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Abstract

We present a framework for generating human dance001
videos conditioned on music and a reference image. Our002
approach introduces a Music-to-Pose Encoder (M2PEnc)003
trained with a Synthetic Dataset Generation Pipeline (SDG-004
Pip) to map audio features into structured 3D pose parame-005
ters, which serve as input to a latent diffusion model(LDM).006
This enables the creation of rhythmically synchronized and007
visually coherent dance animations by leveraging multi-008
level attention mechanisms in LDM. The proposed frame-009
work achieves state-of-the-art performance across bench-010
mark datasets, demonstrating robust generalization to di-011
verse individuals and dance genres.012

1. Introduction013

Recent advancements in human motion video generation014
have shown the effectiveness of pose-conditioned latent dif-015
fusion approaches, such as Champ [12], MagicPose[2], and016
UniAnimate [20]. However, generating videos from music017
poses a unique challenge due to the complex relationship018
between musical features and human poses. Unlike pose-019
conditioned methods, music-to-motion generation requires020
capturing intricate temporal patterns and stylistic nuances021
embedded in audio signals.022

To address this gap, we propose a novel framework for023
generating dance videos conditioned on music and a refer-024
ence image. Our approach introduces two key innovations:025

• Music-to-Pose Encoder (M2PEnc): Maps musical fea-026
tures into structured spatial pose representations, reduc-027
ing ambiguity in the music-to-pose relationship.028

• Synthetic Dataset Generation Pipeline (SDGPip):029
Combines EDGE [17], SMPL [8], DwPose [23], and030
CHAMP [12] to generate diverse music-to-motion train-031
ing data used by M2PEnc.032

By leveraging multi-level attention mechanisms within033
a latent diffusion framework, our work synthesizes dance034
motions that are rhythmically aligned with input music and035
visually coherent to the reference image. Our framework036
demonstrates state-of-the-art performance on benchmark037

datasets and robust generalization on a newly introduced in- 038
the-wild dataset as shown in 4.3 039

2. Related Works 040

2.1. Music Feature Extraction 041

Extracting meaningful features from music is essential for 042
music-to-motion generation. Traditional methods such as 043
Librosa [11] extract low-level features like MFCCs, while 044
deep learning-based approaches like MusicGen [3] and 045
Whisper [13] capture complex musical patterns through em- 046
beddings. We use OpenAI’s Jukebox encoder [4], which 047
compresses audio signals into latent spaces using hierarchi- 048
cal VQ-VAE [19], preserving critical musical information 049
such as rhythm and melody. 050

2.2. Music-to-Pose Generation 051

Music-to-pose methods synthesize 3D dance motions 052
(SMPL[8]) aligned with musical inputs. Diffusion-based 053
approaches like EDGE [17] use transformers for fine- 054
grained motion control, while POPDG [10] enhances syn- 055
chronization through spatial augmentation. Non-diffusion 056
methods such as FACT [6] interpolate key poses, and Bai- 057
lando [15] combines VQ-VAE[19] with motion GPT for 058
music-driven sequences. Our SDGPip leverages EDGE for 059
augmentation of 3D dance motions to improve robustness 060
and diversity in music-to-motion mapping. 061

2.3. Latent Diffusion Framework 062

Pose conditioned latent diffusion models integrate pose and 063
identity conditioning for human motion video generation. 064
Techniques like MagicPose [2] utilize DensePose for mo- 065
tion guidance, while CHAMP [12] incorporates SMPL pa- 066
rameters for multi-class pose generation. Our methods pro- 067
poses M2PEnc to produce multi-class poses used as input to 068
Latent diffusion model to help generate synchronized and 069
visually coherent dance videos conditioned on music and 070
reference images. 071

3. Methods 072

Figure 1 overviews our framework for generating dance 073
videos from music and reference images. Figure 1a (Section 074
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(a) Synthetic dataset generation pipeline (SDGPip). (b) Music-to-Pose (M2PEnc) architecture(left) and Latent diffusion framework(right).

Figure 1. Overview of our proposed framework. The M2PEnc maps music to spatial pose features and leverages a denoising 3D U-Net to
generate music-synchronized dance videos. The SDGPip creates synthetic pairs of music and pose features training data used by M2PEnc.

3.1) illustrates the synthetic data pipeline, while Figure 1b075
(Sections 3.2–3.3) details the Music-to-Pose Encoder and076
its integration with the latent diffusion model. Training and077
inference methods are described in Section 3.4.078

3.1. Synthetic Dataset Generation079

Transforming music into dance motion faces a core chal-080
lenge: the subjective mapping between musical elements081
and human movement. To resolve this, we introduce the082
Synthetic Dataset Generation Pipeline (SDGPip), which083
creates synchronized pairs of musical features and anatom-084
ically structured 3D poses. This dataset bridges the gap be-085
tween sound and motion, enabling the proposed model to086
learn rhythmically aligned and realistic dance generation087

3.1.1. Dataset and Pseudo-Motions088

We utilize AIST++ [6], which provides 1,020 SMPL [8]089
motion sequences synchronized with music across ten gen-090
res. The dataset includes 980 training, 20 validation, and091
20 test videos, spanning approximately 5.2 hours of dance092
sequences. For each (motion, music) frame pair, we use093
the corresponding AIST[18] video frame from camera C09094
for the training of latent diffusion model. We cropped the095
center 640× 640 box of each frame to focus on the dancer.096

To enhance diversity beyond predefined motions, we097
generate pseudo-motions using EDGE [17]. We introduce098
a new audio dataset comprising 300 music tracks across ten099
genres, each randomly cropped into a 2-minute segment, re-100
sulting in a total of 10 hours of music. By slicing them into101
5-second segments and synthesizing corresponding SMPL102
motions, we expand the range of music-to-dance mappings.103

3.1.2. SDGPip Architecture104

SDGPip generates structured spatial representations using105
SMPL [8], DwPose [23], and CHAMP [12], including:106
• Depth Maps: Encode body surface distances.107
• Normal Maps: Capture surface orientation.108
• Semantic Maps: Segment body parts into regions.109
• Skeleton Keypoints and Heatmaps: Highlight joint110

connections for precise localization.111

These representations are combined via CHAMP’s 112
multi-level Guidance Encoder[12] to produce pose guid- 113
ance that conditions the Denoising U-Net to produce dance 114
videos, ensuring rhythmically aligned and anatomically 115
plausible dance motions. 116

3.2. Music-to-Pose Guidance Encoder 117

The Music-to-Pose Encoder (M2PEnc) translates musical 118
features into pose guidance for dance synthesis. Jukebox 119
encodes music into 4800D feature vectors per frame, cap- 120
turing rhythm, melody, and dynamics. These features are 121
reduced to (N, 4096) (where N = D × F , duration × 122
frame rate) and reshaped to (N, 64, 64) for spatio-temporal 123
processing. Alternating layers of Inflated 3D Convolutions 124
(Inf-Conv3D) and 3D attention modules model temporal 125
dependencies, with Inf-Conv3D capturing spatio-temporal 126
relationships and attention enhancing long-range frame co- 127
herence. 128

The M2PEnc outputs two components: (1) pose guid- 129
ance features (N,Cguid, 64, 64) that condition the U- 130
Net for rhythmically aligned synthesis, and (2) keypoint 131
heatmaps (N,Cheat, 64, 64) optimized via MSE loss to en- 132
sure precise anatomical alignment with ground truth. This 133
dual-output design ensures both high-level motion coher- 134
ence and detailed pose accuracy. 135

3.3. Leveraging the Latent Diffusion Framework 136

Our framework integrates the Music-to-Pose Encoder 137
(M2PEnc) with a denoising 3D U-Net within the latent dif- 138
fusion framework, enabling rhythmic alignment and visual 139
fidelity in music-driven dance generation. The M2PEnc- 140
generated pose sequences are summed with the U-Net’s la- 141
tent features to synchronize music and motion, while ref- 142
erence images are encoded using a frozen Variational Au- 143
toencoder (VAE) and CLIP encoder to extract latent em- 144
beddings that preserve the subject’s appearance and back- 145
ground. Three attention mechanisms—cross-attention for 146
aligning pose guidance with reference embeddings, self- 147
attention for maintaining spatial coherence within frames, 148
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and temporal attention for ensuring smooth transitions149
across frames—jointly refine synthesis quality. Leverag-150
ing CHAMP’s pretrained stable diffusion v1.5 3D U-Net151
weights[12], our model achieves high-quality latent motion152
and reference feature synthesis without extensive retraining,153
with the final video frames decoded through the VAE.154

3.4. Training and Inference155

The training process consists of three stages. In the first156
stage, the Music-to-Pose Encoder (M2PEnc) is pretrained157
using synthetic datasets to map musical features into struc-158
tured spatial pose representations. Two loss functions are159
minimized: the guidance loss,160

Lguid =
1

HWCguid

∑
h,w,c

|fh,w,c − f̂h,w,c|, (1)161

which aligns predicted (f̂ ) and ground truth (f ) pose guid-162
ances, and the heatmap loss,163

Lheat =
exp(k̂h,w,c)

HWCheat
− kh,w,c, (2)164

which refines predicted (k̂) and ground truth (k) keypoint165
heatmaps. In the second stage, M2PEnc weights are frozen,166
and the Denoising U-Net is trained to minimize the pixel-167
wise Mean Squared Error (MSE) loss between predicted(x)168
and ground truth(y) video frame:169

Lpix = MSE(x, y). (3)170

The network is initialized with CHAMP’s pretrained171
weights. In the third stage, the temporal layer is enabled172
fine-tuned jointly with M2PEnc using a combined loss173

Ltotal = 0.5 · Lpix + 0.5 · Lguid, (4)174

ensuring cohesive integration of temporal dynamics with175
pose guidance.176

During inference, dance videos are generated in 5-177
second segments, which are seamlessly merged using UNI-178
Animate’s noise-conditioning method [20], ensuring tem-179
poral continuity across full-length videos.180

4. Experiments and Results181

4.1. Implementation Details182

The proposed framework was trained in three stages on183
eight A100 GPUs using the AdamW optimizer (learning184
rate 1 × 10−5). First, M2PEnc was pretrained for 20K185
steps (batch size 24) on 75-frame (music, pose guidance,186
keypoint heatmap) sequences. Next, the denoising U-Net187
was trained for 60K steps (batch size 32) on (music, ref-188
erence frame, target frame) pairs, with frames cropped to189
the human bounding box and resized to 640× 640. Finally,190
the temporal layer was fine-tuned for 20 steps (batch size191
8) on 24-frame (music, reference frame, video sequence,192
pose guidance) pairs. The AdamW optimizer [9] was used193
throughout training with a learning rate of 1× 10−5.194

Figure 2. Qualitative evaluation on AIST test set. Example
dance videos generated by the proposed framework. Click on the
figure to view the results.

4.2. Evaluation Metrics 195

The quality of generated dance videos was assessed using 196
several metrics. Fréchet Video Distance (FVD) [16], com- 197
puted with an I3D classifier pre-trained on Kinetics-400 [1], 198
evaluates video realism and temporal coherence. Struc- 199
tural similarity (SSIM) [21], Peak Signal-to-Noise Ratio 200
(PSNR) [5], and Learned Perceptual Image Patch Similarity 201
(LPIPS) [25] measure image-level structural consistency, 202
pixel fidelity, and perceptual similarity. Synchronization 203
metrics include the 2D-BeatAlign score [6], which assesses 204
alignment between dance movements (with joints computed 205
using DwPose [23]) and musical beats extracted using Li- 206
brosa [11]. AV-Align [24] evaluates temporal synchroniza- 207
tion between audio and video features. These metrics com- 208
prehensively evaluate our model’s ability to produce rhyth- 209
mically synchronized and visually coherent dance videos. 210

Table 1. Quantitative evaluation results.

Model FVD ↓ LPIPS ↓ PSNR ↑ SSIM ↑
MM-Diffusion 1338.57 0.425 11.04 0.770
DabFusion(scaled) 1440.05 0.561 8.525 0.776
Ours 213.289 0.102 21.11 0.908

Simple Audio Encoder 725.10 0.294 16.48 0.812

Ours w/o EDGE [17] 212.98 0.108 21.14 0.906

4.3. Result Analysis of Video Quality Evaluation 211

4.3.1. Qualitative Evaluation 212

We sliced 5-second clips from AIST[18] test set and used 213
music and the first frame as reference, for the generation 214
of dance videos. We compared against MM-Diffusion[14] 215
by generating equivalent number of video clips using their 216
public code base. As shown in Figure 2, our model gener- 217
ates dance sequences with superior image quality and rhyth- 218
mic alignment, whereas MM-Diffusion struggles with fine- 219
grained motion details. DabFusion[22] was excluded from 220
comparison due to inaccessible code and inferior sample 221
quality shown on their website. 222

Our model also generalizes robustly to unseen individ- 223
uals, synthesizing diverse dance genres (Break, Hip-Hop, 224
Waack, etc.) as shown in Figure 3. Consistent seed us- 225
age across music tracks demonstrates reliable rendering of 226
stylistically accurate motions regardless of the subject’s ap- 227
pearance. 228
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Figure 3. Qualitative evaluation using in-the-wild images. The
model generalizes well across individuals and dance genres. Click
on the figure to view the results.

Table 2. Alignment results.

2D-BeatAlign↑ AV Align↑
Ground-Truth 0.307 0.448

MM-Diffusion 0.287 0.370
Ours 0.303 0.421

Simple Audio Encoder 0.261 0.350

M2PE-Diff w/o EDGE [17] 0.298 0.407

Table 3. Ablation Study results on Pose Guidance Setups

Guidance Setup FVD ↓ LPIPS ↓ PSNR ↑ SSIM ↑
DNS 257.196 0.194 19.95 0.812
P 239.724 0.156 20.50 0.857
PDNS(Ours) 213.289 0.102 21.11 0.908

4.3.2. Quantitative Evaluation229

For quantitative evaluation, we use 100 5-second clips230
sliced from AIST++ test set. For MM-Diffusion[14], we231
generated equivalent number of video clips using their pub-232
lic code base as mentioned earlier. We post-processed MM-233
Diffusion’s 256×256 outputs to match to our models result234
by cropping to the dancer’s bounding box and resizing to235
640 × 640, ensuring metrics (PSNR, SSIM, LPIPS) reflect236
dance quality rather than inflated background uniformity.237
Upscaling low-resolution outputs may seem unfair, but it238
enables a balanced comparison of each model’s strengths.239
Increasing resolution without architectural changes doesn’t240
guarantee better performance, so upscaling helps evaluate241
their true capability at higher resolutions. Table 1 high-242
lights the superiority of the proposed framework over MM-243
Diffusion in all metrics.244

Since DabFusion’s code is unavailable, we used its re-245
ported metrics from Table 1 of DabFusion [22] paper for246
reference. Our model was evaluated on the AIST test set;247
DabFusion’s results are only directly comparable if they248
also used test clips, otherwise, they serve as a reference.249

Alignment scores further validate our approach (Ta-250
ble 2): Our work achieves near-ground-truth 2D-BeatAlign251
(0.303 vs. 0.307) and outperforms MM-Diffusion in AV-252
Align (0.421 vs. 0.370). These results underscore the ef-253
ficacy of our Music-to-Pose Encoder and latent diffusion254
framework in bridging music and motion.255

4.4. Ablation Study 256

Need for M2PEnc. To assess the impact of the Music-to- 257
Pose Encoder (M2PEnc), we ablated by removing the Pose 258
Density Encoder and skipping the training stage 1, reducing 259
it to a simple audio encoder. This led to noticeable drops 260
in both video quality and alignment metrics (Table 1 and 261
Table 2 ), confirming the need for M2PEnc design. We ran 262
20K more steps in training stage 2 and Lguid was ignored in 263
the third stage. 264

The effect of pose guidance setups. We also ablate differ- 265
ent pose guidance setups: DNS (Depth-Normal-Semantic 266
maps), P (Pose skeleton), and PDNS (Pose skeleton + DNS) 267
as shown in (Table 3). DNS shows moderate performance. 268
P significantly improves metrics due to explicit skeletal 269
guidance. PDNS achieves optimal results demonstrating 270
that combining pose skeletons with geometry maps yields 271
superior motion alignment and visual quality. 272

Impact of the EDGE Method. Table 1 and Table 2 show 273
that incorporating new pose information generated with 274
EDGE [17] leads to improved alignment metrics, while the 275
video quality metrics remain largely unchanged. 276

4.5. User Study 277

A user study with 20 participants (5 choreographers, 15 en- 278
gineering backgrounds) evaluated 50 randomized 5-second 279
dance clips each, grading absolute quality on a 10-point 280
Likert [7] scale (1: poor, 10: excellent) for a total of 1,000 281
assessments. Participants rated how well the dance matched 282
the music’s rhythm (rhythmic synchronization) and how re- 283
alistic and smooth the videos looked (visual consistency). 284
STM2PE-Diff scored 85% in rhythmic synchronization (vs. 285
MM-Diffusion’s 83%) and 80% in visual consistency (vs. 286
55%), demonstrating superior alignment with music and 287
more coherent, realistic video generation. 288

Table 4. User Study Results
Model Rhy. Sync Vis. Cons.
MM-Diffusion 83.3% 55.4%
Ours 85.1% 80.4%

5. Conclusion 289

We propose a novel framework for generating dance videos 290
conditioned on music and reference images. By bridg- 291
ing music-to-motion mapping through a Music-to-Pose En- 292
coder and latent diffusion model, our approach ensures 293
rhythmic synchronization and stylistic fidelity. The syn- 294
thetic dataset pipeline resolves ambiguity and scarcity 295
in music-to-dance mapping while enhancing data diver- 296
sity. Quantitative and qualitative evaluations with diverse 297
ablations demonstrate superior performance in generat- 298
ing high-quality dance motions, surpassing existing meth- 299
ods. 300
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