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ABSTRACT

The rapid progress in neural image compression (NIC) led to the deployment of
advanced codecs, such as JPEG AI, which significantly outperform conventional
approaches. However, despite extensive research on the adversarial robustness of
neural networks in various computer vision tasks, the vulnerability of NIC mod-
els to adversarial attacks remains underexplored. Moreover, the existing adver-
sarial attacks on NIC are ineffective against modern codecs. In this paper, we
introduce a novel adversarial attack targeting NIC models. Our approach is built
upon two core stages: (1) optimization of global-local distortions, and (2) a selec-
tive masking strategy that enhances attack stealthiness. Experimental evaluations
demonstrate that the proposed method outperforms prior attacks on both JPEG AI
and other NIC models, achieving greater distortion on decoded images and lower
perceptibility of adversarial images. We also provide a theoretical analysis and
discuss the underlying reasons for the effectiveness of our attack, offering new
insights into the security and robustness of learned image compression.

1 INTRODUCTION

Recent advances in neural image compression (NIC) have led to state-of-the-art codecs, such as
JPEG AI (Ascenso et al. (2023)), that significantly outperform traditional compression methods.
However, the robustness of these learned compression systems has not received much attention.
Previous studies have shown that small perturbations, which are imperceptible to humans, can sig-
nificantly degrade NIC outputs. For example, adding a small amount of noise can cause ”severe
distortion” in the decoded image or substantially increase the compressed bit rate. In other words,
neural image compression models are vulnerable to adversarial attacks. Most existing attacks target
a single global metric, such as PSNR, and employ simple methods to identify adversarial perturba-
tions, which have been developed for other types of attacks, rather than specifically for NIC. While
these methods expose the vulnerability of NIC, they don’t create visible artifacts often enough and
remain relatively ineffective against modern codecs. They also highlight the gap: current adversarial
methods for NIC do not fully exploit features of the image compression task and the opportunity to
craft localized distortions. In this work, we take a comprehensive approach to adversarial attacks
on neural compression. We introduce an attack that targets both global quality and local artifacts
explicitly. Crucially, our attack operates as a modular adversarial optimization. At each iteration,
it chooses among different objectives (global or local) and gradient updates strategies (signed or
normalized), and then projects the perturbation back under the norm constraint. This modular de-
sign makes the optimization both flexible and effective. We further enhance stealth by applying a
selective frequency-domain mask. The novelty in the design of the proposed approach enabled it to
achieve a new state-of-the-art level of attack efficiency, including attacks on modern NIC methods.

2 RELATED WORK

Neural image compression. Neural image compression has been developing rapidly in recent
years. Ballé et al. (2016) published the foundation for many subsequent models. They proposed
a generalized divisive normalization as a core nonlinear transform in NIC, followed by uniform
scalar quantization. Agustsson et al. (2017) presented a soft-to-hard vector quantization approach
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within a compressive autoencoder architecture, enhancing end-to-end learning by bridging the gap
between differentiable and non-differentiable quantization. Later, Ballé et al. (2018) formulated im-
age compression as a variational inference problem, introducing hyperpriors to model the entropy
more effectively and improve compression rates. Several improvements were proposed for entropy
modeling, including the extension of the hierarchical Gaussian scale mixture (GSM) model to a
Gaussian mixture model (Minnen et al. (2018)) and the discretization of Gaussian mixture likeli-
hoods combined with a simplified attention mechanism (Cheng et al. (2020)). For enhancing image
reconstruction and fidelity,Mentzer et al. (2020) proposed a GAN-based compression method, and
Yang & Mandt (2024) proposed a scheme that utilizes an encoder to map images onto a contextual
latent variable, which is then fed into a diffusion model for reconstructing the source images. He
et al. (2022) describes a new ELIC model that adopts stacked residual blocks as nonlinear transforms
and uses the Space-Channel ConTeXt (SCCTX) model, which is a combination of the spatial context
model and the channel conditional backward-adaptive entropy model. Zou et al. (2022) introduces
a flexible window-based attention module to enhance image compression models and trains CNN
and Transformer models that reach promising results. Liu et al. (2023a) proposes using parallel
transformer-CNN mixture blocks to combine the advantages of both approaches, as well as a new
entropy model that uses a SWIN-transformer-based attention module with channel squeezing. Duan
et al. (2023) adopted a hierarchical VAE architecture, called ResNet VAE, for image compression,
using a uniform posterior and a Gaussian convolved with a uniform prior. Wang et al. (2023) cre-
ates a real-time neural image compression model using residual blocks and depth-wise convolution
blocks, and then uses mask decay and novel sparsity regularization loss to transfer knowledge to
smaller models.

Attacks on NICs. Chen & Ma (2023) shows that NIC models are severely vulnerable to adversar-
ial perturbations, which decrease the quality of the reconstructed image after compression. They
adapted the I-FGSM (Kurakin et al. (2017)) attack to reduce the quality of the compressed image.
They proposed the Fast Threshold-constrained Distortion Attack (FTDA), which is a more efficient
attack on images after compression. Liu et al. (2023b) introduced an adversarial attack on NIC
models based on I-FGSM, focusing on the bitrate aspect. They examined the effects of this attack
on various codec architectures and found that their factorized attention model was the most resistant
to the weight gain of the compressed representation. Wu (2024) propose a practical paradigm of
Specific-ratio Rate-Distortion Attack (SRDA) (together with Agnostic-ratio RD-Attack (ARDA))
to assess the robustness of NIC methods at a target bitrate level. The authors also introduce two
analytical tools — Entropy Causal Intervention and Layer-wise Distance Magnify Ratio — to local-
ize vulnerable codec components. They demonstrate that hyperprior significantly increases bitrate
under attack, and the IGDN block enhances input disturbances.

3 PROBLEM FORMULATION

An attack on a neural image codec that reduces decoded image quality can be formulated as a
constrained adversarial optimization. Given an original image I , we seek a small perturbation δ
(e.g., with |δ|p ≤ ε) such that the difference between the adversarial image I∗ = I + δ and its
compressed-and-decompressed version is maximized. In practice, quality loss is measured by full-
reference metrics like MSE, PSNR or SSIM. Thus we maximize a distortion function d(I∗, Î∗)

(e.g. MSE or 1 − SSIM(x, x̂), etc.) where Î∗ is the reconstructed image after compression of I∗.
Formally, the attack can be written as:

argmax
I∗:|I∗−I|p≤ε

d
(
I∗, C(I∗)

)
,

where C(·) denote the complete encoding-decoding process. In other words, we add an impercepti-
ble targeted noise to I so that the codec’s output image has significantly lower quality.

4 PROPOSED METHOD

To search for adversarial perturbations, we propose an iterative gradient-based method under l∞
norm constraint. Since the distortion function d(·) may not always be differentiable or may be
easily hacked during an attack, it may also be challenging to optimize. Additionally, we want the
found perturbation to be effective for different distortion functions. Therefore, instead of using the
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Algorithm 1 NOpt (Norm optimisation algorithm)
Input: image I , adversarial image I∗, parameters: ε, norm optimisation step β, maximum iterations
for norm optimisation M
Output: bounded adversarial image I∗b

1: Let I∗b = I∗.
2: Let err = L(I, I∗b )
3: Let iteration = 0
4: while err > 0 and iteration < M do
5: I∗b = I∗b − β ∗ sign(∇err)
6: Let err = L(I, I∗b )
7: iteration = iteration+ 1
8: end while
9: return I∗b

distortion function during the attack, we suggest calculating and taking the gradient of a simpler
auxiliary function f(I, I∗, C(I), C(I∗)), which is more responsive to image quality degradation
and compression artifacts. This auxiliary function can be different for each iteration of the attack
and is referred to as the attack objective. Thus, at each iteration, a step is taken to solve the following
optimization problem:

argmax
I∗:|I∗−I|∞≤ε

f
(
I, I∗, C(I), C(I∗)

)
Each iteration of our method follows a modular structure: first, we select the attack objective and
calculate its gradient. Then, we take a gradient-based update in the chosen direction to maximize
that objective. Finally, we project the result to ensure that the perturbation respects the constraint
(norm optimization). This modular approach makes the attack both flexible and controllable.

4.1 l∞ NORM OPTIMISATION ALGORITHM

To maintain the constraint after the optimization step of the target attack function f(·), we propose
an NOpt (Norm optimisation) algorithm (Algorithm 1) based on the I-FGSM method with the target
function:

L(I, I∗) =
∑

x∈I−I∗

I(|x| > ε) ∗ |x|,

where x denote components of the vector I − I∗. This allows us to switch from optimizing the
l∞ norm to the l1 norm, which has a less sparse gradient and accelerates the convergence process.
The algorithm iterates until either the norm limit is reached or the maximum number of iterations is
exceeded.

4.2 FLEXIBLE OPTIMISATION DIRECTION

Signed gradient direction. The use of the sign of each component of the gradient (as in the I-
FGSM) ensures an l∞-bounded step size. The update for each coordinate is exactly ±lr (where
±lr denotes a learning rate), thus keeping the perturbation within the specified bounds with low
cost. The downside of using sign-based updates is that they lose the relative magnitude information
contained in the gradient. This means that all input dimensions are treated equally, ignoring any
directional nuances in the loss landscape. As a result, the direction of the update becomes aligned
with the axes and discontinuous, resulting in coarse approximations of the true gradient path. This
can lead to suboptimal convergence, especially when the loss function has an anisotropic shape. In
such cases, sign-based methods may take inefficient paths, oscillate, or miss opportunities to exploit
informative gradient directions that are shallow but important. In practice, this limitation can lead
to:

Slower convergence: The attack may require more iterations to reach the desired level of distortion,
as it does not follow the optimal path.

Wasted perturbation budget: Pixels may be unnecessarily perturbed to the maximum allowed extent
(ε), even if they do not contribute significantly to the objective.

3
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Blind spots in optimization: Fine-grained local structures in the loss surface (e.g., near-flat valleys)
may be missed, as the step size is effectively binary per pixel and cannot capture complex variations
in the loss landscape.

Normalized gradient direction. To address these issues, we suggest computing a vector with a
standard distribution based on the gradient direction by subtracting the average of its components
and scaling it by the standard deviation.

direction = normalize(∇f) =
∇f −mean(∇f)

std(∇f)
.

This process produces an update direction that is smooth, continuous, and well-suited to the land-
scape of the loss function. Unlike discrete ±1 directions used in sign methods, normalized directions
maintain pixel-wise proportionality, allowing more important pixels (in terms of sensitivity to loss)
to receive larger proportional updates. This improves convergence and enables perturbation targeting
regions that are sensitive to compression more effectively. In short, subtracting the mean removes
global drift and dividing by standard deviation normalizes local contrast, producing a balanced and
effective update — one that remains true to underlying gradients without being too aggressive or
constrained by axis. The normalized step is particularly valuable for fine tuning or correcting rough
steps taken by sign gradient.

At the same time, this transformation allows us to limit the absolute pixel change per step with some
probability, thanks to the Chebyshev inequality. This gives us a probabilistic estimate of the number
of iterations required for Algorithm 1 to meet the norm constraints after an attack step.

Proposition. Let’s assume that, in iteration t, a normalized gradient direction −→r was used with
learning rate lr to optimize the target function of the attack. Then, when we use NOpt (Algorithm 1)
with step size β to limit perturbation, the number of NOpt’s iterations T has a following probabilistic
estimation:

P
(
T ≥ lr ∗ k

β

)
≤ 1− (1− 1

k2
)H∗W ,

where H,W denote dimensions of the image I . The proof of the proposition can be viewed in the
appendix.

This statement allows us to theoretically demonstrate the possibility of limiting the number of it-
erations without sacrificing the quality of NOpt algorithm in the majority of cases. In practice,
the actual number of necessary iterations is often significantly lower, as the statement assumes the
worst-case scenario where the largest value of step must be completely removed. However, this
method of determining the direction of the next step still requires a significantly larger number of
steps of the NOopt algorithm compared to the signed approach. This can lead to a significant blur-
ring of the original direction, or, if the choice of M is sufficiently rigid, to the accumulation of errors.
To solve this problem, we alternate between sign-based and normalized updates in order to get the
best results from both approaches. A sign-gradient step immediately ensures the l∞-norm limit
is enforced and keeps the perturbation stable, while a normalized-gradient step takes advantage of
richer gradient information to accelerate progress. By alternating between these two update forms,
we can combine their complementary strengths and mitigate their individual limitations. The sign
step stabilizes the optimization, ensures norm constraints, and guarantees global coverage, while the
normalized step provides fine-grained corrections, leveraging gradient curvature and structure. This
interplay smooths out the individual weaknesses of both approaches. Where the sign direction lacks
precision, the normalized step refines it. And where the normalized step is prone to instability, the
sign step reinforces it. In essence, the alternation allowes the optimizer to explore and converge,
while avoiding the characteristic errors of either method, leading to a more reliable and efficient
optimization path, compared to either approach alone.

4.3 GLOBAL AND LOCAL OPTIMISATION MODULE

Our attack proceeds in two sequential module stages, targeting different distortion measures.

Global quality degradation. We first maximize the overall difference between the original and
compressed images. In practice, we use the MSE over the entire image as our loss function.

fglobal(I
∗, C(I∗)) = MSE(I∗, C(I∗))

4
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This step reduces compression quality uniformly by increasing the overall pixel-by-pixel error. In-
tuitively, maximizing the global MSE results in a significant decrease in image fidelity, establishing
a strong baseline for distortion. It was at this stage of the global decline in image quality that all
previously proposed attack methods ceased to be effective. However, as can be seen from examples,
experiments, and other studies, the decrease in quality in practice is not uniform: local areas with
severe distortions (artifacts) form. At the same time, optimization continues to be carried out us-
ing global quality metrics, which may not accurately reflect reality and may not lead to maximum
degradation, as they focus on areas and pixels that are less susceptible to artifacts.

Local quality drawdown. Therefore, we aim to mitigate the local perceptual quality drop that
occurs after the first stage. As shown Tsereh et al. (2024), the Structural Similarity Index Metric
(SSIM) for the Y component in the YUV color space is more suitable for finding local distor-
tions in neural compression. Therefore, we compute two local SSIM similarity maps: one between
the original image and the compressed image SSIM(I, C(I)), and another between the adversar-
ial image and the compressed adversarial image SSIM(I∗, C(I∗)). By calculating the difference
∆(I, I∗, C(I), C(I∗)) ∈ RH×W between these two maps, we can identify areas with the maximum
quality drop caused by the attack. To smooth outliers, we also use average pooling with a kernel
size of 32.

∆ = AvgPool32
(
SSIM(I, C(I))− SSIM(I∗, C(I∗))

)
Let’s examine the single map between the adversarial images. We may mistakenly identify areas
that have decreased in quality due to features in the original image rather than the attack. To detect
distortions in various parts of an image, ∆ is divided into non-overlapping blocks of a specific size
P × P . Each block has a maximum value, which, with proper selection of P , allows us to locate
and enhance many artifacts in the image while ignoring relatively stable areas. The sum of these
maximum intensities is used as an objective function:

flocal(I, I
∗, C(I), C(I∗)) =

⌈H
P ⌉∑

i=1

⌈W
P ⌉∑

j=1

max
(u,v)∈Bij

∆(u, v),where

Bij = {(u, v) | u ∈ [P (i− 1), P i), v ∈ [P (j − 1), P j)}.

The sequential order of the two stages is essential. By first reducing the global quality, we lower
the overall image fidelity, making it easier for the second stage to focus on specific artifacts. The
global stage ensures a significant drop in PSNR (high MSE), while the local stage sharpens and
localizes distortions (low SSIM). This two-stage approach is more effective than a single combined
objective, as it allows for dedicated optimization of each stage’s goals. Therefore, the final attack is
the sequential application of the Algorithm 2, first with the objective function fglobal and then with
function flocal.

4.4 FIDELITY IMPROVEMENT BY FREQUENCY MODULE

To make the attack less noticeable, we remove low-frequency components from the adversarial
perturbation δ = I∗ − I after applying the attack algorithm. Specifically, we transform the noise
into the frequency domain (for example, using the DCT or FFT) and set all components below a
certain threshold R to zero.

δhigh = cut(δ,R) = F−1
(
Mask(R) · F(δ)

)
Mask(R)(u, v) =

{
0 if

√
(u−H/2)2 + (v −W/2)2 < R

1 otherwise

where F(·) and F−1(·) denote the forward and inverse 2D Fourier (or DCT) transform applied per
channel High-frequency noise is usually harder for the human eye to detect, so by limiting the per-
turbation to high frequencies (i.e., applying a low-frequency constraint), we preserve the perceptual
similarity with the original image. This approach avoids creating large artifacts or obvious color
gradients, producing instead subtle high-frequency speckles that make the adversarial image look
more like the original one. The threshold R is chosen individually for each image in a discrete set
{0, 10, 20, ..., 100}, such that the relative reduction in the effectiveness of the attack (measured by
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Algorithm 2 Attack algorithm
Input: codec C, image I , attack objective function f , parameters: ε, lr, N
Output: adversarial image I∗

1: Let I∗ = I , iteration = 0.
2: // Attacking the objective function
3: while iteration < N do
4: G = ∇f(I, I∗, C(I), C(I∗))
5: // Alternate the method of selecting the direction of optimization step
6: if iteration ≡ 1 mod 2 then
7: direction = sign(G)
8: else
9: direction = normalize(G)

10: end if
11: // Optimization step
12: I∗ = I∗ + lr ∗ direction
13: // Use Algorithm 1 to limit the norm of adversarial perturbation
14: I∗ = NOpt(I, I∗, ε)
15: iteration = iteration+ 1
16: end while
17: return I∗

the value of the objective function of the second stage flocal) is less than the common threshold
value Trh:

R = max

{
R′ ∈ {0, 10, 20, ..., 100} : Per(R′) ≤ Trh

}
,

P er(R′) =
flocal(I

∗)− flocal(I + cut(δ,R′))

flocal(I∗)
.

5 EXPERIMENTS

To thoroughly assess the proposed attack method, we compare it to previous methods by attacking a
variety of different NICs. We employ several approaches to evaluate the performance of the attacks
and measure their invisibility.

5.1 NIC MODELS

We evaluate a wide range of neural image compression (NIC) models, spanning from classic hy-
perprior architectures to more recent transformer-based codecs. These include Ballé et al. (2018)
factorized and hyperprior models, Minnen et al. (2018) hierarchical model. We also test the Cheng
et al. 2020 variants (”anchor” and ”self-attention”), the ELIC model of He et al. (2022), the HiFiC
GAN-based model of Mentzer et al. (2020), the QRes-VAE of Zou et al. (2022), and the mixed
Transformer-CNN LIC-TCM model of Liu et al. (2023a). Additionally, we include the new JPEG-
AI standard (Ascenso et al. (2023)) (version 7.1), both in its Base Operation Point (BOP) and High
Operation Point (HOP) modes. This standard also includes additional tools that can help improve
the efficiency and adaptability of compression. For example, these include Residual and Variation
Scale (RVS) or filters such as Cross-Color Filter (ICCI) or Luma Edge Filter (LEF). The specific
set of tools and their settings may vary depending on the codec configuration. That’s why we train
attacked images for JPEG AI without specific tools (tools off), and evaluation will be based on de-
fault settings with and without these tools (tools on/tools off) for each operation point of the codec.
For each codec, we run experiments at four different compression rates (or quality levels), covering
both low and high bitrate scenarios.

5.2 ATTACKS

We compare our method with FTDA, I-FGSM, and SRDA attacks. Chen & Ma (2023) use the
square error between the compressed images before and after the attack as the objective function

6
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for their attack. For a more comprehensive comparison, we also evaluate their attack variants using
fglobal as the objective function. The SRDA attack involves the possibility of restrictions based on
different norms (p = ∞, p = 2). Since the FTDA limits are based on p = 2 and our method is based
on p = ∞, both restriction variants are considered for SRDA. We also evaluate the effectiveness of
our method without some modules: without a normalized direction and without using flocal. After
testing the attacks, we found that for all attacks except for FTDA, 30 iterations were sufficient to
converge. However, FTDA required 100 iterations in order to work correctly. In our method, the
number of iterations was equally divided between the objective functions (the first 15 iterations with
fglobal and the next 15 with flocal). Our work used the ε = 7/255 (and ε = 0.0006 for FTDA and
SRDA (l2)) perturbation budget and block Bij with size P = 75 (experiments with an alternative
perturbation budget and different variations of the P parameter can be viewed in the appendix).

5.3 DATASETS

We test attacks performance and the robustness of models on several standard image datasets. The
KODAK PhotoCD dataset Kodak (1991) (24 high-quality uncompressed images) is used as a classic
evaluation suite. In addition, we use 100 images from the Cityscapes Cordts et al. (2016) urban street
scene dataset, as well as a random subset of 50 images from the NIPS 2017: Adversarial Learning
Development Set Competition Page. These datasets cover both general photographic content (KO-
DAK and NIPS) and domain-specific scenes (Cityscapes), and are commonly used for compression
evaluations.

5.4 METHODS FOR EVALUATING THE PERFORMANCE OF ATTACKS

We employ two complementary evaluation methods.

Quality drop metric. For each codec and attack, we measure the degradation in reconstruction quality
caused by the attack. We use a selected quality metric Q, such as PSNR, MS-SSIM Wang et al.
(2003) or VMAF Li et al. (2018), to calculate the difference between the quality after compression
of clear and attacked images. This difference is then divided by the quality of the clear image after
compression to obtain a relative drop.

QDM =
Q(I, C(I))−Q(I∗, C(I∗))

Q(I, C(I))

We average the QDM over all test images and all four bitrates for each codec, to get an average
relative drop in quality (Q̃DM ).

Compression-efficiency drop metric. To quantify how attacks affect compression efficiency, we
compared each NIC to a JPEG2000 baseline using the BSQ-rate measure (Zvezdakova et al. (2020)).
Specifically, we first compute a ”bit savings” vs quality (BSQ-rate) curve for the NIC and JPEG2000
on a clean dataset. We repeat the comparison on attacked images and report the percentage increase
in the BSQ-rate metric caused by the attack (an increase indicates worse efficiency). This captures
the relative drop in compression performance under attack, including changes in bit-rate. This ap-
proach requires careful filtering of examples and is not meaningful for codecs that completely fail
under attack, but it provides a more direct measure of compression degradation across rates.

CEDM =
BSQ-rate(I∗)− BSQ-rate(I)

BSQ-rate(I)
.

This metric is calculated only for those images whose attacked versions have an overlap of at least
25% between the ranges of the RD-curves for the neural network and traditional codecs. We average
the CEDM over all test images for each codec, to get an average compression-efficiency drop
(C̃EDM ).

Attack visibility. We also evaluate the visibility of the adversarial perturbation by Q(I, I∗). We
average the Q(I, I∗) over all test images and all four bitrates for each codec, to get an average
attack visibility (Q̃). To make the visibility metric relative and independent of the range of quality
metric Q(·), the values of the visibility metric are normalized for each codec and increased by 2 to

7
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eliminate negative values:

VM =
Q̃− mean Q̃ by attacks

std Q̃ by attacks
+ 2.

Generalized assessment of attack performance. Since a large number of codecs are involved in the
comparison, for the final assessment of the effectiveness of attacks, performance metrics (CEDM,
QDM) and visibility metrics are averaged over all codecs, and the final estimates are determined as
the square root of the product of the average performance metric and visibility metric:

QD-SCORE =

√
VM · Q̃DM and CED-SCORE =

√
VM · C̃EDM.

We also measure metrics QD-SCORE and CED-SCORE separately for the JPEG AI codec
family, as well as for each codec (results for each codec can be viewed in the appendix).

6 RESULTS AND DISCUSSION

Overall Attack Effectiveness. Table 1 demonstrates that the proposed modular adversarial attack
outperforms baseline methods (I-FGSM, FTDA, and SRDA) across a diverse set of NIC architec-
tures. In terms of quality degradation (QD-SCORE), our method achieves the most significant rel-
ative drop in PSNR, VMAF, and MS-SSIM, while maintaining low perceptibility of perturbations.
Similarly, in compression efficiency degradation (CED-SCORE), our approach leads to substantially
higher bit-rate inefficiency compared to competing attacks, confirming that it can destabilize both
reconstruction quality and rate–distortion behavior.

QD-SCORE CED-SCORE
Attack PSNR VMAF MS-SSIM PSNR VMAF MS-SSIM

OUR + freq. module 0.59 0.45 0.42 0.81 0.45 0.79
OUR 0.57 0.52 0.40 0.82 0.59 0.65
OUR w/o flocal 0.54 0.46 0.32 0.75 0.52 0.70
OUR w/o normalized direction 0.54 0.45 0.31 0.78 0.50 0.63
I-FGSM with fglobal 0.53 0.48 0.27 0.57 0.54 0.53
FTDA with fglobal 0.56 0.46 0.37 0.85 0.57 0.77
I-FGSM 0.38 0.13 0.26 0.36 0.19 0.42
FTDA 0.43 0.17 0.31 0.66 0.22 0.71
SRDA (l2) 0.41 0.20 0.18 0.65 0.20 0.51
SRDA (l∞) 0.37 0.10 0.24 0.29 0.29 0.49

Table 1: Comparison of attack performance across all tested NIC codecs. QD-SCORE (qual-
ity degradation) and CED-SCORE (compression efficiency degradation) are reported for PSNR,
VMAF, and MS-SSIM. The proposed method consistently achieves higher degradation with lower
visibility than baseline attacks.

Robustness Across Codecs. Our attack generalizes well across codecs, from classical hyperprior
and hierarchical models to modern transformer-based codecs and GAN-based HiFiC. As shown in
Table 2, its performance on JPEG AI is particularly noteworthy, as prior methods were comparatively
ineffective. Both Base Operation Point (BOP) and High Operation Point (HOP) configurations were
significantly degraded, indicating that the proposed optimization strategy can penetrate even the
most advanced codec designs. Fig. 2 and Fig. 3 in the Appendix contain more information.

Contribution of Individual Modules. The ablations in Tables 1 and 2 highlight the importance of
each module. Removing the local distortion stage (w/o flocal) reduces both QD-SCORE and CED-
SCORE, underscoring that local artifact amplification complements global degradation. Likewise,
excluding the normalized direction update diminishes attack strength, showing that alternation be-
tween signed and normalized gradients provides a more balanced and efficient optimization path.
Incorporating the frequency-domain masking (freq. module) improves imperceptibility while pre-
serving attack effectiveness, yielding the best trade-off between strength and stealth.

8
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QD-SCORE CED-SCORE
Attack PSNR VMAF MS-SSIM PSNR VMAF MS-SSIM

OUR + freq. module 0.218 0.078 0.081 0.517 0.202 0.514
OUR 0.192 0.092 0.087 0.422 0.209 0.376
OUR w/o flocal 0.153 0.091 0.085 0.355 0.232 0.337
OUR w/o normalized direction 0.152 0.087 0.084 0.348 0.164 0.318
I-FGSM with fglobal 0.138 0.079 0.066 0.218 0.052 0.228
FTDA with fglobal 0.165 0.079 0.078 0.325 0.028 0.280
I-FGSM 0.087 NaN 0.046 0.109 0.045 0.293
FTDA 0.071 NaN 0.045 0.132 0.054 0.372
SRDA (l2) 0.123 0.062 0.070 0.232 0.081 0.286
SRDA (l∞) 0.113 0.013 0.078 0.104 0.061 0.218

Table 2: Attack performance on the JPEG AI codec family. Despite its advanced design, JPEG
AI is highly vulnerable to the proposed attack, with significant drops in both reconstruction quality
(QD-SCORE) and compression efficiency (CED-SCORE). The frequency-domain masking variant
provides the best trade-off between stealth and strength.

Visual Assessment. Fig. 1 shows decompressed images after different attacks. Competing methods
(I-FGSM, FTDA) introduce visible distortions; however, the distortions that occur after our attack
are more pronounced. Our method provides effective perturbations that yield pronounced artifacts
post-compression while leaving adversarial inputs nearly indistinguishable from the originals. For
JPEG AI, the compared attacks are ineffective, as they do not produce visible artifacts.

Decompressed with JPEGAI v7 (HOP)

Decompressed with Cheng2020 (attn)

FTDA I-FGSM OursFTDA I-FGSM Ours

Figure 1: Adversarial images generated by our proposed attack and compared to baseline methods,
compressed and decompressed using two different codecs. Our method produces more pronounced
artifacts post-compression while maintaining adversarial inputs that remain visually similar to the
original images, unlike competing attacks, which often fail to create significant artifacts.

7 CONCLUSION

In this work, we introduced a modular adversarial attack framework for neural image compres-
sion, combining global distortion maximization, local artifact amplification, and frequency-domain
masking. Our results across a wide range of codecs, including JPEG AI, demonstrate that this
approach achieves state-of-the-art quality and efficiency degradation compared to existing attacks,
while maintaining imperceptible perturbations. The global and local strategies are critical, as global
degradation reduces the baseline quality while local artifact optimization enhances the perceptual
and structural impact of the distortions. The frequency masking module improves stealth by reduc-
ing low-frequency artifacts, which would otherwise be more noticeable, without sacrificing attack
strength. These findings reveal a critical vulnerability in modern NIC systems, indicating that com-
pression methods remain highly susceptible to perturbations. Our analysis also provides insights
that may guide the design of future resilient codecs and motivate the development of robust training
or defense mechanisms against adversarial manipulations.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We attach the full code for the experiments, and a Docker image in the supplementary and on a
public repository upon acceptance.
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A APPENDIX

A.1 PROOF OF THE PROPOSITION

Let lt∞ = ∥I∗t − I∥ (norm of perturbation after t iteration), where I∗t denote adversarial image after
t iteration. Then, since NOpt uses a sign-direction approach, for sufficiently small β, the number of
iterations can be easily approximately calculated as:

T =

{
lt∞−ε

β , if lt∞ > ε

0, else
.

Let x denote the element of the vector r with the maximum absolute value. Then, the evaluation
lt∞ ≤ ε+ |x| ∗ lr is valid. Therefore, inequality lt∞ ≥ ε+ k ∗ lr can only occur if inequality |x| ≥ k
holds. Let’s write Chebyshev’s Inequality for the random variable y (random element of r), taking
into account that its expected value is 0 and its standard deviation is 1:

P
(
|y| ≥ k

)
≤ 1

k2

Then it is true for x: P
(
|x| ≥ k

)
≤ 1− (1− 1

k2 )
H∗W From which we get

P
(
lt∞ ≥ ε+ k ∗ lr

)
≤ 1− (1− 1

k2
)H∗W . □

A.2 EFFECTIVENESS OF ATTACKS ON DIFFERENT CODECS.

In Fig. 2 and 3 are the results across different NIC architectures. They confirm that our attack
is broadly effective and generalizes well beyond a single codec family. While traditional methods
such as I-FGSM and FTDA show limited degradation—especially against stronger codecs like JPEG
AI—our modular approach consistently produces higher QD-SCORE values. The inclusion of lo-
cal artifact amplification and normalized gradient updates proves particularly important for more
advanced models, enabling substantial quality degradation even where prior attacks fail. These find-
ings highlight the robustness and versatility of the proposed method across both classic hyperprior
models and modern transformer- or GAN-based codecs.
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Figure 2: Comparison of QD-SCORE on different NIC models. Lines represent attack efficiency
for the proposed method and other methods.
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Figure 3: Comparison of CED-SCORE on different NIC models. Lines represent attack efficiency
for the proposed method and other methods.

Q
D
M

Invisibility

Figure 4: Comparison of QDM across different NIC models (with the lowest compression ratio in
the their families). Our proposed method, particularly with the frequency-domain masking module,
consistently achieves higher QDMs while maintaining stealth, outperforming baseline attacks across
both classical and modern codecs.

A.3 ATTACK INVISIBILITY-EFFICIENCY TRADE-OFF.

Fig. 4 illustrates the trade-off between invisibility and compression efficiency degradation (CED-
SCORE). The results show that our proposed method consistently achieves higher CED-SCORE
values at comparable levels of invisibility than baseline attacks, indicating a more effective balance
between stealth and destructive impact. In particular, the frequency-domain masking variant attains
the best compromise: it maintains imperceptible perturbations while still inducing significant effi-
ciency losses in the codecs. This demonstrates that the modular design not only enhances attack
strength but also improves its practicality by minimizing visual detectability.
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A.4 ALTERNATIVE PERTURBATION BUDGET.

In this section, we show the results of an experiment on KODAK PhotoCD dataset with a smaller
perturbation budget ε = 5/255 (and ε = 0.0003 for FTDA and SRDA (l2)). The results in the
Tables 5 show that with a lower ε attacks become much less effective, but our methods still show
the best results.

QD-SCORE CED-SCORE
Attack PSNR VMAF PSNR VMAF

OUR + freq. module 0.17 0.1 0.23 0.11
OUR 0.13 0.12 0.17 0.14
I-FGSM with fglobal 0.10 0.1 0.11 0.12
FTDA with fglobal 0.12 0.9 0.18 0.11
I-FGSM 0.06 0.02 0.07 0.03
FTDA 0.08 0.05 0.1 0.06

Table 3: Comparison of attack performance across all tested NIC codecs on KODAK PhotoCD
dataset with perturbation budget ε = 5/255. QD-SCORE (quality degradation) and CED-SCORE
(compression efficiency degradation) are reported for PSNR, VMAF. The proposed method consis-
tently achieves higher degradation with lower visibility than baseline attacks.

A.5 ADVERSARIAL IMAGES EXAMPLE.

In this section, we show adversarial images before compression that correspond to the examples
shown in Fig. 1, so that we can assess the visibility of attacks.

Figure 5: Adversarial images for JPEG AI v7 (HOP) generated by our proposed attack and compared
to baseline methods before compression.

Figure 6: Adversarial images for Cheng2020 (attn) generated by our proposed attack and compared
to baseline methods before compression.

A.6 VARIATIONS OF THE P PARAMETER.

The parameter P controls the trade-off between artifact localization granularity and computational
efficiency. Empirical findings during development showed that P ∈ [50, 100] approximately the
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same results are obtained. It makes no sense to increase the parameter, since the current size is
sufficient for local artifacts to occur, and increasing it will only lead to the loss of some of them. We
selected P = 75 as the midpoint providing optimal balance.

QD-SCORE
P PSNR VMAF

25 0.157 0.087
50 0.189 0.090
75 0.188 0.090
100 0.188 0.091
125 0.181 0.088
150 0.177 0.089

Table 4: The effectiveness of our attack at different P values on the JPEG AI codec family on the
KODAK dataset.

A.7 AN ATTACKS FOR DIFFERENT BITRATES.

Quality = 0 Quality = 1
Attack VMAF MS-SSIM PSNR VMAF MS-SSIM PSNR

OUR + freq. module 0.23 0.35 0.45 0.15 0.26 0.66
OUR 0.38 0.36 0.37 0.31 0.33 0.48
OUR w/o flocal 0.28 0.30 0.35 0.17 0.26 0.49
OUR w/o normalized direction 0.37 0.35 0.37 0.30 0.29 0.48
I-FGSM with fglobal 0.38 0.24 0.37 0.31 0.23 0.46
FTDA with fglobal 0.38 0.32 0.44 0.31 0.28 0.59
I-FGSM 0.00 0.17 0.18 0.03 0.18 0.29
FTDA 0.00 0.15 0.14 0.03 0.16 0.24
SRDA (l2) 0.31 0.36 0.33 0.27 0.30 0.44
SRDA (l∞) 0.00 0.18 0.22 0.07 0.14 0.43

Quality = 2 Quality = 3
Attack VMAF MS-SSIM PSNR VMAF MS-SSIM PSNR

OUR + freq. module 0.37 0.33 0.97 0.36 0.32 1.10
OUR 0.40 0.29 0.82 0.44 0.31 1.00
OUR w/o flocal NaN NaN NaN 0.32 0.28 0.93
OUR w/o normalized direction NaN NaN NaN 0.25 0.25 0.87
I-FGSM with fglobal 0.34 0.21 0.55 0.36 0.26 0.77
FTDA with fglobal 0.30 0.24 0.68 0.36 0.25 0.70
I-FGSM 0.16 0.16 0.40 0.19 0.11 0.37
FTDA 0.12 0.12 0.30 0.18 0.06 0.31
SRDA (l2) 0.23 0.23 0.53 0.05 0.14 0.38
SRDA (l∞) 0.21 0.22 0.54 0.04 0.13 0.37

Table 5: Comparison of attack performance (QD-SCORE) across the JPEG AI v7 (HOP) with dif-
ferent bitrates.

14


	Introduction
	Related Work
	Problem formulation
	Proposed Method
	l norm optimisation algorithm
	Flexible optimisation direction
	Global and local optimisation module
	Fidelity improvement by frequency module

	Experiments
	NIC models
	Attacks
	Datasets
	Methods for evaluating the performance of attacks

	Results and discussion
	Conclusion
	Reproducibility Statement
	Appendix
	Proof of the Proposition
	Effectiveness of attacks on different codecs.
	Attack invisibility-efficiency trade-off.
	Alternative perturbation budget.
	Adversarial images example.
	Variations of the P parameter.
	An attacks for different bitrates.


