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Abstract
Information-theoretic bounds, while achieving
significant success in analyzing the generalization
of randomized learning algorithms, have been crit-
icized for their slow convergence rates and over-
estimation. This paper presents novel bounds that
bridge the expected empirical and population risks
through a binarized variant of the Jensen-Shannon
divergence. Leveraging our foundational lemma
that characterizes the interaction between an arbi-
trary and a binary variable, we derive hypothesis-
based bounds that enhance existing conditional
mutual information bounds by reducing the num-
ber of conditioned samples from 2 to 1. We ad-
ditionally establish prediction-based bounds that
surpass prior bounds based on evaluated loss mu-
tual information measures. Thereafter, through a
new binarization technique for the evaluated loss
variables, we obtain exactly tight generalization
bounds broadly applicable to general randomized
learning algorithms for any bounded loss func-
tions. Our results effectively address key limi-
tations of previous results in analyzing certain
stochastic convex optimization problems, without
requiring additional stability or compressibility
assumptions about the learning algorithm.

1. Introduction
Characterizing the behavior of generalization error is a
cornerstone of statistical learning theory. Traditional ap-
proaches grounded in complexity measures such as VC-
dimension or Rademacher complexity often fail to capture
the dynamics of modern iterative and noisy optimization
algorithms, such as stochastic gradient descent (SGD) and
Adam. Consequently, these methods typically yield overly
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Figure 1: Visualization of information-theoretic generaliza-
tion bounds for the population risk Lµ evaluated using 0-1
loss with empirical risk Ln = 0.2.

conservative or even vacuous generalization bounds.

Employing information-theoretic measures for analyzing
generalization properties has gained considerable traction
following the pioneering work of (Russo & Zou, 2019; Xu
& Raginsky, 2017). This paradigm quantifies the amount of
information about the training data encoded in model param-
eters. Unlike conventional techniques, these information-
theoretic approaches deliver generalization bounds that are
both data and algorithm-dependent with significantly weaker
assumptions compared to those of algorithm stability (Hardt
et al., 2016; Bassily et al., 2020) or model compression
(Arora et al., 2018; Zhou et al., 2019). Recent advancements
in this domain have substantially enhanced our understand-
ing of stochastic gradient-based learning algorithms (Negrea
et al., 2019; Neu et al., 2021; Wang & Mao, 2021).

Despite their appeal, information-theoretic bounds have
faced substantial criticism for their suboptimal convergence
rates. Specifically, when the key information quantities
are bounded by a constant, these bounds typically decay
at a rate of O( 1√

n
), which contrasts with the faster O( 1n )

rate frequently observed in practical learning scenarios, e.g.,
convex or strongly-convex optimization problems. These
bounds may be inherently suboptimal when faster rates are
achievable. To mitigate this limitation, (Hellström & Durisi,
2021; Wang & Mao, 2023a) introduce fast-rate bounds
by leveraging a linear combination of the empirical risk
and information-theoretic generalization terms. Meanwhile,
(Hellström & Durisi, 2022b) explores an unconventional
relationship between the expected empirical and popula-
tion risks using binary KL divergence. Although these ap-
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proaches yield faster decay rates when the empirical risk
(Ln) approaches or equals zero, they still become vacuous
for higher population risks (Lµ), as illustrated in Figure 1.

Another prevalent critique of information-theoretic bounds
pertains to their reliance on input-output mutual informa-
tion, which often results in severe overestimation for mod-
ern deep neural networks. To address this, one line of re-
search employs the individual-sample technique (Bu et al.,
2020), enabling tighter information-theoretic generalization
terms. This methodology has been extended to the super-
sample generalization framework (Steinke & Zakynthinou,
2020), which facilitates tightened bounds through condition-
ing techniques (Haghifam et al., 2020; Zhou et al., 2022a).
A complementary line of research refines bounds by reduc-
ing the dimensionality of the associated random variables,
including network predictions (Harutyunyan et al., 2021),
loss pairs (Hellström & Durisi, 2022b), or loss differences
(Wang & Mao, 2023a). These bounds not only yield tighter
estimates but also enhance computational tractability. How-
ever, all these bounds fail to vanish in at least one of the
counterexamples demonstrated by (Haghifam et al., 2023),
highlighting their inherent limitations.

In this paper, we propose a new approach to characterizing
the relationship between expected empirical and population
risks through a binarized variant of the Jensen-Shannon
(JS) divergence, which achieves faster convergence com-
pared to existing fast-rate and binary KL-based methods.
Additionally, we introduce tighter information-theoretic gen-
eralization measures utilizing binarized loss variables, sur-
passing the tightness of current loss pair or loss difference
approaches. By combining these techniques, we success-
fully derive exactly tight information-theoretic bounds for
general randomized learning algorithms. The key contribu-
tions of this paper are listed as follows:

• We demonstrate that the interaction between an arbitrary
variable and a binary variable can be effectively captured
using the proposed binary JS divergence (Lemma 3.1),
enabling us to derive new information-theoretic general-
ization bounds for the expected population risk.

• Motivated by recent work on hypothesis-based general-
ization bounds, which suggest that removing redundant
variables from the conditional mutual information tight-
ens the bounds, we establish a new bound (Theorem 3.2)
by conditioning on a single sample instead of the pre-
vious sample pair approach as in (Zhou et al., 2022a),
achieving tighter upper-bound estimates as well as exact
tightness for some specific learning tasks.

• Inspired by the single-loss mutual information frame-
work explored in (Wang & Mao, 2023a), we introduce a
single-loss binary JS bound (Theorem 3.6), which is sig-
nificantly tighter than existing square-root, fast-rate, and
binary KL-based bounds. Our bound provides strictly

non-vacuous guarantees for the population risk and is
exactly tight for binary loss functions.

• We propose a novel binarization technique for evaluated
loss variables, leading to exactly tight generalization
bounds (Corollary 3.10) for arbitrary bounded loss func-
tions. Unlike prior works, which focus on exact character-
izations for interpolating settings (Wang & Mao, 2023a)
or specific categories of learning algorithms (Aminian
et al., 2021; Zhou et al., 2024), our results are broadly
applicable to general randomized learning algorithms
without imposing additional strong assumptions.

• We extend our exactly tight results to accommodate un-
bounded loss functions (Corollary 3.12) and generalize
beyond KL divergence to include f -divergence (Theo-
rem 4.2) and Wasserstein distance (Corollary 4.3).

• We validate the effectiveness of our bounds in capturing
generalization dynamics across diverse synthetic and real-
world learning scenarios. The results demonstrate that
our bounds consistently outperform existing methods and
precisely track the true generalization error.

2. Preliminaries
Throughout this paper, random variables are denoted by cap-
italized letters (X), their specific realizations by lowercase
letters (x), and the corresponding spaces by calligraphic
letters (X ). The distribution of a variable X is denoted by
PX , the conditional distribution of X given Y is PX|Y , and
the conditional distribution given a specific realization is
PX|Y=y. Expectations taken over X ∼ PX are denoted by
EX . We use H(X) to represent Shannon’s (differential) en-
tropy, and DKL(P ∥Q) to denote the Kullback-Leibler (KL)
divergence of P relative to Q. The mutual information be-
tween variables X and Y is denoted by I(X;Y ), and their
conditional mutual information given Z is I(X;Y |Z). Ad-
ditionally, we define the disintegrated mutual information
as Iz(X;Y ) = D(PX,Y |z ∥PX|zPY |z). The logarithmic
function log is assumed to have base e.

2.1. Generalization Error

Let Z = X × Y denote the instance space, where X
and Y represent the input and label spaces, respectively.
The training dataset Z = {Zi}ni=1 ∈ Zn is constructed
by i.i.d. sampling from the data-generating distribution
µ. A learning algorithm A takes Z as input and outputs
a hypothesis W = A(Z) ∈ W , characterized by the con-
ditional distribution PW |Z. Let ℓ : W × Z → R+ be
the loss function. For a given w ∈ W , the population
risk is defined as Lµ(w) ≜ EZ [ℓ(w,Z)], where Z ∼ µ
is an independent test sample. The expected population
risk is denoted by Lµ = EW [Lµ(W )]. Since the true
distribution µ is generally unknown in practice, the em-
pirical risk is used instead and is defined as LZ(w) ≜
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1
n

∑n
i=1 ℓ(w,Zi). Similarly, the expected empirical risk is

Ln = EW,Z[LZ(W )]. The generalization error is quantified
as gen(W,Z) ≜ Lµ(W )− LZ(W ), measuring the discrep-
ancy between the population and empirical risks. Under the
average case, it is abbreviated as gen = EW,Z[gen(W,Z)].

2.2. Supersample Setting

The supersample framework, first introduced in (Steinke
& Zakynthinou, 2020), provides a powerful approach for
generalization analysis. Let Z̃ = {Z̃i}ni=1 ∈ Zn×2 denote
a supersample dataset drawn i.i.d. from µ, where each el-
ement Z̃i = (Z̃0

i , Z̃
1
i ) consists of a pair of samples. A

set of binary variables U = {Ui}ni=1 ∼ Unif({0, 1}n)
is used to partition the supersample dataset into train-
ing and test datasets. Specifically, the training dataset is
Z̃U = {Z̃Ui

i }ni=1, while the test dataset is Z̃U = {Z̃Ui
i }ni=1,

where U i = 1 − Ui. The empirical and population risks
in this setup are formulated as Ln = EW,Z̃,U [LZ̃U

(W )]

and Lµ = EW,Z̃,U [LZ̃U
(W )] respectively. Additionally, let

Lu
i = ℓ(W, Z̃u

i ) for u ∈ {0, 1} denote the evaluated loss.
A pair of losses is represented as Li = (L0

i , L
1
i ), and their

difference is defined as ∆i = L1
i − L0

i .

2.3. Binary KL Divergence

The work of (Hellström & Durisi, 2022b) introduces an
approach to bound the binary KL divergence between the
expected empirical and population risks, defined as follows:

dKL(p ∥ q) ≜ p log
(

p
q

)
+ (1− p) log

(
1−p
1−q

)
. (1)

This framework is further refined in (Dong et al., 2024a) by
eliminating the conditional dependence on Z̃. The binary
KL divergence dKL(Ln ∥Lµ) delineates an unconventional
relationship between Ln and Lµ, often yielding bounds
that are tighter than the square-root or fast-rate counterparts
proposed in (Harutyunyan et al., 2021). The proof hinges
on a relaxed form of binary KL divergence, defined as:

dγ(p ∥ q) ≜ γp− log(1− q + qeγ).

A key property of this relaxed binary KL divergence is:

dKL(p ∥ q) = sup
γ

dγ(p ∥ q).

Notably, both dKL(· ∥ ·) and dγ(· ∥ ·) are jointly convex in
their arguments. Additionally, dγ(· ∥ ·) exhibits linearity
w.r.t its first argument. These properties serve as founda-
tional elements for the subsequent theoretical analysis.

3. Generalization Bounds via Binary
Jensen-Shannon Divergence

In this section, we present a new family of generalization
bounds based on the binary JS divergence between the ex-

pected empirical and population risks, defined as:

dJS(p ∥ q) ≜ 1
2dKL

(
p
∥∥ p+q

2

)
+ 1

2dKL

(
q
∥∥ p+q

2

)
. (2)

As the JS divergence serves as a proper metric of distance
in the space of probability distributions, the binary JS diver-
gence can be interpreted as a quantifiable measure of the
“distance” between empirical and population risks.

We begin our exploration by presenting a foundational
lemma upon which the main results in this section are built.
This inequality introduces a new perspective for characteriz-
ing the interaction between a 1

2 -Bernoulli variable and an
arbitrary random variable. Notably, this result may hold
significance beyond the context of generalization analysis,
offering potential applications in broader aspects.
Lemma 3.1. Given random variable X , binary variable
Y ∼ Bern

(
1
2

)
and a measurable function f(x). Assume

that f(X) ∈ [0, 1] almost surely, then

dJS
(
EX|Y=0[f(X)]

∥∥EX|Y=1[f(X)]
)
≤ I(X;Y ).

Additionally, if f(x) is invertible and f(X) ∈ {0, 1} almost
surely, the inequality above holds with equality.

The proof, which is derived using Jensen’s inequality and the
Donsker-Varadhan formula for KL divergence, is provided
in Appendix B along with proofs of all other results.

This lemma integrates seamlessly with the supersample
framework to analyze the interaction between supersample
variables U and the hypothesis or predictions. For illustra-
tion, consider a supersample dataset containing two samples,
Z0 and Z1, where Z0 is used for training and Z1 for test-
ing. Define a loss variable evaluated as L = f(W,ZU ),
where U ∼ Bern

(
1
2

)
randomly selects ZU ∈ {Z0, Z1}.

It is straightforward to verify that Ln = EL|U=0[L] and
Lµ = EL|U=1[L]. By setting X = L, Y = U , and f(l) = l
in Lemma 3.1, we establish the following bound:

dJS(Ln ∥Lµ) ≤ I(L;U). (3)

Using the inverse of the binary JS divergence, defined as:

d−1
JS (p, c) ≜ sup{q ∈ [0, 1] : dJS(p ∥ q) ≤ c}, (4)

we can now characterize the population risk Lµ in terms of
the empirical risk Ln and I(L;U):

Lµ ≤ d−1
JS (Ln, I(L;U)). (5)

Next, we leverage Lemma 3.1 to explore several classi-
cal types of information-theoretic generalization bounds,
demonstrating the substantial potential of this lemma.

3.1. A Hypothesis-based Generalization Bound

Consider the scenario where X = W , Y = Ui, and f(w) =

ℓ(w, Z̃0
i ) all conditioned on Z̃0

i . Building on Lemma 3.1,
the following bound is established:
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Table 1: Summary of hypothesis-based information-theoretic generalization approaches in the literature.

Approach Reference Measure Bound for ℓ(·, ·) ∈ [0, 1]

Mutual Information (MI) (Xu & Raginsky, 2017) I(W ;Z)
√

1
2n

I(W ;Z)

Individual MI (IMI) (Bu et al., 2020) I(W ;Zi)
1
n

∑n
i=1

√
1
2
I(W ;Zi)

Conditional MI (CMI) (Steinke & Zakynthinou, 2020) I(W ;U |Z̃)
√

2
n
I(W ;U |Z̃)

Conditional Individual MI (CIMI) (Haghifam et al., 2020) I(W ;Ui|Z̃) 1
n

∑n
i=1

√
2I(W ;Ui|Z̃)

Individually CIMI (ICIMI) (Zhou et al., 2022a) I(W ;Ui|Z̃i)
1
n

∑n
i=1

√
2I(W ;Ui|Z̃i)

Single ICIMI (SICIMI) Ours I(W ;Ui|Z̃0
i )

1
n

∑n
i=1

√
2I(W ;Ui|Z̃0

i )

SICIMI (Ours)

ICIMI

IMI

CIMI CMI

MI

Figure 2: Comparison between approaches listed in Table 1.
An arrow from A to B indicates that A is tighter than B.

Theorem 3.2. Assume ℓ(·, ·) ∈ [0, 1], then

dJS(Ln ∥Lµ) ≤
1

n

n∑
i=1

I(W ;Ui|Z̃0
i ).

Theorem 3.2 exemplifies one of the major directions in
information-theoretic generalization bounds, leveraging mu-
tual information measures that involve the hypothesis W .
This line of inquiry originated with the foundational work of
(Xu & Raginsky, 2017), which introduced the idea of bound-
ing generalization error through the mutual information
I(W ;Z) between the hypothesis and the training dataset.
Subsequent efforts have extended this framework, as seen
in (Bu et al., 2020; Hellström & Durisi, 2022b), by incorpo-
rating individual or conditional information measures.

Table 1 provides a summary of recent hypothesis-based
approaches to information-theoretic generalization analy-
sis, focusing on the square-root bound for the specific case
where ℓ(·, ·) ∈ [0, 1], chosen for simplicity. For equitable
comparison, we demonstrate that our bound can be straight-
forwardly relaxed to yield a square-root bound:

Corollary 3.3. Assume ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

n

n∑
i=1

√
2I(W ;Ui|Z̃0

i ).

An intuitive comparison of the tightness of these bounds is
provided in Figure 2. Examining the progression of works
(CMI → CIMI → ICIMI) suggests that bounds may be

improved by eliminating redundant random variables from
the key mutual information terms. Building on this insight,
Corollary 3.3 reduces the number of conditional samples
from 2 (Z̃i) to 1 (Z̃0

i ) compared to the prior work of (Zhou
et al., 2022a), thereby sharpening the bound. We designate
this method as Single Individually Conditional Individ-
ual Mutual Information (SICIMI), whose superiority is
formally established in the following proposition:
Proposition 3.4. For any i ∈ [1, n], we have

I(W ;Ui|Z̃0
i ) ≤ I(W ;Ui|Z̃i).

The above proposition demonstrates that our SICIMI bound
in Theorem 3.2 is strictly tighter than all hypothesis-based
information-theoretic generalization bounds summarized in
Table 1. The following example illustrates that our SICIMI
bound can be exactly tight for specific learning algorithms:
Example 3.5. Consider the case with n = 1, µ = Bern

(
1
2

)
,

W = Z̃U1
1 and ℓ(w, z) = 1w=z . One can verify that:

Ln = 0, Lµ = 1
2 , → gen = 1

2 .

dJS(Ln ∥Lµ) = I(W ;U1|Z̃0
1 ) ≈ 0.216.

I(W ;U1|Z̃1) =
log 2
2 ≈ 0.347 > dJS(Ln ∥Lµ).

Moreover, further eliminating the dependence on Z̃0
i in these

bounds will be infeasible, as it can be readily verified that
I(W ;Ui) = 0 in the example above. These observations
collectively suggest that our SICIMI approach is optimal
in this line of research, which tries to capture the behav-
ior of the generalization error through mutual information
measures involving only W , U , and Z̃.

3.2. A Prediction-based Generalization Bound

Now consider another case where X = L0
i , Y = Ui, and

f(l) = l. Building on Lemma 3.1, we established that:
Theorem 3.6. Assume ℓ(·, ·) ∈ [0, 1], then

dJS(Ln ∥Lµ) ≤
1

n

n∑
i=1

I(L0
i ;Ui).
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Theorem 3.6 represents another principal category of
information-theoretic generalization bounds, leveraging mu-
tual information measures involving network predictions.
This direction can be traced back to (Harutyunyan et al.,
2021), which introduced generalization bounds based on
the mutual information I(fW (Z̃i);Ui|Z̃) between super-
sample variables and network outputs (f-CMI). Subsequent
refinements include evaluated losses (e-CMI) in (Steinke &
Zakynthinou, 2020; Hellström & Durisi, 2022b) and loss dif-
ferences (ld-CMI) or single-loss mutual information terms
I(L0

i ;Ui) in (Wang & Mao, 2023a).

In Figure 1, we compare our Binary JS bound (Theorem 3.6)
with several related results in the literature, including the
Square-Root bound (Theorem 4.1, (Wang & Mao, 2023a)),
the Fast-Rate bound (Theorem 4.3, (Wang & Mao, 2023a)),
and the Binary KL1 bound (Theorem 5, (Hellström & Durisi,
2022b)). The population risk Lµ is evaluated within [0, 1]
using 0-1 loss to simplify mutual information calculations.
As shown in Figure 1, our Binary JS bound provides the
tightest estimation for the population risk. Although the
figure highlights the case where Ln = 0.2, the superior-
ity of Theorem 3.6 is consistent across any Ln ∈ [0, 1].
Furthermore, Theorem 3.6 consistently offers non-vacuous
upper-bound estimations for any Lµ ∈ [Ln, 1], whereas
other bounds yield vacuous results for Lµ ≳ 0.8. Most
notably, our Binary JS bound accurately recovers the true
population risk when 0-1 loss is applied. This observation
will be explored in detail in the following sections.

3.3. Exactly Tight Generalization Bounds

Next, we explore specific scenarios where the true general-
ization error can be precisely recovered using our Binary
JS bound. To this end, we outline the assumptions used
throughout this section:
Assumption 3.7. Ln ≤ Lµ.

We assume that the expected empirical risk is less than or
equal to the expected population risk. This assumption is
naturally satisfied by any well-trained network.
Assumption 3.8. A is invariant to sample permutations, i.e.
PW,Ui,Z̃i

= PW,Uj ,Z̃j
for any i, j ∈ [1, n].

We further assume that the learning algorithm A is invariant
to the indices of samples. This property is typically satisfied
by most noisy and iterative learning algorithms, such as
SGD or Adam, since mini-batches are selected uniformly.
It also holds true for full-batch gradient descent.

3.3.1. BINARY LOSS FUNCTION

We first show that for binary loss functions, such as the 0-1
loss, the Binary JS bound in Theorem 3.6 is exactly tight:

1For this evaluation, we approximate I(Li;Ui) ≈ 2I(L0
i ;Ui).

1. Observe that the function f(l) = l with l ∈ {0, 1}
satisfies the additional conditions of Lemma 3.1. Con-
sequently, Eq. (3) holds with equality.

2. The joint convexity of dKL(· ∥ ·) directly implies the
joint convexity of dJS(· ∥ ·). Since dJS(p ∥ q) attains
its minimum when p = q, Eq. (4) provides a unique
solution for Lµ under Assumption 3.7, ensuring that
Eq. (5) holds with equality.

3. Finally, Assumption 3.8 guarantees that I(L0
i ;Ui) is

identical for all i ∈ [1, n].

These observations collectively imply the following result:

Theorem 3.9. Assume ℓ(·, ·) ∈ {0, 1}, then

Lµ = d−1
JS

(
Ln,

1

n

n∑
i=1

I(L0
i ;Ui)

)
.

This result indicates that the single-loss mutual informa-
tion term I(L0

i ;Ui) is sufficient to characterize the true
generalization error precisely. Importantly, it suggests that
introducing additional assumptions, such as hypothesis sta-
bility (Wang & Mao, 2023b), is unnecessary for deriving
vanishing information-theoretic generalization bounds.

3.3.2. BOUNDED LOSS FUNCTION

While the results above are promising, they do not generalize
to the wide variety of loss functions commonly used in
practice. To address this, we extend these results to general
bounded continuous or discrete loss functions by employing
a perturbation and rounding scheme for the evaluated loss
variables. Let D = {(D0

i , D
1
i )}ni=1 ∼ Unif([0, 1]2n) be

independent random uniform variables. For any i ∈ [1, n]
and u ∈ {0, 1}, we define the binarized loss variables as:

L̄u
i = ⌊Lu

i +Du
i ⌋, → L̄u

i |Lu
i ∼ Bern(Lu

i ).

When ℓ(·, ·) ∈ [0, 1], it is straightforward to verify that
L̄u
i ∈ {0, 1} almost surely and satisfies E[L̄u

i ] = E[Lu
i ].

Thus, the empirical risk can be equivalently expressed as

Ln =
1

n

n∑
i=1

E[LUi
i ] =

1

n

n∑
i=1

E[L̄Ui
i ].

Similar results also apply to Lµ. Consequently, it follows
directly from Theorem 3.9 that:

Corollary 3.10. Assume ℓ(·, ·) ∈ [0, 1], then

Lµ = d−1
JS

(
Ln,

1

n

n∑
i=1

I(L̄0
i ;Ui)

)
.

Given the Markov chain Ui − L0
i − L̄0

i , it follows from
the data-processing inequality that I(L̄0

i ;Ui) ≤ I(L0
i ;Ui).

Thus, our binarized-loss mutual information (bl-MI) is

5
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strictly tighter than the single-loss mutual information in
Theorem 3.6 and precisely recovers the true generalization
error for any bounded loss function.

Additionally, this perturbation and rounding technique is
not confined to our binary JS bound. It can also be applied
to any other prediction-based information-theoretic gener-
alization measures, such as e-CMI (Hellström & Durisi,
2022b) or ld-MI (Wang & Mao, 2023a; 2024), to achieve
tighter generalization bounds. Importantly, the bl-MI frame-
work offers direct computational tractability, as I(L̄0

i ;Ui)
only involves binary variables that can be directly estimated
through binning. In contrast, estimating I(L0

i ;Ui) for con-
tinuous L0

i is significantly more challenging, often requiring
kernel density estimation techniques.

Recently, (Haghifam et al., 2023) demonstrated that most
existing information-theoretic generalization bounds, includ-
ing our Binary JS bound presented in Theorem 3.6, fail to
vanish for certain stochastic convex optimization problems.
Specifically, consider the following scenario:

Example 3.11. (Theorem 17, Haghifam et al. (2023)) Let
T = n2, η = 1

n
√
n

, and d = 2n2. Define the instance space
Z = {e(i) : i ∈ d}, where e(i) represents the i-th one-hot
vector, and let µ = Unif(Z). A hypothesis is chosen from
W = {w ∈ Rd : ∥w∥ ≤ 1} via full-batch gradient descent
with the loss function ℓ(w, z) = 1−⟨w, z⟩, using a learning
rate η over T iterations.

When the samples in Z̃ are all distinct (which occurs with
probability at least 1

2 ), the empirical risk is Ln = 1− 1√
n

,
while the population risk is Lµ = 1 − 1

2n
√
n

, yielding a
generalization error gen = O( 1√

n
). However, it can be

verified that the supersample variables Ui could be recon-
structed by the information of L0

i , leading to I(L0
i ;Ui) ≥

I(1L0
i=0;Ui) = log 2 = Ω(1). This indicates that the gen-

eralization bound in Theorem 3.6 does not even vanish as
n → ∞, revealing that bounds relying on evaluated loss-
based information measures may be loose for certain learn-
ing tasks, including e-CMI bounds (Hellström & Durisi,
2022b) and ld-CMI bounds (Wang & Mao, 2023a).

In contrast, by observing that ℓ(w, z) ∈ [0, 1] for any
∥w∥, ∥z∥ ≤ 1, our exactly tight bound in Corollary 3.10
remains valid in these scenarios, underscoring the advan-
tages of our bl-MI measures. This improvement is achieved
through our binarization technique, which eliminates ex-
traneous information needed to reconstruct Ui from the
observations of L0

i , thereby producing tighter information
generalization measures. While recent works also provided
vanishing bounds for Example 3.11 from the perspectives
of hypothesis stability (Wang & Mao, 2023b) and algorithm
compressibility (Sefidgaran & Zaidi, 2024), our results ap-
ply broadly to general learning algorithms without imposing
any stability or compressibility requirements.

3.3.3. UNBOUNDED LOSS FUNCTION

Besides bounded loss functions, unbounded ones such as
cross-entropy are also frequently encountered in practical
scenarios. To address this, we extend the aforementioned
results to accommodate general loss functions by employing
a truncation-and-summing strategy. For any i ∈ [1, n] and
u ∈ {0, 1}, we define the truncated loss as:

δjL̄
u
i = 1L̄u

i ≥j .

The corresponding truncated empirical risk is defined as
δjLn = 1

n

∑n
i=1 E[δjL̄

Ui
i ], which can be verified to satisfy

Ln =
∑∞

j=1 δjLn. Similarly, the truncated population risk
is denoted as δjLµ. By recursively applying Corollary 3.10,
the following result can be established:

Corollary 3.12. Assume δjLn ≤ δjLµ for all j ≥ 1, then

Lµ =
∞∑
j=1

d−1
JS

(
δjLn,

1

n

n∑
i=1

I(δjL̄
0
i ;Ui)

)
.

Throughout this section, we assume a loss interval of [0, 1]
for simplicity. However, these results can be straightfor-
wardly extended to any interval by applying a linear transfor-
mation to both the loss variables and the bounds. Addition-
ally, non-uniform truncation thresholds in Corollary 3.12
can be chosen to enhance flexibility, enabling tailored ad-
justments to specific requirements.

4. Extending beyond KL Divergence
It is well-established that the widely used KL divergence is
a specific instance of the broader family of f -divergences,
with f(x) = x log x. In this section, we extend our previous
results to accommodate arbitrary f -divergence measures.
Given a convex function f : [0,+∞) 7→ (−∞,+∞] which
satisfies that f(x) is finite for any x > 0 and f(1) = 0,
the f -divergence between absolutely continuous probability
distributions P and Q is defined as:

Df (P ∥Q) ≜ EQ

[
f
(

dP
dQ

)]
.

Following (Wang & Mao, 2024), the concept of mutual
information can be generalized to f -information as:

If (X;Y ) ≜ Df (PX,Y ∥PXPY ).

Analogous to Eq. (1) and (2), we define the f -divergence
counterparts for binary KL and JS divergences as follows:

df (p ∥ q) ≜ qf
(

p
q

)
+ (1− q)f

(
1−p
1−q

)
.

df -JS(p ∥ q) ≜ 1
2df
(
p
∥∥ p+q

2

)
+ 1

2df
(
q
∥∥ p+q

2

)
.

Using these definitions, we extend our main Lemma 3.1 to
accommodate f -divergence measures:

6



Exactly Tight Information-theoretic Generalization Bounds via Binary Jensen-Shannon Divergence

Lemma 4.1. Given random variables X , Y such that Y ∼
Bern

(
1
2

)
and X ∈ {0, 1} almost surely, then

df -JS
(
EX|Y=0[X]

∥∥EX|Y=1[X]
)
= If (X;Y ).

4.1. A Exactly Tight f -Information Bound

Building upon Lemma 4.1, we extend the previous exactly
tight bound in Corollary 3.10 to incorporate f -information
quantities. Specifically, under Assumption 3.8, we establish
the following result:

Theorem 4.2. Assume ℓ(·, ·) ∈ [0, 1], then

df -JS(Ln ∥Lµ) =
1

n

n∑
i=1

If (L̄
0
i ;Ui).

It is noteworthy that the binary f -JS divergence in the above
equation retains joint convexity, as f -divergence itself is
jointly convex (Theorem 7.5, Polyanskiy & Wu (2024)).
Consequently, under Assumption 3.7, the value of Lµ can
be uniquely determined by Ln and df -JS(Ln ∥Lµ), in a
manner analogous to Eq. (4).

4.2. A Exactly Tight Wasserstein Distance Bound

Inspired by (Rodrı́guez Gálvez et al., 2021), which demon-
strates that generalization bounds based on Wasserstein dis-
tance metrics are generally tighter than those derived from
information-theoretic measures, we further derive the fol-
lowing exactly tight bound using the Wasserstein distance
between conditional and marginal loss distributions:

Corollary 4.3. Assume ℓ(·, ·) ∈ [0, 1], then

|gen| = 2

n

n∑
i=1

EUi

[
W
(
PL̄0

i |Ui
, PL̄0

i

)]
.

The result above is a direct application of Theorem 4.2
to the case of total variation, noting that the Wasserstein
distance W and total variation distance DTV are equivalent
for discrete distributions P and Q:

DTV(P ∥Q) = W(P,Q).

5. Related Works and Limitations
In addition to the works of information-theoretic general-
ization bounds discussed earlier, significant progress has
been made in enhancing these bounds through conditioning
(Hafez-Kolahi et al., 2020) and chaining techniques (Asadi
et al., 2018; Zhou et al., 2022b; Clerico et al., 2022). A
noteworthy development within the supersample framework
is the leave-one-out setting (Haghifam et al., 2022; Rammal
et al., 2022), which reduces the sample size requirement

from 2n to n+ 1. Beyond traditional supervised learning,
information-theoretic bounds have been extended to ana-
lyze generalization across meta-learning (Rezazadeh et al.,
2021; Jose et al., 2021; Hellström & Durisi, 2022a), semi-
supervised learning (Aminian et al., 2022; He et al., 2022),
and transfer learning (Wu et al., 2020; Masiha et al., 2021;
Wang & Mao, 2022; Bu et al., 2022) paradigms. Further-
more, recent works (Haghifam et al., 2023; Livni, 2024; At-
tias et al., 2024) have highlighted the limitations of existing
information-theoretic bounds in certain stochastic convex
optimization settings. This paper adequately addresses these
issues through the proposed ld-MI measure, which resolves
the identified failures and provides an exactly tight bound
for general learning algorithms.

While we use the binary JS divergence as the comparator be-
tween empirical and population losses, (Hellström & Guedj,
2024) explores a general convex comparator for this pur-
pose and further investigates the optimal convex comparator.
According to their analysis, the optimal comparator for the
standard generalization analysis setting is the binary KL
divergence when ℓ(·, ·) ∈ [0, 1]. However, their conclusion
does not naturally extends to the supersample framework, as
we have clearly shown that our binary JS outperforms binary
KL. This stems from the fact that the key information quan-
tities for supersample settings are I(Li, Ui), while those for
the standard setting are I(W ;Z). This may explain, from
another perspective, why our binary JS method is limited to
the supersample setting.

The limitations of this work are as follows: While Corol-
lary 3.12 provides an exact characterization of the gener-
alization error for general unbounded loss functions, the
precondition δjLn ≤ δjLµ for each j ≥ 1 is significantly
more stringent than Assumption 3.7 and may not always
be satisfied in practice. Additionally, the primary focus of
this paper is on expected generalization bounds. It remains
a compelling avenue for future research to develop exactly
tight bounds that hold with high probability, addressing a
broader spectrum of practical scenarios.

6. Experimental Results
In this section, we assess the tightness of our exactly tight
Binary JS bound (Corollary 3.10) in comparison to several
existing information-theoretic generalization bounds from
the literature. These include the Fast-Rate bound (Theorem
4.3, (Wang & Mao, 2023a)), the Binary KL bound (Theorem
5, (Hellström & Durisi, 2022b)), and the f -information
series of oracle bounds: CMI, CSHI, and CJSI (Theorems
3.1, 3.2, and 3.3, (Wang & Mao, 2024)). Our experimental
settings align closely with those in (Wang & Mao, 2024),
where we evaluate three distinct classification tasks2:

2https://github.com/Yuxin-Dong/BinaryJS.
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Figure 3: Comparison of generalization bounds under different learning scenarios. (a-d) Linear classifier trained on synthetic
Gaussian dataset. (e-h) CNN trained on binary MNIST (4 vs. 9). (i-l) Pretrained ResNet-50 fine-tuned on CIFAR10.

• Simple linear classifier on synthetic Gaussian dataset.
• 4-layer CNN on binarized MNIST (classes 4 vs. 9).
• Pretrained ResNet-50 model on CIFAR10.

In all these scenarios, Assumption 3.8 is inherently satisfied,
since the linear classifier is trained with full-batch gradi-
ent descent while CNN and ResNet-50 models are trained
with mini-batch-based iterative learning algorithms such as
SGD and SGLD. Moreover, Assumption 3.7 is empirically
validated in every experiment conducted.

To evaluate the effectiveness of generalization bounds for
both discrete and continuous loss variables, we consider two
distinct loss functions: 1) The binary 0-1 loss. 2) A trun-
cated version of the cross-entropy loss constrained within
[0, 1]. This approach reflects practical scenarios, as cross-
entropy loss is typically clamped to a constant range to
ensure numerical stability. For the binary 0-1 loss, we em-
ploy a simple binning method to estimate the probability
distribution of PL0

i ,Ui
. For the truncated cross-entropy loss,

we use probability density estimation via truncated Gaussian
kernels, with bandwidth determined by the rule-of-thumb
criterion. To satisfy Assumption 3.8, we jointly utilize the

samples of every (L0
i , Ui), i ∈ [1, n] to estimate the uni-

fied mutual information I(L0
i ;Ui). This method deviates

slightly from prior approaches (Dong et al., 2024b;a; Wang
& Mao, 2024). However, we argue that this modification
does not introduce additional bias to the estimated probabil-
ity distribution, as discussed in Appendix C.

The final results, presented in Figure 3, demonstrate that
our Binary JS bound fully captures the dynamics of the
generalization error. When using the 0-1 loss, the Fast-Rate
bound also closely tracks the generalization gap, differing
only slightly from our Binary JS bound. This similarity
arises because both bounds leverage the single-loss mutual
information I(L0

i ;Ui). As shown in Figure 1, the difference
between these two is negligible when I(L0

i ;Ui) is small.
However, for continuous loss functions, the gap becomes
pronounced, underscoring the superiority of our bl-MI ap-
proach. In the case of the SGLD algorithm, the CMI and
CSHI bounds effectively utilize the scale information of the
loss variables to produce tighter estimates. Lastly, across all
the practical learning scenarios considered, our Binary JS
bound consistently achieves exact tightness relative to the
true generalization error.
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7. Conclusion
In this paper, we introduce a new framework for charac-
terizing the relationship between expected empirical and
population risks via the binarized Jensen-Shannon diver-
gence. Our proposed bounds achieve exact tightness rela-
tive to the true generalization error for binary loss functions.
Leveraging a binarization technique for supersample loss
variables, we derive exactly tight generalization bounds ap-
plicable to general learning algorithms under mild assump-
tions. These results effectively resolve the limitations of
prior information-theoretic bounds, particularly their failure
in certain stochastic convex optimization scenarios.
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A. Prerequisite Definitions and Lemmas

Definition A.1. (Sub-Gaussian) A random variable X is σ-sub-Gaussian if for any ρ ∈ R, E[eρ(X−E[X])] ≤ exp(ρ
2σ2

2 ).

Definition A.2. (Kullback-Leibler Divergence) Let P and Q be probability measures on the same space X , then the KL
divergence from P to Q is defined as DKL(P ∥Q) ≜

∫
X p(x) log

(
p(x)
q(x)

)
dx.

Definition A.3. (Mutual Information) Let (X,Y ) be a pair of random variables with values over the space X ×Y . Let their
joint distribution be PX,Y and the marginal distributions be PX and PY respectively, then the mutual information between
X and Y is defined as I(X;Y ) = DKL(PX,Y ∥PXPY ).

Definition A.4. (Wasserstein Distance) Let c(·, ·) be a metric and let P and Q be probability measures on X . De-
note Γ(P,Q) as the set of all couplings of P and Q (i.e. the set of all joint distributions on X × X with two
marginals being P and Q), then the Wasserstein distance of order p between P and Q is defined as Wp(P,Q) ≜(
infγ∈Γ(P,Q)

∫
X×X c(x, x′)p dγ(x, x′)

)1/p
.

Unless otherwise noted, we use W(·, ·) to denote the Wasserstein distance of order 1.

Lemma A.5. (Donsker-Varadhan formula) Let P and Q be probability measures defined on the same measurable space X ,
where P is absolutely continuous with respect to Q. Then for any bounded measurable function f : X 7→ R,

D(P ∥Q) = sup
f

{
Ex∼P [f(x)]− logEx∼Q[e

f(x)]
}
,

where X is any random variable such that eX is Q-integrable and EP [X] exists.

Lemma A.6. (Lemma 2, Hellström & Durisi (2022b)) Let X be a random variable that satisfies X ∈ [0, 1] almost surely
and E[X] = µ. Then for any γ ∈ R,

EX

[
edγ(X ∥µ)

]
≤ 1.

Lemma A.7. (Pinsker’s Inequality) Let P and Q be probability measures defined on the same space, then DTV(P ∥Q) ≤√
1
2DKL(P ∥Q).

B. Omitted Proofs
Lemma 3.1 (Restate). Given random variable X , binary variable Y ∼ Bern

(
1
2

)
and a measurable function f(x). Assume

that f(X) ∈ [0, 1] almost surely, then

dJS
(
EX|Y=0[f(X)]

∥∥EX|Y=1[f(X)]
)
≤ I(X;Y ).

Additionally, if f(x) is invertible and f(X) ∈ {0, 1} almost surely, then the inequality above holds with equality.

Proof. By Jensen’s inequality and the joint convexity of dγ(· ∥ ·), we have

dKL

(
EX|Y=0[f(X)]

∥∥EX [f(X)]
)
= sup

γ
dγ
(
EX|Y=0[f(X)]

∥∥EX [f(X)]
)

≤ sup
γ

EX|Y=0[dγ(f(X) ∥EX [f(X)])]. (6)

Similarly, we can prove that

dKL

(
EX|Y=1[f(X)]

∥∥EX [f(X)]
)
≤ sup

γ
EX|Y=1[dγ(f(X) ∥EX [f(X)])].

Notice that EX [f(X)] =
EX|Y =0[f(X)]+EX|Y =1[f(X)]

2 , we then have

dJS
(
EX|Y=0[f(X)]

∥∥EX|Y=1[f(X)]
)
=

1

2
dKL

(
EX|Y=0[f(X)]

∥∥EX [f(X)]
)
+

1

2
dKL

(
EX|Y=1[f(X)]

∥∥EX [f(X)]
)

≤ 1

2

∑
u∈{0,1}

sup
γ

EX|Y=u[dγ(f(X) ∥EX [f(X)])]. (7)
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By applying Lemma A.5 with P = PX|Y=0, Q = PX and f(x, y) = dγ(f(x) ∥EX [f(X)]), we have

DKL

(
PX|Y=0

∥∥PX

)
≥ EX|Y=0[dγ(f(X) ∥EX [f(X)])]− logEX

[
edγ(f(X) ∥EX [f(X)])

]
.

Then by applying Lemma A.6 we know that for any γ ∈ R,

EX

[
edγ(f(X) ∥EX [f(X)])

]
≤ 1.

Plugging this into the inequality above and taking the supremum over γ, we can get

DKL

(
PX|Y=0

∥∥PX

)
≥ sup

γ
EX|Y=0[dγ(f(X) ∥EX [f(X)])]. (8)

Similarly, we have the same result for the case Y = 1 as

DKL

(
PX|Y=1

∥∥PX

)
≥ sup

γ
EX|Y=1[dγ(f(X) ∥EX [f(X)])].

Combining the two inequalities above, we now have

I(X;Y ) = EY

[
DKL

(
PX|Y

∥∥PX

)]
=

1

2
DKL

(
PX|Y=0

∥∥PX

)
+

1

2
DKL

(
PX|Y=1

∥∥PX

)
≥ 1

2

∑
u∈{0,1}

sup
γ

EX|Y=u[dγ(f(X) ∥EX [f(X)])].

Plugging the inequality above into Eq. (7), we finally get

dJS
(
EX|Y=0[f(X)]

∥∥EX|Y=1[f(X)]
)
≤ 1

2

∑
u∈{0,1}

sup
γ

EX|Y=u[dγ(f(X) ∥EX [f(X)])] ≤ I(X;Y ).

The proof of the first part is complete.

To prove that the main inequality of the lemma holds with equality, we only need to check if the inequalities in Eq. (6) and
(8) hold with equality. When X ∈ {0, 1}, we have EX|Y=0[X] = P (X = 1|Y = 0) and

dKL

(
EX|Y=0[X]

∥∥EX [X]
)
= sup

γ
dγ
(
EX|Y=0[X]

∥∥EX [X]
)

= sup
γ

P (X = 1|Y = 0)γ − log(1− EX [X] + EX [X]eγ)

= sup
γ

P (X = 0|Y = 0)(0γ − log(1− EX [X] + EX [X]eγ))

+ P (X = 1|Y = 0)(1γ − log(1− EX [X] + EX [X]eγ))

= sup
γ

EX|Y=0

[
dγ
(
EX|Y=0[X]

∥∥EX [X]
)]
.

On the other hand, we can prove that

DKL

(
PX|Y=0

∥∥PX

)
= dKL(P (X = 0|Y = 0) ∥P (X = 0))

= dKL(P (X = 1|Y = 0) ∥P (X = 1))

= dKL

(
EX|Y=0[X]

∥∥EX [X]
)
.

The same results also hold for Y = 1. Combining the results above, we then have

dJS
(
EX|Y=0[X]

∥∥EX|Y=1[X]
)
=

1

2

∑
u∈{0,1}

DKL

(
PX|Y=u

∥∥PX

)
= I(X;Y ).

Therefore, when f(X) ∈ {0, 1} almost surely, we have

dJS
(
EX|Y=0[f(X)]

∥∥EX|Y=1[f(X)]
)
= I(f(X);Y ).

Combining with the condition that f(X) is invertible, we have I(f(X);Y ) = I(X;Y ) by the data-processing inequality,
which finishes the proof.

13
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Theorem 3.2 (Restate). Assume ℓ(·, ·) ∈ [0, 1], then

dJS(Ln ∥Lµ) ≤
1

n

n∑
i=1

I(W ;Ui|Z̃0
i ).

Proof. By Jensen’s inequality and the joint convexity of dKL(· ∥ ·), we have

dKL

(
Ln

∥∥∥∥ Ln + Lµ

2

)
= dKL

(
1

n

n∑
i=1

EW,Z̃i,Ui

[
ℓ(W, Z̃Ui

i )
] ∥∥∥∥∥ 1

2n

n∑
i=1

EW,Z̃i

[
ℓ(W, Z̃0

i ) + ℓ(W, Z̃1
i )
])

≤ 1

n

n∑
i=1

dKL

(
EW,Z̃i,Ui

[
ℓ(W, Z̃Ui

i )
] ∥∥∥∥ 1

2
EW,Z̃i

[
ℓ(W, Z̃0

i ) + ℓ(W, Z̃1
i )
])

=
1

n

n∑
i=1

dKL

(
1

2
EW,Z̃0

i |Ui=0

[
ℓ(W, Z̃0

i )
]
+

1

2
EW,Z̃1

i |Ui=1

[
ℓ(W, Z̃1

i )
]

∥∥∥∥12EW,Z̃0
i

[
ℓ(W, Z̃0

i )
]
+

1

2
EW,Z̃1

i

[
ℓ(W, Z̃1

i )
])

≤ 1

2n

n∑
i=1

dKL

(
EW,Z̃0

i |Ui=0

[
ℓ(W, Z̃0

i )
] ∥∥∥EW,Z̃0

i

[
ℓ(W, Z̃0

i )
])

+
1

2n

n∑
i=1

dKL

(
EW,Z̃1

i |Ui=1

[
ℓ(W, Z̃1

i )
] ∥∥∥EW,Z̃1

i

[
ℓ(W, Z̃1

i )
])

≤ 1

2n

n∑
i=1

EZ̃0
i

[
dKL

(
EW |Z̃0

i ,Ui=0

[
ℓ(W, Z̃0

i )
] ∥∥∥EW |Z̃0

i

[
ℓ(W, Z̃0

i )
])]

+
1

2n

n∑
i=1

EZ̃1
i

[
dKL

(
EW |Z̃1

i ,Ui=1

[
ℓ(W, Z̃1

i )
] ∥∥∥EW |Z̃1

i

[
ℓ(W, Z̃1

i )
])]

.

Similarly, one can prove that

dKL

(
Lµ

∥∥∥∥ Ln + Lµ

2

)
≤ 1

2n

n∑
i=1

EZ̃0
i

[
dKL

(
EW |Z̃0

i ,Ui=1

[
ℓ(W, Z̃0

i )
] ∥∥∥EW |Z̃0

i

[
ℓ(W, Z̃0

i )
])]

+
1

2n

n∑
i=1

EZ̃1
i

[
dKL

(
EW |Z̃1

i ,Ui=0

[
ℓ(W, Z̃1

i )
] ∥∥∥EW |Z̃1

i

[
ℓ(W, Z̃1

i )
])]

.

Notice that

EW |Z̃0
i

[
ℓ(W, Z̃0

i )
]
=

1

2

(
EW |Z̃0

i ,Ui=0

[
ℓ(W, Z̃0

i )
]
+ EW |Z̃0

i ,Ui=1

[
ℓ(W, Z̃0

i )
])

,

EW |Z̃1
i

[
ℓ(W, Z̃1

i )
]
=

1

2

(
EW |Z̃1

i ,Ui=0

[
ℓ(W, Z̃1

i )
]
+ EW |Z̃1

i ,Ui=1

[
ℓ(W, Z̃1

i )
])

.

Combining the results above and applying Lemma 3.1 with X = W |Z̃0
i (or X = W |Z̃1

i ), Y = Ui and f(W ) = ℓ(W, Z̃0
i )

(or f(W ) = ℓ(W, Z̃1
i )), we can get

dJS(Ln ∥Lµ) =
1

2
dKL

(
Ln

∥∥∥∥ Ln + Lµ

2

)
+

1

2
dKL

(
Lµ

∥∥∥∥ Ln + Lµ

2

)
≤ 1

2n

n∑
i=1

EZ̃0
i

[
dJS

(
EW |Z̃0

i ,Ui=0

[
ℓ(W, Z̃0

i )
] ∥∥∥EW |Z̃0

i ,Ui=1

[
ℓ(W, Z̃0

i )
])]

+
1

2n

n∑
i=1

EZ̃1
i

[
dJS

(
EW |Z̃1

i ,Ui=0

[
ℓ(W, Z̃1

i )
] ∥∥∥EW |Z̃1

i ,Ui=1

[
ℓ(W, Z̃1

i )
])]

(9)
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≤ 1

2n

n∑
i=1

EZ̃0
i

[
IZ̃

0
i (W ;Ui)

]
+

1

2n

n∑
i=1

EZ̃1
i

[
IZ̃

1
i (W ;Ui)

]
=

1

2n

n∑
i=1

I(W ;Ui|Z̃0
i ) + I(W ;Ui|Z̃1

i ).

Following the formulation of the supersample setting, we know that the learning algorithm A is unaware of the supersample
variables Ui. Therefore, it should be invariant w.r.t the supersamples Z̃i, i.e. the distributions PW,Ui,Z̃0

i
and PW,Ui,Z̃1

i
should

satisfy certain symmetry such that

PW,Z̃0
i |Ui=0 = PW,Z̃1

i |Ui=1, PW,Z̃0
i |Ui=1 = PW,Z̃1

i |Ui=0. (10)

Therefore, we can conclude that I(W ;Ui|Z̃0
i ) = I(W ;Ui|Z̃1

i ) and the proof is complete.

Corollary 3.3 (Restate). Assume ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

n

n∑
i=1

√
2I(W ;Ui|Z̃0

i ).

Proof. Applying Lemma A.7, we have that for any p, q ∈ [0, 1],

dJS(p ∥ q) =
1

2
dKL

(
p

∥∥∥∥ p+ q

2

)
+

1

2
dKL

(
q

∥∥∥∥ p+ q

2

)
≥ d2TV

(
p

∥∥∥∥ p+ q

2

)
+ d2TV

(
q

∥∥∥∥ p+ q

2

)
=

1

2
(p− q)2.

With the same technique to bound Eq. (9), we then have∣∣∣EW |Z̃0
i ,Ui=0

[
ℓ(W, Z̃0

i )
]
− EW |Z̃0

i ,Ui=1

[
ℓ(W, Z̃0

i )
]∣∣∣ ≤√2dJS

(
EW |Z̃0

i ,Ui=0

[
ℓ(W, Z̃0

i )
] ∥∥∥EW |Z̃0

i ,Ui=1

[
ℓ(W, Z̃0

i )
])

≤
√

2IZ̃
0
i (W ;Ui).

Similarly, we can prove ∣∣∣EW |Z̃1
i ,Ui=1

[
ℓ(W, Z̃1

i )
]
− EW |Z̃1

i ,Ui=0

[
ℓ(W, Z̃1

i )
]∣∣∣ ≤√2IZ̃

1
i (W ;Ui).

By the definition of generalization error and Jensen’s inequality, we obtain

|gen| =
∣∣∣EW,Z̃,U

[
LZ̃U

(W )− LZ̃U
(W )

]∣∣∣ = 1

n

∣∣∣∣∣EW,Z̃,U

[
n∑

i=1

ℓ(W ; Z̃Ui
i )− ℓ(W ; Z̃Ui

i )

]∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣EZ̃i,U

[
EW |Z̃i,U

[
ℓ(W, Z̃Ui

i )
]
− EW |Z̃i,Ui

[
ℓ(W, Z̃Ui

i )
]]∣∣∣

≤ 1

2n

n∑
i=1

∣∣∣EZ̃0
i

[
EW |Z̃0

i ,Ui=0

[
ℓ(W, Z̃0

i )
]
− EW |Z̃0

i ,Ui=1

[
ℓ(W, Z̃0

i )
]]∣∣∣

+
1

2n

n∑
i=1

∣∣∣EZ̃1
i

[
EW |Z̃1

i ,Ui=1

[
ℓ(W, Z̃1

i )
]
− EW |Z̃1

i ,Ui=0

[
ℓ(W, Z̃1

i )
]]∣∣∣

≤ 1

2n

n∑
i=1

EZ̃0
i

[√
2IZ̃

0
i (W ;Ui)

]
+ EZ̃1

i

[√
2IZ̃

1
i (W ;Ui)

]

≤ 1

2n

n∑
i=1

√
2I(W ;Ui|Z̃0

i ) +

√
2I(W ;Ui|Z̃1

i )
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=
1

n

n∑
i=1

√
2I(W ;Ui|Z̃0

i ).

The proof is complete.

Proposition 3.4 (Restate). For any i ∈ [1, n], we have

I(W ;Ui|Z̃0
i ) ≤ I(W ;Ui|Z̃i).

Proof. Since Z̃0
i , Z̃1

i and Ui are independent, we have I(Z̃1
i ;Ui|Z̃0

i ) = 0. Then by the chain rule of conditional mutual
information, we can prove that

I(W ;Ui|Z̃0
i ) ≤ I(W ;Ui|Z̃0

i ) + I(Z̃1
i ;Ui|W, Z̃0

i ) = I(W, Z̃1
i ;Ui|Z̃0

i )

= I(W ;Ui|Z̃0
i , Z̃

1
i ) + I(Z̃1

i ;Ui|Z̃0
i ) = I(W ;Ui|Z̃i).

Theorem 3.6 (Restate). Assume ℓ(·, ·) ∈ [0, 1], then

dJS(Ln ∥Lµ) ≤
1

n

n∑
i=1

I(L0
i ;Ui).

Proof. By Jensen’s inequality and the joint convexity of dKL(· ∥ ·), we have

dKL

(
Ln

∥∥∥∥ Ln + Lµ

2

)
= dKL

(
1

n

n∑
i=1

ELi,Ui

[
LUi
i

] ∥∥∥∥∥ 1

2n

n∑
i=1

ELi

[
L0
i + L1

i

])

≤ 1

n

n∑
i=1

dKL

(
ELi,Ui

[
LUi
i

] ∥∥∥∥ 1

2
ELi

[
L0
i + L1

i

])
(11)

=
1

n

n∑
i=1

dKL

(
1

2
ELi|Ui=0

[
L0
i

]
+

1

2
ELi|Ui=1

[
L1
i

] ∥∥∥∥ 1

2
ELi

[
L0
i + L1

i

])
Similar to Eq. 10, the distributions PL0

i ,Ui
and PL1

i ,Ui
should satisfy certain symmetry such that

PL0
i |Ui=0 = PL1

i |Ui=1, PL1
i |Ui=0 = PL0

i |Ui=1, PL0
i
= PL1

i
.

Therefore, it satisfies that

dKL

(
Ln

∥∥∥∥ Ln + Lµ

2

)
≤ 1

n

n∑
i=1

dKL

(
EL0

i |Ui=0

[
L0
i

] ∥∥∥EL0
i

[
L0
i

])
.

Similarly, we can prove that

dKL

(
Lµ

∥∥∥∥ Ln + Lµ

2

)
≤ 1

n

n∑
i=1

dKL

(
EL0

i |Ui=1

[
L0
i

] ∥∥∥EL0
i

[
L0
i

])
.

Notice that 1
2

(
EL0

i |Ui=1

[
L0
i

]
+ EL0

i |Ui=0

[
L0
i

])
= EL0

i

[
L0
i

]
. Then by combining the two inequalities above and applying

Lemma 3.1 with X = L0
i , Y = Ui and f(L0

i ) = L0
i , we have

dJS(Ln ∥Lµ) =
1

2
dKL

(
Ln

∥∥∥∥ Ln + Lµ

2

)
+

1

2
dKL

(
Lµ

∥∥∥∥ Ln + Lµ

2

)
≤ 1

n

n∑
i=1

dJS

(
EL0

i |Ui=0

[
L0
i

] ∥∥∥EL0
i |Ui=1

[
L0
i

])
≤ 1

n

n∑
i=1

I(L0
i ;Ui).

The proof is complete.
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Theorem 3.9 (Restate). Assume Assumption 3.7 and 3.8 hold and ℓ(·, ·) ∈ {0, 1}, then

Lµ = d−1
JS

(
Ln,

1

n

n∑
i=1

I(L0
i ;Ui)

)
.

Proof. Notice that Assumption 3.8 implies ELi,Ui

[
LUi
i

]
= ELj ,Uj

[
L
Uj

j

]
for any i, j ∈ [1, n], we have Eq. (11) holds with

equality. Therefore,

dKL

(
Ln

∥∥∥∥ Ln + Lµ

2

)
=

1

n

n∑
i=1

dKL

(
EL0

i |Ui=0

[
L0
i

] ∥∥∥EL0
i

[
L0
i

])
,

dKL

(
Lµ

∥∥∥∥ Ln + Lµ

2

)
=

1

n

n∑
i=1

dKL

(
EL0

i |Ui=1

[
L0
i

] ∥∥∥EL0
i

[
L0
i

])
.

Then by applying the additional condition of Lemma 3.1 with X = L0
i , Y = Ui and f(L0

i ) = L0
i , we have

dJS(Ln ∥Lµ) =
1

2n

n∑
i=1

dKL

(
EL0

i |Ui=0

[
L0
i

] ∥∥∥EL0
i

[
L0
i

])
+

1

2n

n∑
i=1

dKL

(
EL0

i |Ui=1

[
L0
i

] ∥∥∥EL0
i

[
L0
i

])
=

1

n

n∑
i=1

dJS

(
EL0

i |Ui=0

[
L0
i

] ∥∥∥EL0
i |Ui=1

[
L0
i

])
=

1

n

n∑
i=1

I(L0
i ;Ui).

When Assumption 3.7 holds, by the strong convexity of binary KL divergence, we obtain

Lµ = d−1
JS

(
Ln,

1

n

n∑
i=1

I(L0
i ;Ui)

)
,

which completes the proof.

Corollary 3.10 (Restate). Assume Assumption 3.7 and 3.8 hold and ℓ(·, ·) ∈ [0, 1], then

Lµ = d−1
JS

(
Ln,

1

n

n∑
i=1

I(L̄0
i ;Ui)

)
.

Proof. From the definition of the binarized loss L̄u
i , we have L̄u

i ∈ {0, 1} almost surely and

EL̄0
i |Ui=0[L̄

0
i ] = EL0

i |Ui=0[L
0
i ], EL̄0

i
[L̄0

i ] = EL0
i
[L0

i ],

for any i ∈ [1, n] and u ∈ {0, 1}. Therefore,

dKL

(
Ln

∥∥∥∥ Ln + Lµ

2

)
=

1

n

n∑
i=1

dKL

(
EL0

i |Ui=0

[
L0
i

] ∥∥∥EL0
i

[
L0
i

])
=

1

n

n∑
i=1

dKL

(
EL̄0

i |Ui=0

[
L̄0
i

] ∥∥∥EL̄0
i

[
L̄0
i

])
.

Similarly, we can prove that

dKL

(
Lµ

∥∥∥∥ Ln + Lµ

2

)
=

1

n

n∑
i=1

dKL

(
EL̄0

i |Ui=1

[
L̄0
i

] ∥∥∥EL̄0
i

[
L̄0
i

])
.
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Then by following the proof of Theorem 3.9, we have

Lµ = d−1
JS

(
Ln,

1

n

n∑
i=1

I(L̄0
i ;Ui)

)
.

Corollary 3.12 (Restate). Assume Assumption 3.8 hold and δjLn ≤ δjLµ for any j ≥ 1, then

Lµ =

∞∑
j=1

d−1
JS

(
δjLn,

1

n

n∑
i=1

I(δjL̄
0
i ;Ui)

)
.

Proof. From the definition of the truncated loss δjL̄u
i , we have δjL̄

u
i ∈ {0, 1} almost surely and

L̄u
i =

∞∑
j=1

δjL̄
u
i ,

for any i ∈ [1, n] and u ∈ {0, 1}. Then by following the proof of Theorem 3.9, we have

dJS(δjLn ∥ δjLµ) =
1

n

n∑
i=1

I(δjL̄
0
i ;Ui),

for any j ≥ 1. Combining with the condition that δjLn ≤ δjLµ, we finally have

Lµ =

∞∑
j=1

δjLµ =

∞∑
j=1

d−1
JS

(
δjLn,

1

n

n∑
i=1

I(δjL̄
0
i ;Ui)

)
.

Lemma 4.1 (Restate). Given random variables X , Y such that Y ∼ Bern
(
1
2

)
and X ∈ {0, 1} almost surely, then

df -JS
(
EX|Y=0[X]

∥∥EX|Y=1[X]
)
= If (X;Y ).

Proof. From the definition of f -information, we have

If (X;Y ) =
∑

x∈{0,1}

∑
y∈{0,1}

P (X = x)P (Y = y)f

(
P (X = x, Y = y)

P (X = x)P (Y = y)

)

=
1

2

∑
x∈{0,1}

∑
y∈{0,1}

P (X = x)f

(
P (X = x|Y = y)

P (X = x)

)
.

Noticing that EX|Y =0[X]+EX|Y =1[X]

2 = EX [X], we obtain

df -JS
(
EX|Y=0[X]

∥∥EX|Y=1[X]
)
=

1

2
df
(
EX|Y=0[X]

∥∥EX [X]
)
+

1

2
df
(
EX|Y=1[X]

∥∥EX [X]
)

=
1

2

∑
y∈{0,1}

df
(
EX|Y=y[X]

∥∥EX [X]
)

=
1

2

∑
y∈{0,1}

EX [X]f

(EX|Y=y[X]

EX [X]

)
+ (1− EX [X])f

(
1− EX|Y=y[X]

1− EX [X]

)

=
1

2

∑
y∈{0,1}

P (X = 0)f

(
P (X = 0|Y = y)

P (X = 0)

)
+ P (X = 1)f

(
P (X = 1|Y = y)

P (X = 1)

)

=
1

2

∑
x∈{0,1}

∑
y∈{0,1}

P (X = x)f

(
P (X = x|Y = y)

P (X = x)

)
.

Combining the two equalities above yields the desired result.
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Theorem 4.2 (Restate). Assume Assumption 3.8 hold and ℓ(·, ·) ∈ [0, 1], then

df -JS(Ln ∥Lµ) =
1

n

n∑
i=1

If (L̄
0
i ;Ui).

Proof. By Assumption 3.8 and the definition of f -divergence, we have

df

(
Ln

∥∥∥∥ Ln + Lµ

2

)
= df

(
1

n

n∑
i=1

ELi,Ui

[
LUi
i

] ∥∥∥∥∥ 1

2n

n∑
i=1

ELi

[
L0
i + L1

i

])

=
1

n

n∑
i=1

df

(
ELi,Ui

[
LUi
i

] ∥∥∥∥ 1

2
ELi

[
L0
i + L1

i

])

=
1

n

n∑
i=1

df

(
1

2
ELi|Ui=0

[
L0
i

]
+

1

2
ELi|Ui=1

[
L1
i

] ∥∥∥∥ 1

2
ELi

[
L0
i + L1

i

])

=
1

n

n∑
i=1

df

(
EL0

i |Ui=0

[
L0
i

] ∥∥∥EL0
i

[
L0
i

])
=

1

n

n∑
i=1

df

(
EL̄0

i |Ui=0

[
L̄0
i

] ∥∥∥EL̄0
i

[
L̄0
i

])
.

Similarly, we can prove that

df

(
Lµ

∥∥∥∥ Ln + Lµ

2

)
=

1

n

n∑
i=1

df

(
EL̄0

i |Ui=1

[
L̄0
i

] ∥∥∥EL̄0
i

[
L̄0
i

])
.

By applying Lemma 4.1 with X = L̄0
i and Y = Ui, we have

df -JS(Ln ∥Lµ) =
1

2
df

(
Ln

∥∥∥∥ Ln + Lµ

2

)
+

1

2
df

(
Lµ

∥∥∥∥ Ln + Lµ

2

)
=

1

n

n∑
i=1

df -JS

(
EL̄0

i |Ui=0

[
L̄0
i

] ∥∥∥EL̄0
i |Ui=1

[
L̄0
i

])
=

1

n

n∑
i=1

If (L̄
0
i ;Ui).

The proof is complete.

Corollary 4.3 (Restate). Assume ℓ(·, ·) ∈ [0, 1], then

|gen| = 2

n

n∑
i=1

EUi

[
W
(
PL̄0

i |Ui
, PL̄0

i

)]
.

Proof. By taking f(x) = 1
2 |x− 1|, we obtain the total variation metric:

dTV(p ∥ q) = |p− q|.

We then have

dTV-JS(Ln ∥Lµ) =
1

2
dTV

(
Ln

∥∥∥∥ Ln + Lµ

2

)
+

1

2
dTV

(
Lµ

∥∥∥∥ Ln + Lµ

2

)
=

1

2

∣∣∣∣Ln − Lµ

2

∣∣∣∣+ 1

2

∣∣∣∣Lµ − Ln

2

∣∣∣∣ = 1

2
|gen|.
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By the equivalence between total variation and Wasserstein distance for discrete distributions, we can get

ITV(L̄
0
i ;Ui) =

∑
l∈{0,1}

∑
u∈{0,1}

P (L̄0
i = l)P (Ui = u)f

(
P (L̄0

i = l, Ui = u)

P (L̄0
i = l)P (Ui = u)

)

=
∑

u∈{0,1}

P (Ui = u)
∑

l∈{0,1}

P (L̄0
i = l)f

(
P (L̄0

i = l|Ui = u)

P (L̄0
i = l)

)
= EUi

[
DTV

(
PL̄0

i |Ui

∥∥∥PL̄0
i

)]
= EUi

[
W
(
PL̄0

i |Ui
, PL̄0

i

)]
.

Combining the two equalities above and Theorem 4.2, we obtain

|gen| = 2dTV-JS(Ln ∥Lµ) =
2

n

n∑
i=1

ITV(L̄
0
i ;Ui) =

2

n

n∑
i=1

EUi

[
W
(
PL̄0

i |Ui
, PL̄0

i

)]
.

The proof is complete.

C. Experiment Details and Additional Results
In this section, we present experiment details and additional experimental results that were not included in the main text due
to space limitations. The deep learning models are trained with an Intel Xeon CPU (2.10GHz, 48 cores), 256GB memory,
and 4 Nvidia Tesla V100 GPUs (32GB). The generalization bounds included in the comparison are listed as follows:

Theorem C.1. (Square-Root), (Theorem 3.2, Wang & Mao (2023a)) Assume ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

n

n∑
i=1

√
2I(∆i;Ui).

Theorem C.2. (Fast-Rate), (Theorem 4.3, Wang & Mao (2023a)) Assume ℓ(·, ·) ∈ [0, 1], then for any C2 ∈
(
0, log 2

2

)
and

C1 ≥ − log(2−e2C2 )
2C2

− 1,

gen ≤ C1Ln +
1

nC2

n∑
i=1

I(L0
i ;Ui).

Theorem C.3. (Binary KL), (Theorem 4.8, Dong et al. (2024a)) Assume ℓ(·, ·) ∈ [0, 1], then

dKL

(
Ln

∥∥∥∥ Ln + Lµ

2

)
≤ 1

n

n∑
i=1

I(Li;Ui).

Theorem C.4. (CMI-Oracle), (Theorem 3.1, Wang & Mao (2024)) Assume ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

n

n∑
i=1

√
2(E∆i

[∆2
i ] + |EGi

[Gi]|)I(∆i;Ui).

Theorem C.5. (CSHI-Oracle), (Theorem 3.2, Wang & Mao (2024)) Assume ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

n

n∑
i=1

EZ̃i

√(
4E∆i|Z̃i

[∆2
i ] + 2|EGi|Z̃i

[Gi]|
)
IZ̃i

H2(∆i;Ui).

Theorem C.6. (CJSI-Oracle), (Theorem 3.3, Wang & Mao (2024)) Assume ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 2

n

n∑
i=1

EZ̃i

√(
4E∆i|Z̃i

[∆2
i ] + |EGi|Z̃i

[Gi]|
)
IZ̃i

JS (∆i;Ui).
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(a) δ = 0 (b) δ = 0.05 (c) δ = 0 (d) δ = 0.05

(e) δ = 0.1 (f) δ = 0.15 (g) δ = 0.1 (h) δ = 0.15
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Figure 4: Comparison of generalization bounds under the binary MNIST classification task, where the labels are randomly
flipped with probability δ.

In the theorems above, Gi is defined as Gi ≜ (−1)Ui∆i and satisfies EGi [Gi] = gen when Assumption 3.8 holds.

In this experiment, we employ all samples of (L0
i , Ui), i ∈ [1, n], simultaneously to estimate the shared joint distribution

PL0
i ,Ui

. This approach differs slightly from prior methods in (Harutyunyan et al., 2021; Hellström & Durisi, 2022b; Wang &
Mao, 2023a; 2024), which estimate PL0

i ,Ui
using only the samples of the corresponding pair (L0

i , Ui). Nonetheless, we
argue that our method still produces an unbiased estimator for the joint distribution PL0

i ,Ui
. Taking the binary loss function

as an example, let Pi(l, u) = 1L0
i=l∧Ui=u denote the empirical distribution for sample (L0

i , Ui). The empirical estimator
for PL0

i ,Ui
is then given by Pn = 1

n

∑n
i=1 Pi(l, u). Since EL0

i ,Ui
[Pi] = PL0

i ,Ui
, it follows that EL0

i ,Ui
[Pn] = PL0

i ,Ui
,

confirming Pn as an unbiased estimator. Therefore, although the samples (L0
i , Ui), i ∈ [1, n], are interdependent, our

method avoids introducing additional bias in probability density estimation. Furthermore, previous estimators are known to
overestimate significantly during the initial stages of SGLD iterations, as noted in (Harutyunyan et al., 2021; Wang & Mao,
2023a). Our approach mitigates this limitation, enabling the estimated upper bounds to accurately track the trends of the
generalization error throughout the entire training process.

Our synthetic experimental settings closely follow those in (Wang & Mao, 2024), where synthetic Gaussian datasets are
generated using the scikit-learn package. The task involves training a 1-layer linear classification network on 5-dimensional
input data points. Class centers are randomly selected from the vertices of a 5-dimensional hypercube, and data instances are
then independently drawn from the standard Gaussian distribution at each class center. The model is trained using full-batch
gradient descent with a fixed learning rate of 0.01 for 300 epochs. For each test case, we generate 50 distinct supersample
datasets Z̃, and for each dataset, we draw 100 different supersample variables U , resulting in 5, 000 independent runs.

In addition, we replicate the experimental settings of (Harutyunyan et al., 2021; Hellström & Durisi, 2022b) for two distinct
real-world learning tasks: 1) MNIST (4 vs. 9) classification using a 4-layer CNN network, 2) CIFAR10 classification using
a pretrained ResNet-50 network. For each learning task, k1 instances of Z̃ are sampled, and for each Z̃, k2 samples of U are
drawn, yielding k1 × k2 independent runs in total. The values of (k1, k2) are (5, 30) for MNIST and (2, 40) for CIFAR10,
respectively. To further investigate scenarios with substantial overfitting, we conduct an additional experiment introducing
random label noise in the binary MNIST classification task. As shown in Figure 4, our Binary JS bound consistently yields
exactly tight estimates of the true generalization error across all experiments, including those with significant label noise.
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