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Abstract001

Text-guided image editing has seen rapid002
progress in natural image domains, but its adap-003
tation to medical imaging remains limited and004
lacks standardized evaluation. Clinically, such005
editing holds promise for simulating surgical006
outcomes, creating personalized teaching mate-007
rials, and enhancing patient communication. To008
bridge this gap, we introduce MedEBench, a009
comprehensive benchmark for evaluating text-010
guided medical image editing. It consists of011
1,182 clinically sourced image-prompt triplets012
spanning 70 tasks across 13 anatomical regions.013
MedEBench offers three key contributions: (1)014
a clinically relevant evaluation framework cov-015
ering Editing Accuracy, Contextual Preserva-016
tion, and Visual Quality, supported by detailed017
descriptions of expected change and ROI (Re-018
gion of Interest) masks; (2) a systematic com-019
parison of seven state-of-the-art models, reveal-020
ing common failure patterns; and (3) a failure021
analysis protocol based on attention ground-022
ing, using IoU (Intersection over Union Ratio)023
between attention maps and ROIs to identify024
mislocalization. MedEBench provides a solid025
foundation for developing and evaluating reli-026
able, clinically meaningful medical image edit-027
ing systems.028

1 Introduction029

Recent advances in diffusion models and vision-030

language pretraining have significantly advanced031

text-guided image editing (Brooks et al., 2023a;032

Kawar et al., 2023a; Geng et al., 2023; Wasserman033

et al., 2025; Zhang et al., 2025a; Ge et al., 2025;034

DeepMind, 2024). These methods enable diverse035

applications such as object removal, inpainting, and036

style transfer, often producing compelling visual037

results (Yildirim et al., 2023; Wang et al., 2022;038

Yang et al., 2024). However, most prior work has039

focused on aesthetic or creative tasks, with limited040

exploration in domains requiring high semantic pre-041

cision—particularly medicine. While comprehen-042

sive benchmarks exist for evaluating editing models043

Figure 1: State-of-the-Art model performs well on com-
mon images (e.g., “add a missing key”) but surprisingly
struggles with medical images (e.g., “add a missing
tooth”).

on natural images (Lin et al., 2015; Huang et al., 044

2023; Xia et al., 2021), their adaptation to medi- 045

cal images remains challenging. Here, even minor 046

alterations can carry significant clinical meaning, 047

demanding high editing precision, semantic fidelity, 048

and anatomical correctness. Text-guided medical 049

image editing holds substantial clinical potential, 050

as it could highlight lesions in CT scans (Guo et al., 051

2023), simulate surgical outcomes (Huang et al., 052

2025), or generate personalized teaching materi- 053

als (Lee et al., 2024). Such applications promise 054

direct benefits to diagnosis, treatment optimiza- 055

tion (Ma, 2025), and training (Zhang et al., 2024a). 056

Despite the versatility of current models, they of- 057

ten fail at clinically meaningful transformations 058

that are intuitive to general physicians or even non- 059

experts. For example, InstructPix2Pix (Brooks 060

et al., 2023a) can successfully handles prompts like 061

“Add a missing key on a piano keyboard” but fails 062

on similar medical prompts such as “Add a missing 063

tooth in this dental image” (see Fig. 1). Notably, 064

this failure cannot be resolved by adjusting the text 065

or image guidance scales (see Fig. 7). This under- 066

scores the difficulty of transferring such models to 067

domains that require fine-grained anatomical under- 068
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Figure 2: Overview of MedEBench, a text-guided benchmark for medical image editing. (A) Data preparation
includes collecting image triplets, generating ROI masks, and describing intended changes. (B) Models generate
edited images from prompts and previous images. (C) SSIM measures contextual preservation; editing accuracy and
visual quality are assessed by GPT-4o, guided by the change description.

standing and specialized domain knowledge (Kaze-069

rouni et al., 2022; Ayana et al., 2024).070

Medical image editing faces two fundamental071

challenges. First, real image pairs that reflect clin-072

ically grounded transformations (e.g., before and073

after treatment) are scarce, and synthetic data often074

lacks realism. Second, evaluation remains prob-075

lematic. Metrics like Fréchet Inception Distance076

(FID) (Heusel et al., 2018) and CLIP Score (Hessel077

et al., 2022) are not aligned with clinical correct-078

ness or anatomical plausibility, failing to capture if079

the edits are grounded in medical knowledge.080

To address these gaps, we propose MedEBench,081

a benchmark for text-guided medical image edit-082

ing. MedEBench contains 1,182 real clinical im-083

age pairs covering pre- and postoperative states084

across 13 anatomical regions (e.g., teeth, eyes,085

esophagus). Each task is defined by a natural lan-086

guage prompt, region-of-interest (ROI) masks, and087

detailed change descriptions to enable localized,088

fine-grained evaluation. For clinically meaning-089

ful assessment, we introduce tailored evaluation090

metrics. Contextual Preservation (CP) is mea-091

sured by masked SSIM (Wang et al., 2004) to092

ensure unaffected regions remain intact. Editing093

Accuracy (EA) and Visual Quality (VQ) are as-094

sessed via Multimodal Large Language Models095

(MLLMs) using clinically detailed change descrip-096

tions for accurate, interpretable evaluation. We097

benchmark seven state-of-the-art models across098

diverse learning paradigms and analyze failures 099

through attention-grounding, revealing gaps in 100

medical concept understanding and spatial local- 101

ization. Our contributions are threefold: 102

• We introduce MedEBench, the first benchmark 103

for text-guided medical image editing, featuring 104

1,182 real clinical image pairs from 13 anatom- 105

ical regions and 70 editing tasks, each with 106

prompts, ROI masks, and change descriptions. 107

• We propose clinically grounded evaluation met- 108

rics that capture structural preservation, edit ac- 109

curacy, and visual quality, integrating both tradi- 110

tional approaches and MLLM-based reasoning. 111

• We benchmark seven models with text-instructed 112

image editing ability on different learning 113

paradigms and provide failure case analysis to 114

diagnose limitations in medical concept editing 115

by attention grounding. 116

2 MedEBench 117

Fig. 2 illustrates the main components of 118

MedEBench. Section 2.1 describes our dataset, 119

which consists of 1,182 samples across 13 cate- 120

gories. Each sample includes an input image, a 121

reference image, an editing prompt, an ROI mask, 122

and a change description. Section 2.2 introduces 123

automated evaluation metrics, while Section 3.5 124

presents a human study validating the alignment 125

between automated and human assessments. Tab. 1 126

compares MedEBench with existing benchmarks. 127
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Benchmark Size Domain Synthetic Truth

EditVal (Basu et al., 2023) 648 pairs, 13 edit types General ✗ ✗
I2EBench (Ma et al., 2024) 2000+ pairs, 16 edit types General ✗ mix
EditBench (Wang et al., 2023b) 240 pairs General mix ✗
PIE-Bench (Ju et al., 2023) 700 pairs, 10 edit types General mix ✗

MedEBench (Ours) 1182 pairs, 13 organs, 70 types Medical ✗ ✓

Table 1: Comparison of text-guided image editing benchmark datasets.

As shown in Fig. 4, low prompt-image CLIP simi-128

larity and varied ROI sizes highlight the challenges129

of text-guided medical image editing.130

2.1 Data Preparation131

A major challenge in medical image editing is132

the scarcity of image pairs that reflect real clini-133

cal interventions. Unlike natural image datasets,134

synthesizing realistic transformations for medical135

images is difficult due to anatomical complexity136

and clinical constraints.137

2.1.1 Image Pair Collection138

To mitigate data scarcity, we curate a set of139

“before-and-after” medical image pairs simulat-140

ing realistic clinical transformations across various141

anatomical regions. We define a list of target organs142

O (e.g., Teeth) and use ChatGPT (OpenAI, 2024)143

to generate corresponding medical procedures Ao144

(e.g., Remove wisdom teeth), as shown in Tab. 5 and145

Fig. 3. Guided by these organ-procedure pairs, two146

expert annotators collected image pairs (Iprev, Iafter)147

via keyword-based web search. As no existing148

dataset met our quality and alignment needs, they149

screened large volumes of candidates for anatomi-150

cal accuracy, procedural relevance, and visual con-151

sistency. All pairs underwent two-stage review,152

were standardized to 512-pixel width, aligned via153

affine transformations, and anonymized for privacy.154

Figure 3: Organ distribution

2.1.2 Editing Prompt Generation155

For each verified image pair (Iprev, Iafter), we156

manually create a natural language prompt porig de-157

scribing the visual transformation, concisely reflect-158

ing the underlying medical operation. To enhance159

linguistic diversity and mitigate overfitting to fixed160

Figure 4: Properties of the MedEBench dataset: CLIP
score between the instruction and the preceding image,
and the ROI mask ratio relative to the full image.

phrasings, we use ChatGPT (OpenAI, 2024) to gen- 161

erate multiple paraphrased variants. One variant is 162

randomly selected as preph for use in evaluation. 163

2.1.3 Region-of-Interest Mask Annotation 164

For each image Iprev, we generate a region-of- 165

interest (ROI) mask M to localize the area targeted 166

by the editing prompt. Candidate masks are pro- 167

duced by prompting Grounded-SAM (Ren et al., 168

2024) with the instruction, yielding three proposals. 169

A human annotator selects the most accurate mask 170

or manually refines it to ensure anatomical preci- 171

sion. ROI masks serve two key purposes: (1) Con- 172

textual Preservation, where SSIM (Wang et al., 173

2004) is computed outside the masked region to 174

verify that unedited areas remain unchanged; and 175

(2) Attention Analysis, which evaluates whether 176

model attention aligns with the relevant anatomy. 177

2.1.4 Description of Change Generation 178

Clinically meaningful evaluation requires more 179

than visual fidelity or prompt alignment—it de- 180

mands a precise understanding of anatomical 181

changes. To this end, we generate structured de- 182

scriptions of change for each editing task, spec- 183

ifying the target anatomy and expected post-edit 184

outcome. These task-specific descriptions replace 185

generic prompts and guide Medical Large Lan- 186

guage Model (MLLM)-based evaluations, enhanc- 187

ing interpretability and reliability. We employ GPT- 188

4o (OpenAI, 2024) for its strong visual reasoning. 189

For each sample, GPT-4o takes the input image 190
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pair and editing instruction, and generates a brief191

summary of the intended anatomical change. These192

descriptions support both automated and qualitative193

evaluation. See Appendix H.3 for the full prompt.194

2.2 Automated Evaluation195

We develop an automated protocol to evaluate196

model performance across Contextual Preserva-197

tion, Editing Accuracy, and Visual Quality, combin-198

ing traditional image metrics with GPT-4o-based199

judgment. A more detailed explanation and demon-200

stration are provided in the Appendix.201

Contextual Preservation To evaluate whether202

the model preserves image regions unrelated to203

the intended edit, we compute SSIM(Wang et al.,204

2004) between the previous image Iprev and the205

edited image Iedit, excluding the region-of-interest206

(ROI) mask R. The contextual SSIM is defined as:207

SSIMcontext = SSIM
(
Iprev|R, Iedit|R

)
. This metric208

captures how well the model maintains anatomical209

consistency outside the edited region.210

Editing Accuracy and Visual Quality We use211

GPT-4o (OpenAI, 2024), a multimodal large lan-212

guage model with visual reasoning capabilities, to213

evaluate Editing Accuracy and Visual Quality. For214

each sample, GPT-4o is provided with the descrip-215

tion of change, previous image, edited image, and216

ground truth image, and follows a structured two-217

step protocol:218

Step 1: Visual Difference Description. GPT-4o219

first compares the previous and edited images to220

describe all visible changes, identifying what has221

been added, removed, or modified, along with the222

anatomical regions affected.223

Step 2: Scoring. Guided by the reference de-224

scription of change generated for the task, GPT-4o225

evaluates the following aspects: Editing Accuracy226

(0–10) measures how well the actual changes in the227

edited image match the expected transformation228

described in the reference, reflecting completeness229

and correctness with deductions for irrelevant or230

missing edits; Visual Quality (0–10) assesses the231

realism, clarity, and overall visual fidelity of the232

edited image. Each score is accompanied by a233

concise rationale to enhance transparency and eval-234

uation reliability.235

3 Experiment and Results236

3.1 Baseline Models237

We evaluate seven state-of-the-art models with238

text-guided image editing capabilities. TIE mod-239

els: 1) InstructPix2Pix (Brooks et al., 2023a): An240

early diffusion-based model fine-tuned on synthetic 241

instruction-image pairs for prompt-based editing 242

with strong spatial alignment. 2) Imagic (Kawar 243

et al., 2023a): Optimizes latent codes to enable 244

realistic edits of real images, preserving identity 245

and structure without requiring paired data. 3) In- 246

structDiffusion (Geng et al., 2023): A generalist 247

model for instruction-following across diverse vi- 248

sion tasks, supporting flexible zero-shot editing. 4) 249

Paint-by-Inpaint (Wasserman et al., 2025): Pro- 250

poses an object addition paradigm via region re- 251

moval and inpainting-based completion, enabling 252

mask-free object insertion. 5) ICEdit (Zhang et al., 253

2025a): Utilizes diffusion transformers (DiT) with 254

in-context learning and adapter tuning for few-shot 255

instructional editing. Universal MLLMs: 6) SEED- 256

X (Ge et al., 2025): A unified multimodal model 257

supporting both image understanding and genera- 258

tion for general-purpose editing. 7) Gemini 2.0 259

Flash (DeepMind, 2024): A commercial-grade 260

multimodal system integrating fast image gener- 261

ation, conversational interaction, and robust editing 262

capabilities. To ensure fair comparison, we perform 263

hyperparameter sweeps for each model around de- 264

fault configurations. Detailed settings and prompts 265

are provided in the Appendix. 266

3.2 Baseline Metrics 267

We compare our proposed metrics (Section 2.2) 268

with commonly used automated metrics for im- 269

age editing quality assessment, focusing on their 270

correlation with human evaluation results (Sec- 271

tion 3.5). For CLIP-based metrics: 1) ISim mea- 272

sures the similarity between the edited image and 273

the ground truth in the CLIP embedding space; 2) 274

TAlign evaluates the alignment between text in- 275

structions and edited images; 3) DAlign captures 276

the directional consistency of edits with respect 277

to text guidance. In the Pixel Similarity category, 278

traditional image quality metrics compare edited 279

images against ground truth: 4) PSNR (Korhonen 280

and You, 2012) measures pixel-wise reconstruction 281

accuracy; 5) LPIPS (Zhang et al., 2018) quantifies 282

perceptual similarity using deep visual features; 283

and 6) SSIM (Wang et al., 2004) assesses structural 284

similarity. Additionally, the reward-based metric 7) 285

ImageReward (Xu et al., 2023) provides a learned 286

perceptual score designed to correlate with human 287

preferences. Finally, 8) FID (Heusel et al., 2018) 288

measures the distance between the distributions 289

of real and generated images in a feature space. 290

Since FID is computed at the distribution level, it 291
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Model Teeth Eyes Spine Skin Nose Face GI Tract

EA CP VQ EA CP VQ EA CP VQ EA CP VQ EA CP VQ EA CP VQ EA CP VQ

imagic 0.49 0.64 0.57 0.50 0.49 0.62 0.18 0.66 0.52 0.19 0.53 0.37 0.40 0.40 0.48 0.27 0.55 0.42 0.13 0.63 0.58
instruct-pix2pix 0.32 0.85 0.42 0.59 0.90 0.75 0.21 0.79 0.36 0.51 0.85 0.65 0.66 0.86 0.72 0.70 0.85 0.79 0.19 0.87 0.67
instruct-diffusion 0.47 0.67 0.65 0.64 0.66 0.72 0.06 0.72 0.52 0.56 0.69 0.59 0.59 0.57 0.69 0.54 0.68 0.58 0.18 0.62 0.45
paint-by-inpaint 0.19 0.67 0.25 0.40 0.57 0.43 0.14 0.67 0.27 0.25 0.47 0.30 0.54 0.61 0.54 0.36 0.54 0.36 0.10 0.57 0.33
icedit 0.46 0.79 0.57 0.60 0.72 0.69 0.16 0.67 0.50 0.64 0.78 0.72 0.72 0.77 0.75 0.71 0.78 0.76 0.37 0.78 0.70
seedx 0.32 0.70 0.47 0.33 0.79 0.55 0.37 0.65 0.48 0.26 0.79 0.54 0.24 0.77 0.57 0.33 0.76 0.58 0.22 0.61 0.49
gemini_2_flash 0.75 0.84 0.81 0.55 0.78 0.63 0.38 0.81 0.76 0.77 0.84 0.77 0.77 0.76 0.72 0.72 0.86 0.70 0.66 0.80 0.76

Ears Hands Mouth Torso Feet Hair Overall

EA CP VQ EA CP VQ EA CP VQ EA CP VQ EA CP VQ EA CP VQ EA CP VQ FID

0.40 0.58 0.50 0.41 0.51 0.45 0.40 0.43 0.39 0.33 0.67 0.51 0.26 0.55 0.38 0.64 0.71 0.53 0.38 0.55 0.48 88.54
0.36 0.93 0.66 0.36 0.75 0.39 0.64 0.77 0.64 0.18 0.73 0.35 0.17 0.90 0.48 0.42 0.88 0.44 0.50 0.86 0.62 46.50
0.45 0.75 0.63 0.49 0.66 0.59 0.61 0.51 0.63 0.31 0.67 0.54 0.23 0.75 0.74 0.68 0.70 0.65 0.54 0.67 0.63 65.56
0.25 0.66 0.33 0.40 0.67 0.40 0.41 0.59 0.43 0.35 0.66 0.30 0.16 0.58 0.20 0.60 0.71 0.51 0.37 0.59 0.38 109.61
0.70 0.83 0.76 0.50 0.70 0.68 0.71 0.71 0.74 0.62 0.90 0.74 0.74 0.84 0.76 0.71 0.90 0.79 0.60 0.79 0.72 46.76
0.41 0.81 0.51 0.43 0.74 0.54 0.27 0.80 0.67 0.35 0.72 0.50 0.07 0.88 0.56 0.40 0.86 0.52 0.31 0.78 0.54 51.04
0.76 0.72 0.82 0.82 0.81 0.79 0.73 0.72 0.79 0.62 0.87 0.74 0.82 0.86 0.82 0.50 0.87 0.63 0.68 0.82 0.72 43.74

Table 2: Editing performance across organs. Bold = best, underline = second best. EA = GPT-4o Editing
AccuracyDesc, CP = Masked SSIM, VQ = GPT-4o Visual QualityDesc. EA and VQ scaled from 0–10 to 0–1.

is not included in our correlation comparison but is292

reported as a reference in Section 3.3.293

3.3 Main Results294

We summarize model performance on295

MedEBench in Tab. 2 and visualize key trends in296

Fig. 5. Representative editing examples are shown297

in Tab. 6. Gemini 2 Flash achieves the best overall298

performance, leading in editing accuracy (EA =299

0.68), visual quality (VQ = 0.72, tied with ICEdit),300

and ranking second in context preservation (CP =301

0.82). It also delivers the most realistic outputs,302

as reflected by its superior Fréchet Inception303

Distance (FID = 43.74) (Heusel et al., 2018).304

Among open-source models, ICEdit shows the305

most balanced performance (EA = 0.60, VQ =306

0.72, CP = 0.79). InstructPix2Pix, while excelling307

in context preservation (CP = 0.86), suffers from308

lower editing accuracy (EA = 0.50), likely due to309

its reluctance to apply medically significant edits.310

A substantial gap persists between Gemini and311

open-source methods with over 10% in editing312

accuracy, highlighting limitations of current313

methods for high-precision medical editing.314

At the organ level, editing difficulty varies sig-315

nificantly. Regions like the spine and bones (e.g.,316

CT scans) remain challenging, with the best EA317

only reaching 0.38. The largest performance gaps318

between Gemini and open-source models are seen319

in teeth (34%), hands (64%), and gastrointestinal320

tract (43%), reflecting the complexity of anatomi-321

cal structures and repetitive patterns. Conversely,322

superficial structures like hair and nose are easier323

to edit, where ICEdit achieves strong performance 324

(hair: EA = 0.71, VQ = 0.79). 325

Model-specific strengths are observed. Gemini 326

performs well on precision-demanding edits and 327

internal organ modifications, though its context 328

preservation slightly trails InstructPix2Pix. ICEdit, 329

powered by DiT-based in-context editing, handles 330

complex anatomy effectively but struggles with 331

concept removal (e.g., teeth edits). SEED-X shows 332

surprising strength in spine edits (EA = 0.37), out- 333

performing other open-source models, possibly due 334

to better alignment with CT image modalities. 335

Three key observations arise: (1) Internal or- 336

gans are significantly harder to edit than superficial 337

structures, with EA scores averaging 2.3× lower; 338

(2) Gemini’s advantage is most pronounced in 339

anatomically complex regions with repetitive pat- 340

terns (e.g., hands, gastrointestinal tract); and (3) 341

A trade-off exists between visual quality and con- 342

text preservation: models with higher VQ, such 343

as Gemini, tend to exhibit slightly lower CP, high- 344

lighting the need for localized, precise edits rather 345

than full-image redraws in medical applications. 346

3.4 Learning Paradigms Comparison 347

To explore different learning paradigms for med- 348

ical image editing, we select six representative 349

tasks and sample 30 images per task. We com- 350

pare two representative approaches: Fine-tuning. 351

We adopt InstructPix2Pix as a representative fine- 352

tuning method. Its U-Net backbone is fine-tuned 353

using triplets of input images, editing instructions, 354

and ground-truth edited outputs. Training is per- 355
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Figure 5: Per-organ performance comparison of seven image editing models across three metrics.

formed for 50 steps per sample. In-context learn-356

ing. We evaluate Gemini’s in-context capability357

via few-shot prompting. During inference, prompts358

are constructed using several demonstration triplets359

(previous image, editing instruction, and ground-360

truth), followed by a test image and instruction.361

As shown in Tab. 7, fine-tuning proves effective362

for InstructPix2Pix, particularly in reconstruction363

tasks. Editing accuracy improves consistently with364

more fine-tuning samples. However, tasks like Re-365

move Wisdom Teeth and Remove Moles show di-366

minishing returns, with accuracy gains plateauing367

and often compromising contextual preservation.368

In contrast, Gemini’s in-context learning shows369

limited effectiveness. Increasing the number of370

demonstrations does not improve accuracy and of-371

ten degrades performance. The model struggles372

to distinguish between test inputs and in-context373

examples, leading to confusion and reduced con-374

textual consistency. These findings highlight the375

difficulty of applying in-context learning to fine-376

grained, pixel-level medical editing.377

3.5 Human Evaluation378

To validate our automated metrics, we conduct379

a human evaluation study based on relative rank-380

ing. Two expert annotators independently assess381

a subset of edited images across three dimensions:382

Editing Accuracy (EA), Contextual Preservation383

(CP), and Visual Quality (VQ), consistent with the384

automated evaluation framework. The evaluation385

panel and annotator instructions appear in Fig. 10.386

For each organ o ∈ O, we randomly sample 20387

editing tasks, yielding a total of 260 edited sam-388

ples. Outputs from multiple models are collected389

using identical inputs and prompts. Annotators390

Metric EA CP VQ

C
L

IP
ISim 0.35 0.55 0.56
TAlignP 0.16 0.26 0.28
TAlignD 0.22 0.36 0.33
DAlignP 0.15 0.25 0.24
DAlignD 0.20 0.35 0.32

Pi
xe

l/R
ew

ar
d PSNR 0.33 0.65 0.54

LPIPS 0.38 0.67 0.60
SSIM 0.20 0.66 0.43
Masked SSIM 0.21 0.82 0.45
ImageRewardP 0.20 0.28 0.41
ImageRewardD 0.16 0.27 0.36

G
PT

-4
o

AccuracyP 0.64 0.21 0.42
AccuracyD 0.79 0.18 0.46
ContextP 0.41 0.56 0.69
ContextD 0.43 0.57 0.76
QualityP 0.44 0.44 0.81
QualityD 0.46 0.46 0.82

Table 3: Spearman Rank Correlation (ρ) Between Hu-
man Ratings (column) and Automated Metrics (row).

rank the model outputs for each sample along all 391

three dimensions. The inter-annotator Spearman 392

rank correlation coefficient reaches 0.91, indicating 393

excellent agreement and high annotation reliability. 394

To assess the consistency between human and 395

automated evaluations, we compute the Spearman 396

correlation coefficient ρ (Spearman, 1904) between 397

human-assigned ranks Rh(i) and automated ranks 398

Ra(i) for each sample i across m models: 399

ρ = 1−
6
∑

i(Rh(i)−Ra(i))
2

m(m2 − 1)
(1) 400

We evaluate both baseline metrics (Section 3.2) and 401

our proposed ones (Section 2.2). To further investi- 402

gate the impact of prompt structure, we introduce 403

alternative versions of each text-based metric by re- 404

placing the original editing prompts with structured 405

descriptions of change (Section 2.1.4). As shown in 406
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Tab. 3, our proposed metrics (Masked SSIM for CP,407

GPT-4o based EA, and VQ with detailed change408

descriptions) achieve the highest alignment with409

human assessments across all three evaluation di-410

mensions. Notably, incorporating expected change411

guidance into GPT-4o scoring improves correlation412

with expert judgments by 23%.413

4 Failure Analysis via Attention414

We take the InstructPix2Pix model as a case study415

to analyze failure cases. Notably, as discussed in416

Section 3.3, InstructPix2Pix demonstrates high con-417

text preservation but relatively low editing accuracy.418

As shown in (Liu et al., 2024a), cross-attention419

helps localize prompt tokens to image regions and420

carries semantic and categorical information. To421

investigate this further, we examine whether the422

editing process attends to the correct anatomical423

regions by analyzing the model’s cross-attention424

maps. For each editing prompt, we extract the425

cross-attention maps corresponding to the last to-426

ken of the key visual concept tc across all diffu-427

sion steps. These are averaged to obtain a single428

attention vector: ātc = 1
S

∑S
s=1 a

(s)
tc . This vec-429

tor is reshaped into a 2D map Ātc , normalized to430

the range [0, 1], and binarized using a scaled (We431

choose α = 1.3.) Otsu threshold (Otsu, 1979):432

A =

(
Ātc −min

max−min
> α · τOtsu

)
(2)433

We then compare the thresholded attention map A434

with the annotated Region-of-Interest (ROI) mask435

M using the Intersection-over-Union: IoU = |A ∩436

M |/|A∪M |. A higher IoU score indicates stronger437

spatial alignment between the model’s attention438

and the intended anatomical target, reflecting better439

grounding of visual concepts during editing. The440

average IoU scores for each organ are listed in441

Tab. 4.

Organ IoU Organ IoU Organ IoU

Feet 0.189 Teeth 0.268 GI Tract 0.4084
Skin 0.191 Face 0.289 Hands 0.409
Nose 0.193 Bones 0.389 Hair 0.497
Eyes 0.195 Ears 0.407 Torso 0.592
Mouth 0.224 - - - -

Table 4: Average IoU between attention maps and ROI
masks across anatomical regions in InstructPix2Pix.

442
Analysis We analyze failure cases characterized443

by low Editing Accuracy (EA) and high Con-444

text Preservation (CP), indicating that edits were445

insufficient or absent, though the overall image446

remained intact. In this regime, IoU between at- 447

tention maps and ground-truth regions serves as a 448

diagnostic indicator to distinguish failure types:
Previous Edited Attention Attention-ROI

(1) Prompt: Reconstruct ear. IoU: 0.04

(2) Prompt: Implant teeth. IoU: 0.003

(3) Prompt: Reconstruct the missing eye. IoU: 0.14

(4) Prompt: Reconstruct the big toenail. IoU: 0.17

(5) Prompt: Remove the intestinal polyp. IoU: 0.53

(6) Prompt: Remove birthmark. IoU: 0.70

Figure 6: InstructPix2Pix cross-attention on key visual
concept versus ground-truth ROI. In the last column:
red = ROI mask, green = attention, yellow = overlap.

449

• High IoU: The model correctly localizes the tar- 450

get region but fails to apply the intended edit. 451

This reflects partial spatial understanding with 452

conservative or limited editing capability, often 453

seen in concept removal tasks (e.g., samples 5–6 454

in Fig. 6). 455

• Low IoU: The model fails both to localize and 456

to edit, attending to irrelevant regions. Such mis- 457

alignment typically occurs in addition or recon- 458

struction tasks, especially in anatomically com- 459

plex areas (e.g., samples 1–4 in Fig. 6). 460

These patterns reveal fundamental limitations in 461

current models’ spatial reasoning and medical con- 462

cept grounding, underscoring the challenges of re- 463

liable medical image editing. 464
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5 Key Insights and Takeaways465

Our comprehensive evaluation across thirteen466

anatomical regions and multiple editing models467

yields four key findings:468

• Large multimodal models outperform open-469

source alternatives on complex medical edits.470

Gemini 2 Flash consistently leads in EA, VQ, and471

FID, with the largest gaps in internal organ tasks472

(e.g., gastrointestinal tract, spine, teeth) where473

fine-grained structures and spatial reasoning are474

critical. Open-source models like ICEdit remain475

competitive but lag in high-precision scenarios.476

• Region-specific challenges persist. Models477

struggle with repetitive or occluded anatomy478

(e.g., hands, spine, teeth), while tasks involving479

superficial structures (e.g., skin blemishes, nose480

shape) are more reliably handled.481

• Fine-tuning aids domain adaptation; in-482

context learning shows limited generaliza-483

tion. Fine-tuning models like InstructPix2Pix484

improves medical editing performance despite485

data scarcity. However, large multimodal mod-486

els struggle to transfer medical concepts through487

prompting-level in-context learning, highlighting488

generalization limits in clinical tasks.489

• Attention maps provide diagnostic insights.490

IoU between attention heatmaps and ground-491

truth regions reveals failure patterns: high IoU492

with low EA indicates correct localization but493

failed execution (common in concept removal),494

while low IoU reflects poor spatial focus in addi-495

tion or reconstruction tasks.496

6 Related Works497

Text-guided Image Editing has advanced rapidly498

with diffusion-based models (Ho et al., 2020; Dhari-499

wal and Nichol, 2021; Rombach et al., 2022; Sa-500

haria et al., 2022; Nichol et al., 2022; Ho et al.,501

2021; Zhang et al., 2023a; Meng et al., 2022;502

Ramesh et al., 2022; Chen et al., 2025), en-503

abling natural language-conditioned image synthe-504

sis (Brooks et al., 2023b; Kawar et al., 2023b; Hertz505

et al., 2022; Mokady et al., 2022; Choi et al., 2023;506

Ravi et al., 2023; Kim et al., 2022; Nguyen et al.,507

2024; Zhang et al., 2025b; Wang et al., 2023a).508

Recent works (Kawar et al., 2023a; Brooks et al.,509

2023a; Geng et al., 2023; Wasserman et al., 2025;510

Zhang et al., 2025a; Ge et al., 2025; DeepMind,511

2024) further improve control, generalization, and512

real-world applicability. Medical image editing is513

an emerging application, supporting tasks such as514

disease progression simulation (Taylor et al., 2019;515

Puglisi et al., 2024; Cao et al., 2024; Alaya et al., 516

2024), segmentation (Feng, 2024; Ma, 2025; Dong 517

et al., 2024; Wu et al., 2023), and synthetic data 518

generation (Cho et al., 2024; Zhang et al., 2023b, 519

2024c; Kidder et al., 2024; Li et al., 2024b). 520

Benchmarking Text-Guided Editing is key 521

to evaluating model performance, but standard 522

metrics like FID (Heusel et al., 2018), CLIP 523

Score (Hessel et al., 2022), PSNR (Korhonen 524

and You, 2012), SSIM (Wang et al., 2004), and 525

LPIPS (Zhang et al., 2018) fail to capture fine- 526

grained edit quality and semantic intent. Recent 527

benchmarks (Ma et al., 2024; Basu et al., 2023; 528

Wang et al., 2023b; Ju et al., 2023) improve on 529

this with human-aligned dimensions and diverse 530

edit types. Multimodal Large Language Models 531

(MLLMs), such as GPT-4o (OpenAI, 2024) and 532

Gemini 2.5 Pro (Google DeepMind, 2025), have 533

emerged as strong evaluators for visual and seman- 534

tic alignment, enabling interpretable and human- 535

aligned assessment frameworks (Li et al., 2024a; 536

Fan et al., 2024; Jin et al., 2024; Zhang et al., 537

2024b; Liu et al., 2024b; Chen et al., 2023). How- 538

ever, existing work largely targets general-domain 539

imagery, overlooking domain-specific needs like 540

medical editing. To bridge this gap, we propose 541

MedEBench, the first benchmark for text-guided 542

medical image editing with a clinically grounded 543

evaluation framework. 544

7 Conclusion 545

We present MedEBench, the first comprehensive 546

benchmark for text-guided medical image edit- 547

ing, featuring 1,182 real-world examples across 548

13 anatomical regions and 70 clinically meaning- 549

ful tasks. Each sample includes region-of-interest 550

masks and expert-written change descriptions, en- 551

abling evaluation along Editing Accuracy, Context 552

Preservation, and Visual Quality. Our evaluation of 553

seven state-of-the-art models reveals notable limi- 554

tations, especially for internal organs and anatom- 555

ically complex regions. While Gemini 2 Flash 556

leads overall, ICEdit emerges as the strongest open- 557

source model. Cross-attention analyses expose 558

persistent issues in spatial reasoning and anatom- 559

ical grounding, with models often mislocalizing 560

edits despite accurate prompts. These findings 561

highlight the gap between general-purpose editors 562

and the demands of medical image manipulation. 563

MedEBench provides a foundation for developing 564

and rigorously evaluating models tailored to safety- 565

critical medical applications. 566
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Limitations567

While MedEBench provides a comprehensive568

benchmark for text-guided medical image editing,569

several limitations remain. First, the benchmark fo-570

cuses exclusively on editing tasks that correspond571

to real-world surgical or clinical operations. As572

a result, it does not cover more speculative or ex-573

ploratory editing tasks that may be of interest for574

medical education, simulation, or synthetic data575

augmentation. This focus ensures clinical rele-576

vance but limits the diversity of task types included.577

Second, current text-to-mask models, such as578

Grounded-SAM, face significant challenges when579

applied to medical images. Specifically, these580

models struggle to accurately generate region-of-581

interest (ROI) masks for anatomical structures with-582

out clear boundaries or with ambiguous visual fea-583

tures. In such cases, automatic mask generation584

often fails, necessitating human intervention to en-585

sure anatomical precision.586

Ethics Statement587

MedEBench is constructed using publicly available588

and de-identified medical images. To ensure trans-589

parency and reproducibility, the original URLs of590

all raw images are provided as part of the dataset re-591

lease. No personally identifiable information (PII)592

or sensitive patient data is included. The bench-593

mark strictly serves research purposes and does not594

support diagnostic, therapeutic, or clinical decision-595

making applications. Although editing tasks are596

designed to correspond to real-world surgical pro-597

cedures, the benchmark does not promote auto-598

mated clinical image generation without human599

expert oversight, and any misuse for unauthorized600

medical applications is strongly discouraged. In601

cases where text-to-mask models like Grounded-602

SAM fail to generate reliable masks, human an-603

notators with medical expertise are employed to604

ensure anatomical accuracy under proper consent605

and contractual agreements. Recognizing the po-606

tential for dataset-induced biases, we strive for di-607

versity across anatomical regions and clinical tasks,608

while acknowledging that further work is needed609

to address bias mitigation in synthetic image gen-610

eration. The benchmark, models, and code are611

released solely for academic and non-commercial612

use under an appropriate open-source license, with613

a strict reminder that MedEBench is not a substi-614

tute for clinical judgment or professional medical615

practice.616

Potential Risks. Despite the intended academic 617

use of MedEBench, there are inherent risks asso- 618

ciated with the misuse of medical image editing 619

models. One primary concern is the generation of 620

misleading or fabricated clinical images that could 621

potentially be used in malicious contexts, such as 622

misinformation, fraudulent clinical documentation, 623

or unauthorized patient record manipulation. Ad- 624

ditionally, the use of generative models trained on 625

limited or biased datasets may inadvertently rein- 626

force existing healthcare disparities if applied to 627

populations not well represented in the benchmark. 628

Another risk lies in the potential over-reliance on 629

automated editing tools without sufficient medical 630

expertise, which could lead to clinically inaccurate 631

or unsafe modifications. To mitigate these risks, 632

we emphasize responsible usage under expert su- 633

pervision, explicit academic licensing terms, and 634

continuous community oversight. 635
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A Introduction 953

Figure 7 illustrates the limitations of controlling text and image guidance scales in diffusion-based 954

image editing. Specifically, for the task of “adding a missing tooth,” varying these scales fails to yield 955

a satisfactory result when using the InstructPix2Pix model. While increasing the text guidance scale 956

emphasizes the semantic prompt, and higher image guidance preserves visual fidelity to the original image, 957

neither direction successfully produces the desired anatomical modification. This outcome suggests that 958

simply tuning global guidance weights is insufficient for achieving fine-grained, localized edits in medical 959

or detail-critical domains. As shown in Figure 7, the generated outputs either omit the new tooth entirely 960

or introduce unnatural artifacts, underscoring the need for more controllable and spatially-aware editing 961

approaches. 962

Text Guidance Scale

Image Guidance Scale

Figure 7: Visualization of the effect of varying text and image guidance scales for the task of adding a missing tooth.
Despite adjustments, the desired edit could not be achieved by InstructPix2Pix.

B Details of MedEBench Dataset 963

Most images were collected using Google Search with Creative Commons license filters. Some additional 964

images were taken from figures in publicly available open-access papers published under the CC BY 4.0 965

license, including journals such as MDPI, Frontiers, PLOS, eLife, BMC Bioinformatics, BMC Medicine 966

and Hindawi. To promote transparency, we provide source URLs for all images whenever possible. 967

Table 5 summarizes the distribution of organ-related tasks included in MedEBench, focusing on tasks 968

with more than five samples. 969

Each sample in the MedEBench dataset is defined by a structured metadata entry that includes the 970

editing prompt, a description of the expected change, a pair of previous and ground truth images, and an 971

annotated ROI mask on the previous image. The URL of the source image is also provided. Examples are 972

shown in Fig. 8 and Fig. 9. 973

C Baseline Models Implementation Detail 974

We summarize the inference-time configurations for each baseline model as follows: 975
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Organ Task Sample Count

Ears
Reconstruct ear. 31
Reconstruct auricle. 11

Eyes

Reconstruct missing or injured eye. 35
Reconstruct eyelid or lower eyelid skin. 29
Create double eyelids. 29
Remove eyelid styes (chalazion). 14
Correct lower eyelid ectropion. 10
Remove conjunctival nevus. 8
Remove eye bags. 8
Remove eyelid xanthalasma. 6

Face

Reduce facial wrinkles. 25
Remove or revise facial scars. 21
Reconstruct cheek or forehead skin. 17
Remove facial redness. 17
Remove excess fat from neck. 15
Lift neck and face by tightening skin. 10
Remove facial acne, bumps, or cysts. 7

Feet Repair or reconstruct toenail. 30

Gastrointestinal Tract Remove intestinal polyps or adenomas. 15

Hair
Make hair thicker. 150
Make beard thicker. 13
Make eyebrow thicker. 8

Hands
Complete missing finger or fingernail. 18
Improve hand appearance by injectable filler. 7

Mouth
Reconstruct damaged lip or lip skin. 20
Perform lip augmentation. 11

Nose
Reconstruct or repair nose skin. 107
Remove or fade scar on nose. 23
Remove or beautify rhinophyma. 16

Skin

Remove moles, nevi, or black marks. 136
Reconstruct damaged skin or scalp. 48
Remove varicose veins. 36
Remove brown spots or pigmentation. 31
Remove or fade scars. 20
Remove black birthmarks to even skin tone. 14

Spine and Bones
Correct spine alignment. 10
Fix fractures with screws or splints. 6

Teeth

Remove wisdom teeth. 31
Remove stains, tartar, or plaque from teeth. 22
Implant or add missing teeth. 13
Repair or restore damaged teeth. 13

Torso Perform body liposuction and skin tightening. 36

Table 5: Tasks with More Than 5 Samples per Organ
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1 {
2 "Id": 1,
3 "Organ": "Teeth",
4 "Task": "Implant or add missing

teeth.",
5 "Prompt": "Add a tooth in the

missing area.",
6 "Rephrased_prompt": "Place a tooth

where one is absent",
7 "Detailed_description": "The image

modality is intraoral
photography; the addition of a
tooth in the lower dental arch
was performed to fill the gap ,
resulting in a complete and
continuous row of teeth with
natural alignment and spacing.",

8 "Previous_image": "editing/previous
/1.png",

9 "GroundTruth_image": "editing/
changed /1.png",

10 "ROI_mask": "editing/previous_mask
/1.png",

11 "url": "https :// dentistpeshawar.pk/
wp-content/uploads /2024/07/
extraction -and -implant -same -day.
jpg"

12 }

Figure 8: Example metadata entry in MedEBench.
Figure 9: Example groups of previous groundtruth im-
ages and ROI mask.

• InstructPix2Pix: DIFFUSION_STEPS = 50, image_guidance_scale ∈ {1.55, 1.6, 1.65}, 976

guidance_scale ∈ {7.5, 7.6}. 977

• Imagic: num_inference_steps = 50, alpha ∈ {1.3, 1.35}, guidance_scale ∈ {7.5, 7.6}. 978

• InstructDiffusion: cfg_text = 5.0, cfg_image = 1.25. 979

• Paint-by-Inpaint: DIFFUSION_STEPS = 50, image_guidance_scale = 1.7, guidance_scale = 7.0. 980

• ICEdit: num_inference_steps = 28, guidance_scale = 50. 981

• SEED-X: num_inference_steps = 50, instruction format: "Edit this image: " + editing prompt. 982

• Gemini 2.0 Flash: prompt format: "You are good at image editing. Here is the image 983

editing instruction: " + editing instruction. 984

D Human Evaluation Criteria 985

To validate the effectiveness of our automated metrics, we conducted a human evaluation study using 986

a relative ranking protocol. Two expert annotators independently assessed a subset of edited images 987

across three dimensions—Editing Accuracy (EA), Contextual Preservation (CP), and Visual Quality 988

(VQ)—which align with the dimensions used in our automated evaluation framework. The evaluation 989

interface and annotator instructions are illustrated in Fig. 10. For each organ o ∈ O, we randomly sampled 990

20 editing tasks, resulting in a total of 260 edited image samples. Outputs from multiple models were 991

collected using identical inputs and prompts to ensure fair comparison. Two annotators with bachelor’s 992

degrees were hired from a crowdsourcing platform, compensated at a rate of 4.2 HKD per sample. They 993

were instructed to rank the model outputs for each sample along all three dimensions. The inter-annotator 994

agreement, measured by the Spearman rank correlation coefficient, reached 0.91, indicating excellent 995

consistency and high annotation reliability. 996

E Automated Evaluation Pipeline 997

Figure 11 provides an overview of our automatic evaluation pipeline, which consists of two complementary 998

components: GPT-4o-based judgment and masked SSIM measurement. 999

On the left side of the figure, we illustrate a two-step process for MLLM-based evaluation. In Step 1, 1000
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Figure 10: Human Evaluation Panel. Annotators were instructed to rank edited images based on three dimensions:
Editing Accuracy (EA) — whether the intended anatomical modification has been correctly and plausibly applied
as described in the prompt; Contextual Preservation (CP) — whether unedited regions maintain their original
anatomical structure without unintended alterations; and Visual Quality (VQ) — the overall perceptual quality of
the image, including the seamlessness of edits, absence of artifacts, clarity, and realistic color fidelity.

GPT-4o compare the original image (Iprev) and the edited image (Iedit) from a TIE model to generate a1001

description of the actual visual difference. Simultaneously, we also use GPT-4o to produce a reference1002

description of the expected change, given the edit prompt and the pair (Iprev, Igt), where Igt is the ideal1003

target image. In Step 2, GPT-4o compares the actual and expected change descriptions and produces two1004

scores: Editing Accuracy, which reflects how well the edit aligns with the prompt, and Visual Quality,1005

which assesses the perceptual realism and consistency of the output.1006

On the right side of the figure, we assess Contextual Preservation using masked structural similarity.1007

An ROI mask is generated using a prompt-guided method such as Grounded-SAM or through manual1008

selection. We then compute SSIM between Iprev and Iedit, restricted to the masked region’s complement.1009

This quantifies how much of the image outside the intended region was unnecessarily altered.1010

Figure 11: Automatic Evaluation Pipeline in detail.

E.1 An Example to Demonstrate the Evaluation Process1011

Figure 12 presents a representative evaluation result for a sample on Contextual Preservation. The1012

corresponding GPT-4o-based evaluation of editing accuracy and visual quality is shown below.1013

Edit Prompt: “Remove the wisdom teeth.”1014

Description of Expected Change: “Panoramic dental radiograph: Wisdom teeth in the upper and1015

lower jaws were removed, resulting in a post-surgical appearance with space in the alveolar bone where1016

the teeth previously resided.”1017
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Figure 12: Evaluation example for contextual preservation. The contextual preservation score (masked SSIM) is
0.83.

GPT-4o Evaluation Output for the Sample in Fig. 12

Visual Difference Description

• Lower Wisdom Tooth (Mandibular Third Molar):

– The impacted lower left wisdom tooth remains clearly visible in the edited image.
– There is no evidence of surgical removal or space in the alveolar bone.
– No post-surgical bone contour or socket is visible — it is identical to the input.

• Upper Wisdom Tooth (Maxillary Third Molar):

– The upper left third molar is also present and unchanged in the edited image.
– Again, no extraction space or bone remodeling appears.

• No Visible Surgical Artifacts:

– There are no additions or edits indicating removal, such as bone healing patterns, shadow
variations, or softening around the third molar regions.

• Image Tone and Contrast:

– The edited image has slightly more contrast and minor brightness variation.
– These changes appear incidental and are not related to anatomical edits.

Step 2: Evaluation

• Editing Accuracy: 0/10

– Neither the upper nor lower wisdom teeth were removed.
– The anatomical regions remain untouched.
– No attempt at post-extraction rendering (e.g., healed socket) is visible.
– The edit does not align with the prompt at all.

• Visual Quality: 8/10

– The edited image retains good clarity and sharpness.
– The contrast is slightly increased but does not degrade quality.
– No artifacts, glitches, or unrealistic elements are introduced — the image remains

diagnostically useful.
1018

E.2 Additional Editing Results 1019

Table 6 provides visual comparisons of editing results from 7 baseline models. Each example shows the 1020

input, ground truth, and outputs from various methods, with corresponding scores for EA, CP, and VQ. 1021
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Previous Truth Gemini2 SeedX Imagic IP2P InstructDiff. PaintByInpaint ICEdit

Remove the diminutive polyp. 0.8/0.8/0.9 0.1/1.0/1.0 0.9/0.9/0.9 0.6/0.7/1.0 0.0/0.3/0.9 0.2/0.2/0.8 0.9/0.9/1.0

Remove the dental black stains. 0.9/0.8/0.8 0.7/0.5/0.9 0.9/0.8/0.7 0.5/0.5/0.9 0.5/0.7/0.7 0.2/0.1/0.6 0.0/0.5/0.8

Remove intestinal polyps. 0.8/0.8/0.8 0.2/0.3/0.2 0.2/0.7/0.5 0.3/0.7/0.8 0.1/0.5/0.7 0.0/0.3/0.3 0.2/0.6/0.7

Fix damaged front teeth. 0.9/0.8/0.9 0.0/0.5/0.8 0.7/0.6/0.5 0.0/0.0/0.7 0.2/0.5/0.6 0.9/0.9/0.7 0.0/0.4/0.9

Reconstruct the ear. 0.9/0.8/0.6 0.2/0.4/0.7 0.7/0.6/0.4 0.2/0.3/0.9 0.0/0.3/0.3 0.0/0.2/0.4 0.8/0.7/0.9

Reconstruct lower eyelid. 0.9/0.9/0.6 0.4/0.5/0.9 0.7/0.9/0.6 0.3/0.8/0.9 0.2/0.9/0.9 0.4/0.8/0.6 0.2/0.9/0.7

Remove intestinal adenoma. 0.8/0.6/0.9 0.7/0.7/0.7 0.2/0.5/0.3 0.0/0.6/0.8 0.0/0.3/0.2 0.0/0.4/0.5 0.0/1.0/0.9

Remove wisdom teeth. 0.6/0.7/0.8 0.5/0.4/0.8 0.7/0.6/0.4 0.2/0.1/0.8 0.7/0.6/0.5 0.0/0.2/0.5 0.2/0.6/0.8

Remove dental black stains. 0.9/0.8/0.9 0.0/0.3/0.8 0.2/0.5/0.8 0.8/0.7/0.9 0.0/0.0/0.7 0.0/0.2/0.8 0.1/0.3/0.9

Table 6: Visual comparison of editing results. Each row includes the previous and ground truth images, followed by
outputs from seven models. Scores below each output denote EA (Editing Accuracy), VQ (visual quality), and CP
(masked SSIM) (all in [0, 1] range).
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F Learning Paradigm Comparison 1022

This section provides a detailed analysis of the two learning paradigms—fine-tuning and in-context 1023

learning—as introduced in Section 3.4. Table 7 reports results across six representative medical image 1024

editing tasks, with Editing Accuracy (EA), Contextual Preservation (CP), and Visual Quality (VQ) reported 1025

per setting. Fine-tuning varies training samples per task (0, 4, 8, 16), while in-context learning varies the 1026

number of demonstrations (0, 1, 2, 3). 1027

Fine-tuning (InstructPix2Pix). Fine-tuning shows consistent gains on structured reconstruction tasks 1028

such as Reconstruct Ear and Reconstruct Nose, where EA steadily improves with more training samples. 1029

In contrast, performance on removal tasks (Remove Wisdom Teeth, Remove Moles) often plateaus or 1030

declines, suggesting that excessive supervision can lead to overfitting or degraded semantic precision in 1031

fine-grained edits. 1032

In-context Learning (Gemini 2). Gemini 2 performs well in the zero-shot setting on several tasks, 1033

but shows limited benefit from additional demonstrations. In some cases, performance declines with 1034

more shots—for example, EA for Reconstruct Ear drops from 0.75 to 0.72 from 0-shot to 3-shot. This 1035

suggests difficulty in distinguishing test inputs from exemplars, limiting the model’s ability to generalize 1036

in pixel-level editing tasks. 1037

Overall, fine-tuning is more effective when modest amounts of task-specific supervision are available, 1038

particularly for structured and spatially consistent reconstruction tasks. In contrast, in-context learning 1039

with large-scale models like Gemini offers reasonable generalization in zero-shot settings but does not 1040

scale effectively with additional examples. These findings highlight the need for improved prompting 1041

strategies or architectural enhancements to enable reliable few-shot medical image editing via in-context 1042

learning. 1043

(a) InstructPix2Pix (Finetuning Samples)

Task 0s 4s 8s 16s

Reconstruct ear 0.34 / 0.90 / 0.67 0.35 / 0.90 / 0.69 0.38 / 0.87 / 0.67 0.43 / 0.86 / 0.68
Remove wisdom teeth 0.31 / 0.87 / 0.42 0.31 / 0.85 / 0.40 0.29 / 0.81 / 0.39 0.30 / 0.83 / 0.40
Remove moles 0.46 / 0.83 / 0.72 0.45 / 0.85 / 0.73 0.41 / 0.84 / 0.73 0.37 / 0.82 / 0.68
Reconstruct nose 0.68 / 0.88 / 0.77 0.70 / 0.86 / 0.74 0.75 / 0.86 / 0.75 0.77 / 0.87 / 0.75
Remove varicose veins 0.62 / 0.75 / 0.32 0.64 / 0.73 / 0.31 0.67 / 0.74 / 0.35 0.67 / 0.77 / 0.34
Reconstruct toenails 0.17 / 0.90 / 0.48 0.19 / 0.90 / 0.48 0.20 / 0.90 / 0.48 0.25 / 0.90 / 0.48

(b) Gemini 2 (In-Context Samples)

Task 0s 1s 2s 3s

Reconstruct ear 0.75 / 0.70 / 0.84 0.73 / 0.65 / 0.83 0.71 / 0.63 / 0.82 0.72 / 0.57 / 0.81
Remove wisdom teeth 0.70 / 0.81 / 0.79 0.72 / 0.78 / 0.80 0.70 / 0.77 / 0.79 0.70 / 0.73 / 0.77
Remove moles 0.87 / 0.84 / 0.77 0.84 / 0.77 / 0.78 0.83 / 0.78 / 0.80 0.84 / 0.72 / 0.77
Reconstruct nose 0.65 / 0.85 / 0.76 0.67 / 0.79 / 0.75 0.65 / 0.78 / 0.76 0.65 / 0.80 / 0.75
Remove varicose veins 0.73 / 0.77 / 0.63 0.73 / 0.76 / 0.65 0.74 / 0.75 / 0.66 0.73 / 0.75 / 0.67
Reconstruct toenails 0.81 / 0.83 / 0.80 0.82 / 0.80 / 0.82 0.84 / 0.82 / 0.81 0.82 / 0.80 / 0.80

Table 7: Evaluation results of (a) Finetuned InstructPix2Pix with 0, 4, 8, and 16 finetuning samples per task, and
(b) Gemini 2 in-context learning with 0, 1, 2, and 3 in-context samples. Each cell reports Editing Accuracy (EA),
Contextual Preservation (CP), and Visual Quality (VQ) in the format: EA / CP / VQ.

G Attention Grounding 1044

Figure 13 illustrates the detailed average Intersection over Union (IOU) scores across tasks and anatomical 1045

regions. 1046
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Figure 13: Average IOU scores for different tasks across anatomical regions. Concepts are annotated in angle
brackets.
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H Prompt Templates 1047

H.1 GPT-4o Prompt for Generating Change Descriptions 1048

Input: A concatenated image (previous on the left, changed on the right) and an editing instruction. 1049

GPT-4o Change Description Prompt

You are a medical expert. Your task is to use your extensive medical knowledge to describe the
visual change from the left image to the right image, guided by the clues provided in the editing
instruction. Based on these inputs, generate a detailed, precise, and clinically relevant description
of the visual change that was applied.
Your response must clearly state:

• The image modality

• The action performed and its target entity

• The expected appearance or anatomical result after the change

Format your output as a single formal instruction sentence describing how the right image was
derived from the left.

Instruction: "<editing_instruction>"

Concatenated image: <base64-encoded image with previous on the left and changed
on the right>

1050

H.2 GPT-4o Judging Prompt (with editing prompt) 1051

Input: Previous image, ground truth image, edited image, and editing prompt. 1052

GPT-4o Judging Prompt

I have an image editing task. Here’s the editing prompt:
"<editing_prompt>"

Here is the input image:
<base64-encoded previous image>

Here is the ground truth image:
<base64-encoded ground truth image>

Here is the edited image:
<base64-encoded edited image>

You are good at evaluating image editing. Evaluate the edit using the following steps:

Step 1: Visual Difference Description
Compare the input and edited images. Describe all visible differences between them, including:

• Additions, removals, or modifications of visual elements.

• Emphasize the extent of the changes and specify which anatomical regions were affected.

List the differences clearly, item by item.
1053
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Step 2: Evaluation (Three Scores)
Provide the following scores with brief justifications:

• 1. Editing Accuracy (0–10):
Score strictly based on alignment with the editing prompt. You may use the ground truth
image as a reference, though it may not be pixel-aligned. Deduct points for inaccuracies or
missing elements.

• 2. Visual Quality (0–10):
Compare the overall visual quality of the edited image to the original. Consider clarity,
sharpness, blur, artifacts, realism, and consistency.

Please respond in the following format:

• Visual Difference Description:

– 1. ...
– 2. ...
– ...

• Editing Accuracy: [Score]/10, [Reasons]

• Visual Quality: [Score]/10, [Reasons]
1054

H.3 GPT-4o Judging Prompt (with change description)1055

Input: Previous image, ground truth image, edited image, and change description.1056

GPT-4o Judging Prompt

I have an image editing task. Here’s the description of the expected change:
"<change_description>"

Here is the input image:
<base64-encoded previous image>

Here is the ground truth image:
<base64-encoded ground truth image>

Here is the edited image:
<base64-encoded edited image>

You are good at evaluating image editing. Evaluate the edit using the following steps:

Step 1: Visual Difference Description
Compare the input and edited images. Describe all visible differences between them, including:

• Additions, removals, or modifications of visual elements.

• Emphasize the extent of the changes and specify which anatomical regions were affected.

List the differences clearly, item by item.

Step 2: Evaluation (Three Scores)
Provide the following scores with brief justifications:

1057
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• 1. Editing Accuracy (0–10):
Score strictly based on alignment with the editing prompt. You may use the ground truth
image as a reference, though it may not be pixel-aligned. Deduct points for inaccuracies or
missing elements.

• 2. Visual Quality (0–10):
Compare the overall visual quality of the edited image to the original. Consider clarity,
sharpness, blur, artifacts, realism, and consistency.

Please respond in the following format:

• Visual Difference Description:

– 1. ...
– 2. ...
– ...

• Editing Accuracy: [Score]/10, [Reasons]

• Visual Quality: [Score]/10, [Reasons]
1058
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