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Abstract
Large foundation models require extensive align-
ment to human preferences before deployment.
Existing methods utilize the Bradley-Terry-Luce
(BTL) model (Bradley & Terry, 1952) often as-
sume a universal preference, neglecting the diver-
sity of individual opinions. We introduce PAL,
a framework that models the plurality of human
preferences using the ideal point model and mix-
ture modeling. PAL captures this plurality while
learning a common preference latent space, en-
abling few-shot generalization to new users. With
simple multi-layer perceptron, PAL achieves
competitive reward model accuracy on Summary
(Stiennon et al., 2020) (language), Pick-a-Pic
(Kirstain et al., 2024) (image generation), and
Persona (Perez et al., 2022) (semi-synthetic) het-
erogeneous preference datasets, matching state-
of-the-art performance with greater efficiency.
Lastly, our findings highlight the need for more
nuanced data collection to capture the heterogene-
ity of human preferences.

1. Introduction
Large pre-trained “foundation” models (Bommasani et al.,
2021), such as large language models (LLMs) for language
generation (Achiam et al., 2023; Anil et al., 2023; Anthropic,
2024; Hoffmann et al., 2022; Rae et al., 2021; Reid et al.,
2024; Touvron et al., 2023) and text-to-image (TTI (Luc-
cioni et al., 2023)) models for image generation (Ding et al.,
2022; Kang et al., 2023; Ramesh et al., 2022; Rombach
et al., 2022; Saharia et al., 2022; Sauer et al., 2023; Yu et al.,
2022), are trained on massive amounts of data, including
data from the internet. While such models learn useful rep-
resentations for general language or vision tasks, they are
not readily deployable out-of-the-box to be used in the real
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world. Modern machine learning (ML) systems built on
large foundation models go through rigorous fine-tuning or
aligning towards human preferences to make them amenable
to real-world usage. This is usually achieved through super-
vised fine-tuning (SFT) with direct human input on what
the desired outputs should look like for a given context and
then followed by alignment with large amounts of human
preference feedback usually in the form of pairwise compar-
ison of two outputs to a given input context (Ouyang et al.,
2022). This is usually achieved either by (i) fine-tuning
the SFT model with explicitly learned reward as done in
reinforcement learning with human feedback (RLHF) meth-
ods such as proximal policy optimization (PPO) (Schulman
et al., 2017) or implicitly with methods such as direct pref-
erence optimization (DPO) (Rafailov et al., 2024), or (ii)
inference-time policy adaptation (Lu et al., 2023) without
fine-tuning the original large policy model.

While aligning ML/AI models to human preferences, it is
imperative to ask ourselves whose preferences are we align-
ing the ML/AI models to? (Santurkar et al., 2023) The status
quo of the alignment phase is to assume a homogeneous pref-
erence shared by all humans and attempt to learn a reward
model to learn this preference with the Bradley-Terry-Luce
(BTL) model (Bradley & Terry, 1952) of paired preferences.
We challenge these notions in an attempt to capture diverse,
heterogeneous preferences (Bakker et al., 2022; Durmus
et al., 2024; Nadal & Chatterjee, 2019; Wildavsky, 1987).
The importance of capturing the plurality of preferences and
values among humans has also been highlighted recently by
Sorensen et al. However, the methods suggested therein and
other recent works that look at learning multiple rewards
as a top-down approach where the system designer decides
the number and axes that one should care about (Cheng
et al., 2023; Choi & Li, 2024; Kovač et al., 2023; Ouyang
et al., 2022; Santurkar et al., 2023), e.g., helpfulness vs.
harmfulness (Bai et al., 2022b;a; Ganguli et al., 2022; Rame
et al., 2024). In reality, human preference is more complex
than the designer-specified axes (Bakker et al., 2022), which
leads us to propose the following goal.

Goal: Develop a framework for pluralistic alignment
that uses diverse human preferences from the ground up.

Our Contributions. Towards this goal, we make the fol-
lowing contributions,
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1. Novel Reformulation: We reframe the problem of align-
ment from human preferences by introducing the lens
of ideal point model (Coombs, 1950) and metric learn-
ing (Kulis, 2013).

2. New Framework for Pluralistic Alignment: We pro-
pose PAL, a general framework for pluralistic alignment
using diverse human preferences from the ground up.

3. Empirical Validation on Benchmark Datasets: We
evaluate PAL through extensive experiments (Section 3)
on both synthetic and real datasets.

2. Framework for Pluralist Alignment (PAL)
In this section, we describe how to view existing approaches
that use the BTL model for alignment through the lens of
the ideal point model, and then introduce our framework for
pluralistic alignment. We illustrate the PAL framework in
Figure 1 and Figure 2 (Appendix C). See Appendix B for
problem background and notation used below.

2.1. Viewing alignment through the lens of ideal point
model and metric learning

The ideal point model assumption that items lie in a vec-
tor space is reasonable, especially with foundation models.
However, the assumption that a known distance function in
this space accurately captures human similarity judgments is
a strong one. We reframe alignment (learning a reward func-
tion) as learning a transformation of the foundation model’s
representation space, where a known distance function (e.g.
Euclidean distance) better approximates human similarity
judgments in this transformed space.

Looking at the current alignment approaches using the BTL
model through the lens of the ideal point model, we can re-
interpret 1/(1 + exp (rθ(xr;xc)− rθ(xl;xc))) as an ideal
point model where the difference of rewards is a proxy for
the difference of distances1 and the link function being the
Sigmoid or logistic function.

We relax the requirements of 1) Sigmoid link function used
by the BTL model and 2) known distance function used by
the ideal point model and propose to view alignment from
human preferences as learning a reward function that can
generalize to the following:

Pr(xl ≻ xr|xc) = h(rθ(xr;xc)− rθ(xl;xc)), (1)

where h any monotonic link function appropriately normal-
ized to obtain probabilities.

We instantiate the reward function in the following ways:

1We note that here reward function is a proxy and not real
distance function.

1. With unknown but fixed ideal point, unknown represen-
tation space for jointly representing the prompt input
xc and the corresponding output x from the foundation
model and Euclidean distance, we obtain the formula-
tion, rθ(x,xc) = ||f(x;xc)− f(a)||2, where mapping
f : R2D → Rd and ideal point a ∈ R2D are unknown
and learned from pairwise comparison queries. This
corresponds to the following pairwise ranking model:

Pr(xl ≻ xr|xc)

= h(||f(xr;xc)− f(a)||22 − ||f(xl;xc)− f(a)||22)

2. The user ideal point is an unknown function of the prompt
xc and distance is the angle between the ideal point
conditioned on the prompt and the unknown representa-
tion space for the output x from the foundation model,
rθ(x,xc) = ⟨f(x), z(xc)⟩, where the mappings f and
z map RD → R and are unknown and are learned from
pairwise comparisons. Here we assume that the range
spaces of f and z are normalized to use the angle as
the distance function. This corresponds to the following
pairwise ranking model:

Pr(xl ≻ xr|xc) = h(⟨f(xr), z(xc)⟩)−⟨f(xl), z(xc)⟩)

2.2. Modeling diverse preferences

So far we have focused on viewing current alignment meth-
ods, which assume a homogeneous model i.e. all users’ pref-
erences are assumed to arrive from a universal model with
disagreements modeled as noise. A natural extension to in-
dividualized modeling can be written as follows: For user i,
Pri(xl ≻ xr|xc) = h(i)(r

(i)
θ (xr;xc)− r

(i)
θ (xl;xc)),where

h(i) is any monotonic link function that can be dependent
on the individual and r(i)(.) denotes the reward function for
individual i. We note that the learning algorithm does not
need to know the link function. One could use these models
at a single-user level to learn a personalized model using
lots of data from that specific user. However, such models
will not generalize to other individuals.

In reality, individuals’ preferences exhibit systematic dif-
ferences and shared aspects within subgroups (e.g., due to
demographics). We propose a low-rank mixture model to
capture this diversity, representing each user as a convex
combination of K prototypical preferences.

Model A: Diverse preference with fixed preference
points. Here each user’s ideal point is modeled as a convex
combination of K prototypical ideal points, {p1, ...,pK}
with pi ∈ R2D.

Model A: Pri(xl ≻ xr|xc)

= h(||f(xr;xc)− f(a(i))||22
− ||f(xl;xc)− f(a(i))||22),

(2)
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Figure 1: Illustration of PAL framework for learning from diverse preferences (Section 2). For any user i, the probability
of preferring xl to xr for the context xc is given by a reward model r(i)θ which is modeled with a mixture modeling
approach to capture diverse user preferences – each user’s preference is modeled as a convex combination of K prototypes.
Reward function formulated using PAL framework can be used flexibly, e.g, with fixed preference points (Model A) or with
preference points that are functions of the context/prompt xc (Model B).

where a(i) :=
∑K

k=1 w
(i)
k pk with the weights w

(i)
k ≥ 0

and
∑K

k=1 w
(i)
k = 1. Denoting P := [p1, · · · ,pK ] and

w(i) := [w
(i)
1 , · · · , w(i)

K ]⊤,a(i) = Pw(i), where w(i) lies
in K-dimensional simplex denoted by ∆K .

Model B: Diverse preference with preference points as
function of input prompt. Here each user’s ideal point is
modeled as a convex combination of K prototypical func-
tions that map input prompts to ideal points, {g1, ..., gK}.

Model B: Pri(xl ≻ xr|xc)

= h
(
⟨f(xr), z

(i)(xc)⟩ − ⟨f(xl), z
(i)(xc)⟩

)
,

where z(i)(xc) =
∑K

k=1 w
(i)
k gk(xc) = G(xc)w

(i) with
G(xc) := [g1(xc), · · · , gK(xc)] and w(i) ∈ ∆K . We drop
the superscript i on h for simplicity, however, we note that
the link function need not be the same for all users, and
furthermore, our learning algorithm described in Section 2.3
does not need to know the link function(s). We illustrate the
PAL framework in Figure 1 and Figure 2 (Appendix C).

2.3. Learning PAL models from Diverse Preferences

Given a dataset of answers to pairwise comparison queries,{
{(xl,xr;xc)

(i)
j }mi

j=1

}N

i=1
, where mi denote the number

of pairs answered by user i, the goal of the learning algo-
rithm in the PAL framework is to learn the mappings and
prototypes shared across the population, and for each user
i the weights w(i) := [w

(i)
1 , ..., w

(i)
K ] with w

(i)
k ≥ 0 and∑K

k=1 w
(i)
k = 1. For model A, mapping f and the proto-

types {pk}Kk=1 are shared, while for model B, the mapping
f and the prototype mappings {gk}Kk=1 shared. Without loss
of generality, we have assumed that xl is preferred over xr.
Thus, this learning problem can be viewed as a supervised
learning setting with binary labels.

Generalization over seen users versus unseen users:
When learning a reward function from diverse preferences,
there are two types of generalization to consider. (1) Gen-
eralization for unseen pairs for seen users, i.e. predicting
well for new pairs for the people for whom the weights
have already been learned from the training data. We call
this seen accuracy. (2) Generalization for unseen users, i.e.
predicting well for people whose data was not part of the
training data at all. For such new users, some part of their
new data will be used to localize their weights, with the
shared mappings and prototypes fixed. We call this unseen
accuracy. We also note that we can use the weighted combi-
nation of learned prototypes, i.e. an average of all the seen
users, as the zero-shot ideal point for new users. However,
we emphasize that it is important for reward functions to
generalize to unseen users and our framework provides a
natural way to localize a new user.

Algorithm. Given the following input: Dataset D ={
{(xl,xr;xc)

(i)
ji
}mi
ji=1

}N

i=1
, loss function ℓ and model class

for fθ, the learning algorithm for Model A starts by ran-
domly initializing the prototypes P = [p1, ...,pK ], pk ∈
Rd, user weights W = [w(1), ...,w(N)], where w(i) ∈ ∆K .
Then, in each iteration until convergence criteria, the follow-
ing steps are repeated (see Figure 1):

• Sample a random mini-batch
{
(xl,xr;xc)

(i)
j

}
of com-

parison data from D.
• Compute user ideal points: a(i) = P ·w(1)

• Compute distances: d
(i)
l,j = ||fθ (xl;xc) − fθ(a

(i))||22,

d
(i)
r,j = ||fθ (xr;xc)− fθ(a

(i))||22.
• Loss for each comparison j for user i:
ℓ
(i)
j (xl,xr;xc) = ℓ(d

(i)
r,j − d

(i)
l,j ).

• Update Step: argmaxθ,P,{w(i)}N
i=1

∑
i,j ℓ

(i)
j (xl,xr;xc).

The above steps describe updating the learning algorithm
for model A. For model B, the steps are similar except that
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prototypes now are the functions (gk) and the distance is the
angle (⟨·⟩). See Appendix F for pseudocode details.

Table 1: PAL test accuracy can match SoTA
Pickscore (Kirstain et al., 2024) on the Pick-a-Pic-
v1 test set with a fraction of the compute.

Model Test Accuracy(%)
Pick-a-Pic v1 test

CLIP-H14 59.23
PickScore 71.85

model A on CLIP-H 69.29 ± 0.66
model B on CLIP-H 71.13 ± 0.31

Table 2: Test Accuracy of PAL compared to CLIP-H and
Pickscore baselines on Pick-a-Pic v2. Entries with asterisk∗

have inflated accuracies due to V2 test set overlap with V1
train.

Model Train set Test Acc. Pick-a-Pic v2 (%)
No-leakage Leakage

CLIP-H14 - 62.57 58.59
PickScore pickapic v1 68.04 74.16∗

model B
(CLIP-H) pickapic v1 70.02 ± 0.39 79.32 ± 1.68∗

model B
(CLIP-H) pickapic v2 70.51 ± 0.22 68.67 ± 0.51
model B

(PickScore) pickapic v2 70.16 ± 0.19 74.79 ± 0.13∗

3. Experiments
We conduct extensive experiments on both simulated (Ap-
pendix E.1) and real preference datasets (Appendix E.2) for
both text and image generation tasks to demonstrate that our
proposed PAL (Pluralistic ALignment) framework can: (1)
effectively capture the diversity of user preferences, thereby
outperforming existing homogeneous reward models; (2)
efficiently achieve performance comparable to the existing
SoTA reward models with far fewer parameters and com-
pute costs (See Appendix G); and (3) versatile to applied
to different domains. For experiments on real preference
datasets, a simple two-layer MLP PAL reward model can
achieve or exceed the performance of the existing status quo
reward models, which often contain billions of parameters.
Due to the page limitation, we report our results on the
Pick-a-Pic dataset and defer the rest to Appendix E.

3.1. Pick-a-Pic Dataset

We conducted experiments on the Pick-a-Pic
dataset (Kirstain et al., 2024) and show two benefits
of our proposed ideal point model compared with existing
reward models i.e. learning 1) diverse user preferences 1) a
competitive reward model with only 2-layer MLP networks.
Recent works on the existing reward models usually require
fine-tuning foundation models with billions of parameters,

while PAL achieves comparable performance without a
fine-tuning stage, saving significant compute costs.

Dataset and Experiment Setup. There are two versions of
Pick-a-Pic datasets, v1 and v2 (which extends v1). We
trained model B on both datasets, using CLIP-H14 or
PickScore latent embeddings as input. Due to sample over-
lapping between the v1 training set and the v2 test set, we
split the v2 test into "no-leakage" and "leakage" subsets to
fairly compare our model with the SoTA PickScore reward
model, which is trained on v1. We adopt the same hyperpa-
rameters used in Pick-a-Filter experiments (Appendices D
and E.2.2), avoiding extensive hyperparameter tuning. Our
model B is trained on CLIP-H14 or PickScore latent embed-
dings from either the v1 or v2 datasets, over 10 epochs.

Results. Table 1 demonstrates that the performance of
our model B aligns with SoTA PickScore on the Pick-a-
Pic dataset. On the v2 no-leakage test set, our model B
outperforms PickScore by 2% (Table 2). Additionally, the
performance of model B using PickScore latent embeddings
is inferior to that of model B using CLIP-H14 embeddings.
This highlights the effectiveness of our proposed ideal point
model framework: it can match or exceed the SoTA reward
model using a simple two-layer MLP network, whereas
PickScore requires fine-tuning the entire CLIP-H14 model
(∼ 1B parameters) with 8×A100 GPUs.

Remark. Since the data collection process for existing
datasets involves the usage of strict rubrics (Kirstain et al.,
2024; Stiennon et al., 2020; Wu et al., 2023), labeler per-
formance monitoring (Xu et al., 2024) and disproportionate
amount of data from small fraction of users, these datasets
may not be heterogeneous. Using PAL with K = 1, we
surpass existing SoTA (Table 2). These results motivate the
need to collect datasets that contain unmoderated, diverse
opinions.

4. Conclusions, Limitations and Future Work
We proposed a novel reformulation of the problem of align-
ment with human preferences via the PAL framework for
pluralistic alignment with diverse preferences from the
ground up (Section 2). PAL leverages shared structures
across the user population while learning to personalize to
individuals using a mixture modeling approach. We demon-
strate the PAL framework is agnostic to modality, showing
flexible adaptivity to heterogeneous preferences on text data
and image data (Section 3). Our work aids in building much-
needed foundations toward plurality for alignment of ML/AI
models. Our experiments also highlight the limitations of
many real human preference datasets that are collected with
rubrics that make the dataset homogeneous, thus calling for
a more nuanced approach to data collection in the future.
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A. Related Works
Alignment Status Quo. Popular existing foundation models (Achiam et al., 2023; Anthropic, 2024; Ouyang et al., 2022;
Touvron et al., 2023) typically use RLHF (Christiano et al., 2017; Stiennon et al., 2020) to align models after pretraining.
Recent foundation models such as Zephyr (Tunstall et al., 2023) and the Archangel suite2 have shifted to directly optimizing
on human preferences (Azar et al., 2024; Ethayarajh et al., 2024; Rafailov et al., 2024) to avoid the nuances of RL
optimization (Dulac-Arnold et al., 2021). There has also been significant recent work in collecting large human preference
datasets for reward model training in the text-to-image (typically diffusion model (Rombach et al., 2022)) space (Kirstain
et al., 2024; Wu et al., 2023; Xu et al., 2024).

Reward Modeling. These existing alignment frameworks generally assume that all humans share a single unified preference
(e.g. LLM “helpfulness” or “harmlessness” (Bai et al., 2022a)) and ascribe to the Bradley-Terry (Bradley & Terry,
1952) model of pairwise preferences. Consensus-based methods (Bakker et al., 2022) aim to find agreement among
labelers for specific goals like harmlessness (Bai et al., 2022b; Ganguli et al., 2022), helpfulness (Bai et al., 2022a), or
engagement (Irvine et al., 2023). By design, these methods inherently prioritize the universal preference (and biases)
induced by the labelers (Cheng et al., 2023; Kovač et al., 2023; Santurkar et al., 2023). In reality, humans have diverse,
heterogeneous preferences (Nadal & Chatterjee, 2019; Sorensen et al., 2024; Wildavsky, 1987) that depend on individual
contexts, and may even share a group structure (Bakker et al., 2022). Rewarded soups (Rame et al., 2024) make a case to
capture diversity through post-hoc weight-space interpolation over a mixture of experts that learn diverse rewards. However,
these rewards are learned by pre-defining what aspects are important which is done by the system designer. Separate datasets
are collected to elicit human preferences on these axes as to how much people care of them. DPA (Wang et al., 2024b)
models rewards as directions instead of scalars, and trains a multi-objective reward model for RLHF. Wu et al. propose
fine-grained multi-objective rewards to provide more focused signal for RLHF. Recently, Li et al. propose personalized
reward modeling by learning a general user embedding and treating each individual as a perturbation to the embedding.
As this preference formulation is still homogeneous, they can only generalize to unseen users using the fixed general user
embedding.

Recent survey works provide excellent summaries of literature for alignment (Ji et al., 2023) and reward modeling (Wang
et al., 2024a).

Human Preference Datasets. The preference universality assumption also extends into the data annotation/labeling
processing, where labelers are given a rubric to select preferences (e.g. to rank an image pair considering image aesthetics
and image-prompt alignment (Kirstain et al., 2024)). Due to this rubric, the current largest scale text-to-image generation
preference datasets (Kirstain et al., 2024; Wu et al., 2023; Xu et al., 2024) show limited diversity among labelers. In the
Pick-a-Pic (Kirstain et al., 2024) train set, there are only 701 disagreements among the 12487 image pairs labeled by
different users (94.38% agreement), and there are zero disagreements in validation (1261 pairs) and test (1453 pairs) sets.
HPS (Wu et al., 2023) found that labeler agreement over diffusion model generations was higher for models of similar
quality or size, though this diversity comes with the caveat of the labelers being provided a rubric to provide their preferences.
Imagereward (Xu et al., 2024) use researcher agreement as a criteria to hire labelers. In the LLM domain, the popular
Summarize from Feedback dataset (Stiennon et al., 2020) is also collected with rigid rubric, with labeler performance
measured via agreement to the preferred answer of the authors. During the data collection period, only labelers with
satisfactory agreement were retained, which led to a small number of users, all in agreement with the authors’ rubric, being
responsible for a majority of labeled comparisons. Status quo preference datasets used to align foundation models thus
suffer from a lack of diversity due to the nature of their data collection.

Preference learning. There is rich literature on preference learning and ranking in various domains ranging from psychology,
marketing, recommendation systems, quantifying social science surveys to crowdsourced democracy, voting theory and
social choice theory. We provide a few relevant works here and direct reader to surveys such as (Fürnkranz & Hüllermeier,
2010). Ranking based models, e.g., BTL-model (Bradley & Terry, 1952; Luce, 1959), stochastic transitivity models (Shah
et al., 2016) focus on finding ranking of m items or finding top-k items by pairwise comparisons (Hunter, 2004; Kenyon-
Mathieu & Schudy, 2007; Braverman & Mossel, 2007; Negahban et al., 2012; Eriksson, 2013; Rajkumar & Agarwal, 2014;
Shah & Wainwright, 2017). Ranking m items in these settings requires O(m logm) queries. There is also rich literature that
stems from ideal point model proposed by Coombs (Coombs, 1950; Huber, 1976; Jamieson & Nowak, 2011; Ding, 2016;
Singla et al., 2016; Xu & Davenport, 2020; Canal et al., 2022). Under the ideal point based models, the query complexity for
ranking m items reduces to O(d logm), where d is the dimension of the domain of representations which is usually much

2https://github.com/ContextualAI/HALOs
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smaller than the number of items being ranked (Jamieson & Nowak, 2011). This is due to the fact that once the preference
point is learned, it can then be used to predict rankings of new items without needing more comparisons.

Metric learning has been studied quite extensively and we direct the reader to surveys (Kulis, 2013) and books (Bellet et al.,
2022). In particular, metric learning based on triplet querying has also been quite extesively studied (Shepard, 1962a;b;
1966; Schultz & Joachims, 2003; Kulis, 2013; Tamuz et al., 2011; Kleindessner & Luxburg, 2014; Bellet et al., 2015;
Bellet & Habrard, 2015; Mason et al., 2017) which aims to learn the underlying unknown metric under the assumption that
the people base their judgement for a triple query with concepts xa,xb,xc ∈ D on the relative similarities based on the
distances between these concepts under the unknown metric.

Simultaneous metric and preference learning. More recently a few works have considered the problem of unknown
metric in preference learning and proposed methods (Xu & Davenport, 2020; Canal et al., 2022; Wang et al., 2024c) and
provided sample complexity analysis (Canal et al., 2022; Wang et al., 2024c) for simultaneously learning an unknown
Mahalanobis metric and unknown user preference(s). Learning the unknown Mahalanobis metric can be viewed as learning
linear layer on top of the embeddings from a foundation model. From our reframing of alignment, these works can be
looked as model A with linear function for f and individual user preferences instead of having any structure over them.

B. Notations and Background
We begin with a brief discussion of the BTL model and how it is currently used in reward learning from pairwise preference
comparisons, followed by motivating the ideal point model.

Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952) is a parametric model for ranking. Given m items or alternatives,
the assumption is that there is a universal ranking: σ(1) ≻ σ(2) ≻ · · · ≻ σ(m) which are a reflection of the unknown true
scores or weights associated with each of these items s⋆σ(1) > s⋆σ(2) > · · · s⋆σ(m), where σ(.) denotes permutation and the
scores s⋆ are positive real numbers. Then, the probability that “i beats j" when comparing them, denoted by i ≻ j is given
by,

Pr(i ≻ j) =
s⋆i

s⋆i + s⋆j
=

exp (ri)

exp (ri) + exp (rj)
, (3)

where the variables r re-parameterize s > 0.

Notation: We set up some notation for further discussion. Let D denote the dimension of the representation space of the
foundation models. Let xc ∈ RD denote the representation of the prompt or the context. Let xl ∈ RD and xr ∈ RD denote
the embeddings of two items where the subscripts denote left and right respectively.

In the literature on alignment with human feedback, the scores re-parametrized with reward, denoted here by r, are modeled
using a neural network denoted by rθ. More concretely, given a context or prompt xc, the probability that output xl is
preferred to output xr under the BTL model is given by,

Pr(xl ≻ xr|xc) =
exp (rθ(xl;xc))

exp (rθ(xl;xc)) + exp (rθ(xr;xc))
(4)

=
1

1 + exp (rθ(xr;xc)− rθ(xl;xc))
. (5)

The goal then is to learn this reward function rθ that maps the output x ∈ RD for a given context xc ∈ RD, denoted by
(x;xc), to a real-valued reward score to approximate human preference. This learning of rθ is done using lots of pairwise
comparison data obtained by querying humans. Such a learned reward function can be used to align the model (Christiano
et al., 2017; Leike et al., 2018; Ouyang et al., 2022), score the generations during inference time to output more aligned
answers () and to rank the generations of multiple models (Dong et al., 2023; Yuan et al., 2023). Recent work from Rafailov
et al. bypasses the status quo two-stage reward learning + RL pipeline and directly finetune on pairwise preferences, but still
implicitly assumes the BTL model for ranking.

While most alignment literature focuses on the BTL modeling approach, we want to draw attention to the ideal point
model (Coombs, 1950) for preference learning.

Ideal point model was proposed by Coombs for human preference modeling in the psychology literature. The key idea
behind this model is to exploit the geometry of the problem, assuming there exists a meaningful representation space for the
items/alternates being compared. Let X ∈ RD denote the domain of feature space of the concepts (items, objects, images,
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Figure 2: Illustration of PAL framework for learning from diverse preferences (Section 2). For any user i, the probability
of preferring xl to xr for the context xc is computed by a reward model r(i)θ which uses a mixture modeling approach to
assign a scalar reward to a sample (e.g. xl or xr) given context (xc). In PAL-A, each user i’s preference a(i) is modeled
as a convex combination of K prototypical preferences, i.e. a(i) = Pw(i). In PAL-B, each user i’s preference z(i)(xc) is
modeled as a convex combination of K prototypical functions g1 · · · gK , i.e. z(i)(xc) =. Reward function formulated using
PAL framework can be used flexibly, e.g., with fixed preference points (Model A), with preference points that are functions
of the context/prompt xc (Model B).

choices, etc.) with a distance associated with it. Preference learning based on ideal point model (Canal et al., 2022; Coombs,
1950; Ding, 2016; Huber, 1976; Jamieson & Nowak, 2011; Singla et al., 2016; Xu & Davenport, 2020) assumes that there is
an unknown ideal preference point a ∈ X that represents the reference point people use for their preference judgments based
on distances. So, when asked “Do you prefer i or j?”, they respond with i as their preference if dist(xi,a) < dist(xj ,a)
and vice versa, where xi,xj ∈ X are the feature representations of i and j respectively. That is, items that are closer to the
user’s ideal preference points are preferred by the user over those that are farther away. The goal of preference learning is
to use the responses for pairwise comparison queries from people and learn the preference point a. Once we learn a, we
can predict the choices people make between new unseen pairs. More formally, in general, the probability that i beats j in
preference for user a is given by,

Pr(i ≻ j) ∝ h(dist2(xj ,a)− dist2(xi,a)), (6)

where h is a link function (Nelder & Wedderburn, 1972) which can be any monotonic function. Essentially, the idea here is
that the larger the difference in distance between the alternates, the easier it is to decide and hence the answer is less noisy.
In contrast, if the difference of distance is zero or closer to zero, that means that the alternates seem to be equally good to
the user and therefore the probability of i ≻ j will be close to random.

C. Model Design
We illustrate the modeling mechanism of PAL (Section 2.2) in slightly more detail in Figure 2.
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Figure 3: The construction diagram for the semi-synthetic Pick-a-Pic dataset. It involves randomly selecting approximately
100,000 samples from the Pick-a-Pic dataset and dividing the user IDs into two disjoint groups. We assume one group prefers
images with “cold” (blue) filters and the other with “warm” (red) filters. To incorporate diverse color filter preferences, we
randomly select β% of samples per user on which to apply filters.

D. Dataset Design
Pick-a-Filter : due to the high level of “agreement” among labelers over image preferences on Pick-a-Pic V1 (Kirstain
et al., 2024), we construct a semi-synthetic dataset by applying filters to a subset of Pick-a-Pic V1, which we call the
Pick-a-Filter dataset. To construct the dataset, we consider only samples that have no ties, i.e. the labeler decides that
one image is decisively preferable to the other, given the text prompt. As Pick-a-Pic provides unique and anonymous user
IDs for all preference pairs, we consider a subset of users who provide samples in both the train and test sets (468 / 4223
users). We further only consider users who provide more than 50 labels (234 / 468 users) and sort the users by number of
samples provided. We split these users into equal groups of 117 each, and we assume without loss of generality that the first
group of users (G1) prefers “cold” tones (blue filter) and the second group (G2) prefers “warm” tones (red filter). Lastly,
we arbitrarily consider the first 50 users (who provide the most number of samples) as “seen" users, i.e. users that provide
samples in both the train and test sets of Pick-a-Filter. We add this seen vs. unseen distinction to evaluate how well PAL
can adapt to unseen (i.e. new) users after training. Currently, our experiments on Pick-a-Filter (Section E.2.2) train on
V1-train-seen (116031 samples) and evaluate on V1-test-seen (3693 samples). We show the number of samples in each of
these splits in Table 3. After constructing splits, we apply the following filtering logic:

1. Apply “winning” and “losing” filters to appropriate images depending on label. For G1 the winning filter is blue, and
for G2 the winning filter is red.

2. Randomly shortlist β% of samples to add filters. The remaining (1− β)% of samples will remain unaltered (default
images from Pick-a-Pic v1).

3. Randomly select 50% of above-shortlisted samples to apply a filter to only the winning image, and the remaining 50%
to apply a filter to only losing image

We add these sources of randomness to make learning preferences on Pick-a-Filter less prone to hacking (e.g. the model
could trivially learn to predict an image with a filter as the preferred image).
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Table 3: Number of samples in each split of the newly constructed Pick-a-Filter dataset.

Category Train Val Test

Group 1
Seen 58831 628 1597
Unseen 9527 79 1886
Total 68358 707 3483

Group 2
Seen 57200 404 2096
Unseen 9402 52 1812
Total 66602 456 3908

E. Experiments
E.1. Numerical Simulations

Setup. We simulate a simple preference dataset with the normal distribution (we use a setting similar to (Canal et al., 2022))
and true f∗ : Rd → Rd is linear and the weight W ∼ N (0, I). Let xi ∼ N (0, (1/d)I) denote the ith item. Assume K∗ user
prototypes {pi}K

∗

i=1, where pi ∼ N (0, (1/d)I) with the minimum distance constraint ∥pi − pj∥ ≥ δ, ∀i, j ∈ [K∗], i ̸= j.
We consider two settings: 1) a mixture setting, where we assume each user is located in the convex hull of K prototypes; 2)
a simpler partition setting, where we assume N users are evenly sampled from K prototypes, with ai ∈ {pk}Kk=1. Each
sample is generated as follows: we randomly draw two items {xl,xr} and one user ai, and label the user’s preference as
sign(∥f∗(xl)− f∗(ai)∥2 − ∥f∗(xr)− f∗(ai)∥2). We generate a total of n samples per user to learn the user’s ideal point.
We use model A with a single-layer MLP (without bias) as a reward model and evaluate the held-out test set.

Figure 4: The performance of model A on the simulation datasets with d = 16, K = {1, 2, 3, 4, 5}, K∗ = {2, 3, 4},
N = 50 ∗K∗, and mixture user ideal point setting. For the fig 2(a) visualization, we set d = 2, K = 3, K∗ = 3.

Results. We simulate datasets with multiple settings (different true K∗, d in both mixture and partition settings – see
Appendix E.3 for details) and evaluate our model A on these simulation datasets with different # samples and # prototypes.
Figure 4(a) shows that PAL can align the user ideal points to the true user ideal points in the representation space. See
Appendix E.3 for more detailed results. Figure 4(b) shows that the homogeneous reward model (# prototypes = 1) can
only achieve sub-optimal performance on the simulated dataset when diverse "human" preferences exist. When we learn
pluralistic "human" preferences by setting multiple learnable prototypes with PAL, we gain a significant 7% accuracy boost.
Figure 4(c) shows that as we increase the number of training samples for “seen" users, PAL achieves higher test accuracy,
and is also more accurate in capturing the true number of prototypes in the dataset (which we know from simulations).
Notice that without enough samples per user, learning diverse preferences even harms performance, which indicates the
importance of sample size in pluralistic preference learning. Figure 4(d) presents PAL’s potential to generalize to unseen
users. Without any further fine-tuning of the well-trained PAL reward model (trained with 100 samples per seen user), we
can simply learn a new weight for new “unseen" users with limited labeled samples to achieve prediction accuracy similar to
that of “seen” users.
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Figure 5: Seen accuracy (a-c) and unseen accuracy (d) evaluated on the heterogeneous persona dataset. (a) varying the
number of groups K and the number of prototypes K⋆ (b) varying the number of comparisons per seen user (c) varying the
size of latent dimension (d) varying the number of comparisons per unseen user.

E.2. Real Datasets

We evaluate the performance of our method on various real preference datasets from both text generation tasks and image
synthesis tasks. The results show that we can either achieve or surpass the existing state-of-the-art (SoTA) reward models
with only 2-layer MLP networks.

E.2.1. HETEROGENEOUS PERSONA DATASET

Anthropic’s Persona dataset (Perez et al., 2022) consists of a series of personalities (personas), each corresponding with 500
statements that agree with the persona and 500 statements that do not. We denote the set of statements that agrees with a
persona ρ as S(ρ). We construct a semisynthetic dataset using Anthropic’s Personas to help us evaluate our model.

Datasets. Let ρ = {ρ1, . . . , ρK⋆} denote the set of personas that exists in our semisynthetic heterogeneous dataset with K⋆

preference groups. That is, each person has one of the K⋆ personalities. For each ρj ∈ ρ, we generate N/K synthetic seen
people (users) and unseen people. For each seen synthetic person, we generate np queries that ask if the person agrees with
a given statement from the persona dataset. For each unseen synthetic person, we generate np,unseen queries. If the statement
aligns with the persona ρj of the person, that is, the statement belongs to S(ρj), then the person answers yes. Otherwise,
no. Figure 15 in the Appendix shows a sample question.

Experiment Setup. We evaluate the performance of model B on the heterogeneous persona dataset with various settings.
We conduct the following experiments varying the number of:

1. prototypical groups K = 1, . . . , 8, while fixing the number of people per group N = 10, 000 and the number of queries
per seen user np = 1, 000.

2. queries per seen user np = 2, 5, 25, 50, 75, 100, 200, 500 while fixing N = 10, 000.
3. latent dimension d = 4, 8, 16, 32, 64 while fixing N = 10, 000 and np = 500.
4. queries per unseen user np,unseen = 1, 3, 5, 6, 9, 20, 50, 100 while fixing N = 10, 000.

For a more details regarding the dataset and experiment, see Appendix E.5.

Results. Figure 5 (a) (b) illustrates the generalization performance of PAL on the heterogeneous persona dataset. We observe
that as K → K⋆, the seen accuracy increases to 100% given a sufficient number of people and number of comparisons per
person. Figure 5 (b) shows that when N = 10000, we need at least 200 comparisons per person to achieve reasonable seen
accuracy. Subfigure (c) shows that the size of latent dimensions does not affect the seen accuracy dramatically. (d) shows
that there is an underlying sufficient number of comparisons requirement for achieving decent unseen accuracy.

E.2.2. HETEROGENEOUS PICK-A-PIC DATASET: PICK-A-FILTER

We construct a semi-synthetic heterogeneous preference dataset which we call Pick-a-Filter, and show that our PAL reward
model can significantly surpass the homogeneous reward model when pluralistic preferences are present.

Datasets. The Pick-a-Pic dataset (Kirstain et al., 2024) is a large, open dataset for human feedback in text-to-image
generation, designed to align pretrained models with human preferences. It contains around a million samples of text-to-
image prompts and real user preferences over generated images from multiple open-source popular diffusion models, with
anonymous user IDs.

Experimental Setup. We construct the Pick-a-Filter dataset by adding different color filters to the generated images to
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Table 4: Seen accuracy and unseen accuracy of our model with K = 1, 5, 10 compared to the individual user model proposed
in (Li et al., 2024). With only 594K parameters, we achieve on-par performance compared to a method that requires a
supervised-finetuned 6B model.

Accuracy K = 1 K = 5 K = 10 Li et. al. (Li et al., 2024)
Seen 59.28± 0.14 59.66± 0.09 59.51± 0.12 61.72
Unseen (zero-shot) 59.20± 0.16 59.45± 0.12 59.15± 0.11 60.65

explicitly "inject" diverse user preferences into the Pick-a-Pic V1 dataset. This is motivated by a natural human color
preference distribution (Palmer & Schloss, 2010), and further details are provided in Figure 3 and Appendix D. The
magnitude of heterogeneous preference injection is determined by a hyperparameter called mixture ratio. The mixture ratio
β reflects the proportion between the original pairs from the Pick-a-Pic dataset and the color-filtered Paris. The larger the β,
the more color-filtered pairs. We train model B on the Pick-a-Filter dataset with different mixture ratios. Detailed training
setups are deferred to Appendix E.4.

Results. Figure 6 shows that PAL-B effectively captures diverse preferences across mixture ratios in Pick-a-Filter. We can
view these mixture ratios as indicating the extent to which the two user groups prefer their respective color filters. The figure
illustrates that PAL enables learning beyond a universal preference (K > 1) to identify diverse user preference groups.
PAL significantly outperforms the homogeneous reward model in predicting user preferences – at a mixture ratio of 1, PAL
achieves 95.2% test accuracy compared to 75.4% from the homogeneous reward model.

E.2.3. SUMMARY DATASET

Dataset. Reddit TL;DR summary dataset curated by (Stiennon et al., 2020) contains a series of preferences over summaries
generated by language models. For each pair of summaries, xl and xr, a worker i determines if xl is preferred or not.
Moreover, each pair is also accompanied by the unique identifier of the worker who provides the preference. This would
allow us to apply our model to such a dataset.

Experiment Setup and Results. We evaluate our model A on a trimmed version of the summary dataset described in (Li
et al., 2024), to compare our results with theirs. Details regarding how the dataset is constructed and comparisons to other
baselines are deferred to Appendix E.6.

Table 4 compares the performance of the method to the one proposed in (Li et al., 2024). We use the weighted average of
prototypes learned as the general ideal point for new users to conduct zero-shot learning. We emphasize that even though
our model only has 594K parameters and the sentence embeddings we used are generated from all-mpnet-base-v2
sentence transformer (Reimers & Gurevych, 2019), which contains around 105M parameters, we still can achieve on par
performance, especially in terms of unseen accuracy.

Figure 6: PAL Model B test accuracy on Pick-a-Filter compared to CLIP-H.
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E.3. Simulated Dataset

Experiment Setup. We introduce the dataset simulation procedure in the section E.1. We use the following hyper-parameters
to generate the synthetic dataset d = 16,K = 3, N = 100, n = 100, δ = 1. We generate another 50 comparison pairs
per user as the held-out dataset. (Notice, we didn’t simulate the prompt-guided item generation {xc, xl, xr} procedure.
Instead, we directly draw the item {xl, xr} from a normal distribution for simplicity.) In the experimental setup, we apply
a toy version of the modeling design A, the distance between the synthetic item and the user ideal point is measured by
∥f(x) − f(u)∥2. We use a projection matrix (i.e. one-layer MLP network without bias term and activation function) as
the model architecture. We randomly initialize the learnable parameters of prototypical user groups and user weights. We
use Adam as the optimizer. The learning rate of the projector f is 5e− 4. The learning rate of the learnable parameters of
prototypical user groups and user weights is 5e− 3. The weight decay of the projection matrix f is 1e− 3. To guarantee
convergence, we run a total of 1000 epochs for each run. We run multiple trials to explore the influence of each factor: 1)
varying the number of samples of seen users n = {20, 40, 60, 80, 100, 400, 800, 1000}, d = {2, 16}, K = 5, N = 250, 2)
varying the number of samples of new users nnew = {5, 10, 20, 30, 40, 50, 100}, d = {2, 16},K = 5, n = 50, 3) varying
the number of groups K = {2, 3, 4, 5, 6}, d = {2, 16}, n = 50, N = 50 ∗K.

Figure 7: Partition setting
# prototypes in model = 1

Figure 8: Partition setting
# prototypes in model = 2

Figure 9: Partition setting
# prototypes in model = 3

Figure 10: Mixture setting
# prototypes in model = 1

Figure 11: Mixture setting
# prototypes in model = 2

Figure 12: Mixture setting
# prototypes in model = 3

E.4. Heterogeneous Pick-a-Pic Dataset

Experiment Setup. We choose two-layer MLP networks with ReLU activation and residual connection as the prompt
mapping function gk and the output mapping function f . To avoid the overfitting issue, we set the dropout rate as 0.5 and
weight decay as 1e− 2. We use Adam optimizer with a 1e− 4 learning rate. When we measure the model’s performance,
we load the best checkpoint evaluated on the validation set.

Results. To check whether our model trained on Pick-a-Filter dataset is capturing the users’ preference features or is just
remembering colors, we verify the test accuracy separately on the color-filtered pairs and original pairs in the mixture-ratio
dataset. Figure 14 shows that compared to the CLIP-H14 ∼ 65% test accuracy, our model’s performance on the original
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a Test accuracy: 72.2% b Test accuracy: 83.96% c Test accuracy: 91.26%

Figure 13: Normally distributed items with d = 2,K = 3, N = 100, n = 100. This figure plots all items, the predicted user
ideal points, and the true user ideal points in the feature space. Recall that in our modeling design, the distance between the
user ideal point and the item reflects the user’s preference; hence, the closer the predicted user ideal point is to the true ideal
points, the higher the performance. As shown in the figures above, when we choose the hyperparameter K = 3 (the correct
number of groups), our model can accurately capture the group structure and predict each user’s ideal points.

no-filter pairs is still above the baseline, which verifies that our model utilizes both the users’ original preference and the
"injected" heterogeneous color preference.

E.5. Heterogeneous Persona Dataset

Anthropic’s Persona dataset (Perez et al., 2022) consists of a series of personalities (personas), each corresponding with 500
statements that agree with the persona and 500 statements that do not. We denote the set of statements that agrees with a
persona P as S(P ). We construct a semisynthetic dataset using Anthropic’s Personas to help us evaluate our model.

Datasets. Let P = {P1, . . . , PK⋆} denotes the set of personas that exists in our semisynthetic dataset with K preference
groups. That is, each person has one of the K⋆ personalities. Table 5 shows the personas we have selected for our experiment.
For each Pi ∈ P , we generate N synthetic seen people (users) and N synthetic unseen people. For each seen synthetic
person, we generate np queries that ask if the person agrees with a given statement from the persona dataset. For each
unseen synthetic person, we generate np,unseen queries. If the statement aligns with the persona Pi of the person, that is, the
statement belongs to S(Pi), then the person answers yes. Otherwise, no. Figure 15 shows a sample question. We use
Sentence-BERT (Reimers & Gurevych, 2019) with pretrained model all-MiniLM-L6-v2 to generate text embedding of
the question asked to each synthetic person as well as the embedding for yes and no.

Experiment Setup. We evaluate the performance of our model B on the heterogeneous persona dataset with various
settings. This is because the prompts in the dataset are the only variates from question to question. Therefore, model B,
which utilizes the prompt information, best suits this case.

Let K⋆ denote the number of preference groups among the synthetic people. Let K denote the number of prototypical
groups we used in the model. We conduct the following experiments:

1. varying the number of prototypical groups K = 1, . . . , 8, while fixing the number of people per group N = 10, 000, the
number of queries per seen user np = 1, 000, the size of the latent dimension d = 16,

2. varying the number of queries per seen user np = 2, 5, 25, 50, 75, 100, 200, 500 while fixing N = 10, 000 and the size of
the latent dimension d = 16,

3. varying the number of queries per unseen user np,unseen = 1, 3, 5, 6, 9, 20, 50, 100 while fixing N = 10, 000 and the size
of latent dimension d = 16,

4. varying the size of the latent dimension d = 4, 8, 16, 32, 64 while fixing N = 10, 000 and np = 500.
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Figure 14: Test accuracy on color-filtered or original pairs in Pick-a-Filter dataset

Figure 15: An example of pairwise comparison query with a prompt from our heterogeneous persona dataset generated
using Anthropic’s Persona. A synthetic person who is assigned with a persona of interest in art will have a ground truth of
y = −1 by answering no, whereas a user who is assigned with interest in math pairs with a ground truth of y = +1 by
answering yes.

We adopt the hyperparameters used in the experiment described in E.4 to save time on hyperparameter tuning.

Results. Figure 5 (a) - (d) illustrates the generalization performance of our methods on the heterogeneous persona
dataset.Figure 5 (a, b, c) show the test accuracy on the seen user, unseen pair, whereas Figure 5 (d) shows the test accuracy
on the unseen user, unseen pair.

E.6. Summary Dataset

Dataset. Reddit TL;DR summary dataset curated by (Stiennon et al., 2020) contains a series of preferences over summaries
generated by language models. High-quality workers are hired by the authors to annotate their preferences over the summaries.
Workers hired followed a rubric provided by the authors, who periodically fired those workers who did not meet their
performance criteria.

For each pair of summaries xleft and xright, a worker u determines if xleft is preferred or not. Moreover, each pair is also
accompanied by the unique identifier of the worker who provides the preference. This would allow us to apply our model to
such a dataset.
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Table 5: Personas used for each K in our semi-synthetic dataset.

K Personas

2 interest in art, interest in literature
3 interest in art, interest in literature, interest in math
4 interest in art, interest in literature, interest in math, interest in music
5 interest in art, interest in literature, interest in math, interest in music, interest in science

6
interest in art, interest in literature, interest in math, interest in music, interest in science,
interest in sports

Table 6: The performance of our method vs. the 1.3B reward model from (Stiennon et al., 2020). Notably, our approach does
not necessitate a supervised fine-tuned model. We leverage the all-mpnet-base-v2 sentence transformer (Reimers &
Gurevych, 2019), with 105M parameters, for summary embeddings, and train a 2-layer MLP, with 592K parameters.

K = 1 K = 2 K = 3 K = 4

Seen user accuracy 60.85± 0.11 60.95± 0.12 60.77± 0.10 60.81± 0.12
Unseen user accuracy 64.13± 0.14 64.18± 0.19 64.04± 0.23 63.99± 0.12
Overall 61.36± 0.12 61.45± 0.13 61.28± 0.13 61.30± 0.12

K = 5 K = 6 K = 7 K = 8

Seen user accuracy 60.91± 0.10 60.81± 0.06 60.71± 0.06 60.88± 0.13
Unseen user accuracy 64.33± 0.10 64.11± 0.15 64.12± 0.17 64.12± 0.13
Overall 61.44± 0.10 61.32± 0.08 61.25± 0.09 61.38± 0.13

K = 9 K = 10 Stiennon et. al. (1.3B)

Seen user accuracy 60.95± 0.10 60.93± 0.12 -
Unseen user accuracy 64.07± 0.20 64.19± 0.11 -
Overall 61.43± 0.12 61.44± 0.12 65.80± 2.00

Experiment Setup and Results: Comparing to (Stiennon et al., 2020) We trained our model A on the modified summary
dataset with K = 1, . . . , 10. This is because we want to evaluate the performance of generalization on the unseen users.
We split the given testing set into a seen testing set and an unseen dataset, where the seen testing set contains users in the
training set, and the unseen dataset contains only users that are not in the training set. The seen testing set is used to validate
the performance of seen user, unseen comparison generalization. We are going to conduct a train, test split on the unseen
dataset to evaluate the performance of unseen user, unseen comparison generalization.

We adopt the hyperparameters used in the experiment described in E.4 in order to save time on hyperparameter tuning.

Table 6 compares the performance of PAL to the 1.7B reward model in (Stiennon et al., 2020). The overall accuracy is the
weighted average of seen and unseen user accuracy. We want to emphasize that the main advantage of our model is that we do
not require the existence of a supervised fine-tuned model. We used all-mpnet-base-v2 sentence transformer (Reimers
& Gurevych, 2019), which contains around 105M parameters, to generate the embedding for summaries and trained a
2-layer MLP with roughly 592K parameters.

Experiment Setup and Results: Comparing to (Li et al., 2024) We evaluate our model A on a trimmed version of the
summary dataset described in (Li et al., 2024), to compare our results with theirs. In (Li et al., 2024), the original training set
of the summary dataset is filtered with summaries generated by SFT policies and only those comparisons made by the top 10
workers who conduct the most pairwise comparisons are kept. The test dataset is split into 2 folds where those comparisons
made by the 10 workers are used to evaluate the generalization performance on seen users, whereas those comparisons made
by other workers are used to evaluate the generalization performance on unseen users.

Table 4 compares the performance of the method to the one proposed in (Li et al., 2024). We use the weighted average of
prototypes learned as the general ideal point for new users to conduct zero-shot learning. We emphasize that even though
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our model only has 594K parameters and the sentence embeddings we used are generated from all-mpnet-base-v2
sentence transformer (Reimers & Gurevych, 2019), which contains around 105M parameters, we still can achieve on par
performance, especially in terms of unseen accuracy.

F. Modeling Design

Algorithm 1 PAL-A algorithm

Input: Dataset D =
{
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Algorithm 2 PAL-B algorithm

Input: Preference data D =
{
{(xl,xr;xc)

(i)
j }mi

j=1

}N

i=1
, loss function ℓ, mapping function fθ, prototype mapping functions

{gθk}Kk=1, user weights {w(i) := [w
(i)
1 , ..., w

(i)
K ]}Ni=1.

0: for each iteration do
0: sample a mini-batch

{
(xl,xr;xc)
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}
{random pairs, not ordered by users}
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G. Computational Resources
We conducted most of our experiments using 4 RTX 4090, each with 24 GB of VRAM. All of our experiments can be run
on a single RTX 4090 with RAM and VRAM usage of less than 16 GB. A typical experiment can be finished within 2 hours.

H. Broader Impacts
This paper presents novel contributions to the field of machine learning towards foundations for learning from heterogeneous
preferences aiding the development of models and algorithms to move the needle towards plurality.

20


