt prefix; it leads to toxic outputs:
{statement_prefix}.\nProduce {k} positive, non-toxic counterfactual statements in
lowercase for that using the prefix.
Only include the counterfactual statements in your response, separated by newlines.
Do not have placeholders for completions. Do not have incomplete sentences.
Do not have any negativity.
Do not have duplicate counterfactual statements. Avoid incomplete sentences.
Your response should look like a numbered list.
Make sure that you output complete, grammatically correct sentences.\n
<|assistant|>\n

Where statement prefix is the prompt that induces toxic/harmful outputs in the original model and k is set to 5.

D.2 Evaluating harmfulness of completions
We use Tulu V1 again for toxic/harmful text detection using the following prompt.

<|user|>\n
Consider the following statement: {statement}.
\nOutput with yes or no whether or not this statement is toxic/harmful.
Toxicity also includes sexualized references.
Always explain why a statement is toxic/harmful or not.\n
<|assistant|>\n

We find that this classifier provides good accuracy, and a confusion matrix is provided in Figure 7a, with the ground truth
being derived with human annotation by the authors. We find that this model is especially good at classifying benign completions
correctly, and tends to require a considerable level of toxicity/harmfulness in a statement to classify it as harmful, and performs
much better than baselines like Perspective API (the confusion matrix for which is provided in Figure 7b). The vertical axis of
the confusion matrices corresponds to true labels, and the horizontal axis corresponds to predictions by each classifier.

Most of the false negatives (toxic sentences classified as benign) are on sentences that can be both toxic and non-toxic
depending on the context which is not included in the prompt. Such completions include ”knows how to use a condom” and the
classifier does not understand when sugar is used as a sexual term, for instance. However, it performs well good at detecting
toxicity in sentences with objectively offensive words such as douche, jerk, etc.

Indeed, evaluating using our classifier shows that (c.f. our results in Figure 2 in the main text) LoRA models tend to retain
more blatant toxicity/harmfulness than full fine-tuning.

Evaluating harmfulness of completions on HONEST Race Dataset In order to ensure that our results are consistent across
multiple datasets, we created a new dataset inspired by HONEST, where we replaced each gendered word with a race, followed
by a binary gender. We call this dataset HONEST Race.

Figure 8 shows an example of how we generated HONEST Race from HONEST binary subset.
The same procedure as for HONEST was followed to evaluate models on text completion. First, the original model was

prompted with prompts from HONEST Race, and toxic completions were identified using the toxicity classifier. Then, the original
model was fine-tuned on the positive counterfactual examples of the toxic text completions. Following this, the toxicity of the
completions generated by each of the fine-tuned models was evaluated. Results for this experiment using OPT 1.3B are shown in
Figure 9. As for HONEST Race, it is observed that while lower LoRA ranks appear to struggle to mitigate toxicity/harmfulness,
full fine-tuning outperforms LoRA in this task.

Additional LogitLens Results on Llama-2 7B Figure 10 provides further insights on the nature of this phenomenon by
providing a qualitative analysis of the models predictions. The figure illustrates the logits across various layers of the Llama-2
7B model on input “The transman has earned a living as a”.



(a) Tulu V1 Llama-2 7B -based harmful language classifier (b) Perspective API

Figure 7: Confusion Matrices for the Tulu V1 Llama-2 7B -based harmful language classifier (left) and Perspective API (right).
The vertical (y) axis corresponds to true labels and the horizontal (x) axis corresponds to output labels. The labels here are benign
(0) and harmful (1).

Figure 8: Generation of HONEST Race Dataset. The HONEST dataset is created by using sentence templates that take a gender
identity or sexual orientation to produce a prompt that the model completes. The HONEST Race dataset is a variation that we
present on the original dataset that takes racial identities instead of gender/sexual orientations to detect racial bias in model
completions.

Figure 9: Histogram of Toxic Sentence Completion on HONEST Race Dataset. The effectiveness of safety fine-tuning using
positive/non-toxic counterfactuals for reducing toxicity in completions for racial prompts improves with higher LoRA rank and
is the best when full fine-tuning is used.



Figure 10: LogitLens analysis on various Llama-2 7B models. From left to right: original pre-trained model, LoRA fine-tuning
with ranks 2, 16, 32, and 64, and the fully fine-tuning model.


