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Abstract
In the field of continual learning, relying on so-called oracles for novelty detection1

is commonplace albeit unrealistic. This paper introduces CONCLAD ("COntinuous2

Novel CLAss Detector"), a comprehensive solution to the under-explored problem3

of continual novel class detection in post-deployment data. At each new task, our4

approach employs an iterative uncertainty estimation algorithm to differentiate5

between known and novel class(es) samples, and to further discriminate between the6

different novel classes themselves. Samples predicted to be from a novel class with7

high-confidence are automatically pseudo-labeled and used to update our model.8

Simultaneously, a tiny supervision budget is used to iteratively query ambiguous9

novel class predictions, which are also used during update. Evaluation across10

multiple datasets, ablations and experimental settings demonstrate our method’s11

effectiveness at separating novel and old class samples continuously. We will12

release our code upon acceptance.13

1 Introduction and Related Work14

Deployed AI models frequently encounter dynamic and evolving data distributions, where continuous15

model adaptation is paramount to safeguard performance. Reliable novelty detection is a key16

capability for adaptive AI. Novelty Detection will inform the model if there is new data and if so,17

which samples are novel and need to be learnt from. However, until now, novelty detection and18

continual adaptation have been tackled separately within different sub-fields of the AI scientific19

literature. Most research in continual learning (CL) [1, 2, 3, 4, 5, 6] relies on fully labeled data,20

despite the significant costs and impracticality of data labeling in real-world scenarios [7]. While21

there are some unsupervised CL solutions [8, 9, 10], they often rely on an unrealistic assumption: that22

for each new task and its incoming data, past classes do not appear alongside newly introduced classes,23

thereby eliminating the need for novelty detection. Removing this oracle assumption results in severe24

performance degradation due to overconfidence in erroneous predictions [11]: novel classes’ samples25

may be incorrectly predicted to old classes, especially at task transition onset where the continual26

decision boundaries are still immature. Meanwhile, solutions for novelty or out-of-distribution (OOD)27

detection [12, 13, 14, 15, 16, 17] have primarily been designed and evaluated using a single, fixed28

split of old versus novel classes, rather than on continual splits. Additionally, conventional OOD29

models often lack the ability to continuously integrate and learn from newly detected data. When30

these models are forced to update, they can suffer from continual error propagation [11]: incorrect31

novelty predictions during the detection stage lead to incorrect parameter learning during the update32

stage, progressively degrading the overall system performance. The recently proposed incDFM33

[11] offers an innovative solution to continual novel class detection (CND). However, incDFM was34

designed for the simplistic scenario where only one novel class is introduced per task. This strong35

assumption allows incDFM to treat all samples flagged as novel as members of the single new class,36

enabling trivial pseudo-labeling for continual update. Due to this unrealistic one-class assumption,37

incDFM cannot be considered fully unsupervised. In more complex cases with multiple novel classes,38

incDFM fails to function effectively since it cannot distinguish between different novel classes.39

In effect, all samples from those multiple novel classes are erroneously assigned to a single new40

class. This multi-class "collapse" results in a poor estimate of the OOD/novelty distribution and41

consequently, poor performance. Generalizing to the scenario of continuous multi-class novelties is42

challenging, necessitating the creation of entirely new algorithmic components. Our contribution is43
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as follows: We propose CONCLAD (COntinuous Novel CLAss Detector), an iterative multi-class44

uncertainty estimation algorithm designed for generalized Continual Novelty Detection. We utilize45

the uncertainty scores to select (a) a very small fraction (0.3% - 1.25%) of samples from the unlabeled46

pool for supervision and (b) a suitable subset of the remaining unlabeled samples for automatic47

(unsupervised) pseudo-labeling. Through experimentation on various continual tasks and datasets,48

we demonstrate that CONCLAD excels in continually identifying the presence of (up to multiple)49

novel classes and accurately separating novel class samples from old ones.50

2 Our Method51

2.1. Problem Setting: Consider a continual agent A(x, t) which needs to learn/adapt from a set of52

continual tasks. At each task t, A(x, t) is presented with an initially unlabeled set of samples U(t) 153

which consists in a mixture of unseen samples of its old/learnt classes Uold(t) and unseen samples of54

new (novel) classes Unew(t):55

U(t) = Uold(t) ∪ Unew(t),where Uold(t) = {x|x ∼
t−1⋃
k=1

Dk}, Unew(t) = {x|x ∼ Dt}, (1)

Here Dt comprises samples from the set of new classes Ct
new introduced at task t, while

⋃t−1
k=1 Dk56

are samples belonging to all the old classes Ct
old that have been learned up to and including task t− 1.57

Samples in Uold(t) are “unseen”, meaning they were never used, neither in the initial training nor58

during prior tasks’ learning. Note that addressing data drifts in Uold is beyond the scope of this work.59

2.2. Our solution: We introduce a continual novelty detector N(x, t), operating alongside the60

continual agent, whose goal is to produce a reliable estimate of novel samples Ûnew(t) while61

simultaneously estimating their respective novel-class labels. Simply performing a binary distinction62

between novel-class and old-class samples (as in incDFM[11]) leads to poor results in novel multi-63

class settings. Moreover, the dependence on task index t in N(x, t) indicates that the novelty detector64

itself has to be continually updated so that novel classes at t are not considered novel at t+ 1. To65

obtain novel-class labels in Ûnew(t), one can either used unsupervised clustering methods [18], or66

active supervision (i.e. labeling by an expert) [19, 20, 21]. Here, we share initial results using active67

supervision for a tiny fraction of U(t) (0.3% - 2.5%), along with pseudo-labeling of confidently68

identified novel samples in Ûnew(t). For all these tasks – novelty detection, sample selection for active69

labeling, and for pseudo-labeling – N(x, t) relies foundationally on a novel, iterative multi-class70

uncertainty estimation method 2 defined and explained in the next sections.71

2.2.1. Building block of CONCLAD’s uncertainty formulation S(i): CONCLAD’s uncertainty72

estimation 2 uses the feature reconstruction error (FRE) [14], which is effective in novelty estimation73

for the closed-world and the single-class increment CL [11]. FRE involves learning a PCA transform74

Tm and its inverse T †
m for each class m. A test feature u = g(x) is transformed by Tm and re-75

projected back using T †
m, with FRE calculated as the ℓ2 norm of the difference between the original76

and reconstructed vectors. High FRE scores indicate samples that don’t belong to class m. In the77

simplified single-class increment CL [11], a single PCA transform is used for all ID data.78

2.2.2. Step by Step Novelty Detection: Prior to deployment (task t = 0), we assume that an79

agent A(x, t = 0) has been trained to classify among a fixed set of pre-deployment classes C0
new.80

Accordingly, CONCLAD’s novelty detector N(x, t = 0) has been trained to recognize those classes81

as learnt/old by having computed FRE transforms for those classes, Tm,∀m ∈ C0
new. For a given82

future task t > 0, as unlabeled data arrives, N (i)(x, t) follows an iterative procedure (indexed by an83

inner-loop index, i, which is distinct from outer-loop task-index t) to learn to detect if/what novelties84

are present. At the first inner iteration i = 0, initial supervision querying is performed by picking85

samples (subject to labeling budget) with high uncertainty scores w.r.t old classes defined as S0(u) ≜86

minj∈Ct
old

FRE0
j (u). b0 is sampled uniformly among samples with S0(u) > mean(S0(u)). At this87

point, novel classes can be identified (denoted by |Ct
new| in section 2.1, assuming |Ct

new| > 0) and88

those few labeled samples are used to initialize parameters of N (0)(x, t): (1) Train a single layer89

perceptron, N (i)
pl (x, t) to learn an imperfect initial mapping to the |Ct

new| novel classes. This layer,90

which performs pseudo-labeling (pl), contains output nodes only w.r.t novel classes. (2) compute91

rough estimates of per-novel-class PCA transforms {T t,0
m },m ∈ Ct

new. Note that it’s possible that92

not all true novel classes are found in this initial iteration and may be found in subsequent ones. For93

subsequent iterations i > 0, given an unlabeled sample x ∈ U(t), N (i)
pl (x, t) predicts a pseudo-label94

m,m ∈ Ct
new which then routes the selection of the corresponding PCA transform T t,i−1

m resulting95
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in the itextth iteration’s uncertainty score Si(x) 2:96

Si(u) = min
j∈Ct

old

FRE0
j (x)

FREi−1
m (x)

; i > 0,m = N
(i)
pl (x, t) ∈ Cnew

t (2)

Si(x) can be used to robustly categorize samples in U(t) as: (1) Novel with high-confidence: These97

are samples with the highest score values (high numerator relative to the denominator). A high98

value of numerator implies large distance from previously seen classes Ct
old, while a low value of99

the denominator implies low distance from novel class m. Such a sample likely belongs to Unew(t)100

and is a strong candidate to be pseudo-labeled. From these, we select the topmost most confident α101

percent to pseudo-label. (2) Old-class with high-confidence: lowest score values corresponding102

to low numerator (low distance w.r.t Ct−1
old ) and high denominator value (high-distance from the103

predicted novel class m). Such a sample likely belongs to Uold(t), i.e. to an old class that has104

already been learned; (3) Ambiguous: Samples for which the score is neither definitively high nor105

definitively low. These could be old-class samples having relatively high scores, or new-class samples106

having relatively low scores. Owing to this ambiguity, a clear determination cannot be made. Hence,107

these samples are excellent candidates for active querying to minimize novelty detection uncertainty.108

At each inner-loop iteration, accumulated active and pseudo-labeled samples are used to re-update109

N (i+1)(x, t)’s parameters (pseudo-labeler N (i)
ps (x, t), and FRE transforms T t,i−1

m ). At the end of110

the inner-loop, all accumulated active and pseudo labeled samples are used to compute final PCA111

transforms {T t
m} for m ∈ Cnew

t to permanently update the novelty detector N(x, t) so those classes112

are not flagged as novel subsequently. Note that the pseudo-labeler, since it maps only to a given tasks113

detected novel classes, will be re-initialized at another tasks’ onset. Further methodology details,114

including inner-loop stopping criteria and ambiguity formulation, can be found in appendix sections.115

3 Experiments116

3.1. Setup: We evaluate on 4 datasets: Imagenet21K-OOD (Im21K-OOD) [22], Eurosat [23],117

iNaturalist-Plants-20 (Plants) [24] and Cifar100-superclasses [25], all of which were constructed to118

have no class overlap with Imagenet1K with the exception of Cifar100. Results for Cifar100 are119

included to enable direct comparison with baseline method incDFM [11]. We compare CONCLAD to:120

(1) incDFM [11], which first introduced an updatable continual novelty detector, albeit exclusively for121

single class novelties (see section 1); (2) DFM [26], originally proposed for static novelty detection.122

We also include semi-supervised CND baselines: (3) Experience-Replay "ER" [27, 6] uses entropy123

as a measure of novelty similar to [28] and also to select active labels; (3) PseudoER [29], same as124

ER, but iteratively pseudo-labels the most confident samples akin to CONCLAD. Other baselines125

are constructed (Fig 2 right table) from removing elements of CONCLAD such as the iterativeness126

(i.e. doing AL/Pseudo-labeling in one shot), etc. Implementations for CONCLAD and baselines: All127

use a large/foundation frozen feature extractor, e.g. ResNet50 [30] pre-trained on ImageNet1K via128

SwAV [31] or ViTs16 [32] pre-trained on Imagenet1K via DINO [33]. CONCLAD’s Acl
s (pseudo-129

labeling head) is a fully connected layer. Baselines ER, PseudoER’s long-term classification head130

is a perceptron of size 4096. For ER and PseudoER we use a fixed replay buffer size containing131

pre-logit deep-embeddings and labels/pseudo-labels. We set the maximum buffer size to 5000 (2500132

for Eurosat). At each incoming unlabeled pool, we fix a mixing ratio of 2:1 of old to new classes133

per task, with old classes drawn from a holdout set (0.35% of each dataset). For evaluation on the134

independent test set, we sample old and new classes with the same 2:1 proportion. Note that old135

classes act as distractors from the point of view of novelty detection. We set pseudo-labeling selection136

to α = 20% of samples predicted as novel (appendix 4.1.1). For experiments not purposely varying137

the tiny supervision budget, we fix a labeling budget of 1.25% for Places, Plants and 0.625% for138

Eurosat, Im21K-OOD, as guided by Fig 1 center which varies the AL budget from 0.625% to 5%.139

3.2. Results: We measure continual novelty detection performance with the common "Area Under140

the Receiver-Operating-Curve" (AUROC) metric. Note that, for fair evaluation, we measure CND141

on an independent test set with the same ratio of old to new class samples at each task. Fig. 1142

(left) displays CND performance (AUROC) over all continual tasks (time) in the case of multi-143

class novelties per task (5 class increments for Im21K-OOD and 2 class increment for Eurosat).144

Additionally, figure X (center) shows the sensitivity of CONCLAD and other actively-supervised145

baselines (ER-entropy, PseudoER-entropy, section 3.1) when varying the tiny supervision budget146

(tested for a range of 0.32% to 5% of the unlabeled train data at each task). Fig. 1 (right) shows the147

effect of varying the novel class increment per task as measured by the AUROC score averaged over148

all continual tasks (with that given increment). Some interesting highlights: (1) we can see in Fig 1149
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(right) that the compared approach incDFM [11] performs reasonably well for the increment of only150

one novel class per task, for which it was originally proposed and tested by the authors. However,151

when the class increment increases, this method degrades in performance because it groups multiple152

novel classes with no distinction, which hurts detection. (2) PseudoER consistently under-performs153

ER because it is unable to produce high confidence pseudo-labels to be used in training and this in154

turn degrades its performance - this highlights the importance of our uncertainty metric 2 in measuring155

pseudo-label confidence. (3) It is evident in the above plots that even with tiny supervision budgets156

(e.g. 0.32%-1.25%), CONCLAD consistently outperforms the competing methods by a large margin157

over the several experimental variations.158

Figure 1: (Left A.1,B.1) Continual Novelty Detection performance measured by AUROC at each
task. The number of novel classes introduced per task is in parenthesis. Overall, CONCLAD (green)
significantly over-performs baselines; (Center A.2,B.2) Results varying the supervision budget;
(Right A.3,B.3) Results varying Novel Class Increment per task. For (left,right) Supervision budget
is 0.625% for CONCLAD, ER, PseudoER. Equivalent plots for Cifar100, Plants in appendix 4.3.

Im21K Plants Eurosat Cifar100
R50 ViT R50 ViT R50 ViT R50 ViT

CONCLAD(ours) 96.0 88.0 73.6 58.8 99.3 82.3 80.6 83.3
incDFM 77.3 76.0 68.7 58.2 81.8 74.9 66.3 66.3

DFM 79.0 75.4 67.4 54.9 82.2 74.9 62.2 66.3
ER-Entropy 79.4 52.8 61.4 52.4 86.0 46.6 64.1 55.4

PseudoER-Entropy 69.9 54.2 60.6 52.5 66.8 46.5 59.5 52.6

Variations
(R50)

Im21K Plants Eurosat Cifar100

Default 96.0 73.6 99.3 80.6

Sup-Top 89.5 71.0 97.6 81.9
Sup-Rand 88.7 65.9 98.9 80.4
No-Iters 89.5 68.2 80.5 66.4
No-Pseudo 77.2 65.4 75.6 64.1

Figure 2: (Left) Continual Novelty Detection measured by AUROC; (Right) Ablations of CONCLAD.
Supervision budget is 0.625% for Im21K, Eurosat and 1.25% for Plants, Cifar100
Fig 2 table (left) shows average AUROC results over all tasks for all 4 datasets and with two different159

feature extraction backbones (Vision Transformer "ViT" and Resnet50 "R50" described in section 3.1).160

In sum, similar conclusions can be reached here: CONCLAD significantly overperforms baselines161

over all the tested settings. Additionally, Fig 2 table (right) shows results for different ablations of162

CONCLAD: (No-Pseudo) Removing Pseudo-labeling from S(i), i.e. computing per-novel class PCAs163

only with ground-truth label assignments obtained with the tiny labeling budget; (Sup-Random) Using164

random sampling to query ground truth labels with the same tiny budget; Sup-Top queries samples165

with highest uncertainty scores (i.e. most-confidently novel samples) for ground-truth labeling rather166

than ambiguous samples;(No-Iters) CONCLAD in oneshot. Use all supervision budget upfront and167

then pseudo-label in one-shot. The ablation results highlight the importance of minimizing error168

propagation via our method’s iterativeness since No-Iters results in an average 11.2% decrease in169

performance. Similarly, we show that pseudo-labeling among the multiple novel classes detected is170

fundamental to performance given the AL budget’s tiny size: No-Pseudo results in 16.8% average171

decrease. Finally, other active labeling strategies (i.e. Sup-Top) or lack-thereof (Sup-Rand) also172

decrease performance by 2.4% and 3.9% respectively, underscoring the informativeness of querying173

ambiguous samples for AL with the goal of continual novelty detection, refer to section 2.2.2.174

Key Takeaways: In this work, we presented CONCLAD, a solution to the still under-explored175

problem of continual novelty detection (CND). Our method enables CND in the generalized set-176

ting of novelties containing up to multiple novel classes. To achieve this, CONCLAD includes a177

foundationally novel iterative multi-class uncertainty estimation procedure capable of effectively178

modelling the distribution of multiclass novelties, only with a tiny supervision budget. By minimizing179

the number of samples falsely flagged as novel or overlooked as old, we ensure minimal continual180

error propagation. Overall, CONCLAD outperforms baselines over multiple large-scale datasets and181

experimental variations. Yet, several challenges remain for CND, which we hope to address in future182

work. One nontrivial example is how to detect both novel classes and distribution shifts of old classes183

(e.g. noise, illumination, etc) together, with minimal to no supervision.184

4



References185

[1] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural networks”. In: Proceed-186

ings of the national academy of sciences 114.13 (2017), pp. 3521–3526.187

[2] Shixian Wen et al. “Beneficial Perturbation Network for designing general adaptive artificial188

intelligence systems”. In: IEEE Transactions on Neural Networks and Learning Systems189

(2021).190

[3] Brian Cheung et al. “Superposition of many models into one”. In: Advances in neural informa-191

tion processing systems 32 (2019).192

[4] Sylvestre-Alvise Rebuffi et al. “icarl: Incremental classifier and representation learning”. In:193

Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2017,194

pp. 2001–2010.195

[5] Amanda Rios and Laurent Itti. “Lifelong Learning Without a Task Oracle”. In: 2020 IEEE196

32nd International Conference on Tools with Artificial Intelligence (ICTAI). IEEE. 2020,197

pp. 255–263.198

[6] Pietro Buzzega et al. “Rethinking experience replay: a bag of tricks for continual learning”. In:199

2020 25th International Conference on Pattern Recognition (ICPR). IEEE. 2021, pp. 2180–200

2187.201

[7] German I Parisi et al. “Continual lifelong learning with neural networks: A review”. In: Neural202

Networks 113 (2019), pp. 54–71.203

[8] Zhiqi Kang et al. “A soft nearest-neighbor framework for continual semi-supervised learn-204

ing”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023,205

pp. 11868–11877.206

[9] Matteo Boschini et al. “Continual semi-supervised learning through contrastive interpolation207

consistency”. In: Pattern Recognition Letters 162 (Oct. 2022), pp. 9–14. ISSN: 0167-8655. DOI:208

10.1016/j.patrec.2022.08.006. URL: http://dx.doi.org/10.1016/j.patrec.209

2022.08.006.210

[10] Benedikt Bagus, Alexander Gepperth, and Timothée Lesort. Beyond Supervised Continual211

Learning: a Review. 2022. arXiv: 2208.14307 [cs.LG].212

[11] Amanda Rios et al. “incdfm: Incremental deep feature modeling for continual novelty detec-213

tion”. In: European Conference on Computer Vision. Springer. 2022, pp. 588–604.214

[12] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and out-of-215

distribution examples in neural networks”. In: (2017).216

[13] Shiyu Liang, Yixuan Li, and R Srikant. “Enhancing the reliability of out-of-distribution image217

detection in neural networks”. In: (2018).218

[14] Ibrahima Ndiour, Nilesh A Ahuja, and Omesh Tickoo. “Out-Of-Distribution Detection219

With Subspace Techniques And Probabilistic Modeling Of Features”. In: arXiv preprint220

arXiv:2012.04250 (2020).221

[15] Kimin Lee et al. “A simple unified framework for detecting out-of-distribution samples and222

adversarial attacks”. In: Advances in Neural Information Processing Systems. 2018, pp. 7167–223

7177.224

[16] Haoqi Wang et al. “ViM: Out-Of-Distribution with Virtual-logit Matching”. In: Proceedings of225

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.226

[17] Jie Ren et al. “Likelihood ratios for out-of-distribution detection”. In: Advances in Neural227

Information Processing Systems. 2019, pp. 14707–14718.228

[18] Yazhou Ren et al. “Deep clustering: A comprehensive survey”. In: IEEE Transactions on229

Neural Networks and Learning Systems (2024).230

[19] Vu-Linh Nguyen, Mohammad Hossein Shaker, and Eyke Hüllermeier. “How to measure231

uncertainty in uncertainty sampling for active learning”. In: Machine Learning 111.1 (2022),232

pp. 89–122.233

[20] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. “Deep bayesian active learning with image234

data”. In: International Conference on Machine Learning. PMLR. 2017, pp. 1183–1192.235

[21] Donggeun Yoo and In So Kweon. “Learning loss for active learning”. In: Proceedings of the236

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 93–102.237

[22] Tal Ridnik et al. ImageNet-21K Pretraining for the Masses. 2021. arXiv: 2104 . 10972238

[cs.CV].239

5

https://doi.org/10.1016/j.patrec.2022.08.006
http://dx.doi.org/10.1016/j.patrec.2022.08.006
http://dx.doi.org/10.1016/j.patrec.2022.08.006
http://dx.doi.org/10.1016/j.patrec.2022.08.006
https://arxiv.org/abs/2208.14307
https://arxiv.org/abs/2104.10972
https://arxiv.org/abs/2104.10972
https://arxiv.org/abs/2104.10972


[23] Patrick Helber et al. EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use240

and Land Cover Classification. 2019. arXiv: 1709.00029 [cs.CV].241

[24] Grant Van Horn et al. The iNaturalist Species Classification and Detection Dataset. 2018.242

arXiv: 1707.06642 [cs.CV].243

[25] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: University of244

Toronto (May 2012).245

[26] Ibrahima J Ndiour, Nilesh A Ahuja, and Omesh Tickoo. “Subspace Modeling for Fast Out-246

Of-Distribution and Anomaly Detection”. In: 2022 IEEE International Conference on Image247

Processing (ICIP). IEEE. 2022, pp. 3041–3045.248

[27] David Rolnick et al. “Experience replay for continual learning”. In: Advances in Neural249

Information Processing Systems 32 (2019).250

[28] Rahaf Aljundi et al. “Continual novelty detection”. In: Conference on Lifelong Learning251

Agents. PMLR. 2022, pp. 1004–1025.252

[29] Dong-Hyun Lee. “Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method253

for Deep Neural Networks”. In: ICML 2013 Workshop : Challenges in Representation Learning254

(WREPL) (July 2013).255

[30] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE256

conference on computer vision and pattern recognition. 2016, pp. 770–778.257

[31] Mathilde Caron et al. “Unsupervised learning of visual features by contrasting cluster as-258

signments”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 9912–259

9924.260

[32] Dosovitskiy Alexey. “An image is worth 16x16 words: Transformers for image recognition at261

scale”. In: arXiv preprint arXiv: 2010.11929 (2020).262

[33] Mathilde Caron et al. “Emerging properties in self-supervised vision transformers”. In: Pro-263

ceedings of the IEEE/CVF international conference on computer vision. 2021, pp. 9650–264

9660.265

[34] Yen-Chang Hsu et al. “Generalized odin: Detecting out-of-distribution image without learning266

from out-of-distribution data”. In: Proceedings of the IEEE/CVF Conference on Computer267

Vision and Pattern Recognition. 2020, pp. 10951–10960.268

[35] Utku Evci et al. “Head2toe: Utilizing intermediate representations for better transfer learning”.269

In: International Conference on Machine Learning. PMLR. 2022, pp. 6009–6033.270

[36] Alexander A Petrov, Barbara Anne Dosher, and Zhong-Lin Lu. “The dynamics of perceptual271

learning: an incremental reweighting model.” In: Psychological review 112.4 (2005), p. 715.272

[37] Guneet S Dhillon et al. “A baseline for few-shot image classification”. In: arXiv preprint273

arXiv:1909.02729 (2019).274

[38] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv275

preprint arXiv:1412.6980 (2014).276

[39] Amanda Rios and Laurent Itti. “Closed-loop memory GAN for continual learning”. In: arXiv277

preprint arXiv:1811.01146 (2018).278

[40] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. English279

(US). In: International Journal of Computer Vision 115.3 (Dec. 2015). Publisher Copyright:280

© 2015, Springer Science+Business Media New York., pp. 211–252. ISSN: 0920-5691. DOI:281

10.1007/s11263-015-0816-y.282

[41] Pengzhen Ren et al. “A survey of deep active learning”. In: ACM computing surveys (CSUR)283

54.9 (2021), pp. 1–40.284

4 Appendix285

4.1 Methodology Details286

4.1.1 Thresholds for Stopping the inner-loop287

The inner-loop is guided by two simple thresholds: (1) Threshold Tinner "roughly" estimates if288

there are any possible novel-class samples in the unlabeled task input data pool and is controlled by289

a single hyper-parameter, the number of standard deviations above the mean of an in-distribution290

validation set (2 STDs in our experiments). If no samples are found to be above Tinner, we reach the291
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stopping criterion for our iterations. Our in-distribution validation set is conventionally defined to292

include a portion (0.1%) of the previous tasks’ k = 1 : t− 1 novelty predictions that were held-out293

at previous tasks, i.e. not used to update N(x, t) parameters. Importantly, the same in-distribution294

validation set is used for all compared baselines in our results section, as is common practice in the295

OOD/novelty-detection literature [11, 34]; (2) Finally, Threshold α tunes pseudo-labeling selection296

and is set to α = 20% highest Si(u) scores (most confident) from the test samples found above297

Tinner. These two thresholds are not highly sensitive.298

4.1.2 How to define Ambiguity299

CONCLAD seeks to minimize novelty-detection uncertainty and model multiclass-novelties by300

selecting the most novel-vs-old ambiguous samples at each inner-loop iteration, i.e. scores Si(u)301

which are neither too high or too low. Our mathematical formulation uses the threshold Tinner defined302

in the previous section: we formulate ambiguousness as the inverse squared distance 1
∥Si(u)−Tinner∥2303

of scores to Tinner. Intuitively, this formula favors selecting samples that cannot be unambiguously304

predicted as either old or new since Tinner represents this rough decision boundary. Active selection305

is stopped when the tiny labelling budget is exhausted. The only exception to this Ambiguity306

formulation is at the first iteration i = 0 where we select homogeneously from samples above307

Tinner. This is the case because at i = 0 only old classes are used to compute the score function,308

S0(u) = minj∈Ct
old

FRE0
j (u) and so ambiguity cannot be defined in the same way as for the309

remainder of iterations.310

4.1.3 Measuring per-class uncertainty in CONCLAD’s Si(u) formulation311

CONCLAD is agnostic to the elemental uncertainty metric used in its uncertainty scoring function312

(Si(u) Eq. 2 in section 2) as long as it can reliably estimate uncertainty w.r.t each novel class or old313

class. However, this is not an easy feat since many existing static uncertainty quantification approaches314

are not fully reliable [14, 11]. As discussed in the main text, CONCLAD currently leverages the315

feature reconstruction error (FRE) metric introduced in [14] to build Eq 2. For each in-distribution316

class, FRE learns a PCA (principal component analysis) transform {Tm} that maps high-dimensional317

features u from a pre-trained deep-neural-network backbone g(x) onto lower-dimensional subspaces.318

During inference, a test-feature u = g(x) is first transformed into a lower-dimensional subspace by319

applying Tm and then re-projected back into the original higher dimensional space via the inverse T †
m.320

The FRE measure is calculated as the ℓ2 norm of the difference between the original and reconstructed321

vectors:322

FREm(u) = ∥f(x)− (T †
m ◦ Tm)u∥2. (3)

Intuitively, FREm measures the distance of a test-feature to the distribution of features from class m.323

If a sample does not belong to the same distribution as that mth class, it will usually result in a large324

reconstruction score FREm. FRE is particularly well suited for the continual setting since for each325

new class discovered at test-time, an additional principle component analysis (PCA) transform can be326

trained without disturbing the ones learnt for previous classes.327

4.2 Experimental Methodology Details328

4.2.1 Implementation Details for CONCLAD and Baselines329

N(x, t) operates on top of a large-scale/foundation models as feature extraction backbones, kept330

frozen throughout CONCLAD and baselines’ training: (1) Most results use ResNet50 [30] unsupervis-331

edly pre-trained on ImageNet1K via SwAV [31]. We extract features from the pre-logit AvgPool layer332

of size 2048 as deep-embeddings. We also experimented with other feature extraction points [14] but333

those under-performed w.r.t the pre-logit layer. (2) We also show results using ViTs16 [32] pretrained334

on Imagenet1K via DINO [33]. For ViTs16 we tried several extraction points, e.g. head, last norm335

later, different transformer block outputs with different pool factors (e.g. 2,4). Best results were336

obtained with the norm layer. Note that learning on frozen deep features is commonplace in vision337

CL and domain-adaptation fields [5, 11, 35]. It is theoretically based on the principle that low-level338

visual features from a large-scale/foundation frozen model are task nonspecific and do not need339

to be constantly re-learned. Rather, learning may happen upstream by utilizing the extracted deep340

features (at the last or inner-layers, or a combination thereof - an active research area) [36, 37, 35].341

CONCLAD’s N(x, t) fully-connected pseudo-labeling layer is trained with ADAM [38], learning342
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rate of 0.001, mini-batch of 10 and an average of 5 epochs at each inner-loop. We experimented with343

other possibilities of pseudo-labeler such as a 1-layer perceptron but obtained marginal performance344

gain. Baselines’ ER and PseudoER long term classification head are implemented as a one layer345

perceptron of size 4096 (also tested variations with marginal variations in results). The ER/PseudoER346

replay buffer is set to a size 5000 deep-embeddings for Plants [24], Imagenet21K-OOD [22] and347

2500 for eurosat and cifar100. We use a fixed-size memory buffer Bt with the same building strategy348

and training loss as in [39]: a buffer of fixed size and prioritizing homogeneous distribution among349

classes. That is, an equivalent number of samples of each class are removed if room is required for350

new classes and the buffer is full. Equal weight is given to old and new classes during ER. Lastly,351

baselines incDFM [11] and DFM [14] were trained using same hyper-parameters proposed by the352

authors and their open-source code.353

4.2.2 Datasets:354

Since the employed large/foundation feature extractor were pretrained on Imagenet1K, we evaluate355

CONCLAD on datasets that either do not contain class overlap with Imagenet1K (out-of-distribution356

w.r.t Imagenet1K [40]), or curated them by excluding any overlapping classes. The exception is357

cifar100, which was included due to it being a very popular and widespread dataset, also used in358

incDFM [11].359

1. Imagenet21K-OOD (Im21K-OOD) [22]: We curated a subset of Imagenet21K containing the360

top-most populous 50 classes and that do not overlap with the classes present in Imagenet1K.361

We use a random set of 500 samples from each of the 50 classes. Because Imagenet21K is a362

superset of Imagenet1K, by excluding any overlapping class we guarantee orthogonality363

in our curated subset. We will release the full list of images chosen in this curation for364

reproducibility.365

2. iNaturalist-Plants-20 (Plants) [24]: is a curated subset containing images from 20 OOD366

plant species, sourced from the iNaturalist project [24]. A super-set (larger) version of this367

subset was originally proposed by [huang2021mos] and has since been frequently used368

as test OOD dataset with respect to Imagenet1K [xia2022usefulness, ming2022delving].369

Note that we use only 20 classes instead of the original 110 in the [huang2021mos] super-set370

since we remove classes with sample count below 140.371

3. Eurosat [23]: An RGB dataset of 10 classes and 27K images of Sentinel-2 satellite images,372

which is also orthogonal to Imagenet1K.373

4. Cifar100-Superclasses (Cifar100) [25]: We use the super-label granularity of Cifar100374

dataset. This totals 20 labels (super) and 50K images. While Cifar100 is not orthogonal to375

Imagenet1K, we decided to showcase its results since it is a widespread dataset in CL.376

4.2.3 Baselines377

For continual novelty detection (CND), we include unsupervised baselines that also utilize FRE-based378

uncertainty measures: DFM [26] and incDFM [11]. The latter, incDFM [11], was the first to develop379

an updatable continual novelty detector for CND, albeit exclusively tested for the trivialized case of380

single class novelties only, see discussion in main paper section 1. Alternatively, DFM originally381

introduced the FRE measure 3 for static novelty detection. In the case of incDFM, their proposed382

scoring function after training/update could be directly used to compute novelty detection on a test set,383

in the continual setting. We use the author’s official implementation of incDFM to generate results.384

For DFM, we adapted the method to the continual setting by storing one PCA transform Tj per task385

trained from all data predicted as novel at the previous task. The scoring function St
DFM for DFM is386

defined in equation 4, with T t
old representing the count of how many past tasks with novelty(ies) have387

previously occured at time/task t.388

St
DFM (u) = min

j∈T t
old

FREj(u) (4)

We also include semi-supervised baselines, with the same tiny supervision budget: (2) ER [27, 6],389

originally proposed for supervised CL is adapted to only use actively labeled samples (as embeddings)390

for replay; (3) We also adapt PseudoER [29] similar to ER but further incorporating pseudo-labeling of391

high confidence unlabeled samples for training. In both ER and PseudoER, we utilize the cumulative392

classification entropy as an uncertainty score to actively-label and Pseudo-Label (PseudoER). Similar393
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to CONCLAD, we actively label ”ambiguous” samples according to the same formula as outlined394

in appendix 4.1.2 for superior results, then sampling according to the TOP heuristic (see section 3395

discussion). We also tested with other common uncertainty metrics such as margin [41] but with396

inferior results.397

4.3 Additional Results398

Figure 3: Results for Plants and Cifar100; (Left D.1,E.1) Continual Novelty Detection performance
measured by AUROC at each task. The number of novel classes introduced per task is in paren-
thesis.(Center D.2,E.2) Results varying the supervision budget; (Right D.3,E.3) Results varying
Novel Class Increment per task. For (left,right) Supervision budget is 1.25% for CONCLAD, ER,
PseudoER. Overall, CONCLAD (green) significantly over-performs baselines
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