Plan Explanation through Recommendations

Sarath Sreedharan', Trisha Ghali', David Smith?

1Computer Science Department, Colorado State University, Fort Collins, USA
2pS Research, Los Altos Hills, CA, USA
ssreedh3 @colostate.edu, david.smith@psresearch.xyz

Abstract

This paper aims to investigate an under-studied aspect of ex-
planation, namely, its utility in helping users make better de-
cisions. We will investigate such problems in the context of a
specific explanatory setting, namely, when the user suggests
the execution of an incorrect plan. Here, the system could
help the user by pointing out how to update the current plan
so as to avoid the failure. Such methods could be combined
with existing explanatory methods to create explanations that
empower users to make more effective decisions. Addition-
ally, we will see how we could convert the problem of gen-
erating such plan recommendations into a planning problem
of its own. We will ground this problem in the context of nu-
meric planning problems and evaluate the effectiveness of the
formulation in some IPC benchmark problems.

Introduction

In the paper “Explainable Planning”, Fox, Long, and Mag-
azzeni (2017) give three reasons why explanations may be
needed: for developing trust, to support interaction, and to
promote transparency. If we look at current work on explain-
able planning, we see that the majority focus on explanatory
methods designed to improve transparency, either of the de-
cision (plan or policy), the model, or the reasoning process.
This approach also implicitly supports the objective of im-
proving trust, as one expects the improved transparency to
engender trust. On the other hand, the goal of generating
explanations that support interactive decision making' has
received relatively less attention.

Explanation aimed at helping users improve their plans
is related to the notion of actionability (Guidotti 2022) that
has received attention within the broader XAl community.
Under actionability, the objective, as usually formalized, is
to identify explanations that will allow the user to achieve
their exact desired behavior. However, in many cases, the
system may not have complete knowledge of the user’s goals
or plan, and the plan that the user wants to follow, i.e., the
true desired behavior, may not even be feasible. In this case,

been used within the planning community (Gobelbecker
et al. 2010). We will show how our proposed explanatory
method subsumes existing excuse generation methods.

Specifically, in this paper, we will look at a basic explana-
tory setup where a user proposes a partial plan, which may
not be valid or complete. We do not presuppose that the sys-
tem necessarily has complete knowledge of the user’s plan
or goals. As an explanation for invalidity, the system iden-
tifies a counterfactual plan, i.e., what modifications could
have been made to the plan so as to fix the current reason(s)
for plan failure. We will refer to this type of explanation as
plan explanation through recommendation or X-REC. We
will show how the identification of such a counterfactual
plan in itself could be converted into a planning problem.
The formulation also allows users to direct the plan recom-
mendation process, so that they can control what aspects of
the plan can be changed. These mechanisms allow us to en-
sure that a counterfactual plan, if identified, will align with
what the user actually wanted. We consider numeric plan-
ning problems, as they represent a setting where human in-
tuitions can easily fail, and give rise to more complex failure
scenarios and explanations. In addition to proving the basic
properties of our proposed compilation, we will also show
how our proposed formulation subsumes excuse generation.
We test our formulation on a set of standard numeric plan-
ning benchmarks.

Motivating Example

To see the utility of such “actionable” explanatory tech-
niques, let us consider a case where a science team is trying
to come up with a plan for a planetary rover. Initially, the
team wants the rover to move to a crater, take a picture of
the crater, move to a waypoint from which the picture can
be communicated, and then travel back to the lander, where
the soil sample can be delivered and analyzed. As such, the
proposed plan would look like:

. . - . . 7 = (move_to_crater, collect_soil_sample, take_picture_of _crater
explanations need to help the user identify a valid behavior { ’ ple, P ’

that they might find acceptable, or one that achieves as many
of their underlying objectives as possible.

To a degree, explanation aimed at helping users improve
their plans is also connected to notions like excuses that have

move_to_hilltop, communicate_picture,
travel_back_to_lander, deposit_soil_sample)

Now the team passes the plan to the automated plan-
ning and scheduling system and receives an error say-

'Note that this is distinct from interactive explanations. ing that the plan would fail at the fifth step, namely for



the communicate_picture action. This is because the action
communicate_picture uses up 30% of the battery, and as
such, has a precondition that the battery level should be
greater than or equal to 30%. However, the rover starts with
a battery level of 60%. Each of the four actions before it
reduces the battery level by 10%, so by the time the rover
reaches the fifth action, the battery level would be at 20%,
rendering the action unexecutable. Now, the team that wants
the robot to carry out this action would like to know why and
how it can be fixed.

The point to note here is that there isn’t a single action
that could be identified as the cause of the action failure. Af-
ter all, if one of those actions hadn’t been executed, the bat-
tery level would have been equal to 30%. However, suppose
we simply point out all the actions that are responsible for
the insufficient battery level. In that case, it doesn’t provide
much help to a user who is trying to produce a valid exe-
cutable action sequence that achieves their goals. A more
helpful answer is to instead identify minimal updates that
will convert the current sequence to an executable one. Here,
we could consider both the removal of actions that might be
using up the battery, or consider adding actions that will in-
crease the battery level.

Now, in terms of removing actions, we see an immedi-
ate issue. If we were to remove take_picture_of crater or
move_to_hilltop, then in the resulting action sequence, even
if the battery level is at a desirable level, other preconditions
for that action would not be satisfied. In particular, the fail-
ing action requires a picture of the crater to be available,
and the rover needs to be at an elevated point from which
the picture can be communicated, namely, a hilltop. Now, if
we were to instead remove move_to_crater, it would result
in the failure of the action take_picture_of_crater, which is in
turn needed for communicate_picture. As such, the only ac-
tion remaining for removal is collect_soil_sample. The sys-
tem could therefore present this option to the user. Of course,
this action is needed for later actions in the sequence, namely
deposit_soil_sample. However, it is still potentially worth
bringing up this option to the user, since they might be open
to skipping that action (along with travel back _to_lander,
which is only needed for the deposit action).

However, it is also possible that the user might just reject
this option, since they might care about collecting the soil
sample as much as taking the picture. So, instead, we can
look at inserting an action. Specifically, the planner could
recommend inserting a solar recharge action that increases
the current charge by 10%, thus allowing for the execution
of the action. If the user accepts this modification, they can
move on to the remainder of the plan, which may contain
additional actions that would fail.

Remark. Note that the method of explanations as plan rec-
ommendations could be combined with other forms of ex-
planations, in case they need an added level of clarity. For
example, one could provide a causal example (Bercher et al.
2014) of the failure before providing the recommendations.
Or one might need to perform model reconciliation (Sreed-
haran, Chakraborti, and Kambhampati 2021) so the user can
correctly understand the proposed changes (a limited ver-
sion of this was studied by Caglar, Zahedi, and Sreedha-

ran (2025)) Similarly, it is worth noting that the proposed
method is closely related to another form of explanation gen-
eration methods that have been considered in the literature,
namely excuses (Gobelbecker et al. 2010). While excuses
focus on identifying possible model updates that will ensure
a given plan prefix is executable, the proposed method looks
at how the plan prefix itself can be updated so it can be ren-
dered executable.

Background

As discussed earlier, we will focus on defining X-REC for
numeric planning settings, where the planning problem is
given by a tuple of the form M = (D, I, G). Here, the do-
main D is further defined as D = (F, A), where F is the
fluent set and A is the set of actions. The fluent set con-
sists of both propositional and numeric fluents, captured as
F = (F,, F,). Each action a € A is further defined by a
tuple of the form

a = (pre(a), add,(a), dely(a), eff ,(a)).

where pre(a) is the action precondition, which is further
defined as pre(a) = (pre,(a), pre, (a)). pre,(a) C F, is
the action precondition defined over the propositional flu-
ents, and pre, (a) represents the preconditions expressed
over the numeric fluents. Specifically, pre,,(a) consists of
a set of formulae where each formula is of the form (f ¢ )
or (f ¢ g). In these formulae, f,g € F,, are numeric flu-
ents, ¢ € {<,<,=,>,>,#} is a relational operator, and
i € Ris a real number. The components add,(a) C F), and
dely(a) C F, represent the add and delete effects that up-
date the propositional part of the state. The numeric effects,
eff ,,(a) are represented by a set of formulae of the form
(f  expr), where f € F, is a numeric fluent and expr is
an arithmetic expression over numeric fluents and real num-
bers. We will use the notation S |= pre(a) to denote that
the preconditions of action a are satisfied in state .S. We will
use the function ~ to capture the transition function, which
captures the result of applying an action in S. We will also
overload the notation and allow for ~y to capture the result of
executing action sequences.

Finally, we will represent the initial state as I = (I,,, I,)
and goal specification as G = (G, G),), where, as before,
the subscript p stands for propositional part and n for nu-
meric part. The goal specification is given in a form simi-
lar to that of action preconditions. A solution to a planning
problem is a plan, which is an action sequence whose exe-
cution results in a state that satisfies the goal condition.

Explanations as Plan Recommendation

Now moving on to the problem of explanations as plan rec-
ommendation or X-REC, the problem starts with a given
plan prefix whose last action fails. Our goal is to figure out
how one could update it so as to identify an executable plan
prefix that ends in the success of the originally failing action.
More formally, the problem is defined here as

Definition 1 For a given plan prefix 1 = {(aq, ..., ) con-
taining m actions, where the action a,, isn’t executable for
a model M. The problem of k-Edit-X-REC is to find a se-
quence ' such that:



C1 We can obtain 7' from by performing at most k inser-
tions and deletions.
C2 ' is an executable sequence for M that ends in a,y,.

While the above definition focuses on an edit budget of k,
one could identify a plan recommendation that requires min-
imal edits by iterating over each possible value of k starting
with k = 1. The use of budgets instead of direct optimiza-
tion is better suited for numeric domains, since optimal nu-
meric planners are quite rare and only defined for some sim-
ple subsets of the overall formulation. Additionally, note that
the above definition exclusively focuses on deletions and in-
sertions. In our case, substitutions will simply be treated as
involving a deletion and an insertion. For simplifying the so-
lution approach, we will additionally assume that the action
an, only appears once in the sequence 7 and in the recom-
mended sequence 7’ (more specifically, 7’ will end in a,y,).

We will now convert the problem of finding 7’ with
a budget k into a different planning problem MF* =
(F*, AF I* G*), where each component is defined as fol-
lows:

o« Fk = Fl’f, Fk, where FI? = F, U {a,,—done, a,,—
not-done} UO U F* U F~, and F¥ = F,, U {B}, where
a,,—done and a,,—not-done is used to track whether the
goal was completed, O (where |O| = m) is a set of or-
dering fluents and B is the budget fluent. Finally, F'* and
F~ are a set of fluents used to avoid certain deletions and

insertions in the alternative plan. Here, |F'*| = || and
[F~| = |A]

o AP = A" U At U A~, where each component is defined
as follows:

— A™ - Are copies of actions that are part of . For ac-
tion a at index i # m, the copy af € A”, is identi-
cal except it has a preconditions, where pre,(a) =
pre,(a) U{o;, a,,—not-done} and the add effect is up-
dated such that add,(aT) = add,(a)U{o;1}U{f;"}
and del,(aF) = del,(a) U {o0;}, where f;* € F*. For
the copy of a,,, the preconditions are the same as ear-
lier indices, but the add effect now introduces a,,, —
done and the delete effect removes the a,,, —not-done
fluent. Here, the add effect on F'* fluents ensures that
any action required by the user is still preserved in the
sequence.

— AT - These are the new actions that can be inserted
into the sequence. A™ contains an action for each ac-
tion in the set A \ {a,,}. Here, each action copy con-
tains the same contents as the original action, but now
eff ,, contains a new effect 5 <— B—1 and the delete ef-
fect deletes the corresponding element from F'~. Here,
the addition actions will be used to insert new actions
into the sequence. Here, the lack of any ordering flu-
ents means that they can be inserted at any point in the
sequence. The reduction in the budget fluent means
that the use of any insertion action uses up one unit
from the budget. The delete effect on F'~ fluent is
used to track whether any actions forbidden by the user
were inserted by the planner. Note that we do not in-
clude a,, copy in AT because of our assumption that

there is only one instance of a,, in the plan sequence,
and the recommended plan sequence would only re-
quire one copy of a,, at the end of the plan sequence.

— A~ - These are the actions for deleting actions from
the sequence, where |[A~| = m — 1. For an action
a; € A~, that is used to delete the action at po-
sition ¢ < m. Here, the definition of the action is
given as: pre(a; ) = ({0:},{}), add,(a; ) = {041},
delp(a;) = {0}, and eff ,(a; ) = {B < B — 1}.
These actions can simply replace any of the actions,
except the final action a,,, in the original sequence
with an empty action. It will simply progress the se-
quence by one, use up a budget unit, and will not
change the original planning state.

o« I¥ = {I},IF}, where I} = I,, U {a,,,—not-done, O1 } U
F~and IF = I,, U {B « k}. Here, the initial state is the
same as before, with some additional elements needed
to enforce the sequence ordering, and with the additional

edit budget fluent added with its value set to k.

« G* = ({am—done} U T U F~,{B > 0}). Here
F+ C F* captures the set of actions in the plan that
shouldn’t be removed, and F- C F~ captures the ac-
tions that shouldn’t be inserted. Finally, the goal is set
to the execution of the final action, provided the budget
fluent value is O or greater (so you can’t perform more
edits than allowed by the budget fluent). Finally, the two
additional goal conditions on F~ and ', ensure that
no disallowed actions were inserted or required actions
removed.

Now the process of X-REC would start with a model, a
failing action sequence, and an edit budget. If an updated
sequence 7’ can be identified for the given budget, then it is
presented to the user. If not, one could increase the budget
and try again until some pre-defined upper limit on the bud-
get is identified. Once 7’ is presented to the user, they can
either choose to accept it, or reject it. If they do the latter,
they can choose to mark which of the insertions or deletions
they find unacceptable. Such feedback is incorporated into
F~ and F'* sets in the goal. One could also look at meth-
ods used in diverse planning (cf. (Srivastava et al. 2007)) to
generate a diverse set of plan recommendations.

Now, let’s go over some of the most salient properties of
the compilation.

Proposition 1 For any action sequence 7 valid in M, that
contains at most one copy of a,, there exists a correspond-
ing valid sequence in M*.

If the action sequence 7 doesn’t contain a,,, then one could
map over the actions in 7 to the corresponding actions in
A, If the action a,,, is present, then one could add the ac-
tions in A~ before its position.

Proposition 2 For a given plan prefix ™ and a target valid
plan prefix ' that ends with a,, and doesn’t contain any
other instances of a.,, there exists a budget k for which the
plan 7' is valid for the corresponding compiled model MPF.

One can trivially show this to be true by removing all the
original actions from the plan prefix 7 and then inserting



Domain Problem | Number of actions | Plan prefix length | Time taken | Length of the updated plan
Prob-1 40 10 0.579 11
Prob-2 40 10 0.571 17
blocks-strips-typed Prob-3 40 6 0.568 9
Prob-4 60 18 1657 N/A
Prob-5 60 14 1.182 20
Prob-1 120 7 0.904 7
Prob-2 188 21 262.348 24
driverlog-strips-automatic Prob-3 192 15 1.401 21
Prob-4 256 17 2.785 30
Prob-5 264 20 15.170 30
Prob-1 4 4 0.318 6
Prob-2 4 3 0.318 3
elevator-strips-simple-typed | Prob-3 4 4 0.315 6
Prob-4 4 4 0.321 6
Prob-5 4 4 0.322 6
Prob-1 36 15 0.575 19
Prob-2 52 23 17.258 45
gripper-round- 1-strips Prob-3 68 31 844.828 61
Prob-4 84 39 Timed Out N/A
Prob-5 100 47 Timed Out N/A
Prob-1 164 20 1.365 34
Prob-2 164 21 Timed Out N/A
logistics-strips-typed Prob-3 164 15 1.120 17
Prob-4 164 32 Timed Out N/A
Prob-5 164 19 1.658 22

Table 1: A summary of the time taken to correct failing plan prefixes across domains given a correct budget of size 10.

actions from 7’. This is a valid plan for a model that supports
a budget equal to or greater than |7| + |7/| — 1.

Here, we expect an interactive process. The system starts
with an alternative plan 7’ that the user can either accept or
reject, and provide feedback as to what modifications they
might find acceptable and which they don’t. In the above for-
mulation, we treat each modification independently, but one
could easily extend it to cases where the user could provide
more complex feedback, where they may approve or disap-
prove of a certain set of actions appearing in a sequence.
More generally, the user feedback could be captured as a
statement in some temporal logic. It should be possible to
extend our formulation to support such feedback.

Excuse Generation and X-REC. Now, one interesting
point to note is the connection between this method and the
existing method for generating actionable information for a
plan failure, namely, excuse generation (Gobelbecker et al.
2010). Under this paradigm, for a given failing plan, the
excuse generation method tries to identify the set of mod-
ifications to the initial state that will lead to the proposed
plan being valid. At the surface level, the two methods may
seem orthogonal, because ours aims at changing the plan
itself, while the excuse generation method focuses on updat-
ing the model. However, a closer examination reveals how
our method can easily capture the excuse generation method.
For one, our use of the fluents sets '~ and F'* in goal spec-
ification means that we can disallow any edits that remove
or add actions into the plan. This will mean that the origi-

nal plan will remain the same as before. Now, we will in-
troduce a set of actions that can update the initial state of
the model. This will form the basis of the excuses and be-
come the only way for the compilation to make the plan ex-
ecutable. To make sure they appear before any of the actions
in the original plan, we can have a flag that controls the exe-
cutability of these actions. And only allow the original plan
to be executable after that flag has been turned false.

Evaluation

Here, our primary goal was to evaluate the effectiveness of
the planning compilation. In particular, we wanted to look at
how our compilation could deal with plan prefixes of differ-
ent sizes. To test this, we needed a set of planning problems
and a corresponding plan prefix where the last action failed.
To do this, we took a set of problems from various IPC do-
mains, identified plans corresponding to these problems, and
introduced a numeric fluent whose value in the initial state
is one less than the actual plan prefix length. For each action
in the plan prefix, we introduced an effect that reduces the
numeric fluent by one, and added a precondition in the final
action of the prefix that the value of the newly introduced nu-
meric fluent should be larger than one. This ensures that the
plan action in the plan prefix is going to fail. Since no other
actions in the model can increase the numeric value directly,
the way to correct this failure could vary widely from do-
main to domain and problem to problem. Hence, it provides
us with a significant variety in the solution.

Table 1 provides an overview of the results. We ran all




experiments on an AlmaLinux(8.10) machine with 64 GB
RAM and 20 CPU cores (i7-12700K) and a time limit of
30 minutes. We used ENHSP as the numeric planner. All
experiments were run with a budget of 10.

As should be clear from the results. The factor that
seemed to make the largest impact is the plan length,
with the longer plan prefix length leading to longer times
and even time-outs. In the case of the fourth problem in
Blocksworld, we found that it couldn’t find a plan after
searching for approximately 27 minutes. However, when we
increased the budget to 50, it was able to find an updated
plan in 0.75 seconds. This means that, at least in some of
the cases, the time-outs could be the result of insufficient
time. The last column of the table presents the length of the
updated plan. However, keep in mind that the difference in
length isn’t equal to the number of edits made. Since in our
case, a substitution consists of one edit and one insert.

Conclusion

The paper presents a novel paradigm for explanation gen-
eration with explainable planning that takes a failing plan
from the user and recommends how it might be fixed. The
paper shows how one could convert the problem of gener-
ating these alternative plan recommendations through plan-
ning. We investigate the generation of such plan recommen-
dations in the context of numeric planning, an understudied
planning setting within explainable planning literature. We
also tested the effectiveness of the compilation on a set of
modified planning models. Even though this paper focused
on a numeric planning setting, it should be easy to extend
it to classical planning settings. In such a setting, we could
either directly try to minimize the number of edits or have a
set of propositions for potential budgets. Here, each edit ac-
tion uses up a budget proposition, and the goal requires that
at least one of the budget propositions is still true.

Now, in terms of extensions, there are a few next steps.
Firstly, one could look at some of the assumptions we make
here. Currently, our compilation assumes there is only one
instance of a,,. The easiest way to support it would be to
treat each copy of the a,,, action as if it were a separate copy
and require that the final copy of the action be executed.
Next, there is the assumption that the current ordering of
the given plan matters. Another way of thinking about plans
is to consider them as a partially ordered set of actions. In
such a consideration, we do not need to enforce the total or-
dering of the current action sequence, but only the ordering
constraints introduced by any existing causal links. In such
cases, one might be able to reorder actions in the sequence
without accruing any penalty. Such a treatment of the given
plan 7 might require a novel compilation that places existing
causal links in 7 at the center. It would be interesting to in-
vestigate whether people naturally look at specified plans in
such a partially ordered fashion or consider them as a totally
ordered sequence of actions.

Another aspect that might be worth investigating in the
future would be how one could incorporate additional in-
formation about the task or the user to further improve the
quality of the recommendation. For example, it is possible
that the user doesn’t care whether a specific action failed,

but only that some effects generated by the action didn’t oc-
cur. In this case, it might be possible to replace the failing
action a,, with a different action that produces the same ef-
fect. Similarly, consider a case where we know the user’s
utility, as in how much they value the eventual outcome.
Here, the problem of plan recommendation becomes that of
an oversubscription planning problem (Smith 2004). Here,
we could talk about the trade-off between the cost of plan
edits and total utility received.

Finally, we see such plan recommendations being em-
ployed in conjunction with other explanation techniques.
Some natural combinations may involve using causal ex-
planations first to explain the failure, then provide plan
recommendations. Similarly, one could foresee the use of
model reconciliation first to fix the user misunderstanding
that leads to them giving an invalid plan, then providing the
recommendation. In each case, the fact that these explana-
tion methods are used in tandem might influence the indi-
vidual explanatory content, especially if we are trying to re-
duce the overall communication. For example, in the case of
model reconciliation, we may also need to provide enough
information so that the user can see why the recommended
plan is valid.

References

Bercher, P.; Biundo, S.; Geier, T.; Hoernle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, exe-
cute, explain—how planning helps to assemble your home
theater. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 24, 386-394.

Caglar, T.; Zahedi, Z.; and Sreedharan, S. 2025. Ex-
cuse My Explanations: Integrating Excuses and Model Rec-
onciliation for Actionable Explanations. In 2025 20th
ACM/IEEE International Conference on Human-Robot In-
teraction (HRI), 729-737. IEEE.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. CoRR, abs/1709.10256.

Gobelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming Up With Good Excuses: What
to do When no Plan Can be Found. In Proceedings of the
20th International Conference on Automated Planning and
Scheduling, ICAPS 2010, Toronto, Ontario, Canada, May
12-16, 2010, 81-88. AAAL

Guidotti, R. 2022. Counterfactual explanations and how to
find them: literature review and benchmarking. Data Mining
and Knowledge Discovery, 1-55.

Smith, D. E. 2004. Choosing Objectives in Over-
Subscription Planning. In ICAPS, volume 4, 393.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2021.
Foundations of explanations as model reconciliation. Artif.
Intell., 301: 103558.

Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati,
S.; Do, M. B.; and Serina, 1. 2007. Domain Independent Ap-
proaches for Finding Diverse Plans. In IJCAI, 2016-2022.



