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ABSTRACT

Operating System (OS) kernel tuning involves systematically optimizing kernel
configurations to enhance system performance. Despite recent advancements in
large language models (LLMs), kernel tuning remains a significant challenge due
to: (1) the semantic gap between abstract tuning objectives and the specific config
options, (2) the limited environmental interaction leading to LLM hallucinations,
and (3) the rapid evolution of kernel versions. To address these challenges, we
introduce KnowOS, a framework powered by knowledge-driven LLMs for automat-
ing kernel tuning. KnowOS leverages three key innovations: structured knowledge
construction and mapping, knowledge-driven configuration generation, and contin-
uous knowledge maintenance. Extensive experiments demonstrate that KnowOS
achieves performance improvements ranging from 7.1% to 155.4% over default con-
figurations across standard OS benchmarks and real-world applications. These re-
sults highlight the potential of structured knowledge representations in overcoming
the limitations of pure LLM-based approaches for system optimization. Our code is
available at https://anonymous.4open.science/r/KnowOS-B274.

1 INTRODUCTION

Figure 1: Kernel tuning involves opti-
mizing configurations to enhance sys-
tem performance for specific workloads.

Operating systems (OS) serve as the essential bridge be-
tween hardware and software, acting as the foundation of
modern computing systems. The Linux kernel, as the core
”brain” of the OS, manages critical hardware resources
such as CPU, memory, and I/O for all applications. One of
the most effective methods for improving OS performance
lies in kernel tuning Martin et al. (2021); Evang & Dreib-
holz (2024). This systematic process involves adjusting
kernel configurations to optimize system performance for
specific workloads, as illustrated in Figure 1.

However, Kernel tuning remains challenging due to the vast
kernel space with over 18,000 config options Jung et al.
(2021) and complex dependencies between them Mortara
& Collet (2021). Traditional manual tuning methods Tang
et al. (2015); Ts’o (2019) rely on expert knowledge, which
is time-consuming and labor-intensive. Machine learning-
based approaches Acher et al. (2019); Ha & Zhang (2019)
are limited by their reliance on extensive training datasets
and struggle with generalization across varying hardware and workloads. Recent advancements in
Large Language Models (LLMs) OpenAI (2024); DeepSeek-AI (2025) have demonstrated significant
potential for automating kernel tuning tasks Chen et al. (2024), leveraging their extensive knowledge
base and natural language processing capabilities.

Despite these advancements, as highlighted in Figure 2, three critical challenges hinder the effective
and practical application of LLMs in kernel tuning: (1) Difficulty in mapping abstract tuning
objectives to concrete config options: LLMs often struggle to align abstract tuning objectives,
expressed in natural language, to specific kernel config options, resulting in irrelevant or suboptimal
tuning outcomes. (2) Insufficient environmental interaction leads to LLM hallucinations: Current
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Figure 2: Challenges on OS kernel tuning using LLM. The first challenge is that it is difficult for
LLM to map abstract objectives to concrete configuration items. The second challenge is that LLMs
may hallucinate, resulting in giving non-existent configurations. The third challenge is the rapid
iteration of the kernel configuration, which typically changes every few months.

LLMs lack systematic mechanisms to interact with the complex and vast kernel space, leading to
invalid or hallucinated responses Wang et al. (2023). (3) Rapid kernel iteration and knowledge
decay: The rapid evolution of the Linux kernel (with 13,000 to 18,000 commits per release and new
major versions every 2 to 3 months Kroah-Hartman (2019)) outpaces LLMs’ ability to maintain
up-to-date tuning knowledge.

To overcome these challenges, we introduce KnowOS, a novel knowledge-driven framework powered
by LLMs for automating OS kernel tuning. Specifically, KnowOS introduces three key innovations:
(1) Structured Knowledge Construction and Mapping: We construct an OS-oriented Dual-layer
Knowledge Graph (OD-KG) that maps high-level tuning objectives to corresponding low-level
config options, ensuring a comprehensive and interpretable alignment. (2) Knowledge-driven
Configuration Generation: We propose a systematic and effective kernel configuration generation
strategy based on reasoning over the OD-KG, mitigating the hallucination issues typically encountered
by LLMs. (3) Continuous Knowledge Maintenance: We design an efficient mechanism for
continuously updating the OD-KG, allowing it to adapt incrementally to kernel updates without
requiring complete model retraining.

We systematically evaluate the effectiveness of KnowOS in kernel tuning using two representative OS
benchmarking suites: UnixBench Byte UnixBench Developers (1983) and LEBench Ren et al. (2019).
Additionally, we assess its performance across four widely adopted and real-world applications:
Nginx, Redis, Apache, and PostgreSQL. These applications span a diverse range of real-world work-
loads. KnowOS achieves 7.1× to 155.4× speedups over baseline methods on synthetic benchmarks
and up to 142% performance improvement compared to default configurations on applications. These
results demonstrate the effectiveness, efficiency, and scalability of KnowOS in automating kernel
tuning, underscoring its practical value in real-world deployment scenarios.

2 PRELIMINARIES

Definition 1: Kernel Space. We model the Linux kernel space as a directed graph S = (O,E,C),
where each node o ∈ O represents a configurable option, and its value assignment x is drawn
from domain Do. The edge set E ⊆ O × O encodes dependency relations between options: an
edge (oi, oj) ∈ E indicates that oj depends on oi and cannot be selected independently. The
constraint function C(xi, xj) → {True,False} defines whether a pair of assignments is valid:
C(xi, xj) = True means that assigning xi to oi and xj to oj complies with kernel constraints.

Definition 2: Kernel Configuration. A kernel configuration K = {(o, x)} ⊆ O ×D is a subset of
options from the kernel space along with their assigned values, where each option o is assigned a
value x. The configuration K is valid if all assigned values are within their domains, all dependencies
in E are respected, and all relevant constraints defined by C are evaluated to True.

Problem Formulation: Kernel Tuning Task. Given a tuning objective q and an evaluation function
P (K, q)→ R that quantifies how well a configuration K satisfies q, the kernel tuning task seeks a
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Figure 3: An overview of our KnowOS framework. First, we construct the OD-KG from a pre-built
corpus (Knowledge Construction and Mapping 3.1). We then generate kernel configurations with
the help of OD-KG (Knowledge-driven Configuration Generation 3.2). Since kernel config might
be changed frequently, we need to add new configs, delete deprecated configs and update changed
configs to OD-KG (Continuous Knowledge Maintenance 3.3)

.

valid configuration that maximizes P (K, q) while satisfying all domain, dependency, and constraint
requirements. Formally:

Maximize P (K, q), K ⊆ O ×D
Subject to xi ∈ Doi ∀(oi, xi) ∈ K,

Dependencies(K,E) = True,

Constraints(K,C) = True

3 METHOD: KNOWOS

In this section, we introduce KnowOS, as shown in Figure 3, which includes three major components:
Structured Knowledge Construction and Mapping, Knowledge-driven Configuration Generation, and
Continuous Knowledge Maintenance.

3.1 KNOWLEDGE CONSTRUCTION AND MAPPING

To bridge the semantic gap between high-level abstract tuning objectives and low-level concrete
config options, inspired by Hao et al. (2021); Luo et al. (2023), KnowOS introduces a structured
knowledge representation: an OS-oriented Dual-layer Knowledge Graph (OD-KG). This graph
captures both domain concepts and kernel-specific configurations through three components:

• Instance Layer GI = (EI ,RI): Encodes kernel space K, where entities EI denotes config
options and relationsRI represents dependencies and constraints extracted from the kernel space.

• Concept Layer GC = (EC ,RC): Captures domain knowledge, where EC represents generalized
kernel tuning concepts andRC models their semantic relationships.

• Cross-layer Links L = {(eI , related to, eC) | eI ∈ EI , eC ∈ EC}: Establishes semantic
mappings from tuning concepts to their associated concrete config options.

The unified OD-KG is defined as G = (V,E), with vertex set V = EC ∪ EI and edge set E =
RC ∪ RI ∪ L. This structured representation enables interpretable and efficient reasoning from
abstract tuning objectives to actionable configurations.

3
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Instance-layer Construction. We construct configuration entities EI and the dependency rela-
tions RI among them by parsing the official Linux Kconfig file The Linux Foundation (2023).
Dependency relationsRI are identified using keyword-based extraction, covering four primary types:

RI = {(ei, r, ej) | r ∈ {depends on, select, imply, has child}, ei, ej ∈ EI} (1)

Example: as illustrated in Figure 6, the extracted option ”config ZSWAP” is encoded as
entity ZSWAP ∈ EI , while identified relations such as (ZSWAP, depends on, SWAP) and
(ZSWAP, select, ZPOOL) are belong toRI .

Concept-layer Construction. We extract the concept layer GC using few-shot in-context learning
Brown et al. (2020) with a LLM. Prompts (Appendix A.1) are constructed from a curated corpus of
OS kernel tuning materials, including benchmarks, research papers, official manuals, and domain
datasets. The LLM first extracts tuning objectives as entities EC , and then infers semantic relationships
between pairs of entities to form the relation setRC . Specifically, we define:

RC = {(ei, r, ej) | r ∈ {inclusion, dependency, influence}, ei, ej ∈ EC} (2)

Example: Figure 6 shows the concept I/O Reduction and its inferred relationship:
(RAM-based Memory Pool, influence, I/O Reduction) ∈ RC .

Cross-layer Link Mapping. KnowOS uses LLMs to map config options (EI) to relevant tuning
objectives (EC) based on their functional semantics. These links are expressed as:

L = {(eI ,related to, eC) | eI ∈ EI , eC ∈ EC} (3)

Example: as shown in Figure 6, the link (ZSWAP,related to, Swap Pages) ∈ L captures the
association between a low-level config option and a high-level memory tuning objective.

Proposition 1. Dual-layer knowledge graph resolves semantic issues by concept-instance mappings.
Proof. We provide experimental results in Section 4.4 and theoretical proofs in Appendix B.1.

3.2 KNOWLEDGE-DRIVEN CONFIGURATION GENERATION

Unlike traversal-based methods She et al. (2013) that exhaustively search the kernel space, KnowOS
uses a knowledge-driven approach over the OD-KG to identify relevant config options, reducing
LLM hallucinations and search overhead by pruning irrelevant subspaces.

Aligning Tuning Objectives with Kernel Concepts. Given tuning objective q, KnowOS extracts
textual entities E via semantic parsing (e.g., from q = “Optimize Linux for faster Apache server.”,
we get E = {Linux,Apache}). Each entity e ∈ E is mapped to a concept in EC through the
mapping function ϕ : E → EC: if e ∈ EC , KnowOS identifies it through pattern matching ψPM;
otherwise, LLM-based semantic matching ψLLM is utilized to rephrase and match it to the most
semantically similar concepts within EC :

ϕ(e) =

{
ψPM(e) if ψPM(e) ̸= ∅
ψLLM(e) otherwise

(4)

The aligned concept set ECq =
⋃

e∈E ϕ(e) captures the high-level semantics of q, grounding subse-
quent reasoning over the OD-KG.

Graph-guided Relevant Configuration Extraction. For each concept node es ∈ ECq, KnowOS
employs LLM-based reasoning over the OD-KG to explore path π(es) = ⟨es

r1−→ e1
r2−→ · · · rn−→ en⟩

that may lead to relevant config options. Each path is assigned a relevance score ρ(π(es)):

ρ(π(es)) =

n∏
i=1

σ(ri) · ω(ei), where ei ∈ V, ri ∈ E (5)

where σ(ri) denotes the semantic strength of relation ri, and ω(ei) reflects the contextual importance
of node ei, both estimated by the LLM. Config options with high relevance score (i.e., ρ ≥ τ ) are
aggregated into the candidate set Kq , where τ is a threshold to assess path reasonability:

Kq = {ei ∈ EI | ei ∈ π(es), es ∈ ECq, ρ(π(es)) ≥ τ} (6)

This step effectively filters the kernel space to those options most relevant to the tuning objective.
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Heuristic Inference for Option Value Assignment. Given the candidate configuration set Kq from
the OD-KG, KnowOS constructs a valid configuration K = {(o, x)} ⊆ O ×D that maximizes the
tuning score P (K, q), as defined in Section 2. KnowOS iteratively assigns values to each option
ot ∈ Kq through LLM-based inference, guided by domain knowledge and structural constraints
(prompts in Appendix A.2). At each step t, the system maintains a partial configuration Kt, selecting
an unassigned option ot ∈ Kq \ {ot−1 | (ot−1, ·) ∈ Kt}. The value assignment is inferred as:

xt = LLM Infer(ot | EqC ,G,Kt), (7)
where EqC denotes tuning concepts aligned with q, G is the relevant OD-KG subgraph, andKt provides
current context. A valid inferred value xt must satisfy: (1) xt ∈ Dot , (2) Dependencies(Kt ∪
{(ot, xt)}, E) = True, and (3) Constraints(Kt ∪ {(ot, xt)}, C) = True.

Performance-aware Final Configuration Generation. To further enhance configuration quality,
KnowOS optionally selects the assignment x∗t ∈ Dot that maximizes the estimated tuning score
P (K, q) among all valid candidates. The configuration is then updated as: Kt+1 = Kt ∪ {(ot, x∗t )}.
This process repeats until all options in Kq have been assigned. The final configuration KT is both
valid and semantically aligned with the tuning objective q, while aiming to maximize the performance
metric P (K, q). The complete assignment procedure is detailed in Algorithm 1.

KT =

T−1⋃
t=0

{
(ot, x

∗
t )

∣∣∣∣x∗t = arg max
x∈Dot

{P (Kt ∪ {(ot, x)}, q) |Valid(Kt ∪ {(ot, x)}) = True}
}
.

(8)

Proposition 2. Knowledge-driven reasoning over KG mitigates LLM hallucinations in kernel tuning.
Proof. We provide experimental results in Section 4.5 and theoretical proofs in Appendix B.2.

3.3 CONTINUOUS KNOWLEDGE MAINTENANCE

As the Linux kernel evolves rapidly with frequent releases and feature updates, maintaining an up-to-
date and accurate knowledge graph becomes critical. To this end, KnowOS adopts an incremental
update strategy to continuously evolve the OD-KG with minimal overhead.

Let S(t) = (O(t), E(t), C(t)) denote the kernel space at version t as defined in Section 2, and S(t+1)

for the next version. The goal is to update the instance layer GI (t) = (EI (t),RI
(t)) and cross-layer

links L(t) to reflect S(t+1), while preserving existing concept-level semantics GC .

Step 1: Detecting Configuration Deltas. We begin by computing the configuration delta be-
tween two consecutive kernel versions to capture changes in the option set. Specifically, we
identify newly added options as ∆Oadd = o ∈ O(t+1) | o /∈ O(t) and deprecated options as
∆Odel = o ∈ O(t) | o /∈ O(t+1). Additionally, for options that persist across versions but exhibit
changes in their domain definitions or dependency relations, we re-parse and update their correspond-
ing entities and edges to reflect the latest semantics.

Step 2: Augmenting the Instance Layer. For each new option o ∈ ∆Oadd, we add its corresponding
new entity eo to EI (t+1), then extract its relationsRo and insert them intoRI

(t+1):

Ro = {(eo, r, eo′) | r ∈ {depends on,select,imply,has child}, eo′ ∈ O(t+1)} (9)
For each deprecated option o ∈ ∆Odel, we delete the associated entity eo and all related relations:

EI (t+1) ← EI (t) \ {eo | o ∈ ∆Odel} (10)

RI
(t+1) ← RI

(t) \ {(eoi , r, eoj ) | eoi = eo ∨ eoj = eo} (11)

Step 3: Updating Cross-layer Mappings. For each new instance entity eI ∈ EI (t+1) \ EI (t), we
invoke a LLM to infer its semantic association with concept-layer entities eC ∈ EC , forming new
cross-layer links:

∆L(t+1) = {(eI ,related to, eC)} (12)
These links ensure that newly introduced kernel options remain interpretable through high-level
domain knowledge mapping. Deprecated options have their cross-layer links removed accordingly.

Proposition 3. Continuous knowledge maintenance ensures tuning accuracy and robustness.
Proof. We provide experimental results in Section 4.6 and theoretical proofs in Appendix B.3.
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4 EXPERIMENTS

We evaluate the effectiveness and generalizability of KnowOS through a series of empirical studies
designed to answer the following research questions (RQs): RQ1: How does KnowOS compare with
existing baselines in kernel tuning? RQ2: Does the main component of KnowOS work? RQ3: Does
KnowOS effectively address the knowledge mapping challenge? RQ4: To what extent does KnowOS
mitigate LLM hallucinations in kernel tuning? RQ5: Can KnowOS remain effective across evolving
kernel versions? RQ6: How does KnowOS perform in real-world application scenarios?

4.1 EXPERIMENTAL SETUP

Linux Distributions. To cover diverse usage scenarios of the Linux system, including Desktop,
Server, IoT, Cloud, Embedded system, etc., we evaluate four widely adopted Linux distributions:
Ubuntu, Fedora, Debian, and openEuler. Detailed specifications are provided in Table 4.

Benchmarks. Kernel performance is assessed using two benchmarking suites: (1) UnixBench
Byte UnixBench Developers (1983), a macro-benchmark aggregating sub-tests scores (e.g., context
switching, pipe throughput) to measure overall system performance, and (2) LEBench Ren et al.
(2019), a micro-benchmark for fine-grained kernel operations (e.g., fork, mmap, pagefault).

Applications. We assess real-world impact using four representative applications: Nginx Web Server
Nginx, Inc. (2004), Redis Key-Value Store Salvatore Sanfilippo (2009), Apache HTTP Server Apache
Software Foundation (1995), and PostgreSQL Database Group (1996). Redis is evaluated using Redis
Benchmark Sanfilippo (2009), Apache and Nginx via ApacheBench Apache Software Foundation
(1997), and PostgreSQL with sysbench Akopytov (2004).

Hardware. Our experiments span a variety of hardware platforms: three laptops (Intel i7-1165G7,
i5-11400H, i7-13700) and a Xeon E5-2680 v4 workstation for distribution-level tests, and an AMD
Ryzen 9 7950X system for application-level benchmarks.

Baselines. We compare KnowOS against three baselines: (1) Default Configuration: hand-tuned by
experts, (2) Vanilla LLM: a direct use of LLM to generate configurations with bootability checks,
and (3) AutoOS Chen et al. (2024): a LLM-based framework using a state machine for kernel tuning.

Implementations. All methods use GPT-4o-mini under consistent runtime settings. Each experiment
is repeated for at least 15 independent runs per target, with the best-scoring configuration retained.
For fairness, AutoOS uses its best publicly released configurations, reflecting peak performance.

Table 1: Best UnixBench results across four distributions (higher values indicate better performance).
The bolded values represent the best score for each distribution. Abbreviations: ET = Execl Through-
put, FC = File Copy, PT = Pipe Throughput, CS = Context Switching, PC = Process Creation, SS =
Shell Scripts, SC = System Call.

Dhrystone Whetstone ET FC 1024 FC 256 FC 4096 PT CS PC SS 1 SS 8 SC Total
Score

Ubuntu
Default 5182 1842 1489 5466 3863 9629 2866 864 1145 4205 9003 2529 3099
LLM 5538 1863 1495 5840 3627 9591 2770 859 1150 4200 8987 2413 3098 (-0.0%)

AutoOS 5616 1864 1533 5976 3819 9458 2945 854 1150 4241 9032 2527 3154 (+1.8%)
KnowOS 5525 1848 1628 6266 4105 10079 3091 897 1231 4587 9816 2684 3318 (+7.1%)

Fedora
Default 5408 1815 278 1284 778 2464 456 150 366 1095 4186 175 846
LLM 5394 1810 286 1316 843 2871 480 173 392 1182 4530 187 902 (+6.6%)

AutoOS 4969 1669 281 1302 833 2613 458 147 397 1078 3981 177 846 (+0.0%)
KnowOS 4870 1688 258 1319 922 2885 558 239 400 1155 4542 217 936 (+10.6%)

Debian
Default 6271 2044 1315 5031 3162 10029 2300 276 1199 4689 10702 1604 2721
LLM 6066 2002 1131 5584 3569 10473 2572 344 1045 4278 9671 1959 2782 (+2.2%)

AutoOS 6346 2041 1356 6646 4143 12070 2964 405 1209 4715 10695 2404 3169 (+16.5%)
KnowOS 6298 2035 1221 7538 4896 13828 3522 514 1098 4531 10385 2273 3305 (+21.4%)

OpenEuler
Default 3442 1300 210 614 372 1565 240 42 88 441 3650 123 442
LLM 3470 1291 332 603 365 1530 227 41 74 380 2585 121 430 (-2.7%)

AutoOS 3164 1200 237 2960 1989 6302 1393 40 107 603 3955 1071 945 (+113.7%)
KnowOS 3500 1315 251 3674 2405 7323 1635 54 135 648 4256 1643 1129 (+155.4%)
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4.2 OVERALL KERNEL PERFORMANCE (RQ1)

KnowOS Performance Advantages. Table 1 summarizes UnixBench results across four distributions.
KnowOS consistently outperforms all baselines, with relative improvements of 7.1%, 10.6%, 21.4%,
and 155.4%, demonstrating its effectiveness in kernel tuning. These gains are attributed to KnowOS’s
structured knowledge mapping and knowledge-driven configuration generation strategy, which
effectively aligns tuning goals with config options.

Limitations of Vanilla LLM and AutoOS. In contrast, Vanilla LLM shows inconsistent perfor-
mance, with some configurations even reducing throughput (e.g., -2.7% on openEuler). The lack of
interaction with kernel space limits its ability to optimize performance effectively. AutoOS, while
delivering notable improvements in specific cases (e.g., +16.5% on Debian), is constrained by its
limited kernel knowledge, preventing full exploitation of relevant config options.

Trade-offs in Sub-test and Holistic Optimization. Interestingly, the trade-offs in sub-test perfor-
mance (e.g., AutoOS leads in Dhrystone/Whetstone for Ubuntu, while KnowOS excels in other
sub-tests) highlight KnowOS’s holistic optimization strategy, which prioritizes overall system perfor-
mance rather than isolated improvements, mitigating conflicts in concurrent parameter optimizations.

4.3 ABLATION STUDY (RQ2)

Experiment Objective. To evaluate the contributions of the key components in KnowOS, we conduct
an ablation study on Ubuntu using UnixBench (Table 2).

Table 2: Ablation study of KnowOS on Ubuntu using UnixBench. Default denotes the system’s
default configuration, w/o KG removes the OD-KG knowledge base, and w/o Mapping removes the
structured knowledge mapping strategy. Sub-test abbreviations follow Table 1.

Dhrystone Whetstone ET FC 1024 FC 256 FC 4096 PT CS PC SS 1 SS 8 SC Total
Score

Default 5182 1842 1489 5466 3863 9629 2866 864 1145 4205 9003 2529 3099
w/o Mapping 5495 1818 1504 5710 3564 9564 2587 802 1159 4069 8705 2219 3010 (-2.9%)

w/o KG 5389 1826 1530 5879 3781 9596 2843 862 1172 4277 8923 2373 3115 (+0.5%)
KnowOS 5525 1848 1628 6266 4105 10079 3091 897 1231 4587 9816 2684 3318 (+7.1%)

Effect of Knowledge Mapping. Disabling the knowledge mapping module (w/o Mapping) sig-
nificantly degrades performance. Without mapping tuning objectives to config options in OD-KG,
the LLM generates less coherent and misaligned reasoning paths, emphasizing the importance of
knowledge mapping in grounding LLM behavior in domain-specific tasks.

Effect of OD-KG. Removing the OD-KG (w/o KG) knowledge base leads to only marginal improve-
ments, indicating that while the LLM can extract basic intent from user input, the lack of structured
domain knowledge limits its decision-making. This highlights the knowledge base’s key role in
enhancing KnowOS’s informed, knowledge-driven decisions.

4.4 STRUCTURED KNOWLEDGE MAPPING ENHANCES FINE-GRAINED TUNING (RQ3)

Experiment Objective. We assess KnowOS’s ability to map high-level tuning objectives to low-level
config options by benchmarking individual system calls using LEBench. In this experimental setup,
tuning objectives are defined at the system call level, allowing us to observe the impact of each
method on fine-grained kernel operations.

Result Analysis Figure 4 shows the relative latency change across various kernel operations.
KnowOS consistently reduces latency across most operations, including fork, thr-create,
mmap, page-fault, and epoll, demonstrating effective knowledge-driven mapping from ab-
stract tuning objectives to concrete config options. In contrast, both AutoOS and vanilla LLM yield
mixed results, improving some operations while degrading others.

Summary. These findings confirm that structured knowledge mapping employed in KnowOS enables
precise, goal-aligned tuning at the system call level. This approach effectively addresses a key
challenge in kernel configuration: translating high-level, abstract tuning objectives into low-level,
concrete config options that optimize performance.

7
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Figure 4: Result of LEBench: the heatmap shows the relative latency changes in kernel operations
for each method, compared to the default configuration. Green indicates reduced latency (better),
while red denotes increased latency (worse).

4.5 MITIGATING LLM HALLUCINATIONS (RQ4)

Table 3: LLM hallucination test across 8 tuning objectives. Results include compile errors (CE), boot
errors (BE), average UnixBench scores (Score), score variance, and the best score among valid runs.

cfg-1 cfg-2 cfg-3 cfg-4 cfg-5 cfg-6 cfg-7 cfg-8 Variance(σ2) Best

AutoOS 2776 1779 CE BE 2660 CE 1187 CE 426796 2776
KnowOS 2825 2813 2883 BE 2861 2664 BE 2817 5936 2861

Experiment Objective. To evaluate KnowOS’s robustness against LLM hallucinations, we assess
the validity of configurations across eight tuning objectives, comparing configurations generated by
KnowOS and vanilla LLM. Each configuration is labeled as: (1) CE for compilation error; (2) BE for
boot error; and (3) Score for valid UnixBench score. Results are summarized in Table 3.

Result Analysis. KnowOS compiled all configurations with only two boot errors, showing low
variance (5936) and achieving a best score of 2861. In contrast, vanilla LLM produced three
configurations with compile errors, one with a boot error, and four that ran UnixBench, exhibiting
high variance (426796) and a best score of 2776.

Summary. These results demonstrate that KnowOS significantly improves configuration validity and
stability, highlighting the effectiveness of its knowledge-driven generation process in mitigating the
hallucinations that are common in vanilla LLM-based approaches.

4.6 ADAPTABILITY ACROSS KERNEL VERSIONS (RQ5)

Experiment Objective. Linux kernels evolve rapidly, with config options frequently changed across
versions. To evaluate KnowOS’s adaptability, we assess its performance on four Ubuntu releases
(14.04, 16.04, 18.04, 20.04) with kernel versions 3.13, 4.15, 5.4, and 6.2, using UnixBench.

Result Analysis. As shown in Figure 5(a), KnowOS consistently delivers performance gains
across versions, even with significant changes. This highlights KnowOS’s robustness in adapting to
evolving kernel versions with minimal retraining.

Summary. This adaptability stems from OD-KG’s continuous knowledge maintenance, which
tracks upstream differences and incrementally refines the knowledge graph. These results confirm
KnowOS’s viability as a long-term solution for kernel tuning in dynamically evolving environments.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Performance evaluation across kernel versions (a) and real-world applications (b). The x-
axis shows the performance normalized to the default configuration. Nginx and Apache are measured
in Requests per Second, Redis in Operations per Second, and PostgreSQL in Queries per Second.

4.7 REAL-WORLD APPLICATION EVALUATION (RQ6)

Experiment Objective. To evaluate the practical utility of KnowOS, we conduct a comprehensive
study on four widely deployed real-world applications: Nginx, Apache, Redis, and PostgreSQL. These
applications represent diverse workloads, including CPU-bound, I/O-bound, and memory-intensive.

Result Analysis. Figure 5(b) summarizes the performance gains—throughput and latency—achieved
by KnowOS compared to the default configuration. KnowOS consistently delivers significant gains,
with Redis throughput increasing by up to 25.0% and Nginx latency reduced by up to 42.7%.

Summary. These results demonstrate KnowOS’s effectiveness in identifying configuration optimiza-
tions that are difficult to achieve through traditional methods. The findings validate KnowOS as a
robust and adaptable solution for kernel tuning in real-world environments.

5 RELATED WORK

OS Kernel Tuning. Previous kernel optimization efforts include both manual and automated methods.
Network-specific tuning is studied in Evang & Dreibholz (2024); Schwarz et al. (2024), while Kroth
et al. (2024); Martin et al. (2021) optimizes kernel performance via machine learning. LEBench Ren
et al. (2019) traces performance regressions to specific config changes, and DeepPerf Ha & Zhang
(2019) predicts performance using sparse deep neural networks. Kernel debloating is addressed in Kuo
et al. (2022), and configuration conflict resolution is explored by Franz et al. (2021). AutoOS Chen
et al. (2024) combines LLMs with state-machine optimization for AIoT-specific tuning.

Knowledge-Driven LLMs in Software Engineering. LLMs are increasingly applied to software
engineering tasks. Fine-tuning methods for code generation are discussed in Jiang et al. (2024);
Weyssow et al. (2023); Liu et al. (2024), while vulnerability discovery is addressed in Ghosh et al.
(2025). A system for LLM-based code synthesis requiring deep reasoning is proposed in Li et al.
(2022). LLMs for incident mitigation are evaluated in Ahmed et al. (2023), and prompt-based
config validation is explored in Lian et al. (2024). An agentless repair pipeline for software bugs is
introduced in Xia et al. (2024).

6 CONCLUSION

We introduce KnowOS, a knowledge-driven framework leveraging LLMs for OS kernel tuning.
By integrating a dual-layer, OS-specific knowledge graph with targeted retrieval, KnowOS bridges
abstract tuning goals and concrete config options. Extensive evaluations demonstrate its superiority in
generating performant, stable, and adaptable kernel configurations. This work highlights the potential
of structured knowledge integration in enhancing LLM-based system optimization.

9
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ETHICS STATEMENT

KnowOS leverages knowledge-driven LLMs to automate Linux kernel tuning, offering efficiency
gains but also raising ethical concerns. While it reduces reliance on manual tuning, improper
configurations may destabilize system performance, requiring strict validation. Continuous knowledge
maintenance helps mitigate LLM hallucinations, but accuracy and reliability must be ensured.
Responsible use, including transparency and ongoing validation, is essential for ethical deployment.

REPRODUCIBILITY

To ensure the reproducibility of KnowOS, the source code is publicly available at the following URL:
https://anonymous.4open.science/r/KnowOS-B274. These measures are intended to facilitate the
verification and replication of our results by other researchers in the field.
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APPENDIX

A PROMPTS USED IN KNOWOS

A.1 OD-KG CONSTRUCTION PROMPTS

Entity Extraction & Relation Identification. The first step in constructing the knowledge graph
from structured Kconfig data involves the use of Kconfiglib. Each config option within the kernel
is represented as an entity. Dependencies such as ”depends on” or ”select” are modeled as directed
relations between entities, ensuring the accurate representation of kernel space dependencies. For
textual data, such as the help text describing a config option, the description is encapsulated in the
format: ”Config xxx description: text”. If no description is available, the prompt directly uses the
config option’s name as context.

For each of these configurations, we generate specific prompts that guide LLMs to detect the entities
and identify their relationships. This procedure is illustrated in Figure 6 and exemplified in the prompt
shown in Figure 7. These prompts ensure the model accurately extracts the essential features and
relationships from both structured and unstructured data sources.

Figure 6: Entity & Relation Extraction Process

A.2 LARGE LANGUAGE MODELS EXPLORE KERNEL SPACE PROMPTS

The Linux kernel space consists of several configuration types: Bool, Choice, Menu, and Value.
Each configuration type is addressed with tailored interaction templates designed for LLMs. These
prompts are intended to guide the LLM in exploring and selecting the most relevant kernel configura-
tions that align with a given tuning objective.

A.2.1 BOOL

The Bool type configuration has two possible values: on and off. For efficient exploration, we
group these configurations into sets of up to nine, prompting the LLM to evaluate their collective
impact on the target optimization objective. Instead of directly querying for the configuration values,
the LLM is asked to indicate the effect of each configuration group on the target. The possible
responses are: ”increase” (positive effect), ”decrease” (negative effect), and ”cannot determine”
(neutral or indeterminate effect). This method reduces computational overhead and focuses the
model’s attention on the relative impact of configuration sets. The corresponding prompt is shown in
Figure 8.
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Figure 7: Entity & Relation Extraction Prompt

Figure 8: Prompt for Bool type config options

The terms ”KNOWLEDGE”, ”TARGET”, and ”CONFIGS” are dynamically replaced with relevant
values during the prompt generation. Knowledge is gathered by querying LightRAG, and the nine
configurations are split into three groups, each of which is queried individually. The results from
each group are concatenated to form the comprehensive knowledge used for decision-making, as
illustrated in Figure 9.

Figure 9: Instance of a Bool type config option query
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A.2.2 CHOICE

A Choice configuration contains multiple sub-configurations, from which only one can be selected
at any given time. To efficiently manage this, LLMs are prompted to choose the most appropriate
configuration based on its relevance to the target objective. The prompt for this configuration type is
depicted in Figure 10.

Figure 10: Prompt for Choice type config options

Just like with Bool types, the terms ”KNOWLEDGE”, ”TARGET”, and ”CONFIGS” are used in the
prompt and replaced with specific values. An example query is shown in Figure 11, demonstrating
how the LLM is tasked with selecting the most suitable configuration.

Figure 11: Instance of a Choice type config option query

A.2.3 MENU

A Menu configuration type includes multiple sub-configurations, and the task is to determine which
of these are relevant to the optimization target. The prompt for this type is designed to guide the LLM
to identify the relevant configurations based on their relation to the target. This process is illustrated
in Figure 12.

Figure 12: Prompt for Menu type config options

As with previous configuration types, the ”KNOWLEDGE”, ”TARGET”, and ”DIRECTORIES” are
dynamically replaced based on the specific query context. An instance of such a query is shown in
Figure 13, which illustrates how the menu-related options are identified and evaluated.

A.2.4 VALUE

The Value configuration type includes various types, such as integers, hexadecimal values, and
strings. The prompt for this configuration type is shown in Figure 14. The process for handling the
”KNOWLEDGE”, ”TARGET”, and ”CONFIGS” remains consistent with previous types.
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Figure 13: Instance of a Menu type config option query

Figure 14: Prompt for Value type config options

An example query for the Value type is shown in Figure 15, demonstrating how the LLM is tasked
with selecting or generating values based on the knowledge and constraints provided.

Figure 15: Instance of a Value type config option query
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B THEORETICAL PROOF

B.1 PROOF OF PROPOSITION 1

Proposition 1. Dual-layer knowledge graph resolves semantic issues by concept-instance mappings.

Proof: Let G = (V,E) represent the dual-layer knowledge graph, where V = EC ∪ EI includes
domain concepts EC (high-level tuning objectives) and kernel instance entities EI (config options).
The edge set E = RC ∪ RI ∪ L captures semantic relationships RC , kernel config dependencies
RI , and cross-layer links L between high-level concepts and config options.

We define the mapping function π : EC → EI , where each concept ci ∈ EC is mapped to config
options oj ∈ EI based on semantic strength:

π(ci) = {oj ∈ EI : σ(ci, oj) ≥ δ}
where σ(ci, oj) measures semantic alignment, and δ is a threshold for selecting strong mappings.

We enforce valid mappings using probabilistic functions for dependency and constraint satisfaction:

PD(oi, oj) =
δD(oi,oj)

1 + exp(−α · D(oi, oj))

PC(oi, oj) =
δC(oi,oj)

1 + exp(−β · C(oi, oj))
The overall validity of configuration K = {o1, o2, . . . , on} is given by:

Pvalid(K) =
∏

(oi,oj)∈K

(PD(oi, oj) · PC(oi, oj))

This ensures the configuration satisfies both dependency and constraint relations.

The semantic strength between concept ci and config option oj is:

σ(ci, oj) =
e−∥c⃗i−o⃗j∥2

1 + e−∥c⃗i−o⃗j∥2

where c⃗i and o⃗j are their respective vector embeddings, and ∥c⃗i − o⃗j∥2 is the squared Euclidean
distance.

Finally, the valid mapping set is:

L = {(ci, oj) : σ(ci, oj) ≥ δ and Pvalid(K) > τ}
where τ is a threshold for the overall configuration validity.

In summary, the dual-layer knowledge graph bridges the semantic gap between high-level objectives
and low-level config options, ensuring efficient and accurate kernel tuning via semantic alignment
and probabilistic validation.

B.2 PROOF OF PROPOSITION 2

Proposition 2. Knowledge-driven reasoning over KG mitigates LLM hallucinations in kernel tuning.

Proof: Let the high-level tuning objective q be represented by a set Eq = {e1, e2, . . . , en}, where
each ei ∈ Eq corresponds to an abstract tuning goal. We map each entity ei to kernel config options
using the mapping function ϕ : Eq → EC , combining pattern matching (ψPM ) and LLM-based
semantic matching (ψLLM ):

ϕ(ei) =

{
ψPM (ei), if ψPM (ei) ̸= ∅,
ψLLM (ei), otherwise.

Next, reasoning over the OD-KG explores paths π(es) from a tuning concept es ∈ EC to config
options ci ∈ EI , with each path’s relevance computed as:
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ρ(π(es)) =

n∏
i=1

σ(ri) · ω(ei),

where σ(ri) measures the semantic strength of relations and ω(ei) captures the contextual importance
of entities.

These functions are defined as:

σ(ri) =
1

1 + e−α·d(ri)
, ω(ei) =

1

1 + e−β·h(ei)
,

where d(ri) quantifies the semantic dissimilarity and h(ei) represents entity importance, with α and
β controlling sensitivity.

The relevance threshold τ filters out weakly related paths, defining the valid set of kernel configura-
tions Kq as:

Kq = {ei ∈ EI | ρ(π(es)) ≥ τ}.

This pruning minimizes hallucinations by excluding irrelevant configurations, ensuring that the
reasoning process remains accurate and grounded in semantic consistency.

In summary, knowledge-driven reasoning over the KG enables precise kernel tuning by linking
high-level tuning goals to concrete configurations, minimizing hallucinations and improving the
robustness of LLM-based kernel tuning systems.

B.3 PROOF OF PROPOSITION 3

Proposition3. Continuous knowledge maintenance ensures tuning accuracy and robustness.

Proof: To prevent inaccuracy and invalid tuning due to kernel iteration, we employ continuous
updates to the knowledge graph. Let S(t) = (O(t), E(t), C(t)) denote the kernel space at version t,
and S(t+ 1) = (O(t+ 1), E(t+ 1), C(t+ 1)) represent the updated kernel space at version t+ 1.
The challenge lies in ensuring that the knowledge graph is incrementally updated to reflect changes
in the kernel space, while retaining the semantic integrity of the prior version.

We define the config option delta ∆Oadd as the set of newly added config options and ∆Odel as the
set of deprecated options:

∆Oadd = {o ∈ O(t+ 1) | o /∈ O(t)}, ∆Odel = {o ∈ O(t) | o /∈ O(t+ 1)}.

For options that persist across versions but exhibit changes in their domain definitions or dependency
relations, we re-parse and update their corresponding entities and edges in the knowledge graph.

We update the knowledge graph by incorporating newly added options, removing deprecated options,
and adjusting the mappings of existing options. The update rule for the kernel space is as follows:

GI(t+ 1) = GI(t) ∪∆Eadd ∪∆Emod, GC(t+ 1) = GC(t).

This ensures that all new config options are considered and that deprecated or outdated information is
removed, reducing the risk of hallucinations due to outdated kernel knowledge.

We further reduce hallucinations by ensuring that all config options are consistently grounded in the
most up-to-date, relevant knowledge. The cross-layer mapping function is updated as:

L(t+ 1) = {(eI , related to, eC) | eI ∈ ∆Eadd, eC ∈ EC(t+ 1)}.

By maintaining semantic consistency through structured knowledge interaction, we ensure that
the reasoning remains robust and aligned with the latest kernel configurations, thereby mitigating
hallucinations during the kernel tuning process. Additionally, this approach ensures that the generated
kernel configurations remain contextually grounded and semantically relevant, thus overcoming the
limitations of traditional LLM-based methods.
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C KNOWOS ALGORITHM DETAILS

Algorithm Overview. Algorithm 1 describes the core procedure for generating kernel configura-
tions in a knowledge-driven manner using the KnowOS framework. It consists of two primary stages:
heuristic value assignment and performance-aware refinement.

Algorithm 1 Knowledge-driven Configuration Generation in KnowOS
1: Input: Candidate config options Kq , OD-KG G, aligned concepts EqC
2: Output: Valid kernel configuration K
3: Step 1: Heuristic Inference for Option Value Assignment.
4: Initialize K ← ∅
5: repeat
6: Identify candidate configuration set Kt from Kq

7: Kq ← Kq \Kt

8: for each config option ot ∈ Kt do
9: xt ← LLM Infer(ot | EqC ,G,Kt)

10: if Valid(Kt ∪ (ot, xt)) = False then
11: Prune current assignment.
12: else
13: Add (ot, xt) to Kt: Kt = Kt ∪ (ot, xt)
14: end if
15: end for
16: until Kq = ∅
17: Step 2: Performance-aware Final Configuration Generation.
18: for each (ot, xt) ∈ K do
19: x∗t ← arg max

x∈Dot

P (K ∪ {(ot, x)}, q)

20: if IsValid(K ∪ {(ot, x∗t )}) then
21: K ← (K \ {(ot, xt)}) ∪ {(ot, x∗t )}
22: end if
23: end for
24: return K

Step 1: Heuristic Inference for Option Value Assignment. Given a set of candidate configuration
options Kq, the algorithm iteratively selects subsets Kt and attempts to infer suitable values for
each option ot ∈ Kt using an LLM-based inference mechanism. The inference is conditioned on
three inputs: the aligned tuning concepts EqC , the OD-KG G, and the current partial configuration
Kt. After value inference, the resulting assignment (ot, xt) is validated against kernel constraints
and dependency rules. If valid, the assignment is retained; otherwise, the path is pruned. This phase
continues until all candidate options have been processed.

Step 2: Performance-aware Final Configuration Generation. Once a valid configuration K
is obtained, the algorithm optionally refines it by optimizing each option’s value to maximize a
performance objective P (K, q). For each (ot, xt) ∈ K, the algorithm searches within the domain
Dot for a value x∗t that yields the highest estimated performance, provided the updated configuration
remains valid. The refined value is then used to update the configuration. This step ensures that the
final configuration not only adheres to structural correctness but also maximizes utility under the
given objective.

Outcome. The algorithm returns a valid and performance-aligned configuration K that maps
high-level objectives to low-level kernel options through structured reasoning and LLM guidance.
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D BENCHMARK DETAILS

In our experiments, we employed the following five distinct benchmarks to measure the performance
differences among kernel configurations generated by various methods:

UnixBench. UnixBench Byte UnixBench Developers (1983) is an open-source benchmarking tool
for Unix-like operating systems (such as Linux and BSD) that measures system performance across
CPU, memory, and file I/O operations.

LEBench. LEBench Ren et al. (2019) is a microbenchmark suite that measures the performance of
the 13 kernel operations that most significantly impact a variety of popular applications.

RedisBench. RedisBench Sanfilippo (2009) is a command-line utility included with Redis for
measuring the performance of a Redis server by simulating multiple clients performing actions on
the server.

ApacheBench. ApacheBench Apache Software Foundation (1997) is a command-line tool designed
for benchmarking and load testing HTTP web servers.

Sysbench. Sysbench Akopytov (2004) is a popular, open-source, and modular benchmarking tool
primarily used to test the performance of database servers and other system components like CPU,
memory, and file I/O.

E EVALUATION DETAILS

E.1 SETUP

Our experimental setups are shown in Table 4.

Table 4: The details of four representative Linux distributions. We used Ubuntu 22.04, Fedora 41,
Debian 12 and openEuler 22.03 as the experiment environment for overall kernel performance test4.2.

OS Version Kernel Main Scenario
Ubuntu 22.04 Linux 6.2.16 Desktop, Server, IoT
Fedora 41 Linux 6.2.16 Development & Test
Debian 12 Linux 6.1.45 Embedded System

openEuler 22.03 Linux 6.6.45 Cloud Computing, AI

E.2 EMBEDDED BOARD EVALUATION

Additionally, we also conduct experiments on an embedded development board equipped with the
SiFive Unmatched U740 system-on-chip, which features a multi-core, 64-bit dual-issue, superscalar
RISC-V processor. We generated 8 configurations for Fedora using KnowOS and AutoOS separately,
and compiled them into a kernel to run UnixBench. We selected the two best results from all the
results of KnowOS and AutoOS as the final results, as shown in Table 5. As can be seen, KnowOS
and AutoOS achieved total score improvements of 25.6% and 23.2%, respectively, with a small gap
between the two in terms of total scores. This is due to the fact that we haven’t added the RISC-V
kernel knowledge to the knowledge base yet, so KnowOS lacks knowledge on how to improve kernel
performance.

Table 5: Board test
Dhrystone Whetstone Execl

Throughput
File Copy

1024
File Copy

256
File Copy

4096
Pipe

Throughput
Context

Switching
Process

Creation
Shell

Scripts 1
Shell

Scripts 8
System

Call
Total
Score

Default 559 201 174 187 196 198 152 66 91 256 636 366 211
AutoOS 555 198 247 241 317 217 204 129 127 240 617 429 260 (+23.2%)
KnowOS 552 202 247 242 307 211 201 141 130 259 675 429 265 (+25.6%)
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E.3 INFLUENCE OF DIFFERENT PROMPTS

We employed the following five distinct descriptive approaches to characterize our optimization
objectives in order to validate the impact of different descriptive methods on optimization outcomes.

P1. I want to improve the performance of Redis.

P2. Fine-tune Redis for better performance.

P3. I would like to enhance the efficiency of Redis.

P4. Boost the performance of Redis.

P5. My goal is to increase Redis performance.

We ran ApacheBench on these five generated configs, and the results are shown in Table 6

Table 6: ApacheBench score of different prompts
Score (ops/sec)\Prompt P1 P2 P3 P4 P5

KnowOS 189377.98 189350.24 189370.56 189355.20 189382.10
w/o KG 155827.86 155801.54 155827.29 155815.60 155845.11

E.4 TUNING COST OF KNOWOS

Knowledge Graph Initialization. The initial construction of the Knowledge Graph is a one-time
cost. Initialization consumes approximately 1,100,000 tokens, requiring 12–18 minutes and costing
about 5$.

Tuning Cost. A single optimization session consumes approximately 240,000 tokens, taking 10 to
20 minutes and costing about 1.2$.

Knowledge Graph Maintenance Cost. Updating the knowledge graph consumes approximately
80,000 tokens, requiring 5 to 12 minutes and costing about 0.4$.

F LIMITATIONS AND FUTURE WORK

Choice of OS. We chose Linux for our experiments primarily due to its open-source nature and
the rich configurations available via the Kconfig system. While other popular operating systems
like Windows and macOS are closed-source, which prevent us from customization, and we are not
yet aware of the existence of a structured form of configuration mechanism in these OSes similar to
Linux. Additionally, we are unable to modify them because of copyright restrictions.

Generalization to Non-Linux Kernels. While our current work focuses on Linux, we are actively
exploring the potential of extending KnowOS to other operating systems. We believe that the
structured knowledge graph OD-KG can play a pivotal role in tackling similar challenges in these
systems, provided the necessary configuration data becomes available. We are committed to exploring
these avenues in future research.

G THE USE OF LARGE LANGUAGE MODELS

We used LLMs to assist in refining the clarity and coherence of the writing in the paper. The
LLMs were specifically employed to improve phrasing, ensure academic rigor, and enhance overall
readability. Their contribution was strictly in the writing process, and all content was thoroughly
reviewed and finalized by the authors.
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