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ABSTRACT

Transformer has been widely adopted in Neural Machine Translation (NMT) be-
cause of its large capacity and parallel training of sequence generation. However,
the deployment of Transformer is challenging because different scenarios require
models of different complexities and scales. Naively training multiple Transform-
ers is redundant in terms of both computation and memory. In this paper, we pro-
pose a novel scalable Transformers, which naturally contains sub-Transformers of
different scales and have shared parameters. Each sub-Transformer can be eas-
ily obtained by cropping the parameters of the largest Transformer. A three-stage
training scheme is proposed to tackle the difficulty of training the scalable Trans-
formers, which introduces additional supervisions from word-level and sequence-
level self-distillation. Extensive experiments were conducted on WMT EN-De
and En-Fr to validate our proposed scalable Transformers. Pre-trained model has
been included into supplement material.

1 INTRODUCTION

Transformers Vaswani et al. (2017) have demonstrated its superior performance on Machine Trans-
lation (NMT) Wu et al. (2016); Devlin et al. (2018). However, the scale (number of parameters
and FLOPs) of the Transformers cannot be altered once trained. This is contradictory to the dif-
ferent scenarios of NMT which require models of different scales. For instance, NMT systems on
a phone should have lower computational cost while those on clusters aim to achieve higher accu-
racy. A naive approach would be to separately train models of different scales. The Transformer
of desired scale is then deployed to the target scenario. However, such a strategy requires training
and maintaining multiple Transformers. A natural question is: can we build a single but scalable
Transformers that can be flexibly scaled up or down to run with different FLOPs, without sacrificing
the translation accuracy at corresponding FLOPs?

In this paper, we propose a scalable Transformers (ST) that can adjust feature dimensions of all
encoder and decoder layers within a large range of widths (from 256 to 1024) without re-training.
The largest model in our scalable Transformers has 1024 feature dimensions at all layers, and 6
encoder and 6 decoder layers. After properly training, its neural layers can be cropped to form
sub-models. For example, activating the first 512 dimension in each layer, we would obtain a sub-
Transformer with 1/4 of its full parameters but can still perform translation accurately with limited
performance drop. The sub-models of different scales share parameters with the largest model.

However, properly training the parameter-sharing sub-models of different scales is non-trivial.
Jointly training them results in worse performance than independently-trained counterparts, due to
the interference between the parameter-sharing models. To solve the issue, we propose to incorpo-
rate online word-level and offline sequence-level self-distillation Kim & Rush (2016) to effectively
supervise the training of the scalable Transformers. During training, we randomly sample Trans-
formers of different scales. The word-level predictions generated by the largest Transformer would
serve as the additional supervisions for self-training smaller-scale sub-models with shared parame-
ters. The training inference between sub-models can be mitigated by this strategy from two aspects.
On the one hand, since the small sub-models share all their parameters with the largest Transformer,
the predictions generated from the largest Transformer are easier to fit than the hard ground-truth
supervisions. On the other hand, if the smaller sub-models are better trained, they would in turn en-
hance the performance of the largest model as their parameters are all included in the largest model.
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We then generate offline sequence-level predictions from the largest Transformer as supervisions for
further finetuning the smaller-scale sub-models. After three stage training, all Transformers reach
their optimal performances. Our scalable Transformers has been tested on WMT’14 En-De and En-
Fr benchmarks. All sub-models achieve better or comparable performances than their independently
trained counterparts but with fewer overall parameters.

Our contributions can be summarized as threefold. (1) We present a novel scalable Transformers
which can dynamically scale across a wide spectrum of parameters and FLOPs with shared pa-
rameter. (2) We propose a novel three-stage training strategy for the scalable Transformers, which
include online word-level and offline sequence-level self-distillation for mitigating training interfer-
ence between the sub-models. (3) We perform extensive experiments on WMT’14 En-De and En-Fr
datasets, which show favourable performances of our scalable Transformers at different scales.

2 RELATED WORK

NMT Architectures. Statistical Machine Translation (SMT) Forcada et al. (2011) dominated NMT
in the early years. Seq2Seq Sutskever et al. (2014) then surpassed SMT and has become the main-
stream for NMT. The main recent research turned to design architectures for seq2seq. NMT ar-
chitectures evolved from LSTM Hochreiter & Schmidhuber (1997), CNN Gehring et al. (2017),
DepthwiseCNN Kaiser et al. (2017) to Transformer Vaswani et al. (2017). The Evolved Trans-
former So et al. (2019) conducted architecture search using evolution algorithms and achieved good
performance on NMT. Universal Transformer Dehghani et al. (2018) proposed to share all layers of
the encoder and decoder. Scaling Neural Machine Translation (SNMT) Ott et al. (2018) performs
extensive ablation study on training the Transformer. Previous NMT research focuses on architec-
tures and training tricks while our scalable Transformers is proposed to build an architecture that
can be flexibly adjusted to meet a large spectrum of resource constraints with a single model.

Distillation and self-distillation. Knowledge Distillation (KD) Hinton et al. (2015) was first pro-
posed to transfer knowledge between teacher and student networks. DistillBERT Sanh et al. (2019)
adopts KD to train a small BERT model given a large BERT model. Sequence-level distillation Kim
& Rush (2016) generalize KD to sequence generation. KD generally transfers knowledge between
teacher and independent students different capacities. There are also self-distillation methods Yang
et al. (2019b); Xie et al. (2019); Yang et al. (2019a) that use its previous versions to provide addi-
tional supervisions for improving itself. In contrast, we generate both online soft and offline hard
supervisions from the largest model to train its parameter-sharing sub-models.

Adaptive neural network. Tradition neural networks have fixed architectures and computation
complexity in training and testing. Recently, neural networks with dynamic computation scales have
been proposed in NLP and computer vision. Huang et al. (2016) proposed a stochastic depth train-
ing strategy for convolution neural networks, where residual layers are randomly dropped. Huang
et al. (2017); Graves (2016); Figurnov et al. (2017); Graves (2016) proposed adaptive computational
mechanism for RNN, CNN and Transformer. For adaptive computation, the calculation would stop
if the confidence score at certain layer is higher than a threshold. Adaptive computation can there-
fore early terminate the calculation for saving cost on easy-to-predict samples. Slimmable Neural
Network Yu et al. (2018); Yu & Huang (2019) was proposed to train width adjustable Convolution
Neural Network (CNN). Although both slimmable NN and our scalable Transformers adjust layer
width to achieve different model capacities. There are two key differences. (1) Slimmable NN can
only support equal layer widths for all layers while our scalable Transformers allows flexibly setting
different widths for different layers. (2) We handle training interference via a novel self-distillation
training strategy while slimmable NN uses a small set of separate BN parameters, which are not
feasible for our scalable Transformers with much freedom.

Parameter sharing between a network and its sub-networks Pham et al. (2018) has been investi-
gated for Neural Architecture Search (NAS). Different from Pham et al. (2018), we aim to train all
sub-network jointly with the largest network and achieve good performance with self-distillation.
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3 SCALABLE TRANSFORMER

In this section, we first briefly revisit the Transformer for machine translation. We then explain
how to modify conventional Transformer to implement our scalable Transformers (ST), which can
flexibly choose its feature dimensions to match different target scales once trained (see Figure 1 for
illustration). Since the training of the scalable Transformers is non-trivial, we propose a three-stage
training strategy, which consists of independent training (stage 1), online word-level self-distillation
(stage 2), offline sequence-level self-distillation (stage 3).

3.1 A REVISIT OF TRANSFORMER FOR MACHINE TRANSLATION

Embedding. Let S ∈ RN×L denote a source sentence of length L, where each word is represented
by an one-hot vector of vocabulary size N . The input sentence S are encoded by word embedding
We as E =WeS, where We ∈ RN×C .

Transformer layer. Each Transformer layer contains one multi-head attention sub-layer followed
by FFN sub-layer. The input features (word embedding E for the 1st layer) are linearly projected
into key, query, value, K,Q, V ∈ RL×D and propagated between positions as

K =WkE + bk, Q =WqE + bq, V =WvE + bv, (1)

Attention(Q,K, V ) = softmax
(
QKT /

√
d
)
V,

where Wk,Wq,Wv ∈ RC×D and bk, bq, bv ∈ RD. The multi-head attention further splits the
Q,K, V features along the channel dimension to form groups of features. Another linear projection
converts the attention output feature back to C-dimensional followed by a two-layer FFN sub-layer,

FFN = ReLU(XW1 + b1)W2 + b2, (2)

where X is the input feature of the FNN, W1 ∈ RC×4D, b1 ∈ R4D,W2 ∈ R4D×C , b2 ∈ RC are the
transformation parameters. Each Transformer layer contains the above two sub-layers. A residual
connection is also added around each of the above sub-layers followed by layer normalization.

3.2 SCALABLE TRANSFORMERS

Architecture and word predictions. The Transformer adopts an encoder-decoder architecture,
each of which consists of 6 Transformer layers. Given the last output feature O ∈ RN×C , it is
mapped back to the word embedding space to predict the output words as softmax(OWT

e ), where
We is the transposed word embedding matrix.

The goal of our scalable Transformers is that, once trained, the FLOPs and number of parameters of
the Transformer can be flexibly adjusted according to different use scenarios and without network
re-training. To achieve this goal, we make the width of our encoder and decoder layers to be flexibly
modified within a pre-defined range. Our scalable Transformers shares the parameters with sub-
models of different widths. Specifically, for each layer, the wider Transformer contains all the
parameters and computations of the sub-Transformers. If the widest Transformer is properly trained,
we can obtain smaller scale sub-Transformers by simply truncating Transformer layers’ width and
cropping the parameter matrices. Sub-Transformers cropped from the widest Transformer can still
conduct accurate translation with limited performance drops. The widest Transformer layer hasC =
Mmax andDi =Mmax as the input-output and attention feature dimension. The parameter matrices’
sizes can be determined accordingly. For instance, we denote the attention matrix parameters at layer
i of the widest Transformer as W i

k,max,W
i
q,max,W

i
v,max, which are all of size Mmax ×Mmax.

Narrower Sub-Transformer layers. Once the widest Transformer’s parameters are defined, a nar-
rower sub-Transformer’s layer i can be obtained by cropping a subset of parameters from the widest
layer i defined above. A narrower layer i would adopt a smaller input-output dimension C < Mmax

as well as a smaller attention feature dimension Di < Mmax. Without loss of generality, here we
only discuss how to obtain the attention-key parameters of the narrower layer i, W i

k ∈ RC×Di

and
b ∈ RD. The same operations can be generalized to obtain other parameters (W i

q , W i
v ,W i

o ,W i
1, W i

2,
etc.) of the narrower Transformer’s layer i. The attention-key parameters can be obtained as

W i
k =W i

k,max[1:C, 1:Di], bik = bik,max[1:Di],
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Figure 1: The proposed scalable Transformers (ST) can flexibly change different layers’ feature
width to meet different computational constraints. (Middle) The widest Transformer of a scal-
able Transformers. (Top) A narrower sub-Transformer with fixed input-output feature dimension
and varying attention feature dimensions for different layers. The weights of sub-Transformers
are directly cropped from the widest Transformer without re-training. (Bottom) A narrower sub-
Transformer with the same input-output and attention feature dimension for all layers.

where W i
k,max[1:C, 1:Di] is the C-row and Di-column top-left sub-matrix of the widest matrix W i

k,
and bik[1:Di] denotes the first Di dimensions of the widest bias vector bik. It is obvious that the
widest Transformer layers contains all the parameters and computations of the narrower ones, and
thus avoid introducing redundant parameters. The narrower sub-Transformers can then be obtained
by stacking such sub-Transformer layers with differentDi dimensions. Note that although the input-
output dimension C can be flexibly adjusted, we make the entire narrower sub-Transformer share
the same C dimensions across all layers because of the requirement of residual connections, while
Di can be different for different layers.

Input and output projections. Our scalable Transformers only modifies the width of the
Transformer layers. The dimension of the word embeddings remains to be Mmax for the sub-
Transformers. To maintain the word embedding dimensions, for the widest Transformer, we use
one additional linear projection to convert the word embeddings E to E′ = W ′e,maxE + b′e,max,
where W ′e,max ∈ RMmax×Mmax , b′e,max ∈ RMmax . Similarly, another linear projection is intro-
duced to transform the FFN output features O ∈ RN×Mmax to O′ = W ′o,maxO + b′o,max, which
are then used for final word predictions. For narrower sub-Transformers with smaller intermediate
feature width C < Mmax, we crop the parameters from the widest input and output projections for
sub-Transformers so that the the word embedding can be shared across different scales,

W ′e =W ′e,max[1:Mmax, 1:C], b′e = b′e,max[1:C],

W ′o =W ′e,max[1:C, 1:Mmax], b′o = b′o,max. (3)

Scalable Transformer variants. In our experiments, we mainly experiment with two types of
scalable Transformers. In the type-1 scalable Transformers, each sub-Transformer’s all layers adopt
the same width from M for the input-output and attention feature dimensions, i.e., C = D1 =
· · · = D12. Therefore, there would be |M| sub-Transformers of different widths in total after
the scalable Transformers is trained. In the type-2 scalable Transformers, we fix the input-output
dimension C = Mmax but allows freely choosing the attention dimension Di from any width in
M = {M1, · · · ,Mmax}. Therefore, |M|12 different sub-Transformers exist after the ST is trained.
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3.3 TRAINING SCALABLE TRANSFORMERS WITH SELF-DISTILLATION

Training the scalable Transformers is quite challenging as it requires all sub-Transformers with
shared parameters to have superior performance. Simply training of all sub-Transformers inde-
pendently cannot result in satisfactory performances because of the gradient interference between
sub-models. To tackle this issue, we propose a novel three-stage training strategy. The key idea of
training is to distill the knowledge from the widest Transformer and use them as the supervisions
for narrower sub-Transformers. Compared with ground-truth annotations, the predictions by the
widest Transformers are easier to fit for the sub-Transformers as all of them share parameters to
certain degrees. On the other hand, if the sub-Transformers are properly trained, their parameters
could also boost the performance of wider Transformers that contain them. We propose a three-stage
training strategy, where stage-1 focuses on training the widest Transformer and its sub-Transformers
independently, and stage-2 and stage-3 utilize word-level and sequence-level self-distillation.

Joint sub-Transformer pre-training. The stage-1 pre-training conducts jointly training on all the
sub-Transformers. At each iteration j, we randomly sample a few sub-structures and always in-
clude the widest Transformer Tmax for parameter updating. For each sub-Transformer, we randomly
sample the input-output dimension C and the attention width Di from {M1, · · · ,Mmax} for their
Transformer layers following the layer width constraints of type-1 or type-2 models, i.e., we ran-
domly sample from |M| and |M|12 sub-structures respectively for independent pre-training. All the
sampled architectures are trained with the cross-entropy loss Lce on ground truth words,

L1 = Lce(Tmax(S);G) +
∑

T∈T(j)

Lce(T (S);G), (4)

where G is the ground-truth sentence, Tmax(S) and T (S) denote the predicted words by the widest
Transformer Tmax and the sub-Transformer T given the input sequence S, and T(i) denotes the set
of sampled sub-Transformers at iteration j.

Although joint sub-model pre-training actually results in worse performance than training only the
widest Transformer, it pretrains all the sub-structures to have gradients of similar scales and also
makes compromises on the shared parameters. Our stage-1 pre-training is almost the same as
slimmable NN Yu et al. (2018); Yu & Huang (2019) because Transformer uses Layer Normliazation
to avoid Batch Normalization. If removing the separate BNs in slimmable NN, it is equivalent to
jointly train the largest model and its sub-models.

Annealed word-level self-distillation. In stage-1 pre-training, the widest model is always updated
in each iteration to ensure that it is more sufficiently trained than sub-Transformers. However, the
interference between the models with shared parameters prevents them from effective learning. To
mitigate the difficulty of training the sub-Transforms to fit the “hard” ground truth (one-hot vectors),
we propose to distill the knowledge from the widest Transformer for training its sub-Transformers.
Specifically, for each input sequence S, the soft predictions of the widest Transformer Tmax(S) is
used as additional training supervisions for its sub-Transformers T with the cross-entropy loss,

L2 =Lce(Tmax(S); G) + λ
(j)
2

∑
T∈T(j)

Lce(T (S); G) + (1− λ(j)2 )
∑

T∈T(j)

Lce(T (S); Tmax(S)),

where the first two terms are the same as stage-1 loss, Lce(T (S) ;Tmax(S)) denotes using the widest
model’s predictions as learning targets for its sub-Transformers T , and λ(j)2 is a relative weight at
iteration j balancing the soft supervisions. In early iterations, our pre-trained scalable Transform-
ers from stage-1 still struggles because the predicted word probabilities Tmax(S) might be noisy.
Therefore, we make λ(j)2 closer to 1 when j is small to more rely on the hard ground-truth words.
λ(j) then gradually decreases to involve the soft predictions as additional supervisions as

λ
(j)
2 =

{
1− 0.5 j

tj
, if j < tj ,

0.5, if j ≥ tj .
(5)

tj is an iteration threshold, after which λ(j)2 is fixed to be 0.5. In this way, the sub-Transformers
can gradually fit the soft predictions. Because the sub-Transformers’ are also parts of the widest
Transformer. The widest Transformer can also be improved, which in turn further provides more
accurate supervisions for training sub-Transformers.
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Sequence-level self-distillation. After stage-2 training, both the ground-truth labels as well as the
word-level soft predictions might still be noisy to hinder the further improvements of the models.
For stage-3 training, we conduct offline beam search with the widest Transformer to generate refined
sequence-level predictions for all the training sequences. For our widest Transformer, it is trained
with only the sequence-level refined predictions; for its sub-Transformers, they are trained with both
the offline beam-searched predictions and online word-level predictions with the below loss,

L3 = Lce(Tmax(S); T
beam
max (S)) + λ3

∑
T∈T(j)

Lce(T (S); T
beam
max (S))

+ (1− λ3)
∑

T∈T(j)

Lce(T (S); Tmax(S)), (6)

where the 1st term is the loss for training the widest model, the 2nd and 3rd terms are for training
the sub-Transformers with both offline sequence-level predictions T beam

max (S) and online word-level
predictions Tmax(S), and λ3 is for weighting the two loss terms and is empirically fixed to 0.1.

4 EXPERIMENTS

4.1 DATASET AND EXPERIMENT SETUP

Datasets. We test the ST on WMT 2014 English-German (En-De) and English-French (En-Fr)
datasets. We adopt the En-De pre-processed version by Vaswani et al. (2017) for fair comparison
with previous approaches. Ablation study and hyperparameter tuning are conducted on WMT En-
De validation (newstest2013) set and tested on the test (newstest2014). In En-Fr, we follow the
same hyper-parameters of En-De. All ablation studies and experiments are conducted with type-1
scalable Transformers. BPE Sennrich et al. (2015) with shared dictionary between source and target
was adopted for tokenization of both datasets. 32k and 40k joint dictionaries are created for En-De
and En-Fr tasks. We measure the translation with case sensitive BLEU. All experiments use beam
search 4 and length penalty 0.6. Following Vaswani et al. (2017), we apply compound splitting.

Implementation. Our scalable Transformers contains 6 encoder layers and 6 decoder layers. There
are 13 different widths in total, i.e. M = {256, 320, · · · , 1024}. The attention head dimension is
fixed to 64. We set different dropout rates within ST according to the features’ dimensions. For
En-De, we gradually increase the dropout rate 0 → 0.3 as the feature dimension 256 → 1024. For
En-Fr, since it has larger-scale training data, we set dropout rates to 0 for widths in [256, 576] and to
0.1 for widths in [640, 1024]. Our optimization follows Ott et al. (2018) and details are can be found
in supplementary materials. Before stage-3 training, for the input sequence, we conduct prediction
by the widest Transformer with beam search 4 and length penalty 0.6 to generate distillation targets.
The predicted sequences are refined to remove the those whose source/target length ratio> 20 or
length> 250 words. Our proposed and other compared methods’ performances are reported based
on the ensemble of the last 10 training epochs, following the experimental setting of Ott et al. (2018).

4.2 ABLATION STUDY ON WMT EN-DE

Independent vs. scalable Transformers. We first independently train separate Transformers,
which have unified feature widths of {256, 512, 768, 1024} for all layers but have fixed 1024-d word
embedding and the additional input-output projections for fairly comparing with our type-1 scalable
Transformers’ sub-Transformers. Our scalable Transformers shows much better performance than
the independently trained counterparts (see “Stage 1+2+3” vs “Indep.” in Table 1).

Stage-1 vs. stage-2 vs. stage-3 training. We then show the necessity of the proposed three-stage
training scheme. Simple joint training all sub-Transformers in stage-1 (equivalent to slimmable NN
Yu et al. (2018) as we discussed in Sec. 3.3) results in even worse performance than independent
training (“Stage 1” vs. “Indep.” in Table 1), which illustrate the training interference between differ-
ent sub-Transformers. Stage-2 training shows significant improvements over stage-1 results. Stage-3
training further improves the performance with offline sequence-level self-distillation (“Stage 1+2”
and “Stage 1+2+3” in Table 1). We also test discarding stage-1 training (“Stage 2+3”) and discarding
stage-2 training (“Stage 1+3”) from our three-stage training scheme. Both strategies lead to inferior
performances compared with our proposed three-stage training scheme.
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Feat. Dim. 256 320 384 448 512 576 640 704 768 832 896 960 1024
Dropout 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

With Input-output Projections
Indep. 23.32 25.54 26.14 26.74
Indep.+sep. teach 25.49 25.81 26.02 26.75
Scalable+sep. teach 25.53 25.49 25.71 25.78 25.99 26.02 26.05 26.01 26.19 26.21 26.19 26.33 26.59
Stage 1 23.76 23.85 24.27 24.57 24.86 25.25 25.56 25.94 26.23 26.21 26.50 26.58 26.61
Stage 1+2 24.76 24.93 24.93 25.35 25.61 25.58 25.84 26.00 26.34 26.37 26.45 26.53 26.65
Stage 2+3 24.91 24.59 25.11 25.12 25.32 25.36 25.41 25.53 25.57 26.01 25.99 26.19 26.21
Stage 1+3 25.41 25.29 25.85 25.89 26.01 25.99 26.11 26.23 26.31 26.45 26.44 26.41 26.59
Stage 1+2+3 25.59 25.59 26.06 26.05 26.15 26.11 26.06 26.23 26.30 26.49 26.61 26.65 26.71
Params (M) 45 51 59 68 79 91 104 119 135 152 171 191 209
FLOPs (G) 5.2 6.6 8.1 9.7 11.3 12.9 14.6 16.4 18.2 20.1 22.0 23.98 26.02

Without Input-output Projections
Indep. 23.35 25.56 26.12 26.73
I/O Cropping 25.11 25.07 25.18 25.42 25.71 26.02 25.98 26.07 26.32 26.22 26.31 26.48 26.46
Params (M) 19 28 37 48 61 75 90 106 124 144 163 186 209
FLOPs (G) 5.2 6.6 8.7 9.7 11.3 12.9 14.6 16.4 18.2 20.1 22.0 23.98 26.02

Table 1: Ablation study on En-De validation (newtest2013) set with beam search 4. FLOPs are
calculated with the assumption that source and target length are 20.

Independent models + separate widest teacher. The above experiments show that parameter-
sharing sub-models and the full model can mutually boost their performance via the proposed train-
ing scheme. To show the improvement is not from simple knowledge distillation, we train an in-
dependent widest Transformer to generate the refined sequence-level predictions. After the training
converges, we use the widest transformer as the teacher outputting both online soft and offline beam-
searched hard targets to guide the training of 12 independent models with varying widths 256-1024.
Results show that our scalable transformer can achieve better performance than independent distil-
lation (“Indep.+sep. teach” vs. “indep.”) due to the parameter sharing between models of different
width, especially on narrower models. (“Indep.+sep. teach” vs. “Stage 1+2+3” in Table 1).

Scalable Transformer + separate widest teacher. An alternative approach to the above study is to
keep the separate widest Transformer as the teacher to teach a proposed scalable Transformer. The
performances by this strategy (“scalable+sep. teach” vs. “Stage 1+2+3”) are only slightly lower
than our proposed self-distilled scalable model. The reason might be that, although the scalable
models share parameters and are jointly trained. The separate widest teacher’s outputs might be
less compatible with those of the narrower models than the scalable model’s widest Transformer.
In addition, this training strategy requires more training costs. For each forward process, only 46G
FLOPs are required for our proposed training scheme, while 72G FLOPs are needed for this separate
widest teacher strategy, as the separate teacher model needs to be separately forwarded to obtain the
word-level soft targets. Training the separate widest model also requires additional resources.

Advantages of type-2 ST. Our type-2 ST can more flexibly adjust its FLOPs because it can freely
choose different feature widths Di for different layers. Surprisingly, after the type-2 model is
trained, we found many of its sub-Transformers can even surpass the widest Transformer. Given the
widest Transformers of our trained type-2 model from the last 10 epochs, for each layer widthDi, we
randomly choose the feature dimension from {896, 960, 1024} and conduct evaluation with 1, 000
random such sub-Transformers on the En-De validation set. We choose the best sub-Transformer
on the validation (newtest2013) set and evaluate on the test (newtest2014) set. Such an optimal
sub-model achieves 26.9 and 29.7 on the validation and test sets (see Table 6 in supplemental mate-
rials), which are even higher than the widest Transformer. We also calculate the mean and standard
deviation of the BLEU scores of the top-10 sub-Transformers, which achieve 26.82 ± 0.036 and
29.60 ± 0.061 on validation and test sets. All top-10 sub-Transformers’ performances are higher
than those of the widest Transformer (26.7 for validation and 29.3 for test), demonstrating the ef-
fectiveness of our type-2 scalable Transformers. We will continue to investigate how to improve
the efficiency on searching the optimal sub-model. To verify that the performance improvement of
type-2 Transformer is not from the 1,000 searched sub-models, we store 1,000 checkpoints in the
last 3 epochs when training an independent widest transformer. We average the best 10 models out
of 1,000 checkpoints, which achieve 29.4 on En-De test set and is very similar to the baseline’s 29.3.
However, such a result is still worse than our searched optimal Type-2 sub-model’s 29.7.

Training time and memory of scalable Transformer Our proposed scalable Transformer has
209M parameters and is trained for 212 hours on 8 V100 GPUs. If one separately trains 12 Trans-
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Feat. Dim. 256 320 384 448 512 576 640 704 768 832 896 960 1024
Dropout 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3
Indep. 23.3 27.5 27.7 29.21
Stage 1 24.0 24.3 24.6 25.0 25.7 26.3 27.0 27.4 27.8 28.3 28.6 28.75 28.74
Stage 1+2 25.1 25.5 25.8 26.3 26.6 27.1 27.6 27.8 28.2 28.4 28.8 28.89 28.99
Stage 2+3 26.7 26.6 27.0 27.1 27.6 27.4 27.9 28.1 28.4 28.7 28.6 28.76 29.18
Stage 1+3 26.9 26.8 27.1 27.3 27.5 27.9 28.2 28.3 28.6 28.7 28.7 28.94 29.01
Stage 1+2+3 27.1 27.3 27.5 27.9 28.3 28.4 28.6 28.7 29.0 28.9 29.2 29.34 29.27

Table 2: Performance of type-1 scalable Transformers on En-De test (newtest2014) set.
Model EN-De En-Fr
Transformer Vaswani et al. (2017) 28.4 40.5
Weighted Transformer Ahmed et al. (2017) 28.9 41.0
Relative Transformer Shaw et al. (2018) 29.2 41.5
Scaling NMT Ott et al. (2018) 29.3 43.2
Evolved Transformer So et al. (2019) 29.8 -
(NAS on 200 TPUs)
Baseline 29.2 43.1
Type-1 Stage 1 (widest) 28.7 42.8
Type-1 Stage 1+2+3 (widest) 29.3 43.1
Type-2 Stage 1+2+3 (widest) 29.5 43.1
Type-2 Stage 1+2+3 (sub-model) 29.7 43.3

Table 3: Comparison between scalable Transformers with state-of-the-art methods on the test sets.

formers with varying width, it would use 1290M parameters and 712 hours for training, both of
which are much larger than those of our proposed method.

Other factors. We provide more ablation study in supplemental materials.

4.3 FINAL RESULTS ON WMT EN-DE AND EN-FR

We test the proposed scalable Transformers on WMT’14 EN-De test (newtest2014) set and En-Fr
test set. Performances of type-1 ST on En-De test (newtest2014) are listed in Table 2, which show
similar tendency as those on En-De validation set.

We further compare the widest model from our type-1 scalable Transformers and the randomly
searched optimal sub-model from our type-2 scalable Transformers with the original Trans-
former Vaswani et al. (2017), weighted Transformer Ahmed et al. (2017), relative position Trans-
former Shaw et al. (2018), scaling neural machine translation Ott et al. (2018) and evolved Trans-
former So et al. (2019) in Table 3. The baseline Transformer is based on Ott et al. (2018). Our
reproduction achieves 29.2 and 43.1 on En-De and En-Fr, comparable with the original results. The
simple joint training (denoted as “Type-1 Stage-1 (widest)”) results in slightly worse performance
than the independently trained baseline.

The widest Transformer from type-1 ST achieves 29.3 and 43.1 on En-De and En-Fr, which are
comparable with the baseline Transformer, but with 13 sub-models of different FLOPs and parame-
ter sizes. The best randomly searched sub-Transformer of our type-2 ST (denoted as “Type-2 Stage
1+2+3 (sub-model)”) on En-De can even reach 29.7, which has fewer parameters but outperforms
state-of-the-art standard Transformers with 1024-dimensional features. Evolved Transformer per-
formed architecture search with 200 TPUs to find the optimal translation architecture. It achieved
29.8 BLEU with 218M parameters. In contrast, our type-2 scalable Transformers is much easier
to implement with existing libraries, only used 3 days on 8 V100 GPUs for training, and achieved
comparable 29.7 BLEU with 221M parameters.

5 CONCLUSION

In this paper, we propose a novel scalable Transformers to achieve efficient and robust deploy-
ment of Transformers of different scales. We choose to make the scalable Transformers change
its scale by modifying its layer width. Through carefully designed word-level and sequence-level
self-distillation, the proposed scalable Transformers can be trained with an incremental increase of
training time. After training, sub-Transformers of different scales can be easily obtained by cropping
from the widest Transformer to achieve flexible deployment.
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Juan Antonio Pérez-Ortiz, Felipe Sánchez-Martı́nez, Gema Ramı́rez-Sánchez, and Francis M Ty-
ers. Apertium: a free/open-source platform for rule-based machine translation. Machine transla-
tion, 25(2):127–144, 2011.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1243–1252. JMLR. org, 2017.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pp. 646–661. Springer, 2016.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q Wein-
berger. Multi-scale dense networks for resource efficient image classification. arXiv preprint
arXiv:1703.09844, 2017.

Lukasz Kaiser, Aidan N Gomez, and Francois Chollet. Depthwise separable convolutions for neural
machine translation. arXiv preprint arXiv:1706.03059, 2017.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation.
arXiv preprint arXiv:1806.00187, 2018.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. arXiv preprint arXiv:1803.02155, 2018.

9



Under review as a conference paper at ICLR 2021

David R So, Chen Liang, and Quoc V Le. The evolved transformer. arXiv preprint
arXiv:1901.11117, 2019.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Qizhe Xie, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Self-training with noisy student
improves imagenet classification. arXiv preprint arXiv:1911.04252, 2019.

Chenglin Yang, Lingxi Xie, Siyuan Qiao, and Alan L Yuille. Training deep neural networks in gen-
erations: A more tolerant teacher educates better students. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 5628–5635, 2019a.

Chenglin Yang, Lingxi Xie, Chi Su, and Alan L Yuille. Snapshot distillation: Teacher-student
optimization in one generation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2859–2868, 2019b.

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 1803–1811, 2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

A OPTIMIZATION DETAILS

ADAM Kingma & Ba (2014) optimizer is adopted with β1 = 0.9, β2 = 0.98, ε = 10−8. Other
optimization details can be found in Table 4. The learning rate of each stage linearly increases for
the first 4, 000 iterations from 5 × 10−4 to the maximum learning rate of each stage (denoted as
“max lr” in Table 4). After reaching the maximum learning rate, the learning rate decays according
to

lr =
lrmax ×

√
4000√

#iteration
(7)

where lrmax stands for the maximum, 4000 is the number of iterations for warming up, #iteration
stands for the current iteration number. The learning rate scheme follows the original Transformer
Vaswani et al. (2017). The total training epoch for each stage is denoted as “Epoches” in Table 4.
Label smoothing of 0.1 is conducted following Ott et al. (2018). Weight decay is not used for all
experiments. We train the proposed scalable Transformer with 8 V100 GPUs, each of which holds
3584 and 5120 tokens for En-De and En-Fr, respectively. We adopt gradient accumulation of 16 to
further increase the training batch size. λ2 or λ3 weight the contributions of the cross-entropy loss
and self-distillation loss and their settings are recorded in Table 4 (denoted as “λ2/λ3”).

B ADDITIONAL ABLATION STUDIES AND EXPERIMENTS

Dropout scheme. Dropout has major impact on the final performance for training Transformers.
Our scalable Transformer gradually increase the dropout rates from 0.1 to 0.3 as the feature dimen-
sions increase from 256 to 1024. We test two alternative dropout strategies. The first one is to
set dropout rates as 0.3 for all feature dimensions in {256, · · · , 1024}. Another strategy is to set
dropout rate to 0 for all feature dimensions except for dimension 1024, which has a dropout rate of
0.3. The results on En-De validation set is shown in Table 5, which show that our proposed dropout
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Training stage Epoches max lr λ2/λ3
EN-De stage-1 60 0.007 n/a
En-De stage-2 60 0.007 0.5
En-De stage-3 30 0.004 0.9
En-Fr stage-1 30 0.006 n/a
En-Fr stage-2 30 0.006 0.5
EN-Fr stage-3 15 0.004 0.9

Table 4: The hyperparameters for optimization on En-De and En-Fr datasets.

Feat. Dim. 256 320 384 448 512 576 640 704 768 832 896 960 1024
Proposed Dropout Stratety

Dropout 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3
Stage 1+2+3 25.59 25.59 26.06 26.05 26.15 26.11 26.06 26.23 26.30 26.49 26.61 26.65 26.71

Uniform Maximal Dropout
Dropout 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Stage 1+2+3 23.87 23.97 24.28 24.32 24.15 24.32 24.69 25.74 26.23 25.96 26.45 26.32 26.47

Widest Dropout Only
Dropout 0 0 0 0 0 0 0 0 0 0 0 0 0.3
Stage 1+2+3 24.89 24.91 24.95 25.02 25.17 25.28 25.34 25.56 25.88 26.10 26.22 26.01 26.35

Table 5: Tuning dropout rates on type-1 scalable Transformer when training on En-De validation
(newtest2013) set with beam search 4.

strategy leads to better performance than those simplified ones on all widths of the type-1 scalable
Transformer.

Effects of input-output linear projections. Our scalable Transformers introduces two additional
linear projections W ′o and W ′e to ensure that the same word embedding can be used across sub-
Transformers. We show that the gain is not from the extra linear projections. We indepen-
dently train another 4 Transformer to have the same word embedding and feature dimensions of
{256, 512, 768, 1024} respectively. Those 4 Transformers do not need the additional linear projec-
tions. The two “Indep.” in Table 1 show that they have almost the same performance as indepen-
dent Transformers with projections. Another possible way to replace the input-output projections
is to crop the top corner of the embedding matrix to obtain narrower word embedding for the sub-
Transformers. This strategy (“I/O Cropping” in Table 1) show inferior accuracy compared with the
proposed additional input-output linear projections.

Beam search. We also test the impact of using beam search during inference. The results are listed
in Tables 6 and 7. Beam search generally improves the translation accuracy, especially on stage-1 or
stage-2 results. After stage-3 training, the improvements of “Stage 1+2+3” with beam search over
“Stage 1+2+3” without beam search become marginal on the two datasets (+0.17 for En-De test set
and +0.04 for En-Fr test set), which indicate that our three-stage training strategy can eliminate the
need for beam search at inference to certain extent.

Width adaptive or depth adaptive? In our proposed scalable Transformer, we decide to tune layer
width of the Transformer to achieve adjustable FLOPs and parameter sizes. To show tuning layer
width is better than tuning network depth, we implement two independent Transformers with ap-
proximately the same number of parameters. One contains 6 encoder and 6 decoder layers with
feature dimension 512. The other one contains 3 encoder and 3 decoder layers with feature di-
mension of 768. Their translation accuracy on En-De test (newtest2014) set is reported in Table 8,
which show that decreasing the depth of the Transformer significantly impacts the translation accu-
racy 29.2 → 26.3, while decreasing the layer width has smaller performance drop 29.2 → 27.4.
Therefore, it is better to tune the width of the Transformer layers than the overall depth of the Trans-
former to better maintain the translation accuracy.

Top-10 randomly searched type-2 sub-Transformers. We conduct random search on type-2 scal-
able Transformer’s sub-models to find the optimal performance as stated in Sec. 4.2 of the main
paper. Table 9 shows the top-10 sub-models’ layer widths and their performances on En-De valida-
tion and test sets. The results clearly show that many sub-Transformers of our type-2 ST can even
surpass the widest Transformer, which worth further studying how to effectively conduct sub-model
search in the future.
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Feat. Dim. 256 320 384 448 512 576 640 704 768 832 896 960 1024
Dropout 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

Beam Search 4
Stage 1 24.0 24.3 24.6 25.0 25.7 26.3 27.0 27.4 27.8 28.3 28.6 28.75 28.74
Stage 1+2 25.1 25.5 25.8 26.3 26.6 27.1 27.6 27.8 28.2 28.4 28.8 28.89 28.99
Stage 1+2+3 27.1 27.3 27.5 27.9 28.3 28.4 28.6 28.7 29.0 28.9 29.2 29.34 29.27

Beam Search 1
Stage 1 23.3 23.4 23.7 24.3 24.8 25.5 26.1 26.9 27.2 27.2 27.3 27.58 27.90
Stage 1+2 23.7 24.2 24.6 25.1 25.5 26.0 26.7 27.0 27.2 27.4 27.6 28.02 28.19
Stage 1+2+3 26.7 26.8 27.1 27.4 27.8 28.0 28.1 28.3 28.6 28.7 28.8 28.89 29.10
Params (M) 46 52 60 69 79 91 104 119 135 152 171 191 209
FLOPs (G) 5.2 6.6 8.1 9.7 11.3 12.9 14.6 16.4 18.2 20.1 22.0 23.98 26.02

Table 6: Performance of type-1 scalable Transformer on En-De test (newtest2014) set with beam
search 4 and 1.

Feat. Dim. 256 320 384 448 512 576 640 704 768 832 896 960 1024
Dropout 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Beam Search 4
Indep. 43.11
Stage 1 39.1 38.9 39.2 39.6 39.9 40.5 40.9 41.4 41.8 42.0 42.3 42.41 42.84
Stage 1+2 39.4 39.5 40.0 40.2 40.6 41.0 41.3 41.9 42.2 42.4 42.6 42.65 42.95
Stage 1+2+3 40.9 41.0 41.3 41.5 41.7 41.7 42.0 42.2 42.4 42.5 42.9 43.03 43.07

Beam Search 1
Stage 1 38.0 38.0 38.5 38.9 39.3 39.7 40.5 40.8 41.3 41.5 41.7 41.92 42.11
Stage 1+2 38.6 38.6 39.1 39.4 39.8 40.2 40.7 41.1 41.4 41.7 41.9 42.10 42.40
Stage 1+2+3 40.4 40.6 40.8 41.0 41.4 41.5 41.9 42.1 42.3 42.4 42.7 42.84 43.03
Params (M) 57 63 71 80 91 103 116 130 146 164 182 202 224
FLOPs (G) 5.2 6.6 8.1 9.7 11.3 12.9 14.6 16.4 18.2 20.1 22.0 23.98 26.02

Table 7: Performance of type-1 scalable Transformer on En-Fr test set with beam search 4 and 1.

Encoder-decoder Layers Layer Width EN-De Test Parameter (M)
6-6 512 27.5 61
3-3 768 26.3 73

Table 8: Performance of (top) deep but thin Transformer versus (bottom) shallow but wide Trans-
former with similar parameter sizes on En-De test set. The former network has smaller performance
drop.

Model newtest 2013 newtest 2014 FLOPs(G)
Widest: [1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024] 26.73 29.44 26.02
[1024, 1024, 1024, 1024, 896, 1024, 1024, 960, 1024, 1024, 1024, 896] 26.87 29.66 25.30
[1024, 1024, 1024, 1024, 960, 896, 1024, 896, 960, 1024, 960, 960] 26.85 29.64 24.86
[1024, 1024, 1024, 1024, 960, 896, 1024, 896, 960, 1024, 1024, 896] 26.85 29.62 24.86
[1024, 1024, 1024, 1024, 960, 1024, 1024, 896, 1024, 1024, 960, 896] 26.83 29.62 25.06
[1024, 1024, 1024, 1024, 960, 896, 1024, 896, 960, 1024, 960, 896] 26.83 29.60 24.69
[1024, 1024, 1024, 1024, 1024, 1024, 1024, 896, 1024, 1024, 1024, 960] 26.82 29.58 25.15
[1024, 1024, 1024, 1024, 1024, 1024, 1024, 960, 1024, 1024, 960, 960] 26.80 29.54 25.50
[1024, 1024, 1024, 1024, 960, 1024, 1024, 1024, 1024, 1024, 1024, 896] 26.77 29.69 25.57
[1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 960, 1024, 896] 26.77 29.47 25.50
[1024, 1024, 1024, 1024, 1024, 1024, 1024, 896, 1024, 1024, 1024, 960] 26.76 29.64 25.50

Table 9: BLEU scores of the top-10 randomly searched sub-Transformers from our type-2 scalable
Transformer on En-De validation (newtest2013) and test (newtest2014) sets.

12


	Introduction
	Related Work
	Scalable Transformer
	A Revisit of Transformer for Machine Translation
	scalable Transformers
	Training scalable Transformers with Self-distillation

	Experiments
	Dataset and Experiment Setup
	Ablation Study on WMT En-De
	Final Results on WMT EN-De and En-Fr

	Conclusion
	Optimization Details
	Additional Ablation Studies and Experiments

