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Abstract— Vision-based defect detection effectively moni-
tors the condition and quality of construction and industrial
products. This work presents an accurate detection network
augmented by an environmental interaction module and a
flexible, tunable activation function. The environmental inter-
action module is designed to localize and detect defects more
accurately, while the flexible activation improves accuracy with-
out increasing parameters. To mitigate information loss after
downsampling, we restructure features and introduce a simple
deep-global fusion module that integrates deep and global
cues to enhance detection performance. Extensive experiments
demonstrate the superiority of the proposed network, and real-
world tests highlight its portability and practicality. On an edge-
computing device, the model achieves real-time inference at
15 FPS, underscoring its suitability for resource-constrained
deployment. Furthermore, the proposed activation function
enhances the nonlinear representational capacity of neural
networks, outperforming 20 widely used activation functions
in detection accuracy.

[. INTRODUCTION

Detecting defects in buildings and industrial products is
essential for ensuring safety and maintaining quality control.
These structures can develop a variety of defects, such as
cracks, corrosion, and stains, which, if left unchecked, can
lead to significant damage and financial loss. Traditional
inspection methods primarily rely on human visual assess-
ments, which are challenging for inspecting tall structures
due to the need for high-altitude operations or specialized
imaging equipment [1]. These methods often compromise
safety and are prone to inaccuracies resulting from human
fatigue and equipment limitations. Therefore, automated de-
fect detection is crucial for ensuring safety, upholding pro-
duction and environmental standards, and enabling efficient
operations and maintenance in large-scale construction and
infrastructure management.

In recent years, there have been notable advancements
in vision-based defect detection techniques. Yang et al. [2]
proposed a convolutional neural network (CNN) for defect
detection that improves efficiency while maintaining high
inspection speeds by integrating EIoU and modification loss
functions into YOLOv3. However, this method’s inspection
speed of 93.5ms per image on an NVIDIA GTX1050Ti
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GPU makes it unsuitable for edge-computing devices like the
Nvidia Orin NX. Similarly, YOLO-M [3] modifies YOLOv3
with an acceleration algorithm and a median flow (MF)
algorithm for crack counting, but it is limited by its low
processing speed and the narrow scope of defect types it
can detect, specifically pavement cracks. The Convolutional
Recurrent Reconstructive Network (CRRN) [4] improves
defect detection performance by incorporating convolutional
spatiotemporal memory (CSTM), with its effectiveness val-
idated on two public datasets. Despite these advancements,
current algorithms still face several challenges:

« Using convolutional neural networks (CNNs) for down-
sampling and feature extraction often results in the
loss of important features. Improving feature retention
during the propagation process is expected to enhance
detection performance.

o Predominantly focusing on target features often over-
looks environmental context/cues. Integrating environ-
mental features, as certain targets are intrinsically con-
nected to specific contexts, can improve detection accu-
racy.

o Limited activation capabilities result in inadequate rep-
resentation of complex defect data, which contributes to
suboptimal detection accuracy.

o Improving detection accuracy often requires adding
more parameters or computational cost, but balancing
accuracy with memory efficiency is essential for prac-
tical applications on memory-constrained devices.

Moreover, Drones’ high maneuverability allows them to
access areas that are otherwise unreachable by humans.
Drone-mounted defect detection systems can improve inspec-
tion efficiency and minimize accuracy loss due to human
fatigue. Advances in accurate defect detection methods can
enhance inspection effectiveness, while faster detection rates
improve overall efficiency [5]-[9].

This work aims to develop a defect detection framework
that optimizes the balance between parameters and accuracy,
making it suitable for edge-computing devices. We introduce
a novel detection network, the Environmental Interaction
and Activation Representation Network (EARNet), which
provides accurate and fast defect detection with minimal
parameters and computational cost. To achieve this, we: 1)
advocate for using space-to-depth downsampling instead of
traditional convolutional layers to ensure complete feature
propagation [11]; 2) propose an environmental interaction
module to enhance detection performance; and 3) propose
the Kernelized Input-Logarithmic Unit activation function
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These illustration demonstrate the superior performance of our method. (a) The first column shows the visualization results from accurate

YOLOV9 [10], while the second column displays the results from our method, which detects defects with higher confidence scores. (b) The trade-off
between inference speed and accuracy. (c) The trade-off between the number of parameters and accuracy. Please zoom in for a clearer view.

(Kilu), which offers flexible nonlinear representation capabil-
ities through adjustable parameters, thus improving detection
performance. As shown in Fig 1(a), EARNet achieves more
accurate defect detection compared to YOLOV9 [10]. These
visualizations highlight the practical effectiveness of our
approach. Fig 1(b) and Fig 1(c) demonstrate that our method
achieves higher accuracy with fewer parameters and the
fastest speed. Specifically, our method achieves an accuracy
of 51.1% with only 4.9M parameters, delivering the fastest
inference speed, making it highly competitive for drone-
based applications.
In summary, the main contributions of this work are:

1) Introducing environmental interactive information in de-
fect detection research marks a novel development that
enhances defect localization and assessment, thereby
improving detection performance.

2) A novel, adaptable activation function is proposed to
augment the nonlinear representation capabilities of
neural networks, thereby enhancing detection accuracy
without an increase in parameters.

3) Comprehensive ablation studies illustrate the effective-
ness of the proposed strategies. The efficacy of EARNet
is validated across three challenging datasets. Deploying
EARNet on an edge computing device with 1920 x
1080 resolution videos confirms its real-time detection
capabilities in UAV onboard applications.

II. METHODOLOGY

As depicted in Fig. 2, the Environmental Interaction and
Activation Representation Network (EARNet) for accurate
defect detection comprises two key components: the en-
coder and the decoder. The encoder incorporates five Con-
volutional Spatial-to-Depth (CSD) modules (black blocks)
and four Contextual Residual Mapping (CRM) modules
(light red blocks). The CSD modules perform downsampling
while preserving essential convolutional features, whereas
the CRM modules enhance environmental interaction. The
encoder concludes with the Depth Global Module (DGM),
which captures and integrates both depth and global feature

dynamics by expanding the receptive field to improve detec-
tion accuracy.

The decoder comprises two pathways: bottom-up and
top-down. The bottom-up branch includes two upsampling
modules and one CRM module, designed to increase feature
scale and refine residual features. Conversely, the top-down
branch contains two CRM and two CSD modules, which
focus on downsampling and feature extraction, with each
CSD halving the feature map dimensions. This branch only
integrates features from high-level CRM modules to reduce
computational costs. The bottom-up pathway strengthens the
localization accuracy in lower feature layers, reinforcing
the hierarchical structure and minimizing information prop-
agation distance. The variable "N denotes the number of
Contextual Action networks (CA) within each CRM module,
and the CSD module is composed of convolutional layers,
normalization, the Kilu activation function, and space-to-
depth operations.

A. CSD Module

As illustrated in Fig. 3, the CSD module initially extracts
convolutional features using a convolutional layer, ensuring
that the input and output retain the same feature dimensions.
Subsequently, the spatial features are converted into depth
features through pixel reorganization. With the application
of the CSD operation, the channels in the output increase to
four times that of the input, while the spatial dimensions are
reduced by half. This process allows for the retention of a
larger quantity of feature information while the reduction in
spatial dimensions.

B. Proposed CRM Module

Neural networks usually focus on directly extracting
features from objects for detection tasks. However, many
objects are linked to specific environments. For instance,
penguins are native to Antarctica, and distinguishing be-
tween turtles and tortoises is easier when considering their
habitats—turtles live in water, while tortoises live on land.
Similarly, the defects studied here are tied to certain en-
vironmental conditions. Moisture is found in humid areas,



S=1 S=1
K=3 K=3 N=3
& &

RGB Image

CsD @ Upsample
K: Kernel size

ﬁ CRM @ Concatenation N: CA countin CRM

S: Stride

Final Result

Deep-globle module '}'1 & . =
o

1 l Backbone
—— O <O~
&

/ = s=1
N=3 K=3 N=3 K=3

N
@ Detection head

Spalling [ Crack

Fig. 2.

Defects detection framework. First, we perform four rounds of downsampling on the original input image. Then, we utilize DGM to fuse the

deep convolutional features with global features. We employ one top-down branch followed by one bottom-top branch and perform feature fusion. Finally,
the fused features are passed to the detection head to output the detection results. Please zoom in for the best view.
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Fig. 3. Illustration of CSD. Following the convolution operation and
subsequent downsampling, the output dimensions are reduced to half of the
input dimensions, while the number of channels increases to four times that
of the input.
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Fig. 4. Illustration of CRM. The CA module is capable of multiple serial
connections.

and cracks often occur in places with vibrations. Thus,
including environmental information helps improve defect
classification accuracy.

To do this, we propose a module for integrating envi-
ronmental information, as shown in Fig. 4. The process
starts with feature extraction F € RE*H*W through a
convolutional layer. The features are then split into two parts,
Fg1, Fop € RE/2XHXW "which go through the CA module
for enhancement. A dilated convolution (gray DCBK block)
captures contextual environmental features. After extraction,
the features are fused, with Fg; being combined with the
enhanced features via a residual connection, resulting in
Fo1 € RC/2XHXW  Thig is then merged with Fey and
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Fig. 5. The structure of the proposed DGM. The three-channel global
features are fused with the deep convolutional features.

processed through another convolutional layer to produce the
final features. When using multiple CA operations, a fusion
step ensures the features are refined before the final output.

C. DGM Module

Fig. 5 depicts the Deep Global Module (DGM) architec-
ture. The input feature F € R *#xW yndergoes an initial
convolutional layer, generating the feature F; € RCoxHxW
Subsequently, F'; is enhanced through three successive 7 x 7
global pooling layers, each refining the features further.
Concurrently, F; passes through a separable convolution
(indicated by the gray block), resulting in a nuanced feature
set Fy € RCoXHXW Thig feature set Fy is then merged
with the globally pooled features to form a composite feature
matrix, which is processed by another convolutional layer to
produce the final output feature. This configuration leverages
separable convolutions to delve deeper into the feature space
efficiently, and the 7 x 7 pooling size enhances global
contextual capture by extending the receptive field.

D. Proposed Kilu Activation Function.

Finding an effective and robust activation function for
deep neural networks (DNNs) is challenging, mainly due to
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Fig. 6. The graph of the function. (a) Kilu function’s graph for different values of . (b) The first derivative plot, and the second derivative plot of the
Kilu function. (c) The first derivative plot, and second derivative plot of the SiLU function. Please zoom in for the best view.

the saturation properties of traditional functions. Saturation
occurs when the derivative of an activation function, §(z),
approaches zero in both the positive and negative ranges,
leading to vanishing gradients. Classic activation functions
like Sigmoid and Tanh are particularly prone to this issue,
which often results in poor gradient propagation during
training, especially when input values are very large or very
small. The introduction of the Rectified Linear Unit (ReLU),
defined as §(z) = max(0,z), was a major step forward in
activation functions, as it allowed for more efficient training
dynamics by mitigating the vanishing gradient problem.
However, ReLU is still has its drawbacks, such as the ”dying
neuron” problem, where neurons become inactive and output
zero for any negative input, which hinders gradient flow
through these neurons.

To address these challenges, we propose a flexible ac-
tivation function called Kernelized Input-Logarithmic Unit
(Kilu). As shown in Fig. 6(b) and Fig. 6(c), similar to the
SiL.U function used in YOLOV9 [10], Kilu exhibits an un-
bounded upper limit on the right side of the activation curve.
The Kilu activation function is designed by multiplying the
logarithm of the exponential function of Tanh with its input
z and is defined as:

§(z) = wlog(1 + etarhlaz)) (1)

where « is the scaling parameter.

The first column in Fig. 6 depicts the graph of Kilu
function for different values of «. It is observable that the
value of a affects the amplitude of the circular arc in the
middle. As « increases, the amplitude of the circular arc
diminishes.

For substantial positive inputs, the Kilu function exhibits
characteristics akin to SiLU, with the output approximating
a linear relationship to the input. Distinctively, the Kilu
function maintains a linear response even for negative inputs,
unlike SiLU and other prevalent activation functions.

The second and third columns of Fig. 6 depict the graphs
of the first and second derivatives of the Kilu and SiLU

functions, respectively. Analyzing the first derivatives, it is
evident that the gradients of our activation functions do not
approach zero as they extend towards negative or positive
infinity. Notably, the second-order derivative of the proposed
Kilu function resembles the negative Laplacian operator, sim-
ilar to the second-order derivative of the Gaussian operator.
This resemblance is advantageous for function maximization.
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