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The feature map quality generated from the computed tomography (CT) scans constitutes
a distinctive aspect for robust model performance in the medical computer vision field.
Furthermore, well-engineered features are deterministic to ambiguous cases detection. A
novel multi-CNN-based vision transformer model called Scopeformer was developed in our
earlier work and used for the Intracranial Hemorrhage Detection challenge to classify var-
ious hemorrhage types within the RSNA2019 Brain CT Hemorrhage dataset. The model
showed high scalability of the model size with an improved feature generating backbone.
However, the model suffered from a large trainable parameter space resulting in a long
training time. We adopt in this paper the Scopeformer model and aim to reduce the pa-
rameter size and enhance the global feature map richness. Effective feature projection
methods were used to reduce the redundancy of the feature space. Furthermore, we used
small vision transformer (ViT) versions with four different types of pretrained CNN archi-
tectures and introduced three ViT configurations to reduce the self-attention complexity
within the transformer layers. Our best model achieved an accuracy of 96.03 % and a
weighted logarithmic loss of 0.1088 with an eight times reduction of trainable parameter
space. A second model with comparable performance further reduced the parameter space
to 17 times our best-performing model.

Keywords: Computed Tomography (CT) scans and slices, Intracranial hemorrhage de-
tection, CNN, ViT.

1. Introduction

The early detection and classification of intracranial hemorrhages within computed tomog-
raphy slices is critical within the first 24 hours of a head injury for fast clinical decisions
(Justine and Smith, 2012; Wardlaw, 2001). This can often require highly qualified doc-
tors for detecting subtle details showing the existence of a lesion within the brain tissues.
Emerging computer vision techniques offer faster and more robust models compared to
highly trained radiologist predictions (Gong et al., 2007; Chilamkurthy et al., 2018; Ker
et al., 2019; Patel et al., 2019). The success of these models resides in the vast annotated
datasets offered by the community, such as the dataset provided with the RSNA intracra-
nial hemorrhage challenge. The RSNA intracranial hemorrhage CT dataset was collected
by Adam E. et al. (Flanders et al., 2020) from multiple scanner types used in different
institutions worldwide and aimed to capture complex real-world details of the hemorrhage
sub-types. This dataset is considered the current largest dataset available online.

Convolutional neural networks are the de-facto architectures in the medical computer
vision domain for extracting high-resolution features (Mihail et al., 2020; Marissa et al.,
2020). The successful implementation of the transformer model (Vaswani et al., 2017)
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Figure 1: ViT Scopeformer configurations. The first configuration is a ViT block with an
input of vectorized patches extracted from the CNNs features. The second con-
figuration introduces a transpose layer to transform the channel-wise patches into
feature-wise patches. The third configuration dismisses the token class and uses
all the feature tokens as input. The output of the third block will be transposed
to retrieve back the dimension of the CNN features, which we feed to the classi-
fication module.

applied to images known as vision transformer (ViT) was a milestone in the computer
vision domain (Dosovitskiy et al., 2021).

Various successful implementations of the ViT in the medical field were proposed and
proved to defeat standard pure convolution-based models by a wide margin (Dai and Gao,
2021). Motivated by the performance of these two models, we proposed in our earlier work
(Barhoumi and Rasool, 2021), a hybrid architecture consisting of multiple Xception CNN
models (Chollet, 2017) for feature extraction and several vision transformer encoders for
differentially extracting significance weights of the feature map relevant to classification.
Results showed that the classification accuracy is proportional to the number of Xception
models and the variety of the pretraining methods used to train the CNN architectures. In
this paper, we enhance our proposed n-CNN-ViT Scopeformer model by employing a more
efficient version of the ViT and improved feature extraction method.

2. Methodology

Our objective is to make the Scopeformer model, a newly created convolution-based Trans-
former (Barhoumi and Rasool, 2021), more scalable and efficient.

2.1. Architecture

We modified the original Scopeformer architecture by introducing several changes in the
feature extractor CNNs and the ViT. There are four modules as shown in Fig. 2.
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Figure 2: Scopeformer architecture. The proposed model is composed of four main modules:
feature extraction, patch extraction, vision transformer encoding, and classifica-
tion. A single input image will be fed to several CNN models to extract a variety
of features and construct feature maps. These feature maps are processed by the
patch extraction module and vectorized. These vectors form the input to the
transformer encoder and the output is taken from the classification module.

2.1.1. Module 1: Scopeformer Backbone

The proposed Efficient Scopeformer uses a variety of CNNs to build the feature extraction
block. The backbone CNNs include ImageNet-pretrained ResNet 152 V2, EfficientNet B5,
DensNet 201, and Xception. The features generated by each CNN are concatenated along
the channel axis to form a global feature map. However, constructing such a feature map
requires that the individual feature maps generated by each CNN to have identical height
and width. We propose augmenting each CNN with a single trainable 1 × 1 convolutional
layer that projects the features to an appropriate space.

The input to the Efficient Scopeformer consists of a tensor with a dimension of H×W×3,
where H represents the height, W represents the width, and 3 is the number of channels.
The image is concurrently fed to four CNNs to generate high-level feature maps. The
channel dimension of all four feature maps will be reduced using 1 × 1 convolution layer to
8 × 8 × d

4 , where d is the size of the global feature map.

2.1.2. Module 2: Patch extraction

The global feature map, X ∈ R8×8×d is passed through a patch extraction module which
reshapes § into a sequence of flattened patches Xp ∈ RN×d, where N is the number of the
extracted patches and is assumed as 64 for the current experiments.
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2.1.3. Module 3: Scopeformer ViT

We evaluated three different ViT configurations for the proposed architecture as depicted
in Figure 1. These configurations include (1) Deep Scopeformer, (2) deep Scopeformer TR
(Transpose), and (3) Efficient Scopeformer.

Baseline Scopeformer Configuration. In this configuration, we feed a set of vectors
generated by patch extraction layer to ViT encoders. We used trainable position encoding
vectors coupled with vectorized patches and a trainable class (CLS) token. The dimension
of the input to ViT encoder block is Y ∈ RN×d+1.

We used two self-attention variants. The first one is referred to as multi-head self-
attention (MHSA) (Dosovitskiy et al., 2021) and the second variant as the multi-head
re-attention (MHRA) (Zhou et al., 2021). The key difference resides in the introduction of
a trainable transformation matrix. These variants are given by:

MHSA(Q,K, V ) = Softmax

(
QKT

√
dk

)
V, (1)

MHRA(Q,K, V ) = Norm

(
MT

(
Softmax

(
QKT

√
dk

)))
V, (2)

where M ∈ Rh×h is a learnable transformation matrix, and h is the number of self-attention
heads.

Deep Scopeformer TR Configuration. The second Scopeformer ViT configuration
applies a transpose operation to the set of vectors produced by the patch extraction layer.
The output of the transpose layer is summed up with the position encoded vectors and
concatenated with the CLS token. The dimension of the resultant set of vectors is YT ∈
Rd×N+1. We used only MHRA self-attention variant (Eq. 2) in our experiments.

Efficient Scopeformer Configuration. The third Scopeformer module discards the
CLS notion used in previous configurations. In this settings, we use all the features gen-
erated by ViT encoders for classification. As such, the dimension of the input and output
of ViT encoders remain identical and is equals to YT ∈ Rd×N . We use a Transpose and
Reshape layer at the ViT output to get the appropriate dimension for the feature map. We
use MHRA self-attention variant to compute self-attention.

2.1.4. Module 4: Classification module

The classification module in baseline and the deep Scopeformer TR configurations receives
a single CLS token. The output of this token is turned into a prediction using a multi-
layer perceptron (MLP) with a sigmoid activation function and a single hidden layer. In
the efficient Scopeformer configuration, the classification module receives a set of reshaped
features xt ∈ R8×8×d. The classification module applies a 2D average pooling layer, followed
by a flatten layer. Finally, the inference of the class is done via a dense layer with a sigmoid
activation function.
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2.2. Dataset

The Radiological Society of North America (RSNA) dataset (Flanders et al., 2020) was re-
leased in the 2019 Intracranial Hemorrhage (ICH) detection challenge hosted by the Kaggle
platform. The dataset contains 755,273 annotated 16-bit grayscale computer tomography
(CT) scans saved in the DICOM format. Individual images consist of pixels that have a
range of 0 to 216 with a resolution of 2562, referred to as Hounsfield Units (HU). HU repre-
sents the density of the scanned matter. Trained physicians categorized each CT slice with
one or more types of the brain hemorrhage, including epidural (EPH), intraparenchymal
(IPH), intraventricular (IVH), subarachnoid (SAH), and subdural (SDH). An additional
hemorrhage target class (ICH) was appended to indicate the existence of any hemorrhage.
Attenuation HU values are indicative for the content of the scan (Broder and Preston, 2011).
For instance, bones have an attenuation value ranging between 250 and 1000, and fat and
muscle have attenuation values (AV) ranging between 50 and 100. Applying HU windows
on a CT slice yields an 8-bit grayscale image. We use three windows of HU as channels in
the input of the Scopeformer model. Our settings for HU windows were: brain AV∈ [40, 80]
HU, subdural window AV ∈ [80, 200] HU, and soft tissue window AV ∈ [80, 200] HU.

Table 1: Various design configurations of Scopeformer - hyperparameters and learnable pa-
rameters.

Model CNN Blocks Layers Feature Size MLP Heads Parameters

Scopeformer (S) 4 8 516 3072 12 34 M
Scopeformer (B) 4 8 512 4096 16 42 M
Scopeformer (M) 4 8 512 5120 16 43 M
Scopeformer (L)/4 4 4 1024 4096 16 51 M
Scopeformer (L)/8 4 8 1024 4096 16 102 M
Scopeformer (L)/16 4 16 1024 4096 16 203 M

Deep Scopeformer (L)/8 4 8 1024 4096 16 102 M
Deep Scopeformer TR (L)/8 3 8 384 4096 16 6 M
Efficient Scopeformer 3 8 384 4096 16 6 M

Scopeformer (Barhoumi and Rasool, 2021) 3 12 3072 3072 8 755 M
Scaled Scopeformer (Barhoumi and Rasool, 2021) 4 8 4096 4096 16 870 M

2.3. Experiments

We used a host of configurations of the proposed Scopeformer architecture in our experi-
ments. Details bout the various Scopeformer architecture in terms of various hyperparam-
eters are presented in Table 1. In general, our experiments comprise of four main parts. In
the first part, we evaluate the effect of the size of various variants of Scopeformer on the
classification accuracy. Four variants are evaluated, small, base, medium, and large denoted
by S, B, M, and L. In the second part, we investigate the number of ViT encoder blocks
required to optimize the size and performance of the large Scopeformer model. We consid-
ered 4, 8, and 16 ViT encoders. The third part included a transition from ViT model to a
different version known as DeepViT (Zhou et al., 2021), where we change MHSA module by
the MHRA module. In the forth and final part of our experiments, we compared proposed
Scopeformer configurations.
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In all the experiments, we start with pre-training the Scopeformer model using ImageNet-
1k dataset (Russakovsky et al., 2014). Later, we train all models using the RSNA dataset
(Flanders AE, 2019). In the module 1 (backbone CNNs), we freeze ≈ 70% of layers in each
CNN and keep top ≈ 30% layers trainable along with the newly introduced 1 × 1 convo-
lution layer. Following guidelines of RSNA Intracranial Haemorrhage Challenge (ICH), we
use multi-label log-loss for model training and weighted accuracy for model evaluation. The
loss is defined as:

Lmulti-BCE (y, ỹ) = −
6∑

n=1

yt log ỹt + (1 − yt) log (1 − ỹt) (3)

3. Results and Discussion

We evaluate the overall performance of the models based on three metrics, (1) the classifica-
tion accuracy on the RSNA dataset, (2) the global feature richness generated by backbone
CNNs, and (3) the model size (total number of trainable parameters).

3.1. The Effect of Size of Scopeformer

Tables 2 and 3 show the results of experiments performed with different sized Scopeformers.
Our currently proposed Scopeformer models have four sizes (that is, S, B, M, and L) and use
reduced number of trainable parameters compared to the original Scopeformer (Barhoumi
and Rasool, 2021). The parameters reduction is linked to the 1 × 1 convolutional layer
added before the ViT module. We gradually increase the model complexity of S, B, and M
variants by varying the MLP dimension and the number of self-attention heads within the
ViT module as depicted in table 1.

In Table 2, we note that the base model outperforms the small and medium counterparts.
The Scopeformer (L)/8 model adopts the configuration of the base variant with a global
feature dimension d = 1024. The feature size increment resulted in a proportional increment
of the model trainable parameters. The large model (L)/8 performed the best among the
proposed variants.

Table 2: Performance of the different Scopeformer variants.

Model Accuracy Loss Recall Trainable Parameters

Small (S) 93.00% 0.1703 84.95% 34M
Base (B) 93.92% 0.1461 89.29% 42M

Medium (M) 93.88% 0.2285 88.44% 43M
Large (L)/4 93.12% 0.1378 87.81% 51M
Large (L)/8 94.69% 0.1197 89.33% 102M
Large (L)/16 92.57% 0.1395 87.34% 203M

3.2. The Effect of Number of ViT Encoders

We evaluate the effect of the number of ViT encoders on Scopeformer (L)/8 model using 4,
8, and 16 encoders. As presented in Table 1 and also in Table 2, the number of parameters
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scales linearly with the number of encoders. However, this is not the case with the model
performance. Table 2 shows that Scopeformer (L)/8 performs better than all others. On
the other hand, the largest model with 16 encoders, Scopeformer (L)/16 has the lowest
accuracy.

In Figure 3, we plot the cosine similarity between the features generated by each ViT
encoder and the last layer of the model. We can observe that the increased similarity
among features of the Scopeformer (L)/16 model may have contributed to the performance
decline. Also, using fewer features, as in the case of Scopeformer (L)/4 model, the model
may end up performing sub-optionally. We observe (Figure 3) that shallow models lead to
sub-optimal performances, and deeper models may require more data to reduce similarity
among ViT features to perform optimally. In summary, there is an optimum number of
ViT encoders based on the complexity of the dataset and the effectiveness of the backbone
CNNs in extracting rich features.

3.3. The Effect of Two Different Self-attention Variants

The Deep Scopeformer (L)/8 builds on the Scopeformer (L)/8 model by replacing the MHSA
layer with an MHRA layer. The additional trainable matrices M adds only a small number
of parameters to the Scopeformer (L)/8 model. We observe a significant dissimilarity among
ViT encoders features of the Deep Scopeformer (L)/8 in figure 3 (b), implying feature
richness acquired by the model due to the MHRA heads correlations. This configuration
resulted in an accuracy improvement by +1.11% as shown in table 4.

3.4. ViT Scopeformer Configurations

We approach the Self-attention complexity problem by introducing a transpose layer prior
to the vision transformer module. The attention weights matrix in Deep Scopeformer (L)/8
has a dimension of 10242. In the second and third ViT configurations, the attention weights
matrices have dimensions of 652 and 642 respectively. The use of the transpose layer has
substantially contributed to the reduction of the number of trainable parameters as indi-
cated in 1 due to the MHRA quadratic computation complexity. Furthermore, transposing
the input sequence effectively conserve the feature content retrieved by the classifier module.
Table 4 shows the performance of the three proposed configurations. The Efficient Scope-
former variant performed similarly to the Deep Scopeformer (L)/8. We speculate that the
role of the ViT module in this configuration is to improve the global features map. More
details in Appendix A.

Table 3: Model performance on individual target classes

Accuracy
Large Medium Base Small

All 71.34% 60.26% 70.5% 70.83%
Epidural 96.98% 90.18% 95.73% 98.08%

IPH 85.94% 71.10% 87.28% 85.95%
IVH 90.5% 70.73% 91.72% 90.13%
SAH 78.69% 65.49% 78.57% 77.04%
SDH 77.08% 60.78% 74.35% 74.54%
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(a) Scopeformer variants (b) Deep Scopeformer variants

Figure 3: Cosine similarity of the vision transformer encoder feature maps with respect to
the last encoder feature map.

Table 4: Model performance for different Scopeformer modalities

Accuracy Loss Trainable Parameters

Scopeformer (L)/8 94.69% 0.1197 102M
Deep Scopeformer (L)/8 96.03% 0.1088 102M

Deep Scopeformer TR (L)/8 95.40% 0.1176 6M
Efficient Scopeformer 95.77% 0.1160 6M

4. Conclusion

We have explored potential model improvements on our previous implementation of the
convolutional based vision transformer model called Scopeformer. The scope of the study
covered model trainable parameters with respect to the model performance and the training
efficiency of the Scopeformer architecture on the RSNA hemorrhage detection dataset. We
explored the effect of using multiple off-the-shelf CNN models on the global feature richness
of the architecture and investigated a feature projection method to reduce the large redun-
dant feature space into a lower and efficient one. Furthermore, We conducted a parametric
optimization study to evaluate the size effects on model performance and efficiency. We
implemented three vision transformer configurations to evaluate the Re-attention module
within the Scopeformer model and the channel-wise versus feature-wise patch extraction of
the global feature map. Results show increased richness of the resultant features due to the
different CNN architectures. The Re-attention module increased dissimilarities of the vision
transformer features resulting in improved performances and allowing deeper models. With
our proposed feature-wise patch extraction method, the model size was reduced 17 times
with comparable performance. Furthermore, our Efficient Transformer module improved
the global features map correlations and contributed to better performance.
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Appendix A. Global feature map

Figure 4 , 5 and 6 plot CNNs features generated by three different architecture for an
epidural example. We observe high variability of individual CNN features and no apparent
similarity among the features generated by different CNNs.

(a) Xception (b)EfficientNet B5

(c) DenseNet201 (d) ResNet152V2

Figure 4: Feature maps visualization of an epidural type hemorrhage example. Scopeformer
(L)/8
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Subsequently, the resultant global feature map has low redundancy and higher feature
richness comprised in the reduced feature space. However, DenseNet model showed the
highest redundancy of the resultant features. To this end, we conducted an ablation study
for the Deep Scopeformer TR and Efficient Scopeformer resulting in removing the model
from the backbone for further parameter reduction.

(a) Xception (b)EfficientNet B5

(c) DenseNet201 (d) ResNet152V2

Figure 5: Feature maps visualization of an epidural type hemorrhage example. Deep Scope-
former (L)/8
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(a) Xception (b)EfficientNet B5

(d) ResNet152V2

Figure 6: Feature maps visualization of an epidural type hemorrhage example. Efficient
Scopeformer
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Figure 7: Attention pattern visualization of the Efficient Scopeformer model. The first and
second row represent the 16 attention heads of the first encoder layer. The third
and fourth row represent the 16 attention heads of the last encoder layer. Each
attention map has a dimension of 384 × 384

Figure 7 shows the attention patterns visualizations of the 16 MHRA heads concerning
the first and last ViT encoders. In the first layer, the model learns to correlate individ-
ual features across the features derived from different CNNs. Each head learns different
correlations patterns among the set of features. The last layer shows a global correlations
patterns among all features

Appendix B. Grad-CAM

Figure 8 plots a Grad-CAM visualization of an epidural type hemorrhage example for the
Deep Scopeformer (L)/8 model. We observe high variability of the regions where the model
considers to conduct the classification. We note that in many cases the DenseNet model
contributed the least to the classification and in some cases, was shown to be mapping to
the wrong regions on the image.

14



Efficient Scopeformer

(a) Xception (b) EfficientNet B5

(c) DenseNet201 (d) ResNet152V2

Figure 8: Grad-CAM visualization of an epidural type hemorrhage example.
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