Under review as a conference paper at ICLR 2026

KNOWOS: KNOWLEDGE-DRIVEN LARGE LANGUAGE
MODELS FOR OPERATING SYSTEM KERNEL TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Operating System (OS) kernel tuning involves systematically optimizing kernel
configurations to enhance system performance. Despite recent advancements in
large language models (LLMs), kernel tuning remains a significant challenge due
to: (1) the semantic gap between abstract tuning objectives and the specific config
options, (2) the limited environmental interaction leading to LLLM hallucinations,
and (3) the rapid evolution of kernel versions. To address these challenges, we
introduce KnowOS, a framework powered by knowledge-driven LLMs for automat-
ing kernel tuning. KnowOS leverages three key innovations: structured knowledge
construction and mapping, knowledge-driven configuration generation, and contin-
uous knowledge maintenance. Extensive experiments demonstrate that KnowOS
achieves performance improvements ranging from 7.1% to 155.4% over default con-
figurations across standard OS benchmarks and real-world applications. These re-
sults highlight the potential of structured knowledge representations in overcoming
the limitations of pure LLM-based approaches for system optimization. Our code is
available at https://anonymous.4open.science/r/KnowOS—-B274.

1 INTRODUCTION

Operating systems (OS) serve as the essential bridge be- Kernel Space
tween hardware and software, acting as the foundation of CONFIG_A
modern computing systems. The Linux kernel, as the core CONFIG_B
“brain” of the OS, manages critical hardware resources A CONFIG_C
such as CPU, memory, and I/O for all applications. One of A Egmgg‘z

the most effective methods for improving OS performance Gyt « (18,000+ more)
lies in kernel tuning Martin et al.|(2021); |[Evang & Dreib; 5

holz| (2024). This systematic process involves adjusting /
Kernel Configuration|
Q@ CONFIG_A =y
CONFIG_B = 12

kernel configurations to optimize system performance for
n

performance

specific workloads, as illustrated in Figure[I]

However, Kernel tuning remains challenging due to the vast
kernel space with over 18,000 config options Jung et al. R
(2021) and complex dependencies between them |Mortara config config U)
& Collet| (2021)). Traditional manual tuning methods [Tang

et al.| (2015);Ts 0, (2019) rely on expert knowledge, which Figure 1: Kernel tuning involves opti-
is time-consuming and labor-intensive. Machine learning- mizing configurations to enhance sys-
based approaches Acher et al.[(2019); Ha & Zhang (2019) tem performance for Speciﬁc workloads.
are limited by their reliance on extensive training datasets

and struggle with generalization across varying hardware and workloads. Recent advancements in
Large Language Models (LLMs)|OpenAll (2024); DeepSeek-All (2025) have demonstrated significant
potential for automating kernel tuning tasks Chen et al.|(2024)), leveraging their extensive knowledge
base and natural language processing capabilities.

Despite these advancements, as highlighted in Figure 2] three critical challenges hinder the effective
and practical application of LLMs in kernel tuning: (1) Difficulty in mapping abstract tuning
objectives to concrete config options: LLMs often struggle to align abstract tuning objectives,
expressed in natural language, to specific kernel config options, resulting in irrelevant or suboptimal
tuning outcomes. (2) Insufficient environmental interaction leads to LL.M hallucinations: Current

https://anonymous.4open.science/r/KnowOS-B274

Under review as a conference paper at ICLR 2026

N a Y4 N
%@ Tuning objective: I V}’”‘“t to improve the I want to get better performance on A v6.14: 24 Mar 2025
performance of Redis. Y memory accessment - (-,:
comect mismatch wrong comect You can set CONFIG_MEMCG to 'y, & v613: 20 Jan 2025
i i v i @ CONFIG_MEM to ', ... &
- A v6.12: 17 Nov 2024
. . ; CONFIG_MEMCG => Config exists! Q g
Tl{VlIV\e by LLM directly o o Mainline kernel releases
'V"S“t_ C“Lj'se a few CONFIG_IMEMW => Config does not exist! o every 9-10 weeks, changes
mapping issves! around 13-18k LOC.

g J J
Challenge 1: Mapping issue Challenge 2: LLM Hallucination Challenge 3: Rapid iteration

-

Figure 2: Challenges on OS kernel tuning using LLM. The first challenge is that it is difficult for
LLM to map abstract objectives to concrete configuration items. The second challenge is that LLMs
may hallucinate, resulting in giving non-existent configurations. The third challenge is the rapid
iteration of the kernel configuration, which typically changes every few months.

LLMs lack systematic mechanisms to interact with the complex and vast kernel space, leading to
invalid or hallucinated responses |Wang et al.|(2023). (3) Rapid kernel iteration and knowledge
decay: The rapid evolution of the Linux kernel (with 13,000 to 18,000 commits per release and new
major versions every 2 to 3 months Kroah-Hartman| (2019)) outpaces LLMs’ ability to maintain
up-to-date tuning knowledge.

To overcome these challenges, we introduce KnowOS, a novel knowledge-driven framework powered
by LLMs for automating OS kernel tuning. Specifically, KnowOS introduces three key innovations:
(1) Structured Knowledge Construction and Mapping: We construct an OS-oriented Dual-layer
Knowledge Graph (OD-KG) that maps high-level tuning objectives to corresponding low-level
config options, ensuring a comprehensive and interpretable alignment. (2) Knowledge-driven
Configuration Generation: We propose a systematic and effective kernel configuration generation
strategy based on reasoning over the OD-KG, mitigating the hallucination issues typically encountered
by LLMs. (3) Continuous Knowledge Maintenance: We design an efficient mechanism for
continuously updating the OD-KG, allowing it to adapt incrementally to kernel updates without
requiring complete model retraining.

We systematically evaluate the effectiveness of KnowOS in kernel tuning using two representative OS
benchmarking suites: UnixBench Byte UnixBench Developers (1983) and LEBench|Ren et al.[(2019).
Additionally, we assess its performance across four widely adopted and real-world applications:
Nginx, Redis, Apache, and PostgreSQL. These applications span a diverse range of real-world work-
loads. KnowOS achieves 7.1x to 155.4x speedups over baseline methods on synthetic benchmarks
and up to 142 % performance improvement compared to default configurations on applications. These
results demonstrate the effectiveness, efficiency, and scalability of KnowOS in automating kernel
tuning, underscoring its practical value in real-world deployment scenarios.

2 PRELIMINARIES

Definition 1: Kernel Space. We model the Linux kernel space as a directed graph S = (O, E, C),
where each node o € O represents a configurable option, and its value assignment x is drawn
from domain D,. The edge set E C O x O encodes dependency relations between options: an
edge (0;,0;) € FE indicates that o; depends on o, and cannot be selected independently. The
constraint function C(x;, ;) — {True,False} defines whether a pair of assignments is valid:
C(z;, ;) = True means that assigning z; to o; and x; to o; complies with kernel constraints.

Definition 2: Kernel Configuration. A kernel configuration K = {(0,z)} C O x D is a subset of
options from the kernel space along with their assigned values, where each option o is assigned a
value x. The configuration K is valid if all assigned values are within their domains, all dependencies
in E are respected, and all relevant constraints defined by C' are evaluated to True.

Problem Formulation: Kernel Tuning Task. Given a tuning objective ¢ and an evaluation function
P(K,q) — R that quantifies how well a configuration K satisfies g, the kernel tuning task seeks a

Under review as a conference paper at ICLR 2026

s N/ - " N
- Knowledge Construction and Mappin
OD-KG Concept Layel 9 PRINg D
< Nl
I{?slance-layer Instance Layer E_ross—layer < Link Mapping} Concept Layer Soncept-iay
L ink Mapping)
inclusion
Knowledge-driven Configuration Generation Graph-guided Configuration Candidate Extraction
depgndency, | ant Objective-to-Concept Alignment
on my Linux Apache server
== U A== | BT | @R [(eeese) @ I
related_to can | configure Apache
0S t ke
Instance Layer| tunasters | [Entity xtiacton {{ Linux system | Memory
ntity Alignment .
listen()
Tuning Objecti
NET_SCHED A & compie \ Heuristic Configuration Assignment
&
NETKIT g DaLey < has_child L)« seiects BQL
Run&Test WeT=n -+0
CMAAREAS=7| " ¢ cnfiguration &
L) v . Contguraton | BLKWBT =B p« naschiv {BLOCK)| conriguration
o Tuned Kernel Generation
f h APACHE rguration
Legend @ : steps using LLM \L 9)
)y
(3 : concents : Updated nodes Continuous Knowledge Malntenance: f}“;%:r‘fc’;‘[‘fy;?e L NerscHen : Detecting Configuration Deltas)
Updating Cross-layer Mappings £~ Network NET_SCHED G/
D:Instances : Added nodes eEEEE) | NXT)| . reparse
fer association NETBFIN | & | P onersen | i NETKIT E] NET_BFIN
: Purned nodesD:De recated nodes @ e H i i H
L. P N wsing LM dinstance Layerf | T Derecated)

Figure 3: An overview of our KnowOS framework. First, we construct the OD-KG from a pre-built
corpus (Knowledge Construction and Mapping [3.1). We then generate kernel configurations with
the help of OD-KG (Knowledge-driven Configuration Generation[3.2). Since kernel config might
be changed frequently, we need to add new configs, delete deprecated configs and update changed
configs to OD-KG (Continuous Knowledge Maintenance 3.3)

valid configuration that maximizes P(K, ¢) while satisfying all domain, dependency, and constraint
requirements. Formally:

Maximize P(K,q), K COxD

Subjectto x; € D,, V(o;,x;) € K,
Dependencies(K, F) = True,
Constraints(K,C) = True

3 METHOD: KNOWOS

In this section, we introduce KnowOS, as shown in Figure 3] which includes three major components:
Structured Knowledge Construction and Mapping, Knowledge-driven Configuration Generation, and
Continuous Knowledge Maintenance.

3.1 KNOWLEDGE CONSTRUCTION AND MAPPING

To bridge the semantic gap between high-level abstract tuning objectives and low-level concrete
config options, inspired by |Hao et al|(2021)); [Luo et al.| (2023)), KnowOS introduces a structured
knowledge representation: an OS-oriented Dual-layer Knowledge Graph (OD-KG). This graph
captures both domain concepts and kernel-specific configurations through three components:

* Instance Layer G; = (€7, Rz): Encodes kernel space K, where entities £7 denotes config
options and relations Rz represents dependencies and constraints extracted from the kernel space.

» Concept Layer Gc = (¢, R¢): Captures domain knowledge, where & represents generalized
kernel tuning concepts and R models their semantic relationships.

* Cross-layer Links £ = {(es,related_to,ec) | ey € Er,ec € Ec}: Establishes semantic
mappings from tuning concepts to their associated concrete config options.

The unified OD-KG is defined as G = (V| E), with vertex set V = & U &7 and edge set £ =
Re U Rz U L. This structured representation enables interpretable and efficient reasoning from
abstract tuning objectives to actionable configurations.

Under review as a conference paper at ICLR 2026

Instance-layer Construction. We construct configuration entities £z and the dependency rela-
tions Rz among them by parsing the official Linux Kconfig file The Linux Foundation| (2023).
Dependency relations Rz are identified using keyword-based extraction, covering four primary types:

Rz = {(ei,r,¢€j) | r € {depends_on, select, imply, has_child}, e;,e; € Ez} (D

Example: as illustrated in Figure [the extracted option “config ZSWAP” is encoded as
entity ZSWAP € &z, while identified relations such as (ZSWAP, depends_on,SWAP) and
(ZSWAP, select, ZPOOL) are belong to R7.

Concept-layer Construction. We extract the concept layer G¢ using few-shot in-context learning
Brown et al.| (2020) with a LLM. Prompts (Appendix [A.T) are constructed from a curated corpus of
OS kernel tuning materials, including benchmarks, research papers, official manuals, and domain
datasets. The LLM first extracts tuning objectives as entities £¢, and then infers semantic relationships
between pairs of entities to form the relation set R¢. Specifically, we define:

Re =A{(es,r,e;) | r € {inclusion, dependency, influence}, e;,e; € Ec} 2)

Example: Figure [6] shows the concept I/O Reduction and its inferred relationship:
(RAM-based Memory Pool, in fluence, I/O Reduction) € Re.

Cross-layer Link Mapping. KnowOS uses LLMs to map config options (£7) to relevant tuning
objectives (€¢) based on their functional semantics. These links are expressed as:

L ={(er,related to,ec) | er € &1, ec € Ec} 3)

Example: as shown in Figure @ the link (ZSWAP, related_to,Swap Pages) € L captures the
association between a low-level config option and a high-level memory tuning objective.

Proposition 1. Dual-layer knowledge graph resolves semantic issues by concept-instance mappings.
Proof. We provide experimental results in Sectiond.4]and theoretical proofs in Appendix

3.2 KNOWLEDGE-DRIVEN CONFIGURATION GENERATION

Unlike traversal-based methods She et al.| (2013) that exhaustively search the kernel space, KnowOS
uses a knowledge-driven approach over the OD-KG to identify relevant config options, reducing
LLM hallucinations and search overhead by pruning irrelevant subspaces.

Aligning Tuning Objectives with Kernel Concepts. Given tuning objective ¢, KnowOS extracts
textual entities £ via semantic parsing (e.g., from ¢ = “Optimize Linux for faster Apache server.”,
we get £ = {Linux,Apache}). Each entity e € £ is mapped to a concept in ¢ through the
mapping function ¢ : £ — &E¢: if e € E, KnowOS identifies it through pattern matching py;
otherwise, LLM-based semantic matching vy is utilized to rephrase and match it to the most
semantically similar concepts within E¢:

¢(€) _ {pr(e) if wPM(e) 7é (Z)

| %m(e) otherwise

“

The aligned concept set £c? = | J, . ¢(e) captures the high-level semantics of ¢, grounding subse-
quent reasoning over the OD-KG.

Graph-guided Relevant Configuration Extraction. For each concept node e; € £¢7, KnowOS
employs LLM-based reasoning over the OD-KG to explore path 7(e,) = (e — €1 —» --- —% €,)
that may lead to relevant config options. Each path is assigned a relevance score p(7(es)):

n

p(m(es)) = Ha(n) -w(e;), where e; €V, r,eE %)
i=1

where o(r;) denotes the semantic strength of relation 7;, and w(e;) reflects the contextual importance
of node e;, both estimated by the LLM. Config options with high relevance score (i.e., p > 7) are
aggregated into the candidate set K ;, where 7 is a threshold to assess path reasonability:

K, = {ei €&z | € € 7"(6.@)’ es € &, p(ﬂ(e‘s’)) > T} (6)

This step effectively filters the kernel space to those options most relevant to the tuning objective.

Under review as a conference paper at ICLR 2026

Heuristic Inference for Option Value Assignment. Given the candidate configuration set K, from
the OD-KG, KnowOS constructs a valid configuration K = {(0,2)} C O x D that maximizes the
tuning score P(K, ¢), as defined in Section KnowOS iteratively assigns values to each option
or € K, through LLM-based inference, guided by domain knowledge and structural constraints
(prompts in Appendix[A.2). At each step ¢, the system maintains a partial configuration K7, selecting
an unassigned option o, € K \ {0;—1 | (0;—1,) € K;}. The value assignment is inferred as:

z; = LLM_Infer(o; | 4,6, Ky),)

where £/, denotes tuning concepts aligned with ¢, G is the relevant OD-KG subgraph, and K, provides
current context. A valid inferred value x; must satisfy: (1) z; € D,,, (2) Dependencies(K; U
{(o¢,2¢)}, F) = True, and (3) Constraints(K; U {(os, x4)},C) = True.

Performance-aware Final Configuration Generation. To further enhance configuration quality,
KnowOS optionally selects the assignment x; € D,, that maximizes the estimated tuning score
P(K, q) among all valid candidates. The configuration is then updated as: K; 1 = K; U {(ot, z})}.
This process repeats until all options in K, have been assigned. The final configuration K is both
valid and semantically aligned with the tuning objective ¢, while aiming to maximize the performance
metric P(K, q). The complete assignment procedure is detailed in Algorithm

T-1
Kr = U {(ot,x:) x; = arg max {P(KyU{(ot,2)},q) |valid(K: U {(o,2)}) = True}} .
t=0 ot

®)

Proposition 2. Knowledge-driven reasoning over KG mitigates LLM hallucinations in kernel tuning.
Proof. We provide experimental results in Section[d.5|and theoretical proofs in Appendix [B.2]

3.3 CONTINUOUS KNOWLEDGE MAINTENANCE

As the Linux kernel evolves rapidly with frequent releases and feature updates, maintaining an up-to-
date and accurate knowledge graph becomes critical. To this end, KnowOS adopts an incremental
update strategy to continuously evolve the OD-KG with minimal overhead.

Let S = (O®, E® C®) denote the kernel space at version ¢ as defined in Section and S(t+1)
for the next version. The goal is to update the instance layer G = (Ez(t), Rz(t)) and cross-layer

links £(*) to reflect S(**1), while preserving existing concept-level semantics Ge.

Step 1: Detecting Configuration Deltas. We begin by computing the configuration delta be-
tween two consecutive kernel versions to capture changes in the option set. Specifically, we
identify newly added options as AO,q = o€ O+ | o¢ O® and deprecated options as

AOg = 0€ O® | o ¢ O+ Additionally, for options that persist across versions but exhibit
changes in their domain definitions or dependency relations, we re-parse and update their correspond-
ing entities and edges to reflect the latest semantics.

Step 2: Augmenting the Instance Layer. For each new option o € AQ,q4, we add its corresponding
new entity e, to £z, then extract its relations R, and insert them into Rz +%)

Ro = {(€0,m ¢0) | 7 € {depends_on, select, imply,has_child}, ey € OV} (9)
For each deprecated option 0 € AQq.1, we delete the associated entity e, and all related relations:

£ 70\ {e, | 0 € A} 1o

RHD R \{(eo;,7€0;) | €0, = €0V €o, = €0} an

Step 3: Updating Cross-layer Mappings. For each new instance entity e; € Sz(tH) \ &9, we
invoke a LLM to infer its semantic association with concept-layer entities ec € &¢, forming new
cross-layer links:

ALID = {(ef, related to,ec)} (12)
These links ensure that newly introduced kernel options remain interpretable through high-level
domain knowledge mapping. Deprecated options have their cross-layer links removed accordingly.

Proposition 3. Continuous knowledge maintenance ensures tuning accuracy and robustness.
Proof. We provide experimental results in Section {f.6|and theoretical proofs in Appendix

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

We evaluate the effectiveness and generalizability of KnowOS through a series of empirical studies
designed to answer the following research questions (RQs): RQ1: How does KnowOS compare with
existing baselines in kernel tuning? RQ2: Does the main component of KnowOS work? RQ3: Does
KnowOS effectively address the knowledge mapping challenge? RQ4: To what extent does KnowOS
mitigate LLM hallucinations in kernel tuning? RQS: Can KnowOS remain effective across evolving
kernel versions? RQ6: How does KnowOS perform in real-world application scenarios?

4.1 EXPERIMENTAL SETUP

Linux Distributions. To cover diverse usage scenarios of the Linux system, including Desktop,
Server, [oT, Cloud, Embedded system, etc., we evaluate four widely adopted Linux distributions:
Ubuntu, Fedora, Debian, and openEuler. Detailed specifications are provided in Table E}

Benchmarks. Kernel performance is assessed using two benchmarking suites: (1) UnixBench
Byte UnixBench Developers|(1983), a macro-benchmark aggregating sub-tests scores (e.g., context
switching, pipe throughput) to measure overall system performance, and (2) LEBench Ren et al.
(2019), a micro-benchmark for fine-grained kernel operations (e.g., fork, mmap, pagefault).

Applications. We assess real-world impact using four representative applications: Nginx Web Server
Nginx, Inc.|(2004), Redis Key-Value Store Salvatore Sanfilippo| (2009), Apache HTTP Server|/Apache
Software Foundation| (1995)), and PostgreSQL Database |Group|(1996). Redis is evaluated using Redis
Benchmark [Sanfilippo| (2009), Apache and Nginx via ApacheBench |Apache Software Foundation
(1997)), and PostgreSQL with sysbench |Akopytov|(2004).

Hardware. Our experiments span a variety of hardware platforms: three laptops (Intel i7-1165G7,
15-11400H, i7-13700) and a Xeon E5-2680 v4 workstation for distribution-level tests, and an AMD
Ryzen 9 7950X system for application-level benchmarks.

Baselines. We compare KnowOS against three baselines: (1) Default Configuration: hand-tuned by
experts, (2) Vanilla LLM: a direct use of LLM to generate configurations with bootability checks,
and (3) AutoOS Chen et al.|(2024): a LLM-based framework using a state machine for kernel tuning.

Implementations. All methods use GPT-40-mini under consistent runtime settings. Each experiment
is repeated for at least 15 independent runs per target, with the best-scoring configuration retained.
For fairness, AutoOS uses its best publicly released configurations, reflecting peak performance.

Table 1: Best UnixBench results across four distributions (higher values indicate better performance).
The bolded values represent the best score for each distribution. Abbreviations: ET = Execl Through-
put, FC = File Copy, PT = Pipe Throughput, CS = Context Switching, PC = Process Creation, SS =
Shell Scripts, SC = System Call.

Dhrystone Whetstone ET FC1024 FC256 FC409 PT CS PC SS1 SS8 SC Total

Score
| Ubuntu |
Default 5182 1842 1489 5466 3863 9629 2866 864 1145 4205 9003 2529 3099
LLM 5538 1863 1495 5840 3627 9591 2770 859 1150 4200 8987 2413 3098 (-0.0%)
AutoOS 5616 1864 1533 5976 3819 9458 2945 854 1150 4241 9032 2527 3154 (+1.8%)
KnowOS 5525 1848 1628 6266 4105 10079 3091 897 1231 4587 9816 2684 3318 (+7.1%)
‘ Fedora ‘
Default 5408 1815 278 1284 778 2464 456 150 366 1095 4186 175 846
LLM 5394 1810 286 1316 843 2871 480 173 392 1182 4530 187 902 (+6.6%)
AutoOS 4969 1669 281 1302 833 2613 458 147 397 1078 3981 177 846 (+0.0%)
KnowOS 4870 1688 258 1319 922 2885 558 239 400 1155 4542 217 936 (+10.6%)
| Debian |
Default 6271 2044 1315 5031 3162 10029 2300 276 1199 4689 10702 1604 2721
LLM 6066 2002 1131 5584 3569 10473 2572 344 1045 4278 9671 1959 2782 (+2.2%)
AutoOS 6346 2041 1356 6646 4143 12070 2964 405 1209 4715 10695 2404 | 3169 (+16.5%)
KnowOS 6298 2035 1221 7538 4896 13828 3522 514 1098 4531 10385 2273 | 3305 (+21.4%)
| OpenEuler |
Default 3442 1300 210 614 372 1565 240 42 88 441 3650 123 442
LLM 3470 1291 332 603 365 1530 227 41 74 380 2585 121 430 (-2.7%)
AutoOS 3164 1200 237 2960 1989 6302 1393 40 107 603 3955 1071 | 945 (+113.7%)
KnowOS 3500 1315 251 3674 2405 7323 1635 54 135 648 4256 1643 | 1129 (+155.4%)

Under review as a conference paper at ICLR 2026

4.2 OVERALL KERNEL PERFORMANCE (RQ1)

KnowOS Performance Advantages. Table[T|summarizes UnixBench results across four distributions.
KnowOS consistently outperforms all baselines, with relative improvements of 7.1%, 10.6 %, 21.4%,
and 155.4%, demonstrating its effectiveness in kernel tuning. These gains are attributed to KnowOS’s
structured knowledge mapping and knowledge-driven configuration generation strategy, which
effectively aligns tuning goals with config options.

Limitations of Vanilla LLM and AutoOS. In contrast, Vanilla LLM shows inconsistent perfor-
mance, with some configurations even reducing throughput (e.g., -2.7% on openEuler). The lack of
interaction with kernel space limits its ability to optimize performance effectively. AutoOS, while
delivering notable improvements in specific cases (e.g., +16.5% on Debian), is constrained by its
limited kernel knowledge, preventing full exploitation of relevant config options.

Trade-offs in Sub-test and Holistic Optimization. Interestingly, the trade-offs in sub-test perfor-
mance (e.g., AutoOS leads in Dhrystone/Whetstone for Ubuntu, while KnowOS excels in other
sub-tests) highlight KnowOS’s holistic optimization strategy, which prioritizes overall system perfor-
mance rather than isolated improvements, mitigating conflicts in concurrent parameter optimizations.

4.3 ABLATION STUDY (RQ2)

Experiment Objective. To evaluate the contributions of the key components in KnowOS, we conduct
an ablation study on Ubuntu using UnixBench (Table 2).

Table 2: Ablation study of KnowOS on Ubuntu using UnixBench. Default denotes the system’s
default configuration, w/o KG removes the OD-KG knowledge base, and w/o Mapping removes the
structured knowledge mapping strategy. Sub-test abbreviations follow Table|[T]

Dhrystone Whetstone ET FC1024 FC256 FC4096 PT CS PC SS1 SS8 sc‘ Total

Score

Default 5182 1842 1489 5466 3863 9629 2866 864 1145 4205 9003 2529 3099
w/o Mapping 5495 1818 1504 5710 3564 9564 2587 802 1159 4069 8705 2219 | 3010 (-2.9%)
w/o KG 5389 1826 1530 5879 3781 9596 2843 862 1172 4277 8923 2373 | 3115 (+0.5%)
KnowOS 5525 1848 1628 6266 4105 10079 3091 897 1231 4587 9816 2684 | 3318 (+7.1%)

Effect of Knowledge Mapping. Disabling the knowledge mapping module (w/o Mapping) sig-
nificantly degrades performance. Without mapping tuning objectives to config options in OD-KG,
the LLM generates less coherent and misaligned reasoning paths, emphasizing the importance of
knowledge mapping in grounding LLM behavior in domain-specific tasks.

Effect of OD-KG. Removing the OD-KG (w/o KG) knowledge base leads to only marginal improve-
ments, indicating that while the LLM can extract basic intent from user input, the lack of structured
domain knowledge limits its decision-making. This highlights the knowledge base’s key role in
enhancing KnowOS’s informed, knowledge-driven decisions.

4.4 STRUCTURED KNOWLEDGE MAPPING ENHANCES FINE-GRAINED TUNING (RQ3)

Experiment Objective. We assess KnowOS’s ability to map high-level tuning objectives to low-level
config options by benchmarking individual system calls using LEBench. In this experimental setup,
tuning objectives are defined at the system call level, allowing us to observe the impact of each
method on fine-grained kernel operations.

Result Analysis Figure [] shows the relative latency change across various kernel operations.
KnowOS consistently reduces latency across most operations, including fork, thr-create,
mmap, page—-fault, and epoll, demonstrating effective knowledge-driven mapping from ab-
stract tuning objectives to concrete config options. In contrast, both AutoOS and vanilla LLM yield
mixed results, improving some operations while degrading others.

Summary. These findings confirm that structured knowledge mapping employed in KnowOS enables
precise, goal-aligned tuning at the system call level. This approach effectively addresses a key
challenge in kernel configuration: translating high-level, abstract tuning objectives into low-level,
concrete config options that optimize performance.

Under review as a conference paper at ICLR 2026

Ubuntupefault | 0 | 0 oo fofofofofofo|ofofofoflofofofofofofofofoflofofofofo|ofofofo|ofofofo]ofofofo|o]|o

oflo|3|o)o|1|o|2]|2]|2|2|a|2]|2|of1|o]|2|o|2|w|2|3|2|4a|5|s5|n|[2]|2|5|8|[2]|0|2]|2|6|1]2]|3]|10[1 40

Ubuntu knowos [0 [o | o | o |4 [a4| 2|6 |27 |15|21|12|23|20(13|23|11|7 2|8 |8 |3 |7 |1 |10]|13]|16[23]18]20 m.u 1821|2013 |19 |14 |29 13.

Fedora Default [0 [0| o |ofofo|o|o|lofo|o|o|ofofo|o|ofofo|o|o|fofofo|o|ofofo|o|o|ofo|o|o|ofofo]|o|o|[ofo]o

20

Fedora knowos | 8 | 6 [15| o |15| 9 [15|17 14|13 (11|18 |19|12|18|20|24 |1 |5 |-7|2|-6| 9 |20|10| 4|5 |8 |8 |20]|25]|1[12]12]|27]|15|10]26|20]22| 7 |22

Debian Default [0 [0| o |ofofo]|o|oflofo|o|]o|ofofo|o|lofofo|o|o|ofofo|o|o|fofo|o|o|ofo|o|o|ofofo]|o|o|ofo]o

-20

Debian knowos | 8 | 2 |22| o [20(18|19 | 26| 10 5 |18 |21 |25 14 (20 | 25|16 |8 [5 |4 [26|21| 3 (10|14 |16 |13 8 zs-zo 18|21 |18 (23|18 |23 |18 |23 17.

OpenEuler Default | 0

7(1f6[s|o|8fs|o|3]|2|[7|1|4a]|8|we|[2|[3|8|7|2|[1|8]|8|s5|[s|[3]|6|nfs|[7][9]6 |19

openEuler Knowos | -3 | - 4|06 |6|16]14[22 14 20 10 4|5 |49 |1]|20

4
>
&

& ¢ O F ¥ ¥ D DO D D I I o R > &
& LS EFEL R EEEEL L P AL LSS ST N S R S &
& S F ¥ W N I S N TS LS ST T g ¢ FE &
F i FFE P FTE O NI E S D D S O &
o & & ~ T & PN ¢ T T T F
* S B R

Figure 4: Result of LEBench: the heatmap shows the relative latency changes in kernel operations
for each method, compared to the default configuration. Green indicates reduced latency (better),
while red denotes increased latency (worse).

4.5 MITIGATING LLM HALLUCINATIONS (RQ4)

Table 3: LLM hallucination test across 8 tuning objectives. Results include compile errors (CE), boot
errors (BE), average UnixBench scores (Score), score variance, and the best score among valid runs.

| ofg-1 cfg-2 cfg-3 cfg-4 cfg-5 cfg-6 cfg-7 cfg-8 | Variance(o?) | Best
AutoOS | 2776 1779 CE BE 2660 CE 1187 CE 426796 2776

KnowOS | 2825 2813 2883 BE 2861 2664 BE 2817 5936 2861

Experiment Objective. To evaluate KnowOS’s robustness against LLM hallucinations, we assess
the validity of configurations across eight tuning objectives, comparing configurations generated by
KnowOS and vanilla LLM. Each configuration is labeled as: (1) CE for compilation error; (2) BE for
boot error; and (3) Score for valid UnixBench score. Results are summarized in Table@

Result Analysis. KnowOS compiled all configurations with only two boot errors, showing low
variance (5936) and achieving a best score of 2861. In contrast, vanilla LLM produced three
configurations with compile errors, one with a boot error, and four that ran UnixBench, exhibiting
high variance (426796) and a best score of 2776.

Summary. These results demonstrate that KnowOS significantly improves configuration validity and
stability, highlighting the effectiveness of its knowledge-driven generation process in mitigating the
hallucinations that are common in vanilla LLM-based approaches.

4.6 ADAPTABILITY ACROSS KERNEL VERSIONS (RQ5)

Experiment Objective. Linux kernels evolve rapidly, with config options frequently changed across
versions. To evaluate KnowOS’s adaptability, we assess its performance on four Ubuntu releases
(14.04, 16.04, 18.04, 20.04) with kernel versions 3.13, 4.15, 5.4, and 6.2, using UnixBench.

Result Analysis. As shown in Figure [5{a), KnowOS consistently delivers performance gains
across versions, even with significant changes. This highlights KnowOS’s robustness in adapting to
evolving kernel versions with minimal retraining.

Summary. This adaptability stems from OD-KG’s continuous knowledge maintenance, which
tracks upstream differences and incrementally refines the knowledge graph. These results confirm
KnowOS’s viability as a long-term solution for kernel tuning in dynamically evolving environments.

Under review as a conference paper at ICLR 2026

Performance Across Kernel Versions Application Performance
100.0% Default % lol/[)[)‘()% Default
v6.2 q 107.1% Tuned PostgreSQL - 010] 0 AutoOS
KnowOS
) 100.0%
100.0%
v5.4 4 Apache 1 94.4%
112.1% P 102.4
) 100.0
| 100.0% . 20.0%
415 110.8% Redis 120 15.0%
, 100.0%
100.0% .
v3.13 " Nginx 1 119.6%
103.7% 8 27
100% 105% 110% 100% 120% 140%

(a) (b)

Figure 5: Performance evaluation across kernel versions (a) and real-world applications (b). The x-
axis shows the performance normalized to the default configuration. Nginx and Apache are measured
in Requests per Second, Redis in Operations per Second, and PostgreSQL in Queries per Second.

4.7 REAL-WORLD APPLICATION EVALUATION (RQ6)

Experiment Objective. To evaluate the practical utility of KnowOS, we conduct a comprehensive
study on four widely deployed real-world applications: Nginx, Apache, Redis, and PostgreSQL. These
applications represent diverse workloads, including CPU-bound, I/O-bound, and memory-intensive.

Result Analysis. Figure[5|b) summarizes the performance gains—throughput and latency—achieved
by KnowOS compared to the default configuration. KnowOS consistently delivers significant gains,
with Redis throughput increasing by up to 25.0% and Nginx latency reduced by up to 42.7%.

Summary. These results demonstrate KnowOS’s effectiveness in identifying configuration optimiza-
tions that are difficult to achieve through traditional methods. The findings validate KnowOS as a
robust and adaptable solution for kernel tuning in real-world environments.

5 RELATED WORK

OS Kernel Tuning. Previous kernel optimization efforts include both manual and automated methods.
Network-specific tuning is studied in [Evang & Dreibholz|(2024); [Schwarz et al.| (2024)), while Kroth
et al.| (2024); Martin et al.|(2021) optimizes kernel performance via machine learning. LEBench [Ren
et al.| (2019) traces performance regressions to specific config changes, and DeepPerf|Ha & Zhang
(2019)) predicts performance using sparse deep neural networks. Kernel debloating is addressed in|Kuo
et al.[(2022)), and configuration conflict resolution is explored by Franz et al.|(2021). AutoOS (Chen
et al.[(2024) combines LLMs with state-machine optimization for AloT-specific tuning.

Knowledge-Driven LLMs in Software Engineering. LLMs are increasingly applied to software
engineering tasks. Fine-tuning methods for code generation are discussed in Jiang et al.| (2024);
Weyssow et al.[(2023); Liu et al.[(2024)), while vulnerability discovery is addressed in|Ghosh et al.
(2025). A system for LLM-based code synthesis requiring deep reasoning is proposed in Li et al.
(2022). LLMs for incident mitigation are evaluated in |Ahmed et al.| (2023)), and prompt-based
config validation is explored in|Lian et al.|(2024). An agentless repair pipeline for software bugs is
introduced in [Xia et al.| (2024).

6 CONCLUSION

We introduce KnowOS, a knowledge-driven framework leveraging LLMs for OS kernel tuning.
By integrating a dual-layer, OS-specific knowledge graph with targeted retrieval, KnowOS bridges
abstract tuning goals and concrete config options. Extensive evaluations demonstrate its superiority in
generating performant, stable, and adaptable kernel configurations. This work highlights the potential
of structured knowledge integration in enhancing LLM-based system optimization.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

KnowOS leverages knowledge-driven LLMs to automate Linux kernel tuning, offering efficiency
gains but also raising ethical concerns. While it reduces reliance on manual tuning, improper
configurations may destabilize system performance, requiring strict validation. Continuous knowledge
maintenance helps mitigate LLM hallucinations, but accuracy and reliability must be ensured.
Responsible use, including transparency and ongoing validation, is essential for ethical deployment.

REPRODUCIBILITY

To ensure the reproducibility of KnowOS, the source code is publicly available at the following URL:
https://anonymous.4open.science/r/KnowOS-B274. These measures are intended to facilitate the
verification and replication of our results by other researchers in the field.

REFERENCES

Mathieu Acher, Hugo Martin, Juliana Alves Pereira, Arnaud Blouin, Jean-Marc Jézéquel, Djamel Ed-
dine Khelladi, Luc Lesoil, and Olivier Barais. Learning Very Large Configuration Spaces: What
Matters for Linux Kernel Sizes. Research report, Inria Rennes - Bretagne Atlantique, October
2019. URL https://inria.hal.science/hal-02314830.

Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zimmermann, Xuchao Zhang, and Saravan
Rajmohan. Recommending root-cause and mitigation steps for cloud incidents using large language
models. In Proceedings of the 45th International Conference on Software Engineering, ICSE °23,
pp. 1737-1749. IEEE Press, 2023. ISBN 9781665457019. doi: 10.1109/ICSE48619.2023.00149.
URLhttps://doi.org/10.1109/ICSE48619.2023.00149.

Alexey Akopytov. sysbench: Scriptable database and system performance benchmark (version
1.0.20), 2004. URL https://github.com/akopytov/sysbenchl.

Apache Software Foundation. Apache http server (version 2.4.52), 1995. URL https://httpd,
apache.org/.

Apache Software Foundation. ab - apache http server benchmarking tool (version 2.3), 1997. URL
https://httpd.apache.org/docs/2.4/programs/ab.html.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Byte UnixBench Developers. Unixbench (version 5.1.3), 1983. URL https://github.com/
kdlucas/byte—unixbench.

Huilai Chen, Yuanbo Wen, Limin Cheng, Shouxu Kuang, Yumeng Liu, Weijia Li, Ling Li, Rui Zhang,
Xinkai Song, Wei Li, Qi Guo, and Yunji Chen. Autoos: Make your OS more powerful by exploiting
large language models. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=Rp8RI9COSth.

DeepSeek-Al. Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412\
19437.

Jan Marius Evang and Thomas Dreibholz. Optimizing network latency: Unveiling the impact of

reflection server tuning. In International Conference on Advanced Information Networking and
Applications, pp. 374-384. Springer, 2024.

10

https://inria.hal.science/hal-02314830
https://doi.org/10.1109/ICSE48619.2023.00149
https://github.com/akopytov/sysbench
https://httpd.apache.org/
https://httpd.apache.org/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench
https://openreview.net/forum?id=Rp8R9C0Sth
https://openreview.net/forum?id=Rp8R9C0Sth
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437

Under review as a conference paper at ICLR 2026

Patrick Franz, Thorsten Berger, Ibrahim Fayaz, Sarah Nadi, and Evgeny Groshev. Configfix: Interac-
tive configuration conflict resolution for the linux kernel. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 91-100,
2021. doi: 10.1109/ICSE-SEIP52600.2021.00018.

Rikhiya Ghosh, Hans-Martin von Stockhausen, Martin Schmitt, George Marica Vasile, Sanjeev Kumar
Karn, and Oladimeji Farri. Cve-llm: Ontology-assisted automatic vulnerability evaluation using
large language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39,
pp. 28757-28765, 2025.

PostgreSQL Global Development Group. Postgresql: The world’s most advanced open source
database (version 14.15), 1996. URL https://www.postgresgl.org/.

Huong Ha and Hongyu Zhang. Deepperf: Performance prediction for configurable software with deep
sparse neural network. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), May 2019. doi: 10.1109/icse.2019.00113. URL http://dx.doi.org/10.1109/
icse.2019.00113.

Junheng Hao, Muhao Chen, Wenchao Yu, Yizhou Sun, and Wei Wang. Universal representation
learning of knowledge bases by jointly embedding instances and ontological concepts, 2021. URL
https://arxiv.org/abs/2103.08115.

Nan Jiang, Xiaopeng Li, Shigi Wang, Qiang Zhou, Soneya Hossain, Baishakhi Ray, Varun Kumar,
Xiaofei Ma, and Anoop Deoras. Ledex: Training llms to better self-debug and explain code.
Advances in Neural Information Processing Systems, 37:35517-35543, 2024.

Alexander Jung, Hugo Lefeuvre, Charalampos Rotsos, Pierre Olivier, Daniel Ofioro Rubio, Felipe
Huici, and Mathias Niepert. Wayfinder: towards automatically deriving optimal os configu-
rations. In Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys
21, pp. 115-122, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450386982. doi: 10.1145/3476886.3477506. URL https://doi.org/10.1145/
3476886.3477506.

Greg Kroah-Hartman. Linux kernel release model, 2019. URL http://kroah.com/log/
blog/2018/02/05/1inux—kernel-release—-model/. Accessed: 2023-10-05.

Brian Kroth, Sergiy Matusevych, Rana Alotaibi, Yiwen Zhu, Anja Gruenheid, and Yuanyuan Tian.
Mlos in action: Bridging the gap between experimentation and auto-tuning in the cloud. Proceed-
ings of the VLDB Endowment, 17(12):4269-4272, 2024.

Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. Set the configuration for the heart of
the os: on the practicality of operating system kernel debloating. Commun. ACM, 65(5):101-109,
April 2022. ISSN 0001-0782. doi: 10.1145/3524301. URL https://doi.org/10.1145/
3524301.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092—-1097, December 2022. ISSN 1095-9203. doi:
10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abgll58l

Xinyu Lian, Yinfang Chen, Runxiang Cheng, Jie Huang, Parth Thakkar, Minjia Zhang, and Tianyin
Xu. Configuration validation with large language models, 2024. URL https://arxiv.org/
abs/2310.09690.

Bingchang Liu, Chaoyu Chen, Zi Gong, Cong Liao, Huan Wang, Zhichao Lei, Ming Liang, Dajun
Chen, Min Shen, Hailian Zhou, et al. Mftcoder: Boosting code llms with multitask fine-tuning. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
5430-5441, 2024.

11

https://www.postgresql.org/
http://dx.doi.org/10.1109/icse.2019.00113
http://dx.doi.org/10.1109/icse.2019.00113
https://arxiv.org/abs/2103.08115
https://doi.org/10.1145/3476886.3477506
https://doi.org/10.1145/3476886.3477506
http://kroah.com/log/blog/2018/02/05/linux-kernel-release-model/
http://kroah.com/log/blog/2018/02/05/linux-kernel-release-model/
https://doi.org/10.1145/3524301
https://doi.org/10.1145/3524301
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2310.09690
https://arxiv.org/abs/2310.09690

Under review as a conference paper at ICLR 2026

Haoran Luo, Haihong E, Ling Tan, Gengxian Zhou, Tianyu Yao, and Kaiyang Wan. Dhge: Dual-view
hyper-relational knowledge graph embedding for link prediction and entity typing. Proceedings of
the AAAI Conference on Artificial Intelligence, 37(5):6467-6474, June 2023. ISSN 2159-5399. doi:
10.1609/aaai.v37i5.25795. URL http://dx.doi.org/10.1609/aaai.v3715.25795,

Hugo Martin, Mathieu Acher, Juliana Alves Pereira, Luc Lesoil, Jean-Marc Jézéquel, and Djamel Ed-
dine Khelladi. Transfer learning across variants and versions: The case of linux kernel size. IEEE
Transactions on Software Engineering, 48(11):4274-4290, 2021.

Johann Mortara and Philippe Collet. Capturing the diversity of analyses on the linux kernel variability.
In Proceedings of the 25th ACM International Systems and Software Product Line Conference
- Volume A, SPLC 21, pp. 160-171, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450384698. doi: 10.1145/3461001.3471151. URL https://doi.org/
10.1145/3461001.3471151!

Nginx, Inc. Nginx: A high-performance web server and reverse proxy (version 1.18.0), 2004. URL
https://nginx.org/.

OpenAl. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774l

Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael Stumm, and Ding Yuan.
An analysis of performance evolution of linux’s core operations. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP *19, pp. 554-569, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450368735. doi: 10.1145/3341301.3359640.
URL https://doi.org/10.1145/3341301.3359640.

Salvatore Sanfilippo. Redis - the real-time data platform (version 6.0.16), 2009. URL https:
//redis.io/!

Salvatore Sanfilippo. Redis benchmark optimization and management, 2009. URL
https://redis.io/docs/latest/operate/oss_and_stack/management/
optimization/benchmarks/.

Marcos Schwarz, Brian Tierney, Kiran Vasu, Eli Dart, Christian Esteve Rothenberg, Jeronimo
Bezerra, and Italo Valcy. Recent linux improvements that impact tcp throughput: Insights from
r&e networks. In SC24-W: Workshops of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 775-784. IEEE, 2024.

Steven She, Thorsten Berger, Rafael Lotufo, Krzysztof Czarnecki, and Andrzej Wasowski. Linux
kernel configuration: A systematic literature review. Empirical Software Engineering, 18(1):
67-114,2013.

Chungiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander, Zhe Wen, Aravind
Narayanan, Patrick Dowell, and Robert Karl. Holistic configuration management at facebook. In
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15, pp. 328-343,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450338349. doi:
10.1145/2815400.2815401. URL https://doi.org/10.1145/2815400.2815401.

The Linux Foundation. Kconfig language documentation, 2023. URL https://docs.kernell
org/kbuild/kconfig-language.html.

Theodore Y. Ts’o0. Personal communication, 2019. Personal communication, 2019.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li, Yunsen Xian, Chuantao Yin, Wenge Rong, and
Zhang Xiong. Knowledge-driven cot: Exploring faithful reasoning in llms for knowledge-intensive
question answering, 2023. URL https://arxiv.org/abs/2308.13259.

Martin Weyssow, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui. Exploring parameter-
efficient fine-tuning techniques for code generation with large language models. ACM Transactions
on Software Engineering and Methodology, 2023.

Chungqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying 1lm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

12

http://dx.doi.org/10.1609/aaai.v37i5.25795
https://doi.org/10.1145/3461001.3471151
https://doi.org/10.1145/3461001.3471151
https://nginx.org/
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3341301.3359640
https://redis.io/
https://redis.io/
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://doi.org/10.1145/2815400.2815401
https://docs.kernel.org/kbuild/kconfig-language.html
https://docs.kernel.org/kbuild/kconfig-language.html
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2407.01489

Under review as a conference paper at ICLR 2026

APPENDIX

A PROMPTS USED IN KNOWOS

A.1 OD-KG CONSTRUCTION PROMPTS

Entity Extraction & Relation Identification. The first step in constructing the knowledge graph
from structured Kconfig data involves the use of Kconfiglib. Each config option within the kernel
is represented as an entity. Dependencies such as ”depends on” or “’select” are modeled as directed
relations between entities, ensuring the accurate representation of kernel space dependencies. For
textual data, such as the help text describing a config option, the description is encapsulated in the
format: "Config xxx description: text”. If no description is available, the prompt directly uses the
config option’s name as context.

For each of these configurations, we generate specific prompts that guide LLMs to detect the entities
and identify their relationships. This procedure is illustrated in Figure[6)and exemplified in the prompt
shown in Figure[7} These prompts ensure the model accurately extracts the essential features and
relationships from both structured and unstructured data sources.

| config ZSWAP | .

Construction
| bool "Compressed cache for swap pages" C BQL
(sieelp:crtl(;;gx;\rsr‘glvl-\\}ip | Kconfigllib parsing depends_on

~,,
| select CRYPTO 1 SWAP

| select ZPOOL 1 select select select

help |

I A lightweight compressed cache for swap pages. It takes pages that are |
| in the process of being swapped out and attempts to compress them into a

dynamically allocated RAM-based memory pool. This can result in a 1

|

|

significant I/0 reduction on swap device and, in the case where
I decompressing from RAM is faster than swap device reads, can also Swap Pages Swap Pages
| improve workload performance

influence influence

(ZPOOL) (CRYPTO) (FRONTSWAP)

(RAM-based Memory Pool)

related_to

| config ZSWAP description: A lightweight compressed cache for swap pages. |
| It takes pages that are in the process of being swapped out and attempts to | (ﬁ
compress them into a dynamically allocated RAM-based memory pool. This ‘—l
. L . . . lated_t
| can resultin a significant I/0 reduction on swap device and, in the case ZoNAP relatedto SuED PEgEE
| where decompressing from RAM is faster than swap device reads, can also |

| improve workload performance. |

Figure 6: Entity & Relation Extraction Process

A.2 LARGE LANGUAGE MODELS EXPLORE KERNEL SPACE PROMPTS

The Linux kernel space consists of several configuration types: Bool, Choice, Menu, and Value.
Each configuration type is addressed with tailored interaction templates designed for LLMs. These
prompts are intended to guide the LLM in exploring and selecting the most relevant kernel configura-
tions that align with a given tuning objective.

A.2.1 BooL

The Bool type configuration has two possible values: on and of £. For efficient exploration, we
group these configurations into sets of up to nine, prompting the LLM to evaluate their collective
impact on the target optimization objective. Instead of directly querying for the configuration values,
the LLM is asked to indicate the effect of each configuration group on the target. The possible
responses are: “increase” (positive effect), “decrease” (negative effect), and ’cannot determine”
(neutral or indeterminate effect). This method reduces computational overhead and focuses the
model’s attention on the relative impact of configuration sets. The corresponding prompt is shown in

Figure[§]

13

Under review as a conference paper at ICLR 2026

Given a text document that describes either a linux kernel configuration or a computer science knowledge text, identify all entities from the
text and all relationships among the identified entities. You can follow the steps below:

1. Identify all the entities with the following information:

- entity_name: Name of the entity, and capitalized the name.

- entity_description: Comprehensive description of the entity's attributes and activities

Format each entity as ("entity"&<entity_name>&<entity_description=>)

2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.
For each pair of related entities, extract the following information:

- source_entity: name of the source entity, as identified in step 1

- target_entity: name of the target entity, as identified in step 1

Format each relationship as ("relationship"&<source_entity>&<target_entity>)

3. Return output as a single list of all the entities and relationships identified in steps 1and 2.

Here are some examples:

Example 1:

Example 2:

HEHHHHH AR
Here's the real input:

Output:

Figure 7: Entity & Relation Extraction Prompt

¢ [ARGET-(CONFIGS-

: "I want to explore the config options related to - in the Linux kernel configurations. Please choose the configs concerned with - in the CONFIGS as much as

possible. For each concerned config related to - you should determine whether it will increase or decrease m If it increases _ output [CONFIG increase].
If it decrease -, output [CONFIG decrease]. If a config is not related to —, output [CONFIG - cannot determine impact without specific context]. You can reference

the knowledge in also have to gurantee the success boot of the OS after selecting. Answer in the following form, without any explanation, just answer in pure
text form, give me config names in my given CONFIGS, each line represents a single config like this:

[config_name_1 increase]

[config_name_2 decrease]

[config_name_n increase]

Figure 8: Prompt for Boo1l type config options

The terms "KNOWLEDGE”, "TARGET”, and "CONFIGS” are dynamically replaced with relevant
values during the prompt generation. Knowledge is gathered by querying LightRAG, and the nine
configurations are split into three groups, each of which is queried individually. The results from
each group are concatenated to form the comprehensive knowledge used for decision-making, as
illustrated in Figure[9]

Q

Impact on Unixbench Total Score: Unixbench is a popular benchmarking tool used to measue...
1. EFI (Extensible Firmware Interface): EF1 is related to firmware-level configuration and ...
2. KEXEC (Kernel Execute): KEXEC allows a system to boot into a new kernel without going ...
3. RANDOMIZE_MEMORY: RANDOMIZE_MEMORY" involves randomizing the layout of ...

TARGET - the unixbench total score

CONFIGS =

EFI runtime service support (EFI)

kexec system call (KEXEC)

Randomize the kernel memory sections (RANDOMIZE_MEMORY)

1 want to explore the config options related to ARGET in the Linux kernel configurations. Please choose the configs concerned with [IARGET in the GONFIGS as much as
possible. For each concerned config related to _ you should determine whether it will increase or decrease _ If it increases - output [CONFIG increase].
If it decrease output [CONFIG decrease]. If a config is not related to [ARGET, output [CONFIG - cannot determine impact without specific context]. You can reference
the knowledge in also have to gurantee the success boot of the OS after selecting. Answer in the following form, without any explanation, just answer in pure
text form, give me config names in my given CONFIGS, each line represents a single config like this:

[config_name_1 increase]

[config_name_2 decrease]

[config_name_n increase]

A: [EFI increase]

[KEXEC - cannot determine impact without specific context]
[RANDOMIZE_MEMORY decrease]

Figure 9: Instance of a Bool type config option query

14

Under review as a conference paper at ICLR 2026

A.2.2 CHOICE

A Choice configuration contains multiple sub-configurations, from which only one can be selected
at any given time. To efficiently manage this, LLMs are prompted to choose the most appropriate
configuration based on its relevance to the target objective. The prompt for this configuration type is
depicted in Figure[10}

KNOWLEDGE = {} TARGET - { CONFIGS = {}

Q:Twant to explore the config options related to TARGET in the Linux kernel configurations. The GONFIGS I gave you are choices of a config, and you need to choose which
config is most likely related to [TARGE. Give me only one config in my give GONEIGS. You can reference the knowledge in KNOWLEDGE. 1 also have to gurantee the success
boot of the OS after selecting. Answer in the following form, without any explanation, just answer in pure text form, each line represents a single config like this:
[config_name]

Figure 10: Prompt for Choice type config options

Just like with Boo1l types, the terms "KNOWLEDGE”, "TARGET”, and "CONFIGS” are used in the
prompt and replaced with specific values. An example query is shown in Figure[TT] demonstrating
how the LLM is tasked with selecting the most suitable configuration.

Q
KNOWLEDGE =
Analyzing how configuration setting might impact the "unixbench total score" involves ...
1. X86_INTEL_TSX_MODE_OFF: This configuration option disables Intel's Transactional
2. X86_INTEL_TSX_MODE_ON: Enabling this setting turns on TSX on compatible hardware ...
3. X86_INTEL_TSX_MODE_AUTO: This option results in TSX being enabled on hardware ...
TARGET - the unixbench total score
CONFIGS =
off (X86_INTEL_TSX_MODE_OFF)
on (X86_INTEL_TSX_MODE_ON)
auto (X86_INTEL_TSX_MODE_AUTO)
I want to explore the config options related to TARGET in the Linux kernel configurations. The CONFIGS I gave you are choices of a config, and you need to choose which
config is most likely related to TARGET. Give me only one config in my give CONFIGS. You can reference the knowledge in KNOWLEDGE. 1 also have to gurantee the success
boot of the OS after selecting. Answer in the following form, without any explanation, just answer in pure text form, each line represents a single config like this:
[config_name]

A’ X86_INTEL_TSX_MODE_AUTO

Figure 11: Instance of a Cho1ice type config option query

A.2.3 MENU

A Menu configuration type includes multiple sub-configurations, and the task is to determine which
of these are relevant to the optimization target. The prompt for this type is designed to guide the LLM
to identify the relevant configurations based on their relation to the target. This process is illustrated

in Figure[T2]

KNOWLEDGE ={} TARGET={} CONFIGS = {}

Q: 1 want to explore the config options related to TARGET in the Linux kernel configurations. Please choose the directories concerned with TARGET in the CONFIGS as much
as possible. You can reference the knowledge in KNOWLEDGE. I also have to gurantee the success boot of the OS after selecting. Answer in the following form, without any
explanation, just answer in pure text form, give me config names in my given CONFIGS, each line represents a single config like this

[directory_name_1]

[directory_name_n]

Figure 12: Prompt for Menu type config options

As with previous configuration types, the ’ZKNOWLEDGE”, "TARGET”, and "DIRECTORIES” are
dynamically replaced based on the specific query context. An instance of such a query is shown in
Figure[I3] which illustrates how the menu-related options are identified and evaluated.

A.2.4 VALUE

The Value configuration type includes various types, such as integers, hexadecimal values, and
strings. The prompt for this configuration type is shown in Figure[I4] The process for handling the
"KNOWLEDGE”, "TARGET”, and "CONFIGS” remains consistent with previous types.

15

Under review as a conference paper at ICLR 2026

Q:

The UnixBench total score is a benchmark suite designed to test the performance of Unix-like operating systems ...
1. General Setup: This category often includes fundamental settings that control ...
2. Processor Type and Features: This category is crucial as it allows for adjustments ...
3. General Architecture-Dependent Options: This configuration category appears to include ..

- = the unixbench total score
CONFIGS =

0 General setup

1 Processor type and features

2 General architecture-dependent options

I'want to explore the config options related to - in the Linux kernel configurations. Please choose the directories concerned with - in the CONFIGS as much as
possible. You can reference the knowledge in KNOWLEDGE. I also have to gurantee the success boot of the OS after selecting. Answer in the following form, without any
explanation, just answer in pure text form, give me config names in my given CONFIGS, each line represents a single config like this:

[directory_name_1]

[directory_name_n]

A: 1Processor type and features
7 Memory Management options
8 Device Drivers

Figure 13: Instance of a Menu type config option query

-0 [ARGET-(CONFIGS- 0
I'm looking for the Linux kernel's menuconfig options that could potentially affect _ I have listed some numeric config options listed in menuconfig, along with their
corresponding value ranges. For each option, please select a value that may help improve - If the option is not related to - reset it to the default value. For
instance, if you are given: 'maximum CPU number (1=>2 2=>4) (cpunum) (1)', your response should be: 'maximun CPU number (1=>2 2=>4) (cpunum) (2)' because when the
CPU number is more, the speed is usually better.
Config input format: [option name] (default value)
Value output format: [option name] (recommended value)
Attention! Please provide your recommended values without extra explanations or additional details. Only suggest options that could possibly help -, and do not add
units next to the numbers. You can reference the knowledge in _ Below are the numeric config options for your recommendations:
CONFIGS

Figure 14: Prompt for Value type config options

An example query for the Value type is shown in Figure[I3] demonstrating how the LLM is tasked
with selecting or generating values based on the knowledge and constraints provided.

Q:

In the context of improving performance metrics such as the total score from Unixbench, ...

1. PHYSICAL_START: The PHYSICAL_START configuration denotes the physical address ...

2. PHYSICAL_ALIGN: Similarly, the PHYSICAL_ALIGN' configuration refers to the alignment ...

= the unixbench total score
CONFIGS =
PHYSICAL_START (0x1000000)
PHYSICAL_ALIGN (0x200000)
I'm looking for the Linux kernel's menuconfig options that could potentially affect - I have listed some numeric config options listed in menuconfig, along with their
corresponding value ranges. For each option, please select a value that may help improve - If the option is not related to - reset it to the default value. For
instance, if you are given: ‘maximum CPU number (1=>2 2=>4) (cpunum) (1)', your response should be: 'maximun CPU number (1=>2 2=>4) (cpunum) (2)’ because when the
CPU number is more, the speed is usually better.
Config input format: [option name] (default value)
Value output format: [option name] (recommended value)
Attention! Please provide your recommended values without extra explanations or additional details. Only suggest options that could possibly help -, and do not add
units next to the numbers. You can reference the knowledge in KNOWLEDGE. Below are the numeric config options for your recommendations:
CONFIGS
A: PHYSICAL_START (0x1000000)
PHYSICAL_ALIGN (0x200000)

Figure 15: Instance of a Value type config option query

16

Under review as a conference paper at ICLR 2026

B THEORETICAL PROOF

B.1 PROOF OF PROPOSITION 1

Proposition 1. Dual-layer knowledge graph resolves semantic issues by concept-instance mappings.

Proof: LetG = (V, E) represent the dual-layer knowledge graph, where V = £x U &; includes
domain concepts ¢ (high-level tuning objectives) and kernel instance entities £; (config options).
The edge set E = R U Ry U L captures semantic relationships R ¢, kernel config dependencies
‘R 1, and cross-layer links £ between high-level concepts and config options.

We define the mapping function 7 : £ — &, where each concept ¢; € E¢ is mapped to config
options o; € &7 based on semantic strength:

W(Ci) = {Oj e&r: O'(Ci,Oj) > (5}
where o(c;, 0;) measures semantic alignment, and ¢ is a threshold for selecting strong mappings.
We enforce valid mappings using probabilistic functions for dependency and constraint satisfaction:

6’D(Oi,()j)

P i, 05) =
p(0i,05) 1+ exp(—a - D(0;,0;))

_ 6C(Oi7oj)
1+ exp(—4 - C(0i,05))
The overall validity of configuration K = {01, 02, ..., 0,} is given by:

Puiia(K) = H (Pp(0i,05) - Pe(0s,05))
(0i,0;)EK

Pe(0i,05)

This ensures the configuration satisfies both dependency and constraint relations.
The semantic strength between concept ¢; and config option o; is:
e—lléi—d;11?
o(ci,05) =

I

1+ e—lléi—g;

where ¢; and 0} are their respective vector embeddings, and ||¢; — 072 is the squared Euclidean
distance.

Finally, the valid mapping set is:
L= {(Ci, Oj) : O'(Ci, Oj) > 6 and Pvalid(K) > 7'}
where 7 is a threshold for the overall configuration validity.

In summary, the dual-layer knowledge graph bridges the semantic gap between high-level objectives
and low-level config options, ensuring efficient and accurate kernel tuning via semantic alignment
and probabilistic validation.

B.2 PROOF OF PROPOSITION 2

Proposition 2. Knowledge-driven reasoning over KG mitigates LLM hallucinations in kernel tuning.

Proof: Let the high-level tuning objective g be represented by a set E, = {e1, €2, ..., ey}, where
each e; € E, corresponds to an abstract tuning goal. We map each entity e; to kernel config options
using the mapping function ¢ : £, — F¢, combining pattern matching (¢ pas) and LLM-based
semantic matching (V1,1 ar):

vpu(es), ifvpu(e) #0,

Yrra(e;), otherwise.

Pleq) = {

Next, reasoning over the OD-KG explores paths 7(e;) from a tuning concept e5 € E¢ to config
options ¢; € E7, with each path’s relevance computed as:

17

Under review as a conference paper at ICLR 2026

n

p(r(es)) = [T olri) - wiea),

i=1
where o (r;) measures the semantic strength of relations and w(e;) captures the contextual importance
of entities.

These functions are defined as:

1 1

o) = ety) = T

where d(r;) quantifies the semantic dissimilarity and h(e;) represents entity importance, with o and
[controlling sensitivity.

The relevance threshold 7 filters out weakly related paths, defining the valid set of kernel configura-
tions K, as:

Ky ={ei € Er | p(n(es)) 2 7}

This pruning minimizes hallucinations by excluding irrelevant configurations, ensuring that the
reasoning process remains accurate and grounded in semantic consistency.

In summary, knowledge-driven reasoning over the KG enables precise kernel tuning by linking
high-level tuning goals to concrete configurations, minimizing hallucinations and improving the
robustness of LLM-based kernel tuning systems.

B.3 PROOF OF PROPOSITION 3

Proposition3. Continuous knowledge maintenance ensures tuning accuracy and robustness.

Proof: To prevent inaccuracy and invalid tuning due to kernel iteration, we employ continuous
updates to the knowledge graph. Let S(t) = (O(t), E(t), C(t)) denote the kernel space at version ¢,
and S(t+1) = (O(t+ 1), E(t+ 1), C(t + 1)) represent the updated kernel space at version ¢ + 1.
The challenge lies in ensuring that the knowledge graph is incrementally updated to reflect changes
in the kernel space, while retaining the semantic integrity of the prior version.

We define the config option delta AO,44 as the set of newly added config options and AO; as the
set of deprecated options:

AOuga={0€ 0 +1)|0¢ O(t)}, AOuy={ocO®t)]od Ot +1)}

For options that persist across versions but exhibit changes in their domain definitions or dependency
relations, we re-parse and update their corresponding entities and edges in the knowledge graph.

We update the knowledge graph by incorporating newly added options, removing deprecated options,
and adjusting the mappings of existing options. The update rule for the kernel space is as follows:

G[(t + 1) = G](t) UAFE 30 UAE 04, Gc(t + 1) = Gc(t).

This ensures that all new config options are considered and that deprecated or outdated information is
removed, reducing the risk of hallucinations due to outdated kernel knowledge.

We further reduce hallucinations by ensuring that all config options are consistently grounded in the
most up-to-date, relevant knowledge. The cross-layer mapping function is updated as:

L(t+1) = {(es,related to,ec) | ey € AEzqa,ec € Ec(t +1)}.

By maintaining semantic consistency through structured knowledge interaction, we ensure that
the reasoning remains robust and aligned with the latest kernel configurations, thereby mitigating
hallucinations during the kernel tuning process. Additionally, this approach ensures that the generated
kernel configurations remain contextually grounded and semantically relevant, thus overcoming the
limitations of traditional LLM-based methods.

18

Under review as a conference paper at ICLR 2026

C KNOWOS ALGORITHM DETAILS

Algorithm Overview. Algorithm[I]describes the core procedure for generating kernel configura-
tions in a knowledge-driven manner using the KnowOS framework. It consists of two primary stages:
heuristic value assignment and performance-aware refinement.

Algorithm 1 Knowledge-driven Configuration Generation in KnowOS

1: Input: Candidate config options K,, OD-KG G, aligned concepts £,
2: Output: Valid kernel configuration K

3. Step 1: Heuristic Inference for Option Value Assignment.
4: Initialize K < 0

5: repeat
6.
7
8

Identify candidate configuration set K; from K,

K, K,\ K,

. for each config option o; € K, do
9: z; < LLM_Infer(o; | £4,G, Ky)
10: if valid(K: U (ot,2+)) = False then
11: Prune current assignment.
12: else
13: Add (Ot, xt) to Kti Kt = Kt U (ot,xt)
14: end if
15: end for

16: until K, =0

17: Step 2: Performance-aware Final Configuration Generation.
18: for each (o, ;) € K do

19: x} « arg max P(KU{(ot,2)},q)

20: if Isvalid(K U {(os,z})}) then
21: K « (K \{(ot,z)}) U{(o, z7)}
22: end if

23: end for

24: return K

Step 1: Heuristic Inference for Option Value Assignment. Given a set of candidate configuration
options K, the algorithm iteratively selects subsets K; and attempts to infer suitable values for
each option 0; € K using an LLM-based inference mechanism. The inference is conditioned on
three inputs: the aligned tuning concepts £%, the OD-KG G, and the current partial configuration
K. After value inference, the resulting assignment (o, ;) is validated against kernel constraints
and dependency rules. If valid, the assignment is retained; otherwise, the path is pruned. This phase
continues until all candidate options have been processed.

Step 2: Performance-aware Final Configuration Generation. Once a valid configuration K
is obtained, the algorithm optionally refines it by optimizing each option’s value to maximize a
performance objective P (K, q). For each (o¢, z;) € K, the algorithm searches within the domain
D,, for a value z} that yields the highest estimated performance, provided the updated configuration
remains valid. The refined value is then used to update the configuration. This step ensures that the
final configuration not only adheres to structural correctness but also maximizes utility under the
given objective.

Outcome. The algorithm returns a valid and performance-aligned configuration K that maps
high-level objectives to low-level kernel options through structured reasoning and LLLM guidance.

19

Under review as a conference paper at ICLR 2026

D BENCHMARK DETAILS

In our experiments, we employed the following five distinct benchmarks to measure the performance
differences among kernel configurations generated by various methods:

UnixBench. UnixBench Byte UnixBench Developers|(1983) is an open-source benchmarking tool
for Unix-like operating systems (such as Linux and BSD) that measures system performance across
CPU, memory, and file I/O operations.

LEBench. LEBench [Ren et al.|(2019) is a microbenchmark suite that measures the performance of
the 13 kernel operations that most significantly impact a variety of popular applications.

RedisBench. RedisBench [Sanfilippo| (2009) is a command-line utility included with Redis for
measuring the performance of a Redis server by simulating multiple clients performing actions on
the server.

ApacheBench. ApacheBench|Apache Software Foundation| (1997) is a command-line tool designed
for benchmarking and load testing HTTP web servers.

Sysbench. Sysbench|Akopytov|(2004) is a popular, open-source, and modular benchmarking tool
primarily used to test the performance of database servers and other system components like CPU,
memory, and file I/O.

E EVALUATION DETAILS

E.1 SETUP

Our experimental setups are shown in Table[d]

Table 4: The details of four representative Linux distributions. We used Ubuntu 22.04, Fedora 41,
Debian 12 and openEuler 22.03 as the experiment environment for overall kernel performance tesf4.2]

oS Version Kernel Main Scenario

Ubuntu 22.04 Linux 6.2.16 Desktop, Server, IoT

Fedora 41 Linux 6.2.16 Development & Test

Debian 12 Linux 6.1.45 Embedded System
openEuler 22.03 Linux 6.6.45 Cloud Computing, Al

E.2 EMBEDDED BOARD EVALUATION

Additionally, we also conduct experiments on an embedded development board equipped with the
SiFive Unmatched U740 system-on-chip, which features a multi-core, 64-bit dual-issue, superscalar
RISC-V processor. We generated 8 configurations for Fedora using KnowOS and AutoOS separately,
and compiled them into a kernel to run UnixBench. We selected the two best results from all the
results of KnowOS and AutoOS as the final results, as shown in Table[5} As can be seen, KnowOS
and AutoOS achieved total score improvements of 25.6% and 23.2%, respectively, with a small gap
between the two in terms of total scores. This is due to the fact that we haven’t added the RISC-V
kernel knowledge to the knowledge base yet, so KnowOS lacks knowledge on how to improve kernel
performance.

Table 5: Board test

Execl File Copy File Copy File Copy Pipe Context Process Shell Shell System
Throughput 1024 256 4096 Throughput Switching Creation Scripts1 Scripts 8 Call

Total
Score
211
260 (+23.2%)
265 (+25.6%)

Dhrystone Whetstone

Default 559 201 174 187 196 198 152 66 91 256 636 366
AutoOS 555 198 247 241 317 217 204 129 127 240 617 429
KnowOS 552 202 247 242 307 211 201 141 130 259 675 429

20

Under review as a conference paper at ICLR 2026

E.3 INFLUENCE OF DIFFERENT PROMPTS

We employed the following five distinct descriptive approaches to characterize our optimization
objectives in order to validate the impact of different descriptive methods on optimization outcomes.

P1. I want to improve the performance of Redis.
P2. Fine-tune Redis for better performance.

P3. I would like to enhance the efficiency of Redis.
P4. Boost the performance of Redis.

PS. My goal is to increase Redis performance.

We ran ApacheBench on these five generated configs, and the results are shown in Table[]

Table 6: ApacheBench score of different prompts

Score (ops/sec)\Prompt P1 P2 P3 P4 P5
KnowOS 189377.98 189350.24 189370.56 189355.20 189382.10
w/o KG 155827.86 155801.54 155827.29 155815.60 155845.11

E.4 TUNING COST OF KNOWOS

Knowledge Graph Initialization. The initial construction of the Knowledge Graph is a one-time
cost. Initialization consumes approximately 1,100,000 tokens, requiring 12—18 minutes and costing
about 53.

Tuning Cost. A single optimization session consumes approximately 240,000 tokens, taking 10 to
20 minutes and costing about 1.2$.

Knowledge Graph Maintenance Cost. Updating the knowledge graph consumes approximately
80,000 tokens, requiring 5 to 12 minutes and costing about 0.4%.

F LIMITATIONS AND FUTURE WORK

Choice of OS. We chose Linux for our experiments primarily due to its open-source nature and
the rich configurations available via the Kconfig system. While other popular operating systems
like Windows and macOS are closed-source, which prevent us from customization, and we are not
yet aware of the existence of a structured form of configuration mechanism in these OSes similar to
Linux. Additionally, we are unable to modify them because of copyright restrictions.

Generalization to Non-Linux Kernels. While our current work focuses on Linux, we are actively
exploring the potential of extending KnowOS to other operating systems. We believe that the
structured knowledge graph OD-KG can play a pivotal role in tackling similar challenges in these
systems, provided the necessary configuration data becomes available. We are committed to exploring
these avenues in future research.

G THE USE OF LARGE LANGUAGE MODELS

We used LLMs to assist in refining the clarity and coherence of the writing in the paper. The
LLMs were specifically employed to improve phrasing, ensure academic rigor, and enhance overall
readability. Their contribution was strictly in the writing process, and all content was thoroughly
reviewed and finalized by the authors.

21

	Introduction
	Preliminaries
	Method: KnowOS
	Knowledge Construction and Mapping
	Knowledge-driven Configuration Generation
	Continuous Knowledge Maintenance

	Experiments
	Experimental Setup
	Overall Kernel Performance (RQ1)
	Ablation Study (RQ2)
	Structured Knowledge Mapping Enhances Fine-Grained Tuning (RQ3)
	Mitigating LLM Hallucinations (RQ4)
	Adaptability Across Kernel Versions (RQ5)
	Real-world Application Evaluation (RQ6)

	Related Work
	Conclusion
	Prompts Used in KnowOS
	OD-KG Construction Prompts
	Large Language Models Explore Kernel Space Prompts
	Bool
	Choice
	Menu
	Value

	Theoretical Proof
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	KnowOS Algorithm Details
	Benchmark Details
	Evaluation Details
	Setup
	Embedded Board Evaluation
	Influence of Different Prompts
	Tuning Cost of KnowOS

	Limitations and Future Work
	The Use of Large Language Models

