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Abstract: Natural language provides a flexible interface for specifying robot1

tasks, but language-conditioned reward learning often assumes that instructions are2

unambiguous and directly informative. In reality, human language is frequently3

ambiguous — and may specify not just what to do, but also what matters in the4

environment. In this work, we propose a method that leverages this duality: we use5

large language models (LLMs) to extract state feature-level relevance masks from6

language and demonstrations, and train a reward function that is both conditioned7

on clarified task language and explicitly invariant to irrelevant parts of the state. We8

show that this approach improves generalization and sample efficiency in inverse9

reinforcement learning, particularly in settings with ambiguous instructions, distrac-10

tor objects, or limited data. Our results highlight that disambiguating language with11

contextual demonstrations — and using language to guide both goal inference and12

state abstraction — enables more robust reward learning from natural instructions.13

Keywords: Inverse Reinforcement Learning, Multi-Modal Feedback, Language14

Conditioning, Reward Learning15

1 Introduction16

In robotics, natural language provides a flexible and intuitive interface for specifying the tasks.17

However, language-conditioned reward learning typically assumes language instructions are clear18

and unambiguous. In practice, human language is often inherently ambiguous – an instruction can19

specify not only what the robot should do but also which elements of the environment matter for the20

task. Addressing this ambiguity is essential for effective reward learning from limited demonstrations21

and generalization to novel tasks or contexts.22

Language-conditioned reward learning has gained significant interest in recent robotics literature. Fu23

et al. [1] show that learning a reward model conditioned on language yields behavior that transfers24

to novel tasks, whereas directly training a language-conditioned policy was less effective. Poddar25

et al. [2] learns a latent space that maps language instructions into hidden states to condition the26

reward model. Although language is frequently used as an additional modality in robot learning,27

existing approaches typically treat language simply as another input to a policy or reward model,28

without explicitly structuring the learning around the state features indicated as important by language.29

Consequently, these models implicitly infer feature relevance, which can lead to spurious correlations.30

To address this gap, we propose a method that leverages the duality of language instructions in reward31

learning: their ability to specify tasks as well as to indicate relevant environmental state features.32

Specifically, our approach uses large language models (LLMs) to extract explicit relevance masks at33

the state feature level from language instructions and demonstrations during training. These masks34

identify which environmental features are task-relevant according to the provided instruction. Using35

these masks, we train a reward function conditioned on language instructions that explicitly ignores36
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Figure 1: Overview. For a robotic task, language can specify not only what to do, but also what matters in the
environment. When there are multiple objects (e.g., vase and laptop) and human in the environment, an instruction
“stay away from the laptop” states that ’laptop’ is the only important feature. Even for ambiguous instructions
such as “stay away”, when combined with a contextual demonstration (blue trajectory), the instruction can be
clarified to include the missing referent, e.g., laptop.

irrelevant state features. At inference time, our model can handle not only clear instructions but also37

ambiguous language instructions clarified by a single demonstration per instruction.38

We introduce Masked Inverse Reinforcement Learning (Masked IRL), a framework that integrates39

human demonstrations and language instructions to explicitly guide feature selection for reward40

learning. Masked IRL leverages language-derived masks to dynamically gate relevant features in the41

reward function. For example, given the instruction “stay away from the table” in the scene in Fig. 1,42

our model explicitly ignores laptop-related features and irrelevant end-effector coordinates while43

emphasizing the vertical distance between the robot and table surface. We propose a masking loss44

that penalizes variations in reward predictions resulting from perturbations in state features indicated45

as irrelevant by the language. This builds upon the concept of contextual reliability by Ghosal et46

al. [3], explicitly training models to identify and ignore spurious or contextually irrelevant features.47

By explicitly leveraging multimodal human feedback, Masked IRL substantially reduces demonstra-48

tion requirements, improves sample efficiency, and enhances generalization by focusing solely on49

relevant task features. We empirically validate our approach using a PyBullet simulation environment50

with a Franka Emika Panda robotic arm. Our experiments highlight Masked IRL’s effectiveness in51

settings with ambiguous language instructions, distractor objects, and limited demonstration data,52

demonstrating improved data efficiency, robustness, and generalization relative to standard IRL53

methods. In summary, our contributions are:54

• A method using large language models (LLMs) to disambiguate language instructions and55

explicitly extract state-feature relevance masks from instructions paired with demonstrations.56

• Masked IRL, an IRL framework that conditions rewards on clarified instructions and57

explicitly enforces invariance to irrelevant state features via a novel masking loss.58

• Empirical validation of Masked IRL’s effectiveness on simulated robotic manipulation59

tasks, demonstrating improved generalization, robustness, and data efficiency compared to60

traditional language-conditioned IRL approaches.61

2 Related Work62

2.1 Reward Learning from Human Feedback63

Inverse reinforcement learning (IRL) learns reward functions from expert demonstrations. Early64

works [4, 5, 6, 7] have shown promising results in robotics but suffer a trade-off between the number65

of expert demonstrations and identifiability [8, 9], i.e., the required amount of demonstrations to66
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identify the true objective function is huge. One fundamental limitation of IRL is that we can only67

train one reward function given a set of demonstrations, thereby requiring N set of demonstrations68

and N training processes to train N different reward functions. Bobu et al. [10] separates feature69

learning and reward learning, and uses human trajectory similarity queries to learn a task-agnostic70

feature space. However, they still require multiple demonstration sets for different user preferences71

and cannot generalize to unseen preferences. Beyond demonstrations alone, incorporating various72

modalities of human feedback (e.g., pairwise trajectory comparisons, language) has been shown73

to improve reward learning efficiency or reduce human’s cognitive effort. Reinforcement learning74

from human feedback (RLHF) methods [11, 12] use pairwise human preferences to guide reward75

learning, but these methods often require thousands of human feedback to learn a single reward76

function [13]. Previous works [14, 15, 16] leverage API-based LLMs to generate a reward function77

as a code or predict weights on sub-rewards. Yu et al. [15] use an LLM as a Reward Translator,78

mapping high-level instructions into dense reward functions that standard RL can optimize. Recent79

works [2, 17] combine pairwise comparisons with language. Poddar et al. [2] highlight the need for80

personalized reward learning, arguing that aggregating human preferences can obscure individual81

human preferences. Their method learns a variational latent user model that personalizes rewards82

to individual users. Yang et al. [17] incorporates comparative language feedback, where humans83

describe which trajectory is better and why. Their model embeds trajectory-language pairs into a84

shared space, enabling iterative refinement of the reward function.85

2.2 Language-Conditioned Learning in Robotics86

Integrating natural language with robot learning has gained significant interest as a way to bridge87

human intent with robots. Recent methods leverage language as a conditioning signal in policy88

learning and reward modeling. Fu et al. [1] propose a language-conditioned reward learning approach89

in which IRL is used to ground language commands, showing that the resulting reward functions90

transfer better to novel tasks. In parallel, systems like LILAC [18] allow human operators to provide91

online language corrections during task execution. While such approaches have shown promising92

results, they often use language merely as an auxiliary input without explicit structure for feature93

selection. Language has become an essential modality for training robots, as it enables humans to94

specify goals, provide feedback, and guide behavior. One prominent approach is to condition policies95

or reward functions on language instructions. Ahn et al. [19] introduce the Say-Can framework, which96

grounds high-level instructions using a large language model (LLM) and constrains execution using97

a value function, allowing robots to follow abstract human commands. Huang et al. [20] show that98

LLMs can serve as zero-shot planners by generating structured action sequences from instructions,99

while Huang et al. [21] introduce Inner Monologue, a framework that integrates environment feedback100

into LLM planning, significantly improving long-horizon task execution. Incorporating LLMs into101

robotic control has also gained traction. Liang et al. [22] propose Code-as-Policies (CaP), in which102

LLMs generate executable code (Python functions) for robotic policies, allowing for interpretable,103

structured control. This approach enables robots to generalize to unseen instructions by modifying104

their behavior through high-level program synthesis.105

Beyond LLM-based planning, recent work has explored language-conditioned reward learning.106

Yu et al. [15] introduce Language to Rewards, where an LLM parses high-level instructions and107

outputs a parametric reward function, bridging natural language and robotic reinforcement learning.108

Karamcheti et al. [23] propose Voltron, a vision-language model for representation learning that109

aligns video frames with text descriptions, facilitating language-driven imitation learning. Hwang et110

al. [24] learn a success detector or a reward function that understands semantic grounding of robot111

motions. Other approaches integrate demonstrations with corrective language feedback to directly112

gate task-irrelevant features [18]. In such systems, language helps the robot focus on task-relevant113

features, thereby reducing the number of demonstrations needed and improving generalization. This114

multimodal feedback approach is especially promising in robotics, where safety and efficiency115

are paramount. Our work builds on these ideas by combining demonstration data with language116

instructions to guide a feature gating mechanism, leading to a reward model that is both data-efficient117

and robust.118
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2.3 Abstractions in Robot Learning119

Another limitation of IRL comes from the spurious correlations of features. In many robotic tasks,120

not all sensory features are relevant for determining the reward. Ghosal et al.[3] aim to dynamically121

choose which features to rely on based on the current task or context. They have explored conditional122

gating mechanisms where a context variable modulates the importance of each input feature. Such123

approaches encourage sparsity in the feature set, thereby reducing the effective dimensionality of the124

learning problem. In robotics, this is particularly valuable since different tasks may require attention125

to different subsets of sensor modalities or object attributes. By integrating contextual reliability, one126

can obtain a more robust and interpretable model that adapts to the nuances of each task. Feature127

relevance varies with context, making contextual feature selection an essential component of robust128

learning. Unlike static feature selection, contextual feature selection dynamically selects which129

features are relevant based on auxiliary information such as the task or environment. In robotics,130

contextual feature selection is crucial for multi-task learning. Some skill learning frameworks enable131

robots to dynamically select relevant object attributes for different tasks, reducing learning complexity132

and improving generalization. Peng et al. [8] deals with overparameterization of reward by iteratively133

generating features and learning a reward on top of the current feature set. Peng et al. [8] uses134

language-guided contrastive explanations to iteratively extract and validate semantically meaningful135

features for the reward function. [25] uses background knowledge of language models to build state136

representations for unseen tasks. We aim to learn which state features matter under different user137

preferences, thereby improving sample efficiency and interpretability.138

3 Problem Formulation139

We consider the problem of learning reward functions that capture the unknown preferences held by140

a human given a small number of user demonstrations and language.141

3.1 Preliminaries142

We model our problem as a Markov Decision ProcessM = ⟨S,A, T ,R⟩ with states s ∈ S , actions143

a ∈ A, transition probability T : S × A × S → [0, 1], and rewards R : S × A → R. A solution144

to the MDP is a policy π : S → A that specifies what actions the robot should take in different145

states. The reward function is typically parameterized (e.g. a neural network)Rθ(s), and is intended146

to capture the human’s preference for how the robot should perform the task. To optimize task147

performance, the robot seeks a trajectory τ = {s0, . . . , sT } that maximizes the cumulative reward148

Rθ(τ) =
∑

st∈τ Rθ(s
t) and executes the corresponding actions.149

3.2 Maximum Entropy Inverse RL (MaxEnt IRL)150

In practice, the reward functionRθ is typically unknown to the robot or very challenging to manually151

specify. Thus, in IRL the robot’s goal is to learn this reward function from human feedback, such as152

demonstrations. Given a dataset of human-demonstrated trajectories D = {τi}Ni=1, the robot treats153

them as evidence of the human’s preferred behavior and attempts to infer the reward parameters θ that154

explain the underlying objective. We adopt the maximum entropy (MaxEnt) framework for modeling155

human decision-making [7, 5], where the human is assumed to be a noisily optimal agent who selects156

trajectories with probability proportional to their exponentiated reward:157

p(τ | θ) = eRθ(τ)∫
τ̄
eRθ(τ̄)dτ̄

∝ exp(Rθ(τ)) (1)

This model captures the intuition that while humans generally act optimally, suboptimal trajectories158

are still possible, but occur with exponentially lower probability as their reward decreases [7]. To159

recover the reward parameters, we maximize the log-likelihood of the demonstrations:160

θ∗ = argmax
θ

L(θ) = argmax
θ

∑
τ∈D

log p(τ | θ) . (2)
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Since the partition function in the denominator is intractable to compute exactly, we follow prior161

work [5, 26] and use importance sampling to approximate it. Once the reward is learned, the162

robot can act according to the policy that optimizes it. While MaxEnt IRL provides a principled163

framework for inferring rewards from demonstrations, learning a flexible reward function directly164

from high-dimensional states typically demands thousands of demonstrations per task [27, 28, 29],165

which is costly and impractical to scale. With limited data, learned rewards often capture spurious166

correlations between state features that accidentally co-occur with task success rather than reflecting167

true human intent. This fundamentally limits generalization, particularly in environments with168

distractors, ambiguous cues, or structural variations.169

To address this, we propose leveraging natural language as an additional, structured form of supervi-170

sion. Our key insight is that language plays a dual role in reward learning: 1) it conveys information171

about the human’s intent, enabling a shared reward model to generalize across tasks via language172

conditioning; and 2) it implicitly communicates which aspects of the state are task-relevant, providing173

a signal for filtering out irrelevant environmental variation. By exploiting this natural duality, we learn174

a language-conditioned reward function that both shares structure across tasks and ignores spurious175

correlations, resulting in more generalizable rewards from significantly fewer demonstrations.176

4 Method177

We present Masked Inverse Reinforcement Learning for Language Conditioned Reward Learning178

(Masked IRL), a method which leverages demonstrations paired with human language instructions to179

learn a language-conditioned reward function. Our approach exploits language’s two distinct signals:180

language commands condition the preference captured by the reward model, and a language-informed181

masking loss is used to enforce invariance to task-irrelevant state aspects. We generate this mask182

directly from language commands and implement a masking loss that forces the reward function183

to ignore spurious state elements. By combining this masking loss with a language-conditioned184

architecture, Masked IRL achieves improved sample efficiency, requiring fewer demonstrations to185

learn generalizable rewards.186

4.1 Preliminaries187

We assume the human maintains a set of ground truth state features ϕ(s) which are only known188

to the human, not the observing agent. We assume the ground truth reward for preference i is a189

function of these features, R∗
i (ϕ(s)), where R∗

i (τ) =
∑

st∈τ R∗
i (ϕ(s

t)). Given a set of training190

preferences Ptrain = {1, 2, ..., N}, we collect a training dataset D = {τi, ℓi}Ni=1, where each paired191

demonstration τi and language command ℓi correspond to preference i ∈ Pi. We aim to learn a192

general reward functionRθ(s|ℓj) that captures the ground truth reward for a new preference j where193

j /∈ Ptrain. Our goal is to learn a reward function that can generalize to unseen preferences given just194

a single language command ℓj . Since we lack access to the ground truth state features, our inferred195

reward is state-based Rθ(τ |ℓj) =
∑

st∈τ Rθ(s
t|ℓj). We assume that all ground truth training and196

test preferences are functions of the same set of ground truth human features, representing a consistent197

intermediate representation unknown to the agent. We use language commands in our training dataset198

in two distinct ways. First we condition our model on these language inputs, following established199

practices in prior methods. Novel to our approach is our second usage – we convert language200

commands into state-based masks that inform a specialized training loss, promoting invariance to201

irrelevant state elements.202

4.2 Language for State Masking203

We extract state relevance from language by translating language commands into binary feature204

masks. For each demonstration-language pair {τ, ℓ} ∈ D we use language command ℓ to generate a205

binary mask m ∈ {0, 1}d, where d is the dimension of the input state s. Each mask element is 1 for206

state indices relevant to the specified preference, and 0 otherwise. We augment our dataset with these207
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Figure 2: Network Architecture. We condition the reward model on language instructions using FiLM layers.
The conditioned reward model infers a scalar reward of a robot’s 9-dim state.

language-generated masks to create D′ = {τi, ℓi,mi}Ni=1. These masks are produced by leveraging208

large language models ..209

To ensure that the reward model is invariant to features deemed irrelevant by the language command,210

we introduce a masking loss. Let s(j) denote a perturbed version of state s ∈ τ , where element j is211

modified (such as through the addition of Gaussian noise) and all other elements remain unchanged.212

The masking loss becomes213

Lmask(θ) =
∑

τ,ℓ,m∈D′

∑
s∈τ

d∑
j=1

(
1−mj

)∣∣∣Rθ(s
(j) | ℓ)−Rθ(s | ℓ)

∣∣∣, (3)

where mj represents the jth element of m. This loss term penalizes changes in the reward when214

irrelevant features are perturbed, forcing the reward model to ignore these features.215

The final training loss becomes216

J (θ) = LIRL(θ) + λLmask(θ), (4)

where λ > 0 is a hyperparameter controlling the trade-off between fitting the demonstrations and217

enforcing invariance to irrelevant state elements.218

4.3 Masked IRL for Language Conditioned Reward Learning219

We pair our masking loss with a language-conditioned architecture to additionally leverage the220

intent captured by language instructions. Specifically, we apply Feature-wise Linear Modulation221

(FiLM) [30] to the first fully connected (FC) layer of the reward model (see Fig. 2) to condition the222

reward model based on the language inputs. This FiLM layer applies language-dependent affine223

transformations to intermediate network features, allowing language commands to dynamically224

modulate reward components directly. As opposed to simply concatenating the language command225

with the input state, FiLM targets conditioning input to explicitly modulate intermediate network226

features, providing the ability to scale features, negate them, or shut them off entirely. This method227

enables using language for a dual purpose: both as a gating mechanism that filters out irrelevant228

state aspects, and as an adaptation function that adjusts intermediate feature weights based on the229

preference captured in language. Algorithm 1 shows the training procedure for Masked IRL.230

4.4 Clarifying Ambiguous Language Instructions231

For ambiguous language instructions, we systematically generate the instructions within two types:232

(1) referent omitted and (2) expression omitted. Referent omitted instructions do not include the233

object that the user actually cares about, and only include instructions such as “stay away”, “stay234

close”, and “carry it upright”. Expression omitted instructions have the information about what object235

the user wants to refer to, but does not mention how the user wants the relationship between the236

robot and the object to be. For instance, “table”, “laptop”, or “human” can be expression omitted237

instructions. To generate state masks from ambiguous instructions, we provide the information of238

a demonstration trajectory as tabular data in text, along with the instruction to an LLM. We use239
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Chain-of-thought reasoning to let LLM generate the response step-by-step, including its reasoning240

process to generate the clarified language instruction. For instance, given the instruction ‘stay away’241

and a demonstration where the robot moves away from the table, the LLM might reason: ‘The robot242

avoids the table. Therefore, the instruction likely refers to avoiding the table.’ The clarified instruction243

becomes ‘stay away from the table’, which is then mapped to a binary mask emphasizing the end244

effector’s z position and de-emphasizing human or laptop locations. Then, we query the LLM again245

to convert the clarified language instruction into a 9-dim state mask that represents the importance of246

each state dimension.247

Algorithm 1: Masked IRL with Language Conditioning

Input: Demonstrations {(τi, θi)}Ni=1, training trajectories T , language encoder E, reward
network R, learning rate η, iterations I , batch size B, masked loss weight λ, noise scale
σ.

for epoch 1 to I do
Shuffle demo and training indices
for each minibatch b of size B do

Form demo inputs: Xb
d = {(s̄i, ci)} and compute cost Cb

d = R(Xb
d)

Form training inputs Xb
t = {(s̄j , cj)} with cost Cb

t = R(Xb
t )

Compute maxent loss:

Lb
IRL = mean(Cb

d) + log
(
mean(exp(−Cb

t ))
)

Perturb demo states: s̄′i = s̄i + ϵ, ϵ ∼ N (0, σ2I) (only in dimensions where
Π(θi) = 0);

Compute perturbed cost C ′
d
b = R({s̄′i, ci}) and masked loss:

Lb
mask = mean

(∣∣Cb
d − C ′

d
b
∣∣)

Update parameters: θ ← θ − η∇
(
Lb

IRL + λLb
mask

)
end

end
return θ.

248

5 Experiments249

We evaluate our method on a robotic task to move a coffee from a start to a goal location in a PyBullet250

simulator, where there is a human, a table, and a laptop in the environment. Each state consists of251

the position and rotation of the robot’s end effector, objects (table and laptop), and a human in the252

environment. In each task, only a subset of features is relevant to the reward. Human instructions253

(e.g., “stay away from the laptop”) are provided to guide the feature gating.254

5.1 Dataset.255

We generate a dataset of 20 object configurations and 10 start-goal pairs per configuration for a task256

of moving a coffee mug, each with 5 robot trajectories, in PyBullet simulator. We also generate257

242 language instructions that are mapped into ground truth reward functions that define human258

preferences. For clear language instructions, we construct the dataset with 50 train instructions and259

30 test instructions. Each instruction has a corresponding 5-dim theta value that describes human’s260

ground truth reward function. We use GPT-4o API to infer the state mask only from each clear261

instruction, without any information about the ground truth reward. For inferring state masks from262

ambiguous instructions, we pair each instruction with its corresponding expert demonstration and pass263

the information of the language instruction and demonstration to GPT-4o as described in Section 4.4.264

We train each model with 10 demonstrations per human preference.265
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5.2 Baselines266

Traditional IRL learns a single reward function from demonstrations, without contextual modulation.267

This often results in a reward model that uses all features indiscriminately, making it vulnerable to268

spurious correlations when demonstrations cover multiple tasks or environments. To demonstrate269

the effectiveness of masking loss, we compare Masked IRL and MaxEnt IRL on two different types270

of reward model - single model and multiple model. We refer to ‘single model’ as a language-271

conditioned reward model, regardless of the usage of masking loss. ‘Multiple model’ refers to a272

set of language-unconditioned reward models, where each element of the set is a reward model that273

corresponds to a specific language instruction, i.e., user preference. For multiple model methods,274

we only evaluate on seen human preferences, since unseen human preferences do not have any275

corresponding trained reward model. However, for single model methods, we evaluate on both seen276

and unseen human preferences, i.e., language instructions. Since we focus on the single model277

experiments in this section, experiment details and results for multiple models are in the appendix.278

For single model approaches, we compare:279

• LC-RL [1] (Language-conditioned). A 4-layer MLP reward model is conditioned on280

language embedding using FiLM. We use the standard maximum entropy loss function to281

train this model.282

• Masked IRL (Language-conditioned, Oracle Mask). Same architecture as the LC-RL283

baseline but uses the weighted masking loss in addition to the maximum entropy loss for284

training. Oracle state mask is used.285

• Masked IRL (Language-conditioned, LLM Mask). Same architecture as the LC-RL286

baseline but uses the weighted masking loss in addition to the maximum entropy loss for287

training. LLM generated state mask is used.288

• Explicit Mask (Language-conditioned, Oracle Mask). Same architecture and training289

loss as the LC-RL baseline but uses oracle state mask to mask out irrelevant state dimensions290

given a language instruction.291

• Explicit Mask (Language-conditioned, LLM Mask). Same architecture and training loss292

as the LC-RL baseline but uses LLM generated state mask to mask out irrelevant state293

dimensions given a language instruction.294

• MaxEnt IRL (No Language). We use the standard maximum entropy loss function to train295

a 4-layer MLP reward model. This model is not conditioned on language.296

• MaxEnt IRL (No Language). Same architecture as the MaxEnt IRL baseline but uses the297

weighted masking loss in addition to the maximum entropy loss for training. Oracle state298

mask is used.299

• Explicit Mask (No Language). Same architecture and training loss as the MaxEnt IRL300

baseline but uses oracle state mask to mask out irrelevant state dimensions given a language301

instruction.302

For simplicity, we omit ‘language-conditioned’ when we refer to language-conditioned single model303

baselines.304

5.3 Evaluation Metrics.305

We evaluate all models by calculating the average win rate, where the average win rate measures306

how often our learned reward model correctly prefers better trajectories compared to ground-truth307

preferences. We measure the average win rate on three different reward densities: sparse, medium,308

and dense, where sparser reward density implies less features are important in the environment. The309

sparsity of the ground truth reward model is chosen based on the number of valid features from 1 to 5310

(sparse: 1, 2, medium: 3, dense: 4, 5). We also We run all experiments with 5 different random seeds311

(12345, 23451, 34512, 45123, and 51234) and show the average and standard error across seeds.312

8



30

40

50

60

70

80

90

Av
er

ag
e 

W
in

 R
at

e

48
51

46

70 71

77
74

76

Reward Density: Dense

50 51 51

72 72
77

74
77

Reward Density: Medium

52
49

54

70 71

79
77

80

Reward Density: Sparse

MEIRL (No Language)
Explicit Mask (No Language)

Masked IRL (No Language)
LC-RL

Explicit Mask (LLM Mask)
Explicit Mask (Oracle Mask)

Masked IRL (LLM Mask)
Masked IRL (Oracle Mask)

(a) Average Win Rate on Train Preferences after
Pretraining

30

40

50

60

70

80

90

Av
er

ag
e 

W
in

 R
at

e

51 50 50

70
67

73 74 74

Reward Density: Dense

49 49 49

72
69

77 78 79

Reward Density: Medium

48
53

48

66

75 75
80 79

Reward Density: Sparse

MEIRL (No Language)
Explicit Mask (No Language)

Masked IRL (No Language)
LC-RL

Explicit Mask (LLM Mask)
Explicit Mask (Oracle Mask)

Masked IRL (LLM Mask)
Masked IRL (Oracle Mask)

(b) Average Win Rate on Test Preferences after
Fine-Tuning

Figure 3: Experiment Results. (a) and (b) show the average win rate of single model methods on different
reward densities after pretraining on 40 train preferences for 1k epochs and fine-tuning on 30 test preferences for
100 epochs, respectively. All models are trained with 10 demonstrations per user preference and evaluated with
unseen trajectories with novel object configurations. Error bars show the standard error across 5 different seeds.

5.4 Results313

The effectiveness of Masking Loss on Single Model. Fig. 3 shows the average win rate across314

reward densities (dense, medium, sparse) for both (a) train and (b) test preferences. Across all315

reward densities and both train and test preferences, Masked IRL consistently outperforms the LC-RL316

baseline that lacks masking loss. Explicit Mask that uses oracle state mask also outperforms LC-RL317

but shows significant performance decline when LLM generated masks are used. In contrast, Masked318

IRL outperforms LC-RL with both oracle and LLM generated masks, demonstrating its robustness319

to the quality of the state masks. This implies that the masking loss effectively reduces spurious320

correlations by enforcing invariance to irrelevant features, thereby enhancing the stability and efficacy321

of reward learning. All language unconditioned baselines show poor performance compared to322

language conditioned models, which shows the effectiveness of training a language conditioned323

reward model for multiple preferences. Fig. 4 shows the reward variance when valid (state mask324

element is 1) and invalid (state mask element is 0) state dimensions are perturbed in test trajectories.325

With oracle masks, Masked IRL shows the strongest invariance when invalid state dimensions are326

perturbed.327
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Figure 4: Reward Variance when Valid or Invalid
State Dimensions are Perturbed. The plots show
reward variance when state dimensions that are
valid or invalid given language instructions are per-
turbed. Higher variance when valid dimensions
are perturbed and lower variance when invalid di-
mensions are perturbed imply the reward model is
more sensitive to valid changes and less sensitive
to invalid changes in the environment, respectively.

Performance on ambiguous instructions.328

When we use our Masked IRL single model329

trained with 10 demonstrations per human pref-330

erence to evaluate trajectories given a single331

ambiguous language instruction and an expert332

demonstration to disambiguate language, we get333

an average win rate of 63.1% on the instruc-334

tions. The lower performance compared to the335

performance on clear test instructions may be336

due to the inaccuracy of clarifying ambiguous337

instructions to clear instructions using LLMs.338

Future Work and Limitations Although our339

Masked IRL framework effectively improves340

generalization and sample efficiency, several341

limitations remain. First, our reliance on LLMs342

introduces potential inaccuracies in generating343

relevance masks, particularly when instructions344

are ambiguous or nuanced, which can affect the345

overall robustness of the reward model. Future346

work could explore methods for refining mask347

accuracy through interactive human feedback or advanced prompting strategies. Additionally, our348

current evaluations focus on relatively constrained robotic tasks; extending the approach to more349

complex, dynamic, or multi-agent environments could further validate the generality of Masked IRL.350

Lastly, investigating ways to integrate explicit uncertainty estimation in the masking process could351

enhance the reliability of our approach in real-world deployments.352
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Figure 5: Multiple model performance per feature counts. Comparing Masked IRL to MaxEnt IRL for
multiple model baselines, the average win rate is improved the most when there are least number of valid features
in the ground truth reward of the simulated human. As the number of valid features increase from 1 to 5, the
performance gap between Masked IRL and MaxEnt IRL decreases.

A Additional Experiments437

A.1 Multiple Model Experiments438

For multiple model approaches, we compare:439

• MaxEnt IRL (No Language, multiple model). We train a 3-layer MLP that inputs a440

9-dimensional state and outputs a scalar reward value for each state. We train this baseline441

with standard maximum entropy loss.442

• Masked IRL (No Language, multiple model). Same architecture as the baseline but uses443

the weighted masking loss in addition to the maximum entropy loss for training.444

The effectiveness of Masking Loss on Multiple Model. Fig. 5 shows the effect of having masking445

loss in multiple model methods. Interestingly, the performance improvement by using masking loss446

is maximized when the number of valid features for the ground truth reward of the simulated human447

is minimized to 1. As the number of valid features increases, the gap between Masked IRL and448

MaxEnt IRL decreases. This is a desired behavior because when all features are valid, i.e., all state449

dimensions are relevant to the instruction,450
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