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Abstract

Class-incremental classification problems typically requires continual learning1

of the underlying algorithm to adapt to new classes. While current-generation2

large language models (LLMs) can have excellent few shot performance on sev-3

eral tasks, many tasks still require retraining to account for distribution shifts at4

either the inputs or task level. Continual learning techniques could be applied to5

LLMs, yet this requires retraining multiple task- and distribution-specific LLMs6

versions. Additionally, for specific applications like medical applications, maintain-7

ing compliance with regularity standards becomes challenging as models evolves,8

requiring transparency and accountability. Besides the costs and complexity of re-9

training multiple models, continually learned models are also prone to performance10

degradation due to data drifts and catastrophic forgetting. We overcome these11

challenges by introducing a semantic search-based method that simultaneously12

uses multiple LLM vectorizers/encoders and prompts without requiring any fine13

tuning. We depict that our proposed method has performance comparable to that14

of LLM fine tuning for clinical (MR and CT protocoling) datasets. In this ap-15

proach, instead of being restricted to fine-tuning a single LLM, multiple foundation16

models(LLMs)/vectorizers will be leveraged simultaneously, maximizing their17

capability without incurring extra expenses for retraining or fine tuning, meaning18

that their individual potentials will be aggregated to determine the final outcomes.19

Our method could be utilized for continual learning environments, eliminating the20

need for retraining and adapts dynamically to incoming data, ensuring continuous21

updating. This approach uses the diverse perspectives and strengths provided by22

different LLMs and prompts, enhancing the robustness and comprehensiveness23

of the responses. By aggregation of different foundation models without the need24

for fine-tuning, this method demonstrates encouraging accuracy and reliability for25

medical and non-medical datasets, as multiple LLMs/prompts can highlight various26

aspects of the same issue, mitigating the biases and limitations that may arise from27

using a single prompt or model.28

1 Introduction29

Text classification is the process of assigning categories to text based on its content, a fundamental30

task in natural language processing (NLP). Recent Large Language Models (LLMs) have significantly31

enhanced text classification capabilitiesSun et al. [2023]. LLMs have shown the ability for in-context32

learning (ICL)Thoppilan et al. [2022], Ouyang et al. [2022] but despite their success, language models33

using ICL still lag behind fine-tuned models in text classification. This is because they struggle34

with complex language tasks such as understanding clauses and ironyZhang et al. [2022], Kojima35

et al. [2022], and they are limited to use only a small portion of the training data, reducing their36

effectiveness.37
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Continual learning, also known as lifelong learning, allows a model to continuously acquire and38

adapt to added information without erasing previous knowledgeYang et al. [2024]. This capability is39

essential for scenarios where the model must remain up to date with new data and evolving patterns40

Huang et al. [2021], Wang et al. [2023], Jang et al. [2021]. For continual learning, catastrophic41

forgetting is an important obstacle and is especially evident in text classification, where semantic42

nuances and evolving patterns worsen the issue. Addressing this challenge is crucial for deploying43

robust and adaptive NLP systems in real-world applications. Another key challenge of continual44

learning is balancing plasticity (the ability to learn added information) and stability (the ability to45

retain previously learned information). Moreover, adapting model architecture to handle new classes46

at inference time is also a significant challenge. On other hand, some specific applications like47

medical applications are subject to regularity requirements, and these regulations mandate strict data48

privacy and security measures. Continual learning models must therefore be designed to comply with49

these regulations, which means that models need to be retrained with regularity constrained in mind,50

adding an extra layer of complexity.51

In this paper, we propose a method for Class-incremental classification in an online environment52

using LLMs, without the need for re-training. In this method, instead of fine-tuning LLMs, we53

utilize different LLMs in their pre-trained form, partition the data into various fields, create different54

prompts from them, and apply these prompts or different fields with different LLMs for their55

encoding version. As a result, we will obtain a bag of information-rich encoded data, where56

each LLM contributes its own unique vision and perspective to the encoded version. It is like57

leveraging multiple experts, each with their own viewpoints, working together to complete the58

classification task. Two different methods are then introduced to draw a conclusion from this diverse59

and information-rich bag of data. The first method, called Aggregated Decision Making in Multi-Index60

System (MIS)3.1.1, we explore a methodology where multiple data sources (processed by different61

foundation models), contribute to a decision-making process. Each data source provides its own set of62

recommendation and to determine the optimal choice, these individual outputs are aggregated using63

statistical methods. This approach ensures a comprehensive evaluation by synthesizing diverse inputs,64

ultimately leading to a more balanced decision. In the Integrated Embedding Analysis (IEA) for65

Enhanced Decision-Making section 3.1.2, we utilized another methodology for optimizing selection66

process using multiple data sources. This approach involves concatenating embeddings generated67

by each vectorizer/LLMs/prompts/data fields and applying Principal Component Analysis (PCA) to68

reduce their dimensionality. This approach was tested on two datasets, a clinical MR and CT dataset69

where inputs from the primary physician are used for patient protocol. For both cases, using the70

proposed approach demonstrated strong performance compared to fine-tuning LLMs. considering71

that the computational resources required for model updates and maintenance would be drastically72

reduced since the models will not be fine-tuned on an online environment. Also, in regulated73

industries like healthcare, the need to constantly manage and re-validate models due to continual74

learning updates would be eliminated. On the other hand, users and stakeholders would have greater75

trust in models that consistently perform well without the risk of degrading over time. The proposed76

method can utilize different LLMs and prompts, which offers significant benefits, including enhanced77

diversity of thought and robustness, as it combines the unique strength and perspectives of each LLMs.78

Additionally, by aggregating the outputs of different LLMs and/or prompts, the model increases79

overall accuracy and reliability, which ensures a more balanced and comprehensive understanding,80

reducing biases and limitations inherent in individual models.81

2 Related Work82

Continual learning in text classification is addressed through various innovative methods aimed at83

mitigating catastrophic forgetting and handling data imbalance. Continual pre-training refreshes84

LLMs with new data periodically to ensure their relevance and effectiveness. Recent studies focus85

on integrating Large Language Models (LLMs) into continuous learning frameworks for text clas-86

sification. This involves evolving methodologies to improve how LLMs process new information87

while preserving previously acquired knowledge. Research by Ke et al. Ke et al. [2023] underscores88

the importance of this approach in maintaining LLM accuracy across different domains and tasks.89

Moreover. in-context learning has transformed text classification by using pre-trained knowledge90

through prompt-based queries, minimizing the need for extensive training. Innovations by Schick91

and Schütze Schick and Schütze [2019] and Han et al. Han et al. [2023] have enhanced the precision92

of these models in real-world applications.93
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Moreover, Huang et al. (2021) Huang et al. [2021] introduced an information disentanglement based94

regularization to maintain task-specific information distinct, thus allowing the model to perform95

well on a sequence of text classification tasks without interference. Jang et al. (2021) Jang et al.96

[2021] tackled data imbalance in continual learning by segmenting the data distribution into exclusive97

subsets, ensuring effective focus on underrepresented classes. Wang et al. (2023) Wang et al. [2023]98

propose a lightweight snapshot-based approach using knowledge distillation, which enables the99

integration of new and old knowledge without extensive resource requirements. Ermis et al. (2022)100

adapt transformers with adapters for continual learning, demonstrating their potential beyond typical101

use cases in text tasks Ermis et al. [2022]. Lastly, Pasunuru et al. (2021) explored continual few-shot102

learning, addressing the rapid adaptation to new tasks with limited data Pasunuru et al. [2021]. All103

these studies train their models on continual learning settings, demonstrating various strategies to104

enhance learning retention and adaptability over sequential tasks.105

Prompt-based methods could also be used for complex text classification problems. Sun et al. (2023)106

Sun et al. [2023] introduced progressive prompting for complex text classification tasks. This method107

uses a step-by-step prompting process to first identify simple clues and then perform deeper reasoning108

to make final decisions. Recent research also explores progressive prompting and retrieval-augmented109

methods to enhance continual learning. For instance, Liu et al. (2024) Junhua et al. [2024] introduced110

Linguistic-Adaptive Retrieval-Augmented Language Models (LARA) to improve multi-turn intent111

classification, demonstrating significant advancements in handling complex conversational contexts.112

3 Methodology113

In the process of making optimal selections from multiple data sources, different effective strategies114

can be employed. In this section, two different methods, "Aggregated Decision Making in Multi-Index115

System" and "Integrated Embedding Analysis for Enhanced Decision-Making" are discussed in detail116

below.117

3.1 MIS: Aggregated Decision Making in Multi-Index System118

3.1.1 Creating historical indexing structures119

In text classification tasks, each input field can contribute valuable information and the integration120

of various fields, either individually or through combinations using different prompts, enhances the121

classification processes. As described before, the core idea of this method is to retrieve labels for the122

current query using historical data. One of the paper’s main contributions is to develop a method for123

retrieving information about a query from individual data fields, in addition to a combination of data124

fields within prompt(s) without fine-tuning or retraining. Different prompts, whether applied to single125

fields or combinations of fields, can yield useful insights, and improve the overall performance of the126

model. Moreover, each data segment (individual fields or prompts) can have its own set of indexing127

structures using a variety of encoders/LLMs. Indeed, different vectorizer(s) (LLM, TFIDF, etc.) can128

be applied to the same data filed or prompts, and consequently, different LLMs may develop their own129

distinct understanding of that data filed/prompts. Therefore, for each of data points and/or prompts,130

utilizing their corresponding vectorizer(s) (LLM, TFIDF, etc.), we will synthesize their vectorized131

version and integrate them to their corresponding indexing structure. A dimensionality reduction132

method (such as PCA) may be considered as a preliminary step before integrating the vectors into133

their corresponding indexing structure. This process will be applied to all available historical data,134

resulting in multiple instances of indexing structures, each containing the most up-to-date version of135

the data as previously described Fig. 1. In the context of inference time, and given that data arrives136

incrementally, it is crucial to note that indexing structures will be updated with every query from137

a user. Employing various LLMs, akin to using multiple judges or referees, allows for gathering138

insights from each model without a cap on the number of ‘judges’ used. Unlike continual learning,139

this can be achieved without re-training or dedication a specific instance for each model for every user.140

Fig. 1. illustrates the concept of creating series of indexing tables for each vectorizer/encoder/LLM141

and data field/prompts.142
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Figure 1: Aggregated Decision Making in Multi-Index System, creating historical indexing structures.
This method leverages the strength of multiple LLMs to handle a diverse set of prompts and fields
and each indexing table provides specific insights related to the query.

3.1.2 Inferencing Time143

When a query is received, any datapoint in the historical dataset, which corresponds to a label,144

can be considered as a potential candidate for the query. For each instance of a query, distinct145

sets of data segments and prompts are generated in a way identical to how they are prepared for146

historical data, Fig. 2. The method previously described is then consistently applied to each set of147

data segments and prompts of the query, using their corresponding vectorizer(s), resulting in the148

creation of corresponding vectorized versions of them. For each vectorized query, a similarity search149

is implemented against the data in their corresponding indexing structure (Using FAISS in this paper,150

Douze et al. [2024]), and the historical datapoints are ranked based on their similarity scores, which151

can be computed using the dot product, or alternatively distance metrics such as Euclidean distance.152

As the results, each table presents a unique ranking of candidates along with their scores. In the153

subsequent step we must aggregate these results to identify the historical datapoint that achieves the154

highest rank and highest score. A variety of methods including Borda count and Bayesian techniques,155

can be considered for aggregating results from different indexing tables. These methods can be156

customized for each problem based on its specific nature, demonstrating the proposed method’s157

power and flexibility.158

A viable method for selecting the optimal candidate from multiple indexing structures involves159

computing a weighted average of scores across all the indexing structures. As mentioned above, for160

each query, each datapoint from the historical dataset is considered as a candidate. Each candidate’s161

score is aggregated, assigning a score of zero to any candidate not listed among top candidates162

of an indexing structure. To narrow down the candidate’s pool, each indexing structure sets a163

score threshold and candidates scoring below this threshold are not considered as top candidates.164

Subsequently the weighted average scores of all top ranked candidates are calculated. The candidate165

with the highest aggregated score is selected, and a specific attribute from this candidate is utilized166

for the query. For the results presented in this paper, the weight assigned to each index is calculated167

as the inverse of the variance of the similarity scores for the data. Using the inverse of the variance as168

weights for the weights assigned to each indexing table is chosen because it inherently prioritizes169

more consistent indexing tables. By doing so, we reduce the influence of those with high variability,170

who might introduce more noise and less reliable assessments. After calculating the average score for171

each candidate in the historical data using all the scores provided by every indexing table, different172

methods could be used to choose the winner. For example, the class corresponding to the historical173

data with the highest score could be considered as the suggested class for the query. Additionally, top174

N candidates can be used and by clustering, the class that appears the most could be considered as175

the winner. Moreover, different methods such as using mean and standard deviations, percentiles, or176

the elbow method, etc. can be utilized. These methods can vary based on the nature of the problem177

and whether that dataset is balanced or imbalanced.178
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Figure 2: Aggregated Decision Making in Multi-Index System, Inferencing Time
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Figure 3: IEA: Integrated Embedding Analysis for Enhanced Decision-Making

3.2 IEA: Integrated Embedding Analysis for Enhanced Decision-Making179

In this method, different data segments and prompts along with tier corresponding embeddings are180

generated using a variety of LLMs/vectorizers/prompts, similar to the approach described in 3.1.1.181

Then, each set of embeddings is normalized to ensure uniform scale across different sources. These182

normalized embeddings are then concatenated, forming a single, comprehensive embedding. This183

concatenated embedding is then subjected to PCA to reduce dimensionality while preserving the184

most critical information. The PCA transformed data is subsequently stored in a unified index table.185

The decision-making process involves selecting the class of the option that is closest to a given query186

or clustering the results and finding the most common class in top selections.187

4 Results188

It should be mentioned that we used the FAISS library for efficient similarity search in our indexing189

and searching mechanisms Douze et al. [2024].190

4.1 Magnetic Resonance Imaging (MRI) Protocoling Dataset191

We employed a dataset collected from a major site in the (BLIND). This dataset includes Magnetic192

Resonance Imaging (MRI), which each entry consists of two key inputs, “Reason for Exam” and193

“Suggested Procedure”. The aim of classification is to classify these inputs to suggest an appropriate194

“Protocol” for scan. Intelligent protocoling for scans is crucial in modern radiology as it significantly195

reduces the workload of radiologists and improves efficiency. It minimizes the need for manual196
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intervention, allowing radiologist to focus on interpreting results rather than setting up scans, plus197

it enhances patient care by reducing wait times and the potential for human error, leading to more198

timely and precise diagnosis. This dataset consist of 1000 historical samples (22 Protocols), and199

the results are calculated for 2379 queries (assuming it is an online environment and the queries are200

coming one after each other, but the historical data sized is kept as 1000).201

Reason for Exam(input) Suggested procedure (input) Protocol (label: output)

re-eval HCC for possible fu-
ture tx. H/o HCV c/b HCC
s/p TACE x4

Mr Abdomen w and wo iv contrast Abdomen Liver Gadavist

Hx of Bosniak 2F left renal
cyst. Surveillance imaging.

Mr Abdomen w and wo iv contrast Abdomen Renal Renal Adrenal

prostate cancer surveillance,
multiparametric MRI for
biopsy planning, 3D lab 3D
recons for treatment plan-
ning.

Mr Pelvis w and wo iv contrast Pelvis Male Pelvis Prostate Local

Table 1: Examples from MR protocoling dataset illustrating three fields: reason for exam, procedure,
and protocol(label)

Three different LLMs (bioMistral Labrak et al. [2024], BioGPTLuo et al. [2022], GatorTronYang202

et al. [2022]) are used, all downloaded from HuggingFace websiteWolf et al. [2019], and the selected203

prompts are (Two different input fields are: reason for exam and Procedure):204

1-"An patient has been brought to our hospital, accompanied by observations reason for exam and205

Procedure from another physician. What protocol for a scan would you suggest for it, consider-206

ing these characteristics?", and 2-"With the arrival of an patient at our hospital, accompanied by207

reason for exam and Procedure from another expert, we’re looking for a fitting protocol for a scan.208

Can you provide your recommendation?".209

In fact, the prompts generated from the combination of two inputs, reason for exam and Procedure,210

will be utilized to predict the corresponding protocol to scan(label). For this dataset, both MIS and211

IEA methods are used. For MIS, the process explained in 3.1.1 is implemented on 1000 historical212

data samples, each embedded vector from LLMs is treated independently, being added directly to213

the indexing tables. For each query (2379 cases), following what is discussed in 3.1.2, the scores214

of every historical data is calculated, the inverse of the variance of scores for all the historical data215

(1000 scores for each index) has been used to weigh each index for the weighted average, weighted216

average is applied and then the class associated with the candidate having the highest score is selected217

as the wining class. On the other hand, in IEA, embeddings from different LLMs are concatenated,218

followed by the application of PCA to reduce dimensionality to 256 on this concatenated set for all219

historical data as well as each query, and the class associated with the candidate from the historical220

data having the highest score is selected.221

As can be seen in Fig. 4, for Prompt 2, the performance of both MIS and IEA is acceptable when222

compared to different Large Language Models (LLMs). Notably, integrating different LLMs generally223

yields better results than integrating embeddings with Principal Component Analysis (PCA), primarily224

because the former maintains more distinct information from each model. In the case of combining225

GatorTron and BioGPT, both methods—MIS and IEA—perform similarly, a combination of both226

BioGPT and GatorTron performs better than each individually. However, when considering the227

combination of GatorTron, BioGPT, with bioMistral, it seems combining bioMistral with each, makes228

the results worse. This suggests that addingbioMistral does not enhance, and may even detract from,229

the performance achieved by just GatorTron or BioGPT. However, for MIS, integrating GatorTron,230

bioMistral and BioGPT performs the best.The results generally demonstrate that aggregating outputs231

from multiple Large Language Models (LLMs) can improve the F1 score. Additionally, employing232

individual LLMs with various configurations of prompts also leads to improvements in the F1 score,233

depicted in Fig. 4, suggesting that different prompts can be likened to reshaping the input into various234

forms, thereby enabling the method to make more informed decisions. In Fig. 4 it can be seen that235
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using prompt 1 in addition to prompt 2 improved the results for GatorTron, reinforcing the idea of236

having more prompt, and also emphasizing the power of the proposed method for the online domain.237

As depicted in Fig. 4, without the need for retraining, including more prompts improved the results;238

however, it may sometime worsen the results. This anomaly may be attributed to the specific nature239

of the some prompts possibly introducing complexities or nuances not well-handled by the particular240

LLM’s training regimen. Additionally, the integration of not suitable prompts could lead to an241

increase in response ambiguity or a decrease in coherence, challenging the specific LLM’s ability242

to generate pertinent and cohesive outputs. This underscores the importance of careful prompt243

selection and customization in leveraging the full capabilities of pre-trained LMMs. Indeed, the244

balance between redundancy and novelty in the input prompts can influence model output. Redundant245

information might reinforce certain responses, but excessive redundancy could limit the model’s246

generative capabilities. Novel information, while potentially enhancing the model’s response, could247

also introduce uncertainties if it falls outside the model’s training experience.248

Moreover, it is noteworthy that in some instances, adding a LLM can actually deteriorate the results,249

a factor that must be considered in the aggregation strategy. The optimal number of LLMs to employ250

depends on the problem’s specifics. Not every configuration of LLMs yields better outcomes when251

combined; certain configurations outperform the aggregated approach. This indicates the importance252

of the specific type of LLMs used, a phenomenon observed with both methods (MIS, IEA). This253

observation can be attributed to several factors. First, there is the issue of redundancy; additional254

LLMs may introduce overlapping information that does not contribute new insights but merely255

repeats existing data. This redundancy can worsen the unique contributions of each individual LLM,256

leading to a plateau or even a decrease in performance. Secondly, when multiple models (such257

as LLM X, LLM Y, and LLM Z) are aggregated, their individual biases and errors can interact in258

complex ways. This interaction can lead to unexpected behavior in the aggregated output, where the259

compounded biases or errors reverses the advantages each model brings individually. For instance,260

while LLM X and LLM Y may complement each other’s strengths, the addition of LLM Z might261

introduce conflicting approaches or assumptions that disrupt the synergy between LLM X and LLM262

Y. This can be observed in Fig. 4 where BioGPT or GatorTron alone perform better compared to their263

combination with bioMistral.264

4.2 Computed Tomography (CT) Protocoling Dataset265

Another dataset, CT protocling, was also used for this paper. Only BioGPT and GatorTron were266

used based on the insights from the previous section, as these two models were found to be effective267

in improving the results. This dataset consists of 1000 historical records with 23 labels, and 13939268

records are treated as queries over the time. Below are examples from the dataset along with their269

various fields.270

Reason for Exam(input) Suggested procedure (input) Protocol (label: output)

pmh metastatic breast ca and
ho sbo. pw tachycardia. con-
cern for sbo

ct abdomen pelvis w iv contrast abdomen and pelvis

etoh cirrhosis, hcc screening. ct abdomen liver w iv contrast triphasic triphasic liver
history of breast cancer, re-
cent unintentional weight
loss and back pain

ct chest abdomen pelvis w iv contrast chest abdomen pelvis

Table 2: Examples from the CT protocoling dataset illustrating three fields: reason for exam,
procedure, and protocol(label)

The same prompts and process outlined in the previous section for MIS and IEA was applied to this271

dataset. A similar trend was observed, where using a combination of prompts and LLMs improved272

the results as depicted in Fig. 5. Interestingly, specific prompts performed better with certain LLM,273

for example, the first prompt performed better for BioGPT, while the second prompt performed274

more effectively with GatorTron. Consequently, the best performance was achieved by combining275

(BioGPT, the first prompt) and (GatorTron, the 2nd prompt). Overall, considering the size of the276

historical data (1000 samples) and the number of queries (13939), the method demonstrated strong277
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Figure 4: (a) The results for the MR clinical dataset using IEA(Integrated Embedding Analysis)
and MIS(Multi-Index System), for the first prompt. (b) The results for the MR clinical dataset
using IEA(Integrated Embedding Analysis) and MIS(Multi-Index System), combination of different
prompts (Prompt 1 and Prompt 2).

performance based on the F1-score in Fig. 5, indicating its potential for effectively addressing the278

classification task.279

5 Conclusion280

In this paper, a method has been developed for classification tasks to implement foundation models281

including LLMs, that eliminates the need for retraining or fine-tuning and could be effectively used282

in online environments. In this method, a diverse and comprehensive set of information about a query283

is created by segmenting the data, forming prompts, and implementing different LLMs on them. It284

simplifies the aggregation of different LLMs while maintaining high accuracy and performance. This285
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Figure 5: The results for the CT clinical dataset using IEA(Integrated Embedding Analysis) and
MIS(Multi-Index System) for a combination combination of different prompts (Prompt 1 and Prompt
2) and BioGPT and GatorTron.

approach avoids complexities of continual learning (such as frequent retraining of LLMs, catastrophic286

forgetting, regularity approvals), reducing computational costs significantly, and is easy to implement287

and deploy, even in the medical domains with their own specific challenges.288

It should be mentioned that when using concatenated encoders followed by PCA for searching, the289

combined feature vectors from different encoders can provide a richer and more comprehensive290

representation of the data. This method works well when the dataset benefits from a diverse set291

of features, as the concatenation captures various aspects of the data, enhancing the overall search292

accuracy. PCA then reduces the dimensionality, retaining the most informative components, which293

helps in making the search more efficient while preserving the essential characteristics of the data.294

This approach could be particularly more useful for datasets with complex features, where a single295

representation might not suffice. On the other hand, using multiple indices with an aggregation method296

(like MIS) can be more effective for datasets where different indices can specialize in capturing297

distinct characteristics of the data, like the clinical dataset in Section. 4.1. In this scenario, each index298

can focus on a specific feature subset or aspect of the data and then MIS helps in aggregating the299

results, thus reducing the impact of outliers or noise. MIS could be more beneficial for datasets with300

varied or noisy features, as the ensemble of indices can provide a more stable and reliable search301

result through consensus.302

The results shown in this paper indicate that both MIS and IEA methods perform well for text303

classification without requiring additional training for both clinical datasets. This presents a valuable304

opportunity to replace continuous learning with foundation models by using pretrained only models.305

None of the models need fine-tuning during evaluation, eliminating the need for customization306

for each customer or site while the performance remains comparable and acceptable compared307

to fine-tuning. Additionally, in this method, the historical data stays up-to-date with incoming308

queries, as new data are classified and feedback with specified true labels is received by human in309

the loop in an online environment. This approach offers significant flexibility in choosing different310

combinations of LLMs, prompts, and datasets without incurring excessive computational costs, and311

allows for the aggregation of different models. Additionally, while our approach focused on simpler312

methodologies for aggregated decision making, alternative techniques, such as graph-based methods,313

could potentially offer more sophisticated aggregation and are worth exploring in future studies.314

However, there remain significant areas for further research. Key among these is identifying the315

optimal methods for aggregating results from multiple LLMs. Determining which LLM or prompt316

9



should be included or excluded in the aggregation process is crucial for enhancing performance and317

efficiency.318
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