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We present a framework for generating human dance
videos conditioned on music and a reference image. A
Music-to-Pose Encoder (M2PEnc), trained with a Synthetic
Dataset Generation Pipeline (SDGPip), maps musical fea-
tures into structured 3D pose parameters, ensuring precise
rhythm–motion alignment. These pose sequences condition
a latent diffusion model (LDM) with multi-level attention
to synthesize motions that are rhythmically synchronized,
visually coherent, and faithful to the reference subject.
Extensive benchmark evaluations demonstrate state-of-the-
art performance and strong generalization across subjects,
styles, and genres. Comprehensive ablation studies con-
firm the contributions of each component, and a user study
verifies the naturalness and expressiveness of the generated
dances. Together, these results underscore the robustness
and effectiveness of the proposed approach.

1. Introduction
Recent progress in human motion video generation high-
lights the effectiveness of pose-conditioned latent diffusion
methods such as CHAMP [12], MagicPose [2], and Uni-
Animate [20]. However, music-driven video generation re-
mains challenging due to the complex mapping between au-
dio features and human poses, requiring modeling of subtle
temporal patterns and stylistic nuances.

We address this challenge with a framework for gener-
ating dance videos conditioned on music and a reference
image, introducing:
• Music-to-Pose Encoder (M2PEnc): Translates musical

features into structured spatial pose representations, re-
ducing ambiguity in music-to-pose mapping.

• Synthetic Dataset Generation Pipeline (SDGPip): In-
tegrates EDGE [17], SMPL [8], DwPose [23], and
CHAMP [12] to produce diverse music-motion training
data for M2PEnc.
Leveraging multi-level attention within a latent diffusion

model, our method generates motions that are rhythmically
synchronized with music and visually coherent with the ref-

erence. Experiments on benchmark and in-the-wild datasets
(4.3) show state-of-the-art performance and strong general-
ization.

2. Related Works
2.1. Music Feature Extraction
Extracting meaningful features from music is essential for
music-to-motion generation. Traditional methods such as
Librosa [11] extract low-level features like MFCCs, while
deep learning-based approaches like MusicGen [3] and
Whisper [13] capture complex musical patterns through em-
beddings. We use OpenAI’s Jukebox encoder [4], which
compresses audio signals into latent spaces using hierarchi-
cal VQ-VAE [19], preserving critical musical information
such as rhythm and melody.

2.2. Music-to-Pose Generation
Music-to-pose methods synthesize 3D dance motions
(SMPL[8]) aligned with musical inputs. Diffusion-based
approaches like EDGE [17] use transformers for fine-
grained motion control, while POPDG [10] enhances syn-
chronization through spatial augmentation. Non-diffusion
methods such as FACT [6] interpolate key poses, and Bai-
lando [15] combines VQ-VAE[19] with motion GPT for
music-driven sequences. Our SDGPip leverages EDGE for
augmentation of 3D dance motions to improve robustness
and diversity in music-to-motion mapping.

2.3. Latent Diffusion Framework
Pose conditioned latent diffusion models integrate pose
and identity conditioning for human motion video gener-
ation. Techniques like MagicPose [2] utilize DensePose for
motion guidance, while CHAMP [12] incorporates SMPL
parameters for multi-class pose feature generation. Our
method proposes M2PEnc to produce multi-class pose fea-
tures used as input to Latent diffusion model to help gener-
ate synchronized and visually coherent dance videos condi-
tioned on music and reference images.
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(a) Synthetic dataset generation pipeline (SDGPip). (b) Music-to-Pose (M2PEnc) architecture(left) and Latent diffusion framework(right).

Figure 1. Overview of our proposed framework. The M2PEnc maps music to spatial pose features and leverages a denoising 3D U-Net to
generate music-synchronized dance videos. The SDGPip creates synthetic pairs of music and pose features training data used by M2PEnc.

3. Methods
Figure 1 overviews our framework for generating dance
videos from music and reference images. Figure 1a (Section
3.1) illustrates the synthetic data pipeline, while Figure 1b
(Sections 3.2–3.3) details the Music-to-Pose Encoder and
its integration with the latent diffusion model. Training and
inference methods are described in Section 3.4.

3.1. Synthetic Dataset Generation
Transforming music into dance motion faces a core chal-
lenge: the subjective mapping between musical elements
and human movement. To resolve this, we introduce the
Synthetic Dataset Generation Pipeline (SDGPip), which
creates synchronized pairs of musical features and anatom-
ically structured 3D poses. This dataset bridges the gap be-
tween sound and motion, enabling the proposed model to
learn rhythmically aligned and realistic dance generation

3.1.1. Dataset and Pseudo-Motions
We utilize AIST++ [6], which provides 1,020 SMPL [8]
motion sequences synchronized with music across ten gen-
res. The dataset includes 980 training, 20 validation, and
20 test videos, spanning approximately 5.2 hours of dance
sequences. For each (motion, music) frame pair, we use
the corresponding AIST[18] video frame from camera C09
for the training of latent diffusion model. We cropped the
center 640× 640 box of each frame to focus on the dancer.

To enhance diversity beyond predefined motions, we
generate pseudo-motions using EDGE [17]. We introduce
a new audio dataset comprising 300 music tracks across ten
genres, each randomly cropped into a 2-minute segment, re-
sulting in a total of 10 hours of music. By slicing them into
5-second segments and synthesizing corresponding SMPL
motions, we expand the range of music-to-dance mappings.

3.1.2. SDGPip Architecture
SDGPip generates structured spatial representations using
SMPL [8], DwPose [23], and CHAMP [12], including:
• Depth Maps: Encode body surface distances.

• Normal Maps: Capture surface orientation.
• Semantic Maps: Segment body parts into regions.
• Skeleton Keypoints and Heatmaps: Highlight joint

connections for precise localization.
These representations are combined via CHAMP’s

multi-level Guidance Encoder[12] to produce pose guid-
ance that conditions the Denoising U-Net to produce dance
videos, ensuring rhythmically aligned and anatomically
plausible dance motions.

3.2. Music-to-Pose Guidance Encoder
The Music-to-Pose Encoder (M2PEnc) translates musical
features into pose guidance for dance synthesis. Jukebox
encodes music into 4800D feature vectors per frame, cap-
turing rhythm, melody, and dynamics. These features are
reduced to (N, 4096) (where N = D × F , duration ×
frame rate) and reshaped to (N, 64, 64) for spatio-temporal
processing. Alternating layers of Inflated 3D Convolutions
(Inf-Conv3D) and 3D attention modules model temporal
dependencies, with Inf-Conv3D capturing spatio-temporal
relationships and attention enhancing long-range frame co-
herence.

The M2PEnc outputs two components: (1) pose guid-
ance features (N,Cguid, 64, 64) that condition the U-
Net for rhythmically aligned synthesis, and (2) keypoint
heatmaps (N,Cheat, 64, 64) optimized via MSE loss to en-
sure precise anatomical alignment with ground truth. This
dual-output design ensures both high-level motion coher-
ence and detailed pose accuracy.

3.3. Leveraging the Latent Diffusion Framework
Our framework integrates the Music-to-Pose Encoder
(M2PEnc) with a denoising 3D U-Net within the latent dif-
fusion framework, enabling rhythmic alignment and visual
fidelity in music-driven dance generation. The M2PEnc-
generated pose sequences are summed with the U-Net’s la-
tent features to synchronize music and motion, while ref-
erence images are encoded using a frozen Variational Au-
toencoder (VAE) and CLIP encoder to extract latent em-



beddings that preserve the subject’s appearance and back-
ground. Three attention mechanisms—cross-attention for
aligning pose guidance with reference embeddings, self-
attention for maintaining spatial coherence within frames,
and temporal attention for ensuring smooth transitions
across frames—jointly refine synthesis quality. Leverag-
ing CHAMP’s pretrained stable diffusion v1.5 3D U-Net
weights[12], our model achieves high-quality latent motion
and reference feature synthesis without extensive retraining,
with the final video frames decoded through the VAE.

3.4. Training and Inference
The training process consists of three stages. In the first
stage, the Music-to-Pose Encoder (M2PEnc) is pretrained
using synthetic datasets to map musical features into struc-
tured spatial pose representations. Two loss functions are
minimized: the guidance loss,

Lguid =
1

HWCguid

∑
h,w,c

|fh,w,c − f̂h,w,c|, (1)

which aligns predicted (f̂ ) and ground truth (f ) pose guid-
ances, and the heatmap loss,

Lheat =
exp(k̂h,w,c)

HWCheat
− kh,w,c, (2)

which refines predicted (k̂) and ground truth (k) keypoint
heatmaps. In the second stage, M2PEnc weights are frozen,
and the Denoising U-Net is trained to minimize the pixel-
wise Mean Squared Error (MSE) loss between predicted(x)
and ground truth(y) video frame:

Lpix = MSE(x, y). (3)

The network is initialized with CHAMP’s pretrained
weights. In the third stage, the temporal layer is enabled
fine-tuned jointly with M2PEnc using a combined loss

Ltotal = 0.5 · Lpix + 0.5 · Lguid, (4)

ensuring cohesive integration of temporal dynamics with
pose guidance.

During inference, dance videos are generated in 5-
second segments, which are seamlessly merged using UNI-
Animate’s noise-conditioning method [20], ensuring tem-
poral continuity across full-length videos.

4. Experiments and Results
4.1. Implementation Details
The proposed framework was trained in three stages on
eight A100 GPUs using the AdamW optimizer (learning
rate 1 × 10−5). First, M2PEnc was pretrained for 20K
steps (batch size 24) on 75-frame (music, pose guidance,
keypoint heatmap) sequences. Next, the denoising U-Net
was trained for 60K steps (batch size 32) on (music, ref-
erence frame, target frame) pairs, with frames cropped to

the human bounding box and resized to 640× 640. Finally,
the temporal layer was fine-tuned for 20 steps (batch size
8) on 24-frame (music, reference frame, video sequence,
pose guidance) pairs. The AdamW optimizer [9] was used
throughout training with a learning rate of 1× 10−5.

4.2. Evaluation Metrics
The quality of generated dance videos was assessed using
several metrics. Fréchet Video Distance (FVD) [16], com-
puted with an I3D classifier pre-trained on Kinetics-400 [1],
evaluates video realism and temporal coherence. Struc-
tural similarity (SSIM) [21], Peak Signal-to-Noise Ratio
(PSNR) [5], and Learned Perceptual Image Patch Similarity
(LPIPS) [25] measure image-level structural consistency,
pixel fidelity, and perceptual similarity. Synchronization
metrics include the 2D-BeatAlign score [6], which assesses
alignment between dance movements (with joints computed
using DwPose [23]) and musical beats extracted using Li-
brosa [11]. AV-Align [24] evaluates temporal synchroniza-
tion between audio and video features. These metrics com-
prehensively evaluate our model’s ability to produce rhyth-
mically synchronized and visually coherent dance videos.

4.3. Result Analysis of Video Quality Evaluation
4.3.1. Qualitative Evaluation
We sliced 5-second clips from AIST[18] test set and used
music and the first frame as reference, for the generation
of dance videos. We compared against MM-Diffusion[14]
by generating equivalent number of video clips using their
public code base. As shown in Figure 2, our model gener-
ates dance sequences with superior image quality and rhyth-
mic alignment, whereas MM-Diffusion struggles with fine-
grained motion details. DabFusion[22] was excluded from
comparison due to inaccessible code and inferior sample
quality shown on their website.

Our model also generalizes robustly to unseen individ-
uals, synthesizing diverse dance genres (Break, Hip-Hop,
Waack, etc.) as shown in Figure 3. Consistent seed us-
age across music tracks demonstrates reliable rendering of
stylistically accurate motions regardless of the subject’s ap-
pearance.

Figure 2. Qualitative evaluation on AIST test set. Example
dance videos generated by the proposed framework. Click on the
figure to view the results.

4.3.2. Quantitative Evaluation
For quantitative evaluation, we use 100 5-second clips
sliced from AIST++ test set. For MM-Diffusion[14], we

https://thin-weaver-296.notion.site/Samples-1d3b958006c780bf8c26faa387ec3399


Figure 3. Qualitative evaluation using in-the-wild images. The
model generalizes well across individuals and dance genres. Click
on the figure to view the results.

generated equivalent number of video clips using their pub-
lic code base as mentioned earlier. We post-processed MM-
Diffusion’s 256×256 outputs to match to our models result
by cropping to the dancer’s bounding box and resizing to
640 × 640, ensuring metrics (PSNR, SSIM, LPIPS) reflect
dance quality rather than inflated background uniformity.
Upscaling low-resolution outputs may seem unfair, but it
enables a balanced comparison of each model’s strengths.
Increasing resolution without architectural changes doesn’t
guarantee better performance, so upscaling helps evaluate
their true capability at higher resolutions. Table 1 high-
lights the superiority of the proposed framework over MM-
Diffusion in all metrics.

Since DabFusion’s code is unavailable, we used its re-
ported metrics from Table 1 of DabFusion [22] paper for
reference. Our model was evaluated on the AIST test set;
DabFusion’s results are only directly comparable if they
also used test clips, otherwise, they serve as a reference.

Alignment scores further validate our approach (Ta-
ble 2): Our work achieves near-ground-truth 2D-BeatAlign
(0.303 vs. 0.307) and outperforms MM-Diffusion in AV-
Align (0.421 vs. 0.370). These results underscore the ef-
ficacy of our Music-to-Pose Encoder and latent diffusion
framework in bridging music and motion.

4.4. Ablation Study
Need for M2PEnc. To assess the impact of the Music-to-
Pose Encoder (M2PEnc), we ablated by removing the Pose
Density Encoder and skipping the training stage 1, reducing
it to a simple audio encoder. This led to noticeable drops
in both video quality and alignment metrics (Table 1 and
Table 2 ), confirming the need for M2PEnc design. We ran
20K more steps in training stage 2 and Lguid was ignored in
the third stage.
The effect of pose guidance setups. We also ablate differ-
ent pose guidance setups: DNS (Depth-Normal-Semantic
maps), P (Pose skeleton), and PDNS (Pose skeleton + DNS)
as shown in (Table 3). DNS shows moderate performance.
P significantly improves metrics due to explicit skeletal
guidance. PDNS achieves optimal results demonstrating
that combining pose skeletons with geometry maps yields
superior motion alignment and visual quality.
Impact of the EDGE Method. Table 1 and Table 2 show
that incorporating new pose information generated with
EDGE [17] leads to improved alignment metrics, while the
video quality metrics remain largely unchanged.

Table 1. Quantitative evaluation results.
Model FVD ↓ LPIPS ↓ PSNR ↑ SSIM ↑
MM-Diffusion 1338.57 0.425 11.04 0.770
DabFusion(scaled) 1440.05 0.561 8.525 0.776
Ours 213.289 0.102 21.11 0.908

Simple Audio Encoder 725.10 0.294 16.48 0.812

Ours w/o EDGE [17] 212.98 0.108 21.14 0.906

Table 2. Alignment results.
2D-BeatAlign↑ AV Align↑

Ground-Truth 0.307 0.448

MM-Diffusion 0.287 0.370
Ours 0.303 0.421

Simple Audio Encoder 0.261 0.350

Ours w/o EDGE [17] 0.298 0.407

Table 3. Ablation Study results on Pose Guidance Setups

Guidance Setup FVD ↓ LPIPS ↓ PSNR ↑ SSIM ↑
DNS 257.196 0.194 19.95 0.812
P 239.724 0.156 20.50 0.857
PDNS(Ours) 213.289 0.102 21.11 0.908

4.5. User Study
A user study with 20 participants (5 choreographers, 15
engineers) evaluated 50 randomized 5-second dance clips
each, using a 10-point Likert [7] scale for rhythmic syn-
chronization and visual consistency, totaling 1,000 ratings.
STM2PE-Diff achieved 85.2% rhythmic synchronization
(vs. MM-Diffusion’s 83.3%) and 80.4% visual consistency
(vs. 55.4%), indicating superior musical alignment and
more realistic, coherent video generation.

Table 4. User Study Results
Model Rhy. Sync Vis. Cons.
MM-Diffusion 83.3% 55.4%
Ours 85.1% 80.4%

5. Conclusion
We introduced a music-conditioned dance video generation
framework that integrates a Music-to-Pose Encoder with a
latent diffusion model to achieve rhythmic synchronization
and stylistic fidelity. A pipeline for generating synthetic
datasets addresses data scarcity and ambiguity, improving
diversity in music-to-motion mapping. Evaluations, abla-
tion studies, and a user study consistently demonstrate supe-
rior quality, alignment, and expressiveness over prior meth-
ods, confirming the robustness and effectiveness of the pro-
posed approach across diverse subjects, styles, and genres.
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