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Abstract

Contemporary deep learning models achieve remarkable performance over a wide range of
domains, yet their decision-making processes often remain opaque. In response, the field
of eXplainable Artificial Intelligence (XAI) has grown significantly over the last decade,
primarily focusing on feature attribution methods to shed light on which input features drive
model predictions. Complementing this perspective, Data Attribution (DA) has emerged
as a promising paradigm that shifts the focus from features to data provenance. With
the insights gained on the level of (training) data points, DA provides transparency about
the model and individual predictions, e.g. for model debugging, identifying data-related
causes of suboptimal performance, such as mislabelled instances, dataset distillation or
knowledge discovery purposes. However, existing DA approaches suffer from prohibitively
high computational costs and memory demands when applied to large-scale or even medium-
scale datasets and models, forcing practitioners to resort to approximations that may fail to
capture the true inference process of the underlying model. Additionally, current attribution
methods exhibit low sparsity, resulting in non-negligible attribution scores across a high
number of training examples, hindering the discovery of decisive patterns in the data. In this
work, we introduce DualXDA, a framework for sparse, efficient and explainable DA, comprised
of two interlinked approaches for Dual Data Attribution (DualDA) and eXplainable Data
Attribution (XDA): With DualDA, we propose a novel approach for efficient and effective
DA, leveraging Support Vector Machine theory to provide fast and naturally sparse data
attributions for AT predictions. In extensive quantitative analyses, we demonstrate that
DualDA achieves high attribution quality, excels at solving a series of evaluated downstream
tasks, while at the same time improving explanation time by a factor of up to 4,100,000 x
compared to the original Influence Functions method, and up to 11,000x compared to the
method’s most efficient approximation from literature to date. We further introduce XDA, a
method for enhancing Data Attribution with capabilities from feature attribution methods
to explain why training samples are relevant for the prediction of a test sample in terms of
impactful features, which we showcase and verify qualitatively in detail. Taken together, our
contributions in DualXDA ultimately point towards a future of eXplainable AI applied at
unprecedented scale, enabling transparent, efficient and novel analysis of even the largest
neural architectures — such as LLMs — and fostering a new generation of interpretable and
accountable Al systems. The implementation of our methods, as well as the full experimental
protocol, is available on githutﬂ

1 Introduction

Despite the remarkable achievements of deep learning approaches, these methods remain black-boxes due
to the opacity of their information processing procedures. Explainable AT (XAI) (Samek et al., [2019) has
emerged to address the need to elucidate the inference processes of these models. Specifically, global XAl
aims to provide insights into overall model characteristics, while local XAl explains outputs for individual
test samples. Early approaches have been centered on highlighting relevant input features, with feature
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attribution methods (e.g. (Bach et all 2015; |[Ribeiro et al., [2016))) assigning an attribution score to each
input feature, which provides a ranking or a heatmap that indicates which part of the input is more or most
influential in determining the model output. Later approaches provide different explanation paradigms, such
as concept-based (Kim et al., [2018; |Achtibat et al.| |2023)) and counterfactual explanations (Guidotti, |2024)),
or offer a comprehensive view on the predictions, model and data (Dreyer et al., [2025).

Feature-centered approaches to XAI put a strong emphasis on model inputs, parameters and representations
but ignore the training data that the model has observed during optimization. A relatively recent lens of
interpretability, Data Attribution (DA) attributes the model outputs to samples of the training dataset.
Complementarily to feature attribution, DA produces attribution scores for each (training) datapoint, allowing
one to rank that data with respect to their effect in determining the model parameters (global DA) or specific
outputs (local DA).

Data quality is integral in order to obtain robust model performance: Biased sampling (Lapuschkin et al.,
2019), poor data quality management (Lin et al.| 2022) or adversarial attacks (Shafahi et al., 2018} |Zhu
et al., 2019)), can drive the model to suboptimal solutions. Therefore, in addition to understanding and
debugging the decision processes of the model, DA methods have found applications in identifying and solving
data-related problems, such as detecting mislabeled samples (Koh & Liang) [2017} [Yeh et al., |2018; [Pruthi
et al., [2020), designing (Fang et al., 2020)) and counteracting backdoor attacks (Hammoudeh & Lowd, [2022).
Furthermore, these attribution methods have demonstrated effectiveness in dataset distillation (Liu et al.,
2021} Naujoks et al.l [2024), i.e. finding small subsets of training data which can be used to optimize on
without having to sacrifice model performance. This is an important step towards the creation of efficient
training loops for deep learning models, which usually require large amounts of data and energy for large
scale training in order to be effective predictors (Thompson et al.| 2020]).

In practice, the utility of most DA methods is limited by two key factors: First, state-of-the-art methods depend
on computations that involve the estimation of inverse Hessian vector products, which is computationally
expensive due to high runtime and memory demands. While recent work has improved the efficiency of several
approaches to DA with the intent to make them feasible for applications on larger language models such as
BART or BERT (Guo et al 2021} [Ladhak et all 2022)), these methods remain challenging to scale and are
often impractical under strict computational constraints, limiting their accessibility in real-world applications.
Some methods can be adjusted to reduce computational load by resorting to lower quality estimations of
attributions. Still, the application of these methods in time-critical scenarios, where attributions are required
in the order of seconds or less following inference, is exceedingly difficult due to the tightly imposed temporal
constraints contrasting their computational complexity.

Secondly, many existing DA methods produce dense attribution scores, i.e., they assign non-negligible
importance to a large portion of the training dataset. In contrast, sparse attributions, where only a small
subset of candidate components receive substantial credit, can lead to explanations of lower complexity, which
have been shown to enhance human interpretability (Colin et al., |2022). The connection between sparsity
and interpretability has been well-established in feature attribution literature, where sparse explanations
mitigate cognitive load and improve the users’ ability to understand model behavior (Chalasani et al., |2020;
Warnecke et al [2020; Bhatt et al., 2021). This desideratum receives empirical support from Ilyas et al. (Ilyas
et al. 2022)), who demonstrate that ground-truth attributions are inherently sparse, with only a small subset
of training samples exerting influence on the model output predicted on individual test points. To enforce the
effect of attribution sparsity, an additional (artificial) sparsification step is sometimes applied to non-sparse
methods (Park et al., |2023)). This process discards a large portion of the attributions, which in turn, may
potentially result in attributions that do not reflect the actual prediction patterns of the model being explained.
Regarding explanations of black-box models, the property of closely representing the inference of a model it
aims to explain is referred to as “faithfulness” in XAI literature (Hedstrom et al., 2023|). Therefore, sparse
attributions that are also faithful to the model are highly preferred in DA.

To address both problems, we turn to established machine learning algorithms, where the influence of
individual training data points has already been studied in detail. Concretely, we build upon the concept of
Support Vector Machines (SVMs) (Cortes & Vapnik, 1995). SVMs perform linear classification by optimizing
weight vectors in terms of a linear combination of a small subset of the training data. This allows the
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derivation of an alternative formulation of the prediction function as a sum of independent contributions
relating to each training sample, by solving the associated dual problem (Crammer & Singer} 2001)). Kernel
SVMs, in turn, learn linear classifiers on nonlinear representations of training samples, which are then used
to perform inference on test data.

Therefore, given a neural network predictor and assuming the penultimate layer thereof as a mapping into
a reproducing kernel Hilbert space, we build a SVM-based surrogate model replacing the final layer of the
network, yielding an interpretable and faithful surrogate for the whole model.

We also address another limitation of DA methods: the attribution values themselves are opaque, providing
no insight into why certain training datapoints are deemed important for a given prediction. To this end, we
combine data attribution with feature attribution to identify relevant features that explain the attribution
values in both training and test input domains simultaneously.

In our paper, we make the following contributions:

o We introduce DualDA: a novel DA method which employs multiclass kernel SVMs (Crammer &
Singer}, 2001)) as surrogates for deep learning models. Based on their dual problem, we derive sparse
and high-quality explanations, both locally and globally, in a time- and memory-efficient manner.

e We evaluate DualDA in terms of quality and sparsity of explanations, and runtime as well as memory
efficiency. In total, we compare nine different methods on seven quantitative metrics across three
different datasets and models, in the most extensive quantitative evaluation of prominent DA methods
so far. We find that DualDA performs at state-of-the-art while providing an up to 4,100,000 speed-
up compared to the least efficient competing method and up to 11,000x compared with the SoTA
implementations of Influence Functions. By making data attribution tractable at scale, our approach
opens up a broad range of new practical applications — from large model auditing to interactive
dataset diagnostics — that were previously infeasible due to computational constraints.

o We prove that DualDA attribution scores agree within the multiclass kernelized SVM setting, on
almost all datapoints, with attributions produced by both the gradient-based Influence Functions
framework (Koh & Liang, [2017)) (with minor modification) and the kernel surrogate-based Representer
Points framework (Yeh et al., [2018)).

e We also introduce XDA: a method that leverages the popular Layer-wise Relevance Propagation
(LRP) (Bach et al.| [2015; Montavon et al., [2019; [Samek et al.l [2021; |Achtibat et al., 2024]) — a state-
of-the-art feature attribution (FA) method — and eXplains attribution values assigned to samples by
mapping them back through the model to the (input) feature space. This yields insights as to why a
certain training datapoint is important by identifying relevant features — such as pixels or tokens
— both in the training and test input domains simultaneously. To our knowledge, XDA is the first
method to enable a seamless integration of feature attribution and data attribution, offering joint
explanations that connect model behaviour across feature and data provenance dimensions.

e We demonstrate how our DualXDA framework can be used to explain model decisions with both data
attribution values and feature attribution explanations in case studies across three different datasets,
substantiating the abilities of DualDA and XDA to explain counterfactuals via an ablation study.

In summary, our contributions address the core scalability bottleneck of data attribution by introducing
DualDA, a highly efficient and sparse method that enables practical deployment of DA across large models
and datasets. Building on this foundation, we present XDA as a bridge to feature attribution, enabling —
for the first time — joint, interpretable explanations that connect influential training samples to meaningful
input features. Together, these components form the DualXDA framework, providing novel opportunities for
deeper, more actionable analyses into the inner workings of modern neural networks.
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Figure 1: DualDA efficiently identifies training samples which are influential for both the overall model
fit (global attribution) as well as for the prediction for specific test samples (local attribution). @O
Our method assumes models with a nonlinear feature extractor f followed by a fully-connected layer
as the classification head ¢. @ DualDA substitutes the final layer of the original model with a linear
SV M. The resulting weight vector w can then be expressed as a linear combination of the final layer latent
embeddings of training samples. Note that a binary classification case is visualized for the sake of simplicity
and legibility, whereas DualDA employs a multiclass SVM. @ The global attribution of each training
datapoint is quantified by its corresponding scalar coefficient \; in the linear decomposition of w. @ Moreover,
since w is represented as a combination of training feature embeddings, we can decompose the output of
the surrogate model for a given test point into a sum of contributions from each training sample. This
local attribution (i.e. the contribution of a training point to the prediction for a specific test point) is
given by the inner product of the feature embeddings of the training and test samples, scaled by the global
influence coefficient of the training sample. & To trace these influences back to the input space, our XDA
approach employs Layer-wise Relevance Propagation (LRP) on DualDA attributions. This allows us to
further propagate the attributions from the surrogate model’s output, through the feature extractor, and
down to the input pixels for both training and test samples. The result is a pair of attribution heatmaps —
one for each training—test pair — highlighting input regions that contributed positively or negatively to the
model’s inference.
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2 Related Work

Let us assume a supervised learning regime with given training data D = {z; = (z;,v;) | i € [N]}, where
x; € R? are samples from the input domain and y; € [K] are the corresponding class labels. A neural network
®(-;0) : R — RE with trained parameter § takes a sample from the input domain and emits logits for
all classes, which can be turned into class probabilities or a class prediction. In the following, we consider
networks with a final fully-connected layer: In this case, the network parameters consist of a weight matrix
W € RE*4s and remaining parameters 9 so that the network function can be split into a feature extractor
f(9) : RT — R consisting of the neural network from the input up to the final layer and a final affine
layer g(-; W) : RY — RE:
®(;0) = (g0 f)(9, W)

To incorporate a bias term into this formulation, the extracted feature vectors can be extended by appending
a constant value of 1.

2.1 What is Data Attribution?

The goal of Data Attribution (DA) is to identify training data that have been influential in determining the
prediction of a model, or the model itself.

Definition 2.1. Global DA methods assign each pair of training sample and class ¢ a real-valued attribution
which indicates the relevance or influence of the training datapoint on the fit of the model ®(+;8).. Local DA
methods produce a function 7, : R x [N] — R for each class ¢ which accepts as input a test sample and the
index for a training point. The value T.(z,%) indicates the relevance or influence of the training datapoint z;
on the model output ®(z;6),.

DA has historically been framed as the problem of approximating the ground-truth effects of model retraining
under altered training data compositions (Koh & Liang) 2017; [Park et al., |2023). Recent work (Wei et al.|
2024]) advocates for a different standpoint, aiming to estimate the changes induced by fine-tuning an already
trained model with an altered training set instead. Other authors do not claim for their attribution values to
approximate a ground truth, instead they are interested in the utility of their attribution values in fulfilling
certain downstream tasks. In all of these formulations, the resulting attributions are interpreted such that
positive attribution means the training sample contains evidence for the model decision while negative
attribution is indicative of evidence against the decision being explained.

While there are many different settings that DA has been studied in, we consider a post-hoc attribution setup,
where we are given the training dataset, knowledge about training hyperparameters, and model parameters
collected at different epochs of a single training run.

2.2 Data Attribution Methods

Existing DA methods can be broadly categorized into four different groups, in terms of how they produce
attribution scores:

Similarity-based approaches compute the similarity between the training and test samples, building on
the intuition that the model inferences should be informed of training samples that produce similar latent
representations (Pezeshkpour et all [2021), or through other measures of similarity (Singla et al., |2023).
However, these attributions are class-unspecific as the measured similarity is independent of the predicted
class.

Gradient-based approaches estimate the effect of retraining on a new training set where a sample has
been removed from the training corpus. In this framework, a positive attribution indicates a decrease in
loss, which indicates more confidence for the associated class. To this end, these methods employ Taylor
approximations, which involve gradients of the training and test sample. The earliest method, Influence
Functions (Koh & Liang; [2017)), calculates a first-order approximation using the parameters of the final trained
model. As this involves calculations of the inverse Hessian, which are infeasible to compute in limited time for
even modestly-sized models, approximations using the LiSSA algorithm (Agarwal et al., [2017)), the Arnoldi
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method (Schioppa et all [2022)) or the (Eigenvalue-corrected) Kronecker-Factored Approximate Curvature
method (EK-FAC) (Grosse et al., 2023) are commonly used. Furthermore, the method TRAK (Park et al.,
2023)) applied to a single model can be seen as a version of Influence Functions with a general Gauss-Newton
approximation of the Hessian. To include the behaviour of the model over the entire training process, the
method TracIn (Pruthi et al., [2020) collects the dot product between the gradients at different epochs
and accumulates them in a weighted manner in relation to the corresponding step sizes. GradDot and
GradCos (Charpiat et al.,2019) are simplifications of TracIn which only consider the (normalised) dot product
at the final epoch.

Surrogate-based approaches propose exchanging parts of the network for similarly behaving surrogates
which are inherently interpretable in terms of the importance of training data points for predictions. The
Representer Points (Yeh et al., [2018]) method retrains only the final fully-connected layer of the model
using a modified loss with an added #5-penalty. This enables the application of the Representer Theorem to
decompose the networks output into the sum of kernel evaluations involving the test point and the individual
training points.

Retraining-based approaches sample counterfactual models by retraining the model on various altered
training sets and then use these samples to estimate the model output for an arbitrary training subset.
Consequently, these methods are generally regarded as baselines and are very demanding in terms of
computational resources (Park et al.| [2023)).

Detailed explanations and formulas for similarity-, surrogate- and gradient-based methods can be found in

Appendix [D1}

3 Dual eXplainable Data Attribution

In this section, we introduce our two novel methods: DualDA, which efficiently produces sparse and faithful
data attribution, and XDA, which explains the attribution values from DualDA by highlighting relevant
features in the input space responsible for the attribution between pairs of training samples and the test
input. Combined, DualDA and XDA constitute the DualXDA framework.

DualDA is a surrogate-based DA method, which replaces the final linear layer of the model with a linear
multiclass SVM. We selected SVMs as surrogates for four reasons: (1) they closely approximate the behavior
of the original model, (2) are inherently interpretable in a DA sense in their dual form, (3) yield sparse
attributions, (4) and enable fast training and inference in large Al models, as further outlined below.

(1) Prior research shows that gradient descent in various models has an implicit bias towards margin maximizing
behaviour (Gunasekar et al., [2018; |Soudry et all 2018; |Gidel et al., [2019} Ji & Telgarsky, |2019; Tarzanagh
et al 12023) which is the defining feature of SVMs. In particular, recent studies demonstrate convergence
of neural networks to kernelized SVMs under certain conditions in binary and multiclass classification
scenarios (Lyu & Li, [2019; Ravi et al.| 2024]). This provides the theoretical motivation to assume that an
SVM can serve as a faithful surrogate for the original final layer of a neural network predictor. We validate
this assumption empirically in Section

(2) The learned weights of an SVM in feature space can be exactly expressed as a weighted sum of representa-
tions of the training datapoints by solving the corresponding dual problem. This provides a natural approach
to global DA, and in extension to attributing the neural network outputs for individual test points.

(3) When working with large datasets containing millions of samples, attribution methods that yield similar
or indistinguishable attributions across a large number of data points become difficult to interpret effec-
tively (Iwata & Yoshikawaj 2021). SVMs exhibit an implicit bias towards sparsity in their attribution values
as, under constrained conditions, only a limited number of support vectors contribute in determining the
model’s decision boundary. While this sparsity can enhance interpretability by focusing on the most influential
samples, excessive sparsity may hinder the expressiveness of the resulting explanations. To mitigate this, the
degree of sparsity can be controlled through the choice of the regularization hyperparameter of the underlying
SVM, allowing a balance between conciseness and representational richness in the attributions, as shown in
detail in Appendix [F.3]
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(4) The training of a linear SVM has a worst-case time complexity between O(dN) and O(dN?) (Hush et al.,
2006)), where N is the size of the attribution (e.g. training) dataset and d is the size of the input space of
the SVM, i.e. the size of the penultimate layer. This allows efficient applicability on large datasets and
models. Additionally, computing attributions for a single pair of train and test samples requires only an
inner product. The computational complexity per local attribution score is therefore only O(d). This enables
near-instantaneous attribution calculation for new test samples after caching hidden layer activations of the
attribution dataset and SVM weights.

To explain the attribution values of DualDA, XDA maps calculate attribution values back through the model
to input space, identifying relevant input features (e.g., pixels in images or tokens in text) for the model
inferences. XDA simultaneously creates relevance mappings for both training and test samples, producing
corresponding relevance heatmaps specific to each pair of samples that discover the relationship between
them. This approach renders our DualXDA framework inherently explainable by elucidating the interaction
between training and test samples. Moreover, it enhances feature attribution analysis, i.e., the process of
tracing model behaviour to input features, by decomposing feature explanations into the constituent effects
of individual training samples.

A further extension of our approach including explanations using human understandable concepts to fully
unify explanations on the data-level, feature-level and concept-level ( inspired by (Achtibat et al., [2023) ) is
given in Appendix [H]

3.1 DualDA: Using Support Vector Machines for Sparse and Efficient Data Attribution

This subsection presents a step-by-step derivation of DualDA attributions, with a graphical overview
provided in Figure [I} DualDA uses the soft-margin multiclass SVM formulation introduced by Crammer and
Singer (Crammer & Singer}, [2001]) as a surrogate model. The contribution of each training sample to the
output of this surrogate model can be determined in a straightforward way, which we examine in detail below.

We start by fitting a weight matrix W, consisting of one weight vector w, per row for every class ¢ predicted
by the original model, where each weight vector may optionally incorporate a scalar bias parameter (see
Steps D to @ in Figure . We learn these parameters to classify data points in the kernel space induced by
the feature extractor f(-;) (cf. Step @ in Figure[l)). This is achieved by solving the (primal) optimization
problem

miny  3[IWIE+CXL, &
s.t. Vi € [N], Ve € [K] (1)
w;f(xuﬁ) - wjf(-xuﬂ) + 6cyi Z 1- fz .

Here, the hyperparameter C' > 0 regulates the sparsity of the solution: A high value for C' will produce a
solution where W depends only on few training points, whereas a low value for C' creates a solution to which
many datapoints contribute. The surrogate model output is then given by W f(Ztest; ) = P(Xtest; @) This
programme aims to ensure that for a vector f; = f(x;;9) the class score w; fi corresponding to the true class
y; is at least greater by 1 than the score for all other classes c. If this difference is smaller than one, it will
contribute to the loss. Therefore, this problem is equivalent to {s-regularized empirical risk minimization
with a multiclass Hinge lossﬂ Due to the formulation of SVMs through margin maximization, the same
problem can be seen as a margin maximization problem for a multiclass classifier. In this formulation, the
hyperparameter C' determines how hard the margins are, i.e. how strongly each datapoint contributes to
the final loss: A higher value increases the penalty for classification errors, encouraging the model to reduce
training mistakes at the risk of overfitting.

As per standard SVM theory, we can formulate the dual problem. The full mathematical formulation of the
dual problem is excessive in length and not easily interpretable, we therefore refer the interested reader to
Appendix [A] where the detailed derivation is given. However, through solving the dual problem, we obtain
dual variables «;. for each training vector f; and each class c. These relate to the optimal weight vectors w,

2This formulation differs from training multiple SVMs as it is common for multiclass classification problems, since here,
information from different classification heads is shared through the constraints.
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through the formula
N
we =Y Nicfi, (2)
i=1
where the coefficients \;. defined as

A = { (C—ay,) fy=c (3)

—oy. else

express how much each training feature vector f; contributes to the surrogate fit and can therefore be
interpreted as global attribution scores (see Step @ in Figure [1)). Through this formula, we can further
identify the individual contributions of each f; to the predicted class score of a test vector fies; for some
class c:

N
wchtest = Z)\icfz‘Tftest = Z (C - aiyi)f;ftest - Z aicfi—rftest (4)
i=1 iYi=c By F£C
Given this motivation, DualDA defines the attribution value of a training sample z;, given the prediction of a

test sample xyesy and class ¢, as
D

D .
T, (Ttest, i) = Nie i frests (5)
where DD constitutes the abbreviation of DualDA. This local attribution is depicted in Step @ in Figure
We refer the reader to Appendix [A] for the full derivation. By this definition, DualDA fulfills an approximate
conservation property, meaning that the attributions over all training samples sum up to the output of
the model, i.e.

DD .
cI)c(-/L’test) ~ w;rftest = Z TC (xtes‘m Z)- (6)
[

Relating DualDA to other approaches While we introduce DualDA with a focus on SVM theory,
it can be interpreted within the framework of the Representer Points method as an ¢s-regularized linear
surrogate fitted on top of the extracted features in the penultimate layer. The methods differ in the loss used
to train the surrogate. Whereas Representer Points keeps the original loss and simply adds an additional
£y-regularization, DualDA attributions can be derived by using a multiclass Hinge loss in the formula for
Representer Points in Equation . This derivation of DualDA is detailed in Appendix

Furthermore, we can align our surrogate-based approach with the framework of gradient-based approaches.
Applying a generalized version of Influence Functions outlined in Corollary 1 of (Naujoks et al.l 2024]), we
can investigate how the optimally derived W in Equation changes, under an infinitesimal downweighting
of the contribution of datapoint f; and how this in turn affects the class score w;'— ftest- This influence value
aligns with the attribution calculated by DualDA, for datapoints that do not lie exactly on the margin. We
report this result in Theorem and refer the reader to Appendix [C| for the proof.

Theorem 3.1. Let W denote the solution to the SVM optimization problem in Equation . Denote by W*
the parameters of an SVM trained on the same dataset and a optimization criterion modified w.r.t. to the
i-th training sample:
. N
minyy %Hng + CZj:l § —eCs;
s.t. Vj € [N], Ve € [K] (7
w;f(xwﬁ) - w::rf<xj719) + 6cyj > 1 _é.ja

The contribution of the i-th training sample is down-weighted by a factor of €. Then, for any test sample x
the infinitesimal change in W f(x;9) is equal to the DualDA attributions, if the i-th training sample does not
lie exactly on the margin of the SVM, i.e. argmax {1 — [0cy, +w,) fi —w/ fi]} is unique. In this case, the
following equality holds:

DD, . oW —wiH) Tz
i = |2 ] 0
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3.2 XDA: Mapping Data Attribution to the Feature Space

While DualDA constitutes scalable and practically applicable solution for DA, we argue that DA alone is
not sufficiently informative on its own: DA informs about which training datapoints are influential for a
prediction, yet not why they are influential: A single datapoint may be relevant for various reasons, e.g., due
to background patterns, parts of objects, or other semantic features. DA, however, does not provide any
information to distinguish between these sources of information and their influence, resulting in potentially
ambiguous explanations. To resolve this lack of clarity, we combine data attribution with feature attribution,
leveraging the structure of our DualDA attributions with the introduction of XDA in order to obtain additional
degrees of detail in our combined DualXDA explanations. This integrated perspective allows for deeper, more
interpretable explanations of model behavior. While in principle, any FA approach could be levied to further
explain the attributions of DualDA we choose to integrate the principles of Layer-wise Relevance Propagation
(LRP) (Bach et all 2015) to achieve XDA because like DualDA, it leverages the model’s activations on its
hidden layers. LRP is a feature attribution technique based on the decomposition of a neural network’s
prediction by backward propagating relevance scores layer-by-layer from the output to the input, following a
relevance conservation principle that maintains and preserves the total amount of relevance throughout the
decomposition process. As such, LRP is effectively striving towards the same goal as DualDA: the conservative
attribution of model outputs to units of interpretation. However, the crucial difference between the two
approaches lies in the orthogonal selection of the components targeted for interpretation, i.e., individual
test features for LRP and training samples in their totality for DualDA. In the image domain, explanations
derived from LRP are commonly represented as a heatmap over the corresponding input.

XDA combines the approaches of DualDA and LRP to further explain the data attribution scores T, CD D(:z:test, i)
w.r.t. the interaction of both xest and the influential training datapoint ;. An overview of the XDA relevance
computation process is presented in Step & of Figure[l] Specifically, the DualDA surrogate model naturally
produces the data attributions as an intermediate signal, each of which is given by a weighted dot product of
features computed by the feature extractor part of the network. XDA focuses on this branch of the surrogate
model, whereby the output of this branch is isolated and explained via LRP with initial relevance determined
depending on class ¢ explained by DualDA as

R(wtest, Z)f = Aic - ft—gstf’i . 9)

The algorithm then backpropagates this quantity from layer L of the DualDA surrogate model backwards
through the feature extractor towards the input sample x5t as well as the training sample z; in two separate
backward passes. This procedure results in a pair of feature attributions R'S*(ziest, )l and RY8 (26, 4)L
which together explain how — in terms of related features — the influential support vector x; in particular
is affecting the model in the prediction of :vtestﬂ As such, XDA shares conceptual similarities with BiLRP
(Eberle et al.l2022)) and CRP (Achtibat et al., [2023]), but differs by explaining the feature kernel of a surrogate
SVM (rather than a deep similarity model, as in BiLRP) and by splitting propagation pathways across
support vectors instead of latent concepts (as in CRP). Overall, XDA leverages the conservative properties of
DualDA and LRP to achieve data attribution as well as feature attribution, combining the benefits of the
two orthogonal approaches. The conservative property of XDA further implies that the generated feature
attribution heatmaps are also conservative whereby the sum of XDA test feature attribution maps recovers
the LRP feature attribution map, i.e. LRP explanation of xest for class c at layer [ is approximately equal to

Zivzl Rtest (ztesty Z)lc
4 Evaluating Data Attribution

To test the validity of DualDA, we compare the method against other state-of-the-art attribution methods
introduced in Section [2] and defined in detail in Appendix [D.I} Details about implementations are given in
Section [.3] We analyze three different vision models of varying sizes, each trained on a different dataset:
a simple Convolutional Neural Network with 3 convolutional and 3 fully connected layers with ReL.LU
non-linearities trained on the MNIST dataset (LeCun et all 2010|), ResNet-18 (He et all |2016) trained

3Note that while we can derive such explanations in all layers | < L, we will focus on input-layer explanations in pixel space
with [ =1 in this paper.
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on CIFAR-10 (Krizhevsky & Hinton, [2009) and ResNet-50 (He et al., |2016) trained on the Animals with
Attributes 2 (AwA2) dataset (Xian et al., [2018) (training details can be found in Appendix [D.2). For each
dataset and model, we calculate the attribution score of all training datapoints for the predicted class for
2,000 randomly selected test points, using the attribution methods. We evaluate the quality of the derived
attributions on seven different metrics outlined in Section two of which are novel contributions (for
detailed explanations including formulas we refer the reader to Appendix ) In our study, we rely on
quanda (Bareeva et al., 2024), a toolkit designed for the systematic evaluation of DA methods. The results
of our experiments are presented in Section We further present the resource consumption of each
attribution method in Section [I.3] and compare the sparsity of the corresponding explanations in Section [£:4]
In Section [I.5] we analyze how close the surrogate model matches the original model for our DualDA method,
as well as the Representer points method. All experiments have been executed on a single NVIDIA A100
Tensor Core-GPU.

4.1 Evaluation Metrics

Two simple sanity checks are proposed by Hanawa et al. (Hanawa et al., [2021): The Identical Class Test
relies on the assumption that the most positively important training points for a class decision should be
of the same class as the model prediction. We therefore measure for all test points the proportion of the
highest ranking training data points according the DA methods outputs belonging to the same class as
predicted for the given test sample. The Identical Subclass Test further assesses whether attributions
can distinguish between different subpopulations within the same class. Following (Hanawa et al., 2021}, we
therefore artificially group dissimilar classes together into a superclass. Given a predictor trained on this new
classification setting, we check whether the DA methods can still attribute influence to training samples from
the same true subclass, rather than just the broader grouped class set, as the test sample.

Furthermore, two metrics are derived from common downstream tasks of DA: Mislabeling Detection (Koh
& Liang, 2017 |Yeh et al.l [2018; |Pruthi et al.| [2020), which aims to discover incorrectly labeled training
samples, and Shortcut Detection (Koh & Liang), |2017; Hammoudeh & Lowd, [2022), which tries to identify
misleading associations in training data that allow models to achieve accuracy through dataset-specific biases
rather than generalizable relationships.

Finally, retraining-based metrics test the counterfactual validity of training data attributions by retraining
models on subsets of the training data and measuring whether the attributions align with observed changes
in model behaviour. The Linear Datamodeling Score (LDS) (Park et al., 2023)) tests whether attribution
scores can predict changes in model outputs when retrained on random subsets of data. This is achieved by
measuring the rank correlation between predicted attribution scores and actual model outputs. Coreset
Selection evaluates whether attributions can identify the most valuable training samples by retraining
models only on the highest-attributed data points and measuring how well performance is maintained.
Adversarial Data Pruning tests the opposite of coreset selection by removing the most highly attributed
training samples and measuring how much performance degrades. Unlike Coreset Selection, which evaluates
whether attributions can identify a representative training subset, Adversarial Data Pruning assesses whether
attributions correctly identify samples that contain unique information.

For all metrics except Coreset Selection, where superior performance is indicated by a small loss, higher
scores indicate higher attribution quality.

4.2 Results

Figure [2| provides a comprehensive summary of our experimental findings. For each method and dataset, it
displays the average rank across all evaluation metrics plotted against the total runtime required to attribute
2,000 test images. This analysis demonstrates that DualDA exhibits competitive performance relative to
other methods: it achieves the fourth-best average rank on MNIST, second-best on CIFAR-10, and the
best average rank on AwA2. Crucially, DualDA invariably requires the least computational time among all
evaluated methods, which includes both the cache time required for generating explanations (such as caching
hidden activations) as well as the explanation time for all 2,000 test samples. Compared to the most efficient
version of the widely-employed Influence Functions framework, DualDA is 175 times faster on MNIST, 383
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Figure 2: Average rank across all metrics plotted against the total runtime for calculating the attribution for
2,000 test images. DualDA demonstrates competitive performance with drastically reduced computational
time requirements across datasets. The figure showcases the results for nine different methods, averaged over
seven different metrics, on three different datasets and models.

times faster on CIFAR-10, and 520 times faster on AwA2. For explanation time only, this speedup increases
to 4,000x on MNIST, 11,000x on CIFAR-10, and 8,000x on AwA2.

DualDA, with appropriately selected hyperparameter C for each metric, ranks among the top three performing
methods for 6 metrics on MNIST, all 9 metrics on CIFAR-10, and 8 metrics on AwA2. Furthermore, it
achieves optimal performance on 5 out of 9 metrics on AwA2.

For a more detailed discussion, we present the scores of all metrics and methods for the AwA2 dataset in
Figure 3| (results for the MNIST dataset and for the CIFAR-10 dataset can be found in Figure and
Figure in Appendix : On the Identical Class test, DualDA achieves a perfect result, while most
methods except Representer Points, Arnoldi and TracIn achieve a score below 0.2. On the Identical Subclass
test, no method achieves a score above 0.8, but DualDA with a low sparsity performs comparatively well and
achieves the second-best score. On Mislabeling Detection, DualDA demonstrates excellent performance. Here,
most methods perform reasonably well, except for Representer Points. We do not show results for LiSSA,
which can not be computed in feasible time, and GradCos, which does return inconclusive attributions in this
setting by design (c.f. Figure [3{ and Appendix . On Shortcut Detection, DualDA achieves a perfect score
while the conceptually related Representer Points only attains a score of 0.2 and all other methods fail almost
completely. Notably, despite not being explicitly designed to estimate outputs of counterfactually trained
models, DualDA also performs strongly on the retraining-based metrics. On LDS, it achieves the third-highest
rank. On Coreset Selection, it is the best performing method both at 10% and in the combined average. At
the 10% data pruning level, DualDA does not rank among the top three performing methods. Nevertheless,
the performance differences between all evaluated approaches remain relatively modest, highlighting the
inherent difficulty of eliminating unique information when pruning only a small fraction of the dataset. When
considering the weighted average across all pruning levels, DualDA demonstrates competitive performance,
securing the second-highest score and substantially outperforming the majority of alternative methods.

From the experiments, we can also see how the choice of the sparsity hyperparameter C' affects the performance
of DualDA on various metrics. This is particularly pronounced on Shortcut Detection, where a small sparsity
is preferable, likely because it is preferable to have many training samples included in the support vectors to
find all spuriously correlated samples. Conversely for Coreset Selection, higher sparsity yields markedly better
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Figure 3: Evaluation results on the AwA2 dataset. The rank for DualDA with the best-performing hyperpa-
rameter C' is denoted over the corresponding bar. Note that Mislabeling Detection requires calculating the
self-influence of the entire train set (see Appendix . For LiSSA, calculating self-attributions for all training
points would take roughly a year of runtime and is therefore computationally infeasible. As GradCos is
defined as the cosine of the angle between the test and training sample’s feature vectors, the self-attribution
for GradCos is equal to 1 regardless of the sample.

results, plausibly because a representative subsample of the data is selected in the sparsification process. We
extensively analyze the effect of the sparsity hyperparameter over a wide numerical range in Appendix [F.3]

4.3 Resource Consumption

Computation time and memory requirements are the main concerns for scaling DA approaches to big models
and datasets. Early approaches such as LiSSA (Koh & Liang] 2017)) require O(Np) time to attribute a new
test point, where p denotes the number of model parameters. This is indeed much slower than the explanation
time of DualDA, which requires only O(d) time, as d is the size of the penultimate layer of the network and
therefore d < p (for the ResNet-50 model, we have d = 2,048 and p = 25,557,032). Other approaches such as
Arnoldi (Schioppa et al., [2022), EK-FAC (Grosse et al.l 2023) and TRAK (Park et al., 2023) provide efficient
approximations, which come at the cost of precomputing and and creating an information cache. In Figure [4]
we report caching times, cache sizes and local explanations times (excluding caching times) for evaluations
on 2,000 datapoints per dataset. The total runtime on a single GPU per method and dataset, which is
the sum of caching and explanation time, is used as the z-coordinate in each plot of Figure[2] For TRAK,
Representer Points and EK-FAC, we rely on official code releases of the original publications. For LiSSA, we
use the implementation from a different publication as it is written in the PyTorch
framework. Employing the same framework universally guarantees a just comparison between
all methods. We have implemented GradCos, GradDot and Tracln ourselves, using the random projection
trick explained in (Pruthi et al) 2020). For Arnoldi, we relied on the captum (Kokhlikyan et al.l 2020

12
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Figure 4: Caching times and cumulative explanation times over 2,000 test samples for all methods, mapped
onto a logarithmic scale, as well as sizes of precomputed cache information per method. Note that LiSSA
does not require any caching and thus has no caching time or cache size. As calculations are made on GPU,
the sparsity level of DualDA has only very minor impact on the runtime.
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implementation. To implement DualDA in Python, we have modiﬁecﬂ the multiclass SVM implementation
from the Python package scikit-learn (Pedregosa et al., 2011)).

Cache Size Tracln, GradDot and GradCos save the gradients of the fully trained model, and Tracln
additionally saves gradients at different training epochs. To make cache requirements manageable, these
methods further require storing a random projection matrix mapping model gradients to a subspace of
manageable dimensionality D. This method can bring about memory-related challenges with larger models,
as it requires storing a random vector of size D for each model parameter. The Arnoldi and EK-FAC
implementations of Influence Functions as well as TRAK also require a large cache. All of these methods rely
on the introduction of random sampling and projections to ameliorate cache space and runtime requirements
at the cost of approximation inaccuracies. Note that for TRAK, we use the GPU-level C++ implementation
provided by the authors. Reported results concerning TRAK do not include any cache for random projection
matrices, and the reported runtimes are obtained using a setup with maximal efficiency.

In comparison, Representer Points only saves the extracted latent features of the training data and the
surrogate weights. DualDA further reduces memory requirements by storing only the extracted latent features
for training samples that serve as support vectors. This substantially reduces cache size at higher sparsity
levels: compared to the most cache-intensive method, TracIn, DualDA reduces the required cache by a factor
of 1,750 on MNIST, 636 on CIFAR-10, and 370 on AwA2.

Caching Time Tracln requires the computation of gradients for model checkpoints, whereas Arnoldi,
TRAK and EK-FAC require the computation of Hessian approximations and in some cases, projected model
gradients. These computations take considerable time, compared to the surrogate based methods DualDA
and Representer Points. Caching times for competing methods range from 5 times to 735 times longer than
the kernel surrogate approaches.

Explanation Time To a substantial degree the slowest method at inference is LiSSA. Even though we
have only included the final fully-connected layer in the Hessian and gradient computations, LiSSA takes
35 minutes for the explanation of a single test point of the AwA2 dataset, requiring almost 7 weeks for
explaining the entire test set of 2,000 datapoints. This is the minimal runtime that is achieved by following
the authors’ suggestion (Koh & Liang) 2017)) that the total number of iterations dedicated to the estimation
of the inverse-Hessian-vector-product of Equation be greater than the training dataset size. Arnoldi,
TracIn and GradCos are moderately slow, requiring more than one second per test point on the AwA2
dataset. DualDA is the fastest method overall across all datasets, only requiring between 0.2ms and 4ms
per test sample. Compared to the slowest method, LiSSA, DualDA is 2.4 x 10% times faster on MNIST,
4.1 x 10% times faster on CIFAR-10, and 5.4 x 10° times faster on AwA2. Compared to the most efficient
Influence Functions method, DualDA provides a speedup of 4,000 — 11,000, depending on the dataset. When
generating explanations using a GPU, higher sparsity does not significantly decrease explanation time since
the required matrix multiplication is already effectively parallelized and other parts of the code dominate
the runtime. In our experiments, we observed, however, that when generating explanations on CPU, high
sparsity significantly improves the computation time for explanations.

4.4 Sparsity of Attributions

We analyze the distribution of attribution scores over the training set for various DA methods, exemplified
on the AwA?2 dataset. Similar patterns are observable across other datasets in our study. Our results are
displayed in Figure[5] Initially, we examine the overall ratio of cumulative positive attribution versus negative
attribution, displayed on the left side of the figure. As expected, most explainers — with the exception of
GradDot and GradCos — exhibit greater positive than negative cumulative attribution, which aligns with
the fact that explanations target the model’s predicted class for each test instance. This naturally results in
stronger positive attribution for proponents compared to negative attribution for opponents. The proportion
of negative to positive cumulative attribution varies significantly across methods. The LiSSA implementation
of Influence Functions shows the lowest ratio at only 53.7%, while TRAK demonstrates the highest at 98.7%.
For DualDA, we observe that the sparsity hyperparameter C' directly affects this ratio — increasing values

4Code will be made available upon acceptance.
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Figure 5: Analysis of magnitude and distribution of cumulative positive and negative attribution for various
DA methods on the AwA2 dataset. Left: Ratio of average cumulative positive and negative attribution.
Right: Evolution of the cumulative sum of positive and negative attribution as a function of data percentage
included. The y-axis represents the cumulative sum of attributions over the dataset, ordered descendingly by
attribution magnitude.

of C (i.e., increasing sparsity) bring the positive cumulative relevance increasingly closer to the negative
cumulative relevance.

On the right side of Figure [5] we analyze the growth of the cumulative sum of both positive and negative
attribution as a function of the fraction of most influential datapoints included, to assess the sparsity
characteristics of each method. We begin by incorporating training samples with the largest positive or largest
negative attribution values respectively. Methods with sparse attribution patterns show steep initial increases
in this curve, whereas non-sparse methods exhibit more gradual progression. Our findings reveal that the
sparsity hyperparameter C of DualDA effectively controls the sparsity of the resulting explanations. With
C = 107!, the method reaches full attribution saturation when selecting only 0.1% of the training samples
descendingly ranked by attribution. Similarly, GradDot and EK-FAC show rapid initial increases, indicating
concentrated attribution among few training samples. However, their growth rate quickly diminishes and they
are eventually surpassed by Representer Points, which demonstrates slightly higher sparsity than DualDA
configured with C' = 107°. LiSSA, TracIn, and GradCos exhibit particularly low sparsity, while the remaining
methods display moderate sparsity characteristics. When comparing the development of the cumulative sum
between positive and negative attribution, we observe that DualDA maintains consistent sparsity across both
types. In contrast, Arnoldi and EK-FAC show increased sparsity for negative attribution, while Representer
Points and GradDot demonstrate significantly reduced sparsity for negative attribution compared to positive
attribution.
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Figure 6: We test surrogate DA faithfulness metrics for DualDA with sparsity hyperparameter C' €
{107°,1073,1071} and Representer Points on the AwA2 dataset. The results are shown in the monochrome
bars. In order to assess whether post-hoc artificially sparsified Representer Points surrogates will lead
to faithful explainers, we induce the same sparsity levels as they naturally emerge for DualDA with the
corresponding sparsity parameter C', and present the corresponding surrogate faithfulness scores via striped
bars.

4.5 Faithfulness of Surrogates

When using a surrogate model to obtain explanations, we must ensure that the surrogate in question closely
represents the original model. To test this empirically, we observe three model similarity metrics for the
surrogate models Representer Points and DualDA across all three datasets: For the original and the surrogate
model, we record the cosine similarity between their last layer weight matrix (which are the only weights
which we change in the model), the average cosine similarity of the output logits, and the multiclass Matthews
correlation coefficient (MCC) of the predictions. All three metrics range from -1 to 41, where higher scores
indicate greater similarity. The monochrome bars in Figure [6] present the results for DualDA and Representer
Points on the AwA2 dataset, results for the remaining two datasets are shown in Figure in Appendix [F-2]
The overall faithfulness of the surrogates to the original model are high across methods, metrics and datasets.
The similarity scores are overall comparable for DualDA and Representer Points. Interestingly, an increase in
the hyperparameter C' can either lead to an increase or decrease in the scores, depending on the similarity
metrics and dataset. However, most metrics seem to be highest at C' = 1072, indicating that there exists an
optimum which maximizes the similarity of the surrogate to the original model.

Artificially Sparsifying Representer Points Following the assumption that sparse attributions are
preferable due to their lower complexity (Colin et al) [2022), it is only natural to decide to take a non-sparse
attribution method and subsequently sparsify its results. As Representer Points is a method similar in spirit to
DualDA, achieving promising results in attribution quality, we test the feasibility of this approach by post-hoc
and artificially sparsifying the Representer Points surrogate model. We first sort the absolute coeflicients |A;.|
for all classes ¢ and datapoints z;. Afterwards, we set all coefficients except for those with highest absolute
value to zero. The number of non-zero coefficients for each class is set to the number of support vectors
defining a trained DualDA surrogate for C' € {1071,1073,1075} (an overview over the number of support
vectors for each class and dataset can be found in Figure in Appendix [F)).

The striped bars in Figure [6] present the results for these artificially sparsified Representer Points surrogates
for the AwA2 dataset and in Figure in Appendix for the remaining datasets. For better readability,
the striped bars are placed next to the bar corresponding to the DualDA setting at the same sparsity level,
i.e. we maintain the same number of support vectors per class for Representer Points as in the corresponding
DualDA configuration. The results indicate that the quality of the Representer Points surrogate decreases
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rapidly as the sparsification intensifies. The decrease in faithfulness metrics is less severe in CIFAR-10,
however for the other datasets, we see that already the first sparsity level corresponding to C' = 107> has low
surrogate faithfulness. This indicates that in order to achieve sparse data attribution, it does not suffice to
choose an attribution method and post-hoc sparsify artificially — for optimal results it is required to choose a
method that creates inherently sparse attributions.

5 XDA Experiments

XDA provides unprecedented insight into the interaction between training and test samples by simultaneously
highlighting relevant features in both input domains, thereby illuminating the similarities and dissimilarities
that drive their relationship. This approach transforms previously opaque attribution values into interpretable
explanations, offers a more nuanced understanding of model predictions, and enables feature-level ablation of
training or test samples to analyze and modify training dynamics. To demonstrate XDA’s capabilities, we
apply the approach to a small convolutional network trained on the MNIST dataset, and a VGG-16 network
trained on AwA2 and the ImageNet dataset (Deng et al., [2009)) respectively. Within the LRP framework,
different formulas, or “rules”, exist to distribute the relevance from the output back to the input space. For
our experiments, we use the recommended rule composite EpsilonPlusFlat, as implemented in the zennit
toolkit (Anders et al.l 2021), which applies the flat rule for any linear first layer, the z-plus rule for all other
convolutional layers and the epsilon rule for all other fully connected layers. For VGG-16, we additionally
apply the flat rule for the first 10 layers for better legibility of the corresponding relevance heatmaps. An
explicit description of the corresponding formulas is given in (Montavon et al., [2019).

5.1 Qualitative Case Study: Gaining Insight with XDA

Using an exemplary sample from, the AwA2 dataset, we step-by-step guide the reader through the inter-
pretation of an XDA explanation with the help of Figure [} (D The trained model classifies this image as
a wolf. The corresponding LRP heatmap shows which parts of the image were relevant for the decision:
Red areas support the model’s decision (the ears, the fur, and parts of the background), while the model
considers blue areas (the eyes and the snout) contradictory to its classification. Surprisingly, the animal’s
characteristic facial features are considered as opposing the classification as a wolf. While LRP and other
feature attribution methods can show us where informative features are picked up by the model for the
classification, they cannot explain why the model has identified these areas based on the training data. We
can answer this question by the characteristic of XDA of splitting the single LRP explanation into individual,
training-data-specific attributions (which, when summed up, equate to the LRP explanation again). @ The
right part of the middle row depicts the strongest proponents for the classification of the test sample as
class wolf, together with their label and corresponding DualDA attribution value. All shown most influential
training images depict wolves in a grassy or leafy habitat. @) The XDA maps of the test sample attribute the
corresponding DualDA attribution for each training sample onto the input test image. Note that all of these
heatmaps are unique: For the first two training samples, where snouts of the animals are only hardly or not
visible, the snout area of the test sample is negatively or only barely positively relevant according to the
attribution. This is different for the third and fourth sample, where the eyes and snout are clearly visible,
and the corresponding part of the test sample receives high positive attribution scores. Note that for all pairs
of test and training image, the image areas depicting the wolves’ ears and fur are attributed with positive
relevance. @ The XDA heatmaps computed in the input domain do not only connect DualDA attributions to
the test sample features, but also to the features of the influential training samples. We observe that for the
third and fourth most positively influential training samples, the snout and eyes are attributed most strongly,
indicating a high responsibility of those features for the sample’s influence on the prediction. & The center
row, from the midpoint to the left, depicts the strongest opponents against the classification of the test sample
as a wolf, identified by the strong negative attribution scores received from DualDA. Note that all samples
depict instances of class “fox”. ® The XDA test heatmaps indicate that the eyes and snout are responsible
for the high negative attributions for these training samples. We recognize from the shown training samples
of class “fox”, representing influential training data subsets where the depicted animals all share similar facial
features as the wolf in the test image, that the model must have associated this characteristic canine facial
structure more to class “fox” than to class “wolf”, which in turn influences the currently analyzed prediction.

17



Under review as submission to TMLR

=
o ‘
=

o | % || &) ¢ #@<— XDA (ours) —>@| * | »| [
@

NEGATIVELY relevant training samples " Sl | LRP|| | POSITIVELY relevant training samples

«— XDA (ours) —@| b ¢ ;'

Test
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(@ In the XDA heatmaps of the training samples, we again find that the corresponding eyes and noses are
most relevant for the negative attribution. Altogether, XDA explains the a priori unanticipated result from
the LRP heatmap in @ which causes the facial area of the wolf to be negatively relevant for the classification
as a wolf: While there exist some other wolves in the training set with a similar muzzle, which the model
correctly uses to detect these training samples as relevant for the classification of the test sample, the training
corpus also contains multiple other canines such as foxes, making the snout an unreliable indicator for wolves
in the AwA2 dataset.

Additional examples of DualXDA explanations for samples from the MNIST, AwA2, and Imagenet dataset
are presented in Appendix [G]

5.2 Ablation Study

To ascertain the capability of XDA to explain counterfactual effects, we additionally conduct a controlled
ablation study on the MNIST dataset, the results of which are depicted in Figure 8] Figure [Ba] shows the
original test sample together with its five most relevant training samples and the corresponding XDA heatmaps
for the test sample. For the first three training samples with the highest relevance, the upper segment of the
test sample is positively influential for their relevance. On the other hand, for the last two training samples,
which are attributed with lower relevance and do not have a similar arc, the upper segment holds much less
relevance. First, we perturb the test sample by removing the base of the digit “2” and keeping only the upper
loop of the test sample. We now recompute DualDA attributions for this perturbed sample and present them
with the corresponding XDA heatmaps in Figure [8b] yet keep observing the training samples as previously
identified via DualDA for the unperturbed test point. We can observe that for the two rightmost training
samples the attribution scores are reduced by approximately 70%, which is proportionally higher than the
reduction in attribution scores on the three highest attributed training samples at approximately 60% on
average. Furthermore, the ordering of the training samples by attribution is not changed by the ablation.

In a second variant of our experiment, we intervene by removing the upper arc from the test sample and
calculate the DualDA attribution for the same five training samples again, as depicted in Figure [8d Now,
the relevance of the first three training samples reduces approximately by 67% on average. In contrast, the
relevance for the last two training samples decreases by only approximately 51% and the attribution scores
remain at higher levels than in Figure where the base of the numeral was removed. The training samples
which previously have received lower attribution scores are now the second and third most attributed sample
respectively. After the ablation, the attribution maps of all five training points are similar, indicating that
the increased relevance of the first three training points before ablation can be explained with the presence of
the upper arc in the test sample. This is further supported by observations on the XDA heatmaps for the
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modified test sample, which now appear more similar across different training samples; any extent of positive
attribution associated with the arc has vanished.

6 Discussion & Conclusion

In this work, we introduce DualXDA, a framework that allows to scale interpretable data attribution to large
Al models. DualXDA consists of two parts: First, DualDA is an efficient surrogate-based DA method for
explaining Al models using the penultimate hidden representations to define a kernel map to fit a multiclass
SVM. This strategy naturally provides global as well as local attributions as an approximate decomposition of
the model output. Additionally, DualDA produces sparse attributions by virtue of the associated optimization
process, which is beneficial for reducing the explanations’ complexity and volume. Second, XDA combines
data attribution with feature attribution by mapping data attribution values back to the train and test
input domain simultaneously, to identify relevant corresponding features and explain previously opaque data
attribution results. Together, our framework overcomes the scaling problems of popular DA approaches and
allows the user to gain additional insight due to its sparsity and feature-level explanations. Our contributions
establish a foundation for explainable AI at unprecedented scale, enabling transparent and efficient analysis
of large-scale neural architectures. DualXDA enables the development of interpretable and accountable AT
systems by providing novel analytical capabilities that can be applied to state-of-the-art models in real-world
applications beyond research settings due to its computational efficiency.

Moreover, we thoroughly evaluate our DualXDA framework using both qualitative analysis and quantitative
metrics to assess its performance. First, we present the results of an extensive quantitative evaluation which
compares eight state-of-the-art DA methods across seven evaluation metrics, building on existing evaluation
approaches from literature, on three datasets and deep neural network architectures. We further report the
memory and runtime requirements of all evaluated methods. To the best of our knowledge, this is the most
extensive quantitative evaluation of DA methods to date. Our results strongly suggest that surrogate-based
DA methods can help reduce the computational requirements over several orders of magnitude, without
sacrificing attribution quality. Our proposed method DualDA in particular outperforms state-of-the art
methods for numerous evaluation metrics while executing up to six orders of magnitude faster than competing
approaches. DualDA also exhibits the lowest memory consumption among all methods that use caching.
These improvements above the previous state-of-the-art can be significant in the context of applications under
strict constraints on computational resources.

Additionally, we investigate the sparsity of the resulting attributions. DualDA achieves its remarkable
performance while producing sparse attributions, which results in insightful attributions that are more easy
to interpret than from competing methods. The resulting reduction in cognitive load is crucial to analyze
and understand model behaviour in modern applications with a vast number of training samples. For use
cases in which less sparse attributions may be desirable, we show how to effectively tune the sparsity using
the hyperparameter C. Our experiments show that the hyperparameter C' is vital for the effectiveness of
the attributions as features for downstream tasks, and can be chosen carefully by the user depending on the
application at hand. As DualDA has only a single hyperparameter, it is more straightforward to apply and
more user-friendly than competing methodologies.

Finally, we employ XDA to gain deeper insight into the DualDA attributions across three different datasets.
Through qualitative analysis, we demonstrate how XDA explains nuances in model predictions and confounding
factors in training data, while showing robustness in input ablation studies. To our knowledge, this is the
first work to propose a methodology to explain the interaction of training and test datapoints from both
perspectives, on feature level. By unifying the attributions in two orthogonal approaches in XAlI, feature
attribution and data attribution, we obtain a method that leverages the benefits of both approaches,
constituting a novel explanation paradigm.

DualXDA, despite achieving substantially greater computational efficiency than competing approaches,
still presents certain limitations primarily associated with the SVM training procedure. Standard SVM
training lacks parallelization capabilities and exhibits computational complexity that scales with the size
of the dataset, potentially creating bottlenecks for applications with large training sets. Nevertheless, in
our experience early stopping before convergence produces effective results with reduced computational cost.
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(a) DualDA attributions and XDA heatmaps for the unperturbed test sample. The three most attributed training
points (left) share a similar top arc as the test sample. In the corresponding XDA heatmaps, this arc receives a large
quantity of positive attribution scores. The other two training samples lack the arc, accumulating attribution at their
base.
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(b) When removing the base of the test sample and attributing the perturbed image that only consists of the top arc,
all attributions are reduced, but the ordering induced by the data attribution scores remains the same. The XDA
training sample heatmaps show a weakened attribution at the digit base. All positive relevance has vanished from the
bottom of the test heatmaps.
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(¢) When removing the upper half of the test sample and only leaving the base, the attribution of the three most
attributed training points is significantly reduced. Conversely, the attribution for the remaining two training points is
less affected. They now become the second and third highest attributed training samples respectively.

Figure 8: Ablation study of XDA explanations for the numeral “2” from the MNIST dataset. We take a test
sample and the five most highly positively attributed training samples and evaluate how the attribution and
the corresponding XDA heatmaps change when removing different parts of the digit.
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Further acceleration can be achieved using GPU-based implementations such as thunderSVM (Wen et al.|
2018) or modern parallelizable SVM training algorithms (Chang et al., |2012)).

We see three potential avenues for extending this research as part of future work: Firstly, the DualXDA
framework can be extended to different variants of the classical Support Vector Machine: Support Vector
Regression (Drucker et al., |1996) may be used as a surrogate for the final layer of deep regression models.
With the use of One-Class SVMs (Scholkopt et al., 2001), we can understand why a test point is considered an
outlier using the training data. Incremental SVMs (Cauwenberghs & Poggiol 2000)) may provide an efficient
tool for implementing DualXDA in active learning settings. Finally, Relevance Vector Machines (Tipping},
2001)) use a Bayesian approach by deploying an Automatic Relevance Determination prior, which allows
for a probabilistic classification and may help to select support vectors which are further away from the
margin and thus more representative of the data — it remains to be seen whether this is a desirable property
for the tasks associated with DA. Secondly, prior research suggests that combining DA methods over an
ensemble of models significantly improves its efficacy (Park et all 2023]). If this trend holds true, it provides
a simple way to further boost the performance of our method. Finally, as DualXDA is designed for increased
computational efficiency in order to be applicable for current state-of-the-art models with a large parameter
space such as Large Language Models, we are interested in applications of DualXDA to these models to
better understand how they are influenced by their training data. The value of this line of research lies in the
potential to provide a method for the energy efficient interpretation of large-scale models with implications
towards many real world applications, such as training dataset distillation for more efficient model training.
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A Derivation of DualDA using the SVM framework

Given the soft-margin optimization problem of (Crammer & Singer} [2001))

minw  5[W[E+CXY, &
s.t. Vi € [N],Vc € [K] (A1)
(w) fi) = (W] fi) + 0ey, = 1= &

where 6., = 1(c = y;) denotes the Kroenecker delta function, we derive the Lagrangian
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To enforce the stationarity condition (Kuhn & Tucker} [1951)), we take derivatives with respect to the primal
variables and set them to 0:
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=1

From Equations (A.3) and (| - we derive:

K
Vie[N]: Y cie=C = Vie[N],C—auy, = » o (A.6)
c=1 CyﬁfC
N
Vee [K]: we = Z(Cdyw — i) fi = Z (C — oy, ) fi — Z Qic fi (A7)
i=1 iyi=c iy F£C

Combining these two results, we have:

We = Z ( Z Oéik-)fi* Z Qi fi (A-8)

i:y;=c k:y;#k 11y, F#c
As such, the output of the surrogate model on input z is given by:
vee [K]: @0, W)e=w/ fl@;0)= Y (Y aw)fif f#:9) = Y el fl@9) (A9
iy;=c ky;#k i1y, #c

Thus, the output of the network for any class is a linear combination of the inner products of the test point
with training points. This motivates our choice in Equation .

To solve this problem, we first derive the dual problem by plugging Equation (A.8]) in the Lagrangian and
maximize it subject to the dual feasibility and complementary slackness conditions (Kuhn & Tucker} |1951)):

A S e
s.t. Vi € [N], (A.10)
K e = C and Ve € [K], aze > 0.
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We refer the reader to (Crammer & Singer} 2001) for the derivations.

After solving this problem, we obtain a nonnegative real matrix A € Rf *K  consisting of the dual variables
o ., which constitute the multiplier of each training datapoint in the final decision. Each row ¢ of A
corresponds to a training datapoint f;. Each entry in the matrix contains a positive scalar ;. corresponding
to class c.

Each datapoint z; contributes negatively to decisions for classes other than its own class y; (classes ¢ # y;),
and the multiplier for this contribution is «;.

Each datapoint x; contributes positively to decisions for its own classes (¢ = y;), and the multiplier for this
contribution is the sum of the multipliers for other classes: Zk?ﬁyi Q-

The variables oy, are the values that satisfies the Karush-Kuhn-Tucker condition expressed in Equation (A.3)),
concerning positivity of slack variables.

Note that only a subset of the training data will have positive attributions, since all the datapoints outside
the margin will have all zero values in the corresponding rows of A.

B Derivation of DualDA using the Representer Points Framework

To formulate the training of an SVM in the spirit of Representer Points Selection, we first reformulate the
Multiclass SVM problem as an optimisation problem with the following loss function:

1 n
LV I707) = GIWIE+ €Y max {1~ (5, + ] fi — w] ]} (B.)
i=1
W = arg min L(W; f1', y7') (B.2)
w

Consider data points that do not lie precisely on the decision boundary between classes, such that the argmax
operation in the hinge loss function yields a unique class label. This is true for most datapoints, except a few
which are situated exactly on the margin. Denote in the following

= _ AT e T
c = arcgefﬁ?x {]— |:5cy7 + 'Linfz We f1:| } (BS)
and
Be(f) =" f. (B.4)
For class ¢/, we have
_C if C/ = yZ 7& C*
a _ C if C/ = C* 75 Yi
9B (f:) Ccnelﬁ(x] {1 = [0cy, + By, (fi) = Be(fi)l} = 0 ifc =y =c , (B.5)
0 ifC’#yh C/#C*

A

since an infinitesimal step does not change the output of the argmax operator. Setting ¢(B8u (f;),yi; W) =

C maxce(g] {1 — [0cy, + By, (fi) — Be(fi)]}, and replacing terms in Equation we obtain the Representer
Points attribution using the Hinge loss:

Cf; ftest lf C=Yi
T . 7Cfl ftcst lf c= C*
J(xi) " f(Beest) = 0 ife=y =c*

0 ifc#vy;, c#c"

HingeRP _9U®(2i;0), yi)

c (xtcstai) = 8‘1’(&31,9)6 (BG)

We now establish that these attributions coincide with those of DualDA up to positive scaling. This equivalence
is proven in the next section via an Influence Functions derivation of DualDA.
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C Derivation of DualDA using the Influence Functions Framework — Proof of
Theorem 3.1

To prove Theorem we again rely on the formulation given by Equations (B.1) and (B.2). We seek to
quantify the effect of infinitesimally downweighting the loss contribution of the i-th training sample (f;, y;)
by an infinitesimal ¢.

LW £708) = LOV J708) — € max {1 [+ ) /s~ w! 5]} (©1)
W = arg min L'(W; f1', y7') (C2)
w

For a given test point Tiest with features fiest = f(%test; ) and an arbitrary class ¢, our objective is to
determine how the class score wCT ftest responds to the infinitesimal downweighting of the i-th datapoint.
Using Corollary 1 in (Naujoks et al., [2024]), we derive

LT ~ T
We ftest - U}é ftest
3

=Vy (Qﬁc—rftest> . ij/l - Vi <C’ cnel?}?] {1 — [écyi —l—ﬁ);—ifi — w;rfz] }) + O(e), (C.3)

where Hy;, is the Hessian of the loss function L, so Hy;, is equal to the identity matrix. As before, under the
assumption that the maximum is achieved by a unique class index, denote in the following

¢* == argmax {1 — [dy, + w;fz — wg—fl} b (C4)
c€[K]

For classes ¢ and ¢/, we have that

R 1. ife=¢
v'qu/'LUCT.]Ctest = Jies (05)
0 else
and furthermore
—fi =y #c
) _ T L Tenn_ ) [fi fd=c#y
Vi ?el%?] = e +wy fi e fil} = 0 ifd=y =c (C.6)
0 ifcd #y;, #c*
So overall
AT
wchtest - w(l» ftest
€
=> -Vy (U%Tftest) - Vi ((J max {1 = [bcy, + 1y, fi —w/ fi] }) +0(e)
Ofi—rftcst ifc= Yi
_Cfi—rftest ife=c" (07)

0 ife=y =c"
0 ifc#y;, c#c*
We now prove that this is indeed the same as the attributions calculated by DualDA, which are given by
DV . Z ) aicf'Tftest ify, =c
T, (Ttest, t) = cFYi K C.8
e (Tests1) { —icf; frest  else (C.8)

To establish this result, we consider two distinct cases. For correctly identified training points, we have
y; = ¢*. By complementary slackness of the SVM, we have for the dual variables a;. = 0 for ¢ # y; and
therefore Z#yi ai. = 0. So

0 ifc=y;,=c*
0 ifc#y =c

(C.9)

TDV(ZEt t,1) = Zc?éyi aicfZTfteSt
¢ s *aicfi—rftest
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For incorrectly identified training points, we have y; # ¢*, then by complementary slackness «;. = 0 for
¢ # ¢* and since Zce[c] a;. = C, it follows that ay.« = C. Therefore

DV (C - aic)fi—rftest = Cfintest ifc= Yi 7& c*
Tc (xtcsta 7/) - _aicfi—rftest = _Cfi—rftest if ¢ 7é Yi, €= c* (ClO)
_aicfi—rftest = 0 if ¢ # Yi, C 7& c*

D Technical Details of Experiments

D.1 Data Attribution Methods

As DualDA is already defined in Section 3] we now specify the other DA methods we compare our approoach to
in this paper. In all experiments, we employ GPU implementations and follow the best practices as suggested
by original authors of the papers or code bases, as explained in the individual sections. This includes the use
of random projections and CUDA-level implementations to efficiently perform these projections for TRAK.
For the caching phase of DualDA, the extraction of latent features is run using GPU capabilities, while the
training of the SVM uses CPU. The sequential nature of the underlying SVM optimization algorithm does
not allow for a straightforward GPU parallelization of existing implementations (Keerthi et al., [2008; |Chiang
et al., 2016).

D.1.1 Influence Functions

Influence Functions (IF) originates from the field of robust statistics, where it was initially used for the
analysis of the effects of outliers on linear models (Srikantan, [1961; [Hammoudeh & Lowd] 2022). Koh and
Liang (Koh & Liang}, 2017) proposed using this method for local data attribution of deep neural networks. It
approximates the effect of discarding a training point using a second-order Taylor approximation. However,
this approximation is conditioned on the current trained parameters of the network and hence includes
information about the decision making strategies employed by the trained model. Data attribution by IF is
given by

T (2,1) = =Vol(@(2:0), ¢) T Hy ' Vol(®(i3 ), y,) (D.1)
and Hy = V2li1ain (8, D) is the Hessian of the training 10ss izain (6, D) = > (i iyen L P(s; 0), y;) where £(-, )
is a sample-wise loss function.

Computation of the inverse Hessian is computationally prohibitive for modern architectures with millions
of parameters. For this reason, (Koh & Liang), |2017) propose to use the LiSSA algorithm (Agarwal et al.|
2017) which approximates the inverse Hessian vector product ¢(®(z;0),c)" H, ! for each test point using
an iterative procedure. While this mitigates the computational cost, it does not entirely solve the problem:
computing explanations for a single test point can still take a long time, possibly in the order of hours
(Hammoudeh & Lowd, [2022)). In our experiments, we have followed the authors’ suggestions to determine
hyperparameters which produce meaningful influence values while minimizing the required computation time.
First, we have used only the final layer of deep neural networks to compute gradients for influence estimation
with LiSSA. Secondly, we have set the total number of iterations dedicated to the estimation of the inverse
Hessian vector product to the training dataset size in each experiment.

Another estimation of the inverse Hessian is achieved by using the Arnoldi iteration algorithm to approximate
its largest eigenvalues and the corresponding eigenvectors. These can then be used for an approximative
diagonalization of the Hessian, which is simple to invert. For Arnoldi explanations, we have used 128 as the
number of random projections and 150 as the Arnoldi space dimensionality. We have used 10,000 randomly
sampled datapoints from the training dataset to estimate the Hessian matrix.

Finally, the authors of Grosse et al. (Grosse et al.l |2023) propose to solve the inverse-Hessian-vector product
using an Eigenvalue-Corrected Kronecker-Factored Approximate Curvature (EK-FAC), which is derived
from an approximation of the Fisher information of the network. As hyperparameters, we have used the
default values given in the original code release.
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D.1.2 Tracln

TracIn circumvents the computational problem of calculating the inverse Hessian by estimating the effect of
discarding a training sample with a first-order Taylor approximations. However, instead of only considering
the final trained model, it aggregates this approximation over the entire training procedure using training
checkpoints and the optimised training parameters 0. at each epoch e, weighted by the step size 7.:

TCTraCIn(xai): Z UGVOE((I)(CC;ée)7C)Tv0£(@(mi§ée)ayi) (D2)

epochs e

Two more attribution methods can be viewed as simplified version of the former. GradDot functions like
TracIn but only considers the final training epoch:

GradDot
c

(z,1) = Vol(D(x;0),¢) "Vol(®(x;0), ;) (D.3)
As a small variation, GradCos uses the cosine similarity between gradients instead of the unnormalized
inner product:

GradCos . N ~
T (x,4) = cos(Vol(®(x;0),c), Vol(®(z:;0),vi)) (D.4)

[

In the implementation of these methods, we have employed random projections on gradients to be able to
cache training gradients, following (Pruthi et al., [2020]). This allowed the attributions to be achieved in a
practical time scale. We have used 128 random projections.

D.1.3 TRAK

TRAK is originally motivated by averaging the attribution over multiple models trained on the same data to
derive more stable attributions that are model-agnostic and instead only focus on the data. However, it can
also be used as a single-model estimator. In this case, it is similar to Influence Functions but uses a projected
version of the generalized Gauss-Newton approximation to the Hessian.

Let p; denote the prediction probability corresponding to the ground truth label of data point z;. Let further

Di
1—p;

Qis =1 —p;. Then the TRAK attribution for a multiclass classification task is given by:

G = [glg g2; ... ;gN] be a matrix with columns ¢g; = Vy log( and @ be a diagonal matrix with entries

7. @) = (Voo (:0)] (GTG) G Q). (D.5)

C

Similar to TracIn, TRAK operates on random projections of gradients to achieve feasible runtimes. We
use the official code release, following best practices including the GPU level implementation of random
projections to dramatically decrease runtimes and memory requirements. Following the original publication,
we use 2,048 random projections.

D.1.4 Representer Points

Representer Points trains the final (fully-connected) layer until convergence with an added ¢5 weight decay
regularization. The authors prove a representer theorem in this setup, showing that the retrained last layer
can be written as a linear combination of final hidden features of training datapoints. Therefore, the model
output corresponding to class ¢ of the new model can be written as the sum of the following individual
contributions. Letting £(-,-) denote a sample-wise loss function, which accepts a test sample and a target
class, Representer Points is defined as

RP

T (@rest, 1) = _O0U®(i:0), yi)

T
6<I>(a:i;9)c fz‘ ftest~ (DG)
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D.2 Model Training

For all datasets we use stochastic gradient descent training without any learning rate scheduling. Experiments
are run on Rocky Linux 8.

For MNIST, we use a 6-layer convolutional neural network with 0.001 a learning rate of 0.001.

For CIFAR-10, we train a ResNet-18 (He et al.,[2016)) with random cropping and flipping as data augmentations,
with a learning rate of 0.0003. We further include a weight decay term with a coefficient of 0.01 as part of
the loss term.

For AwA2, we have use a learning rate of 0.001 and augment the data with random horizontal flipping of the
images as data augmentation for training a ResNet-50.

E Evaluation Metrics

For evaluating attribution quality, we employ a variety of metrics from the literature and three newly proposed
metrics, all of which will be introduced in this Section. These metrics are derived from an intuitive notion of
data attribution or from emulating downstream applications that utilize data attribution.

Consider a test sample x € Dyest, and a target class ¢ to be attributed. This means that we use DA methods
to attribute the corresponding model output to the training dataset. We denote by 7% a permutation
of training data indices sorted decreasingly by attribution T.(z,-) as assigned by a DA method such that
i>37 = T, (x,75(i) < Te(w,mE(5)). We let 7¢(i) denote the it element in this list, where we start
indexing at 1 (i.e. the first value corresponding to the highest attribution is 7¢(1)). Finally, we explicitly
denote the Kroenecker delta function d,, = d(a,b), and we denote the prediction class for test sample x with
c(x) = argmax;, ®(z;0) .

E.1 Sanity Checks

Hanawa et al. (Hanawa et al., [2021)) suggest two sanity checks to determine the quality of DA methods.
Identical Class Test The authors first posit that a reasonable explanation method should produce
permutations ¢ that satisfy the following:

V(2,y) € Diest, Ve € [K], ¢ = Yre(1),
where Dies; denotes the test dataset. In plain language, the authors posit that the strongest proponents for

the classification of a test sample as class ¢ should be training samples of that same class. In practice, we
consider the top five attributed samples for the class predicted by the model and report

5
|Dtlest| 2 2 % 5 (e(@). 50 (E.1)

T,y EDrest 1=1

Identical Subclass Test Hanawa et al. further suggest that attributions should be able to detect different
subpopulations in the same class (Hanawa et al., |2021)). To create this condition, they propose using an
arbitrary partitioning of classes, and group each set in the partition into a super group. In practice, we have
selected pairs of classes to group. These pairs of classes are chosen to be dissimilar to ensure that different
strategies are learned for samples belonging to different subclasses. After training a neural network on the
modified dataset, a successful DA methods should attribute highly to training samples that belong to the
same subclass as the original class of the test sample.

To express this condition formally, following (Hanawa et al., [2021)), let s(-) be an oracle function that returns
the true (sub)class of the datapoint given as its input. Similar to the Identical Class Test, we report

\Dtlesq 2 Zé‘s(s(x)’s(%ﬂﬂ(n)) (E.2)

Z,YyE€Dyest 1=1
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E.2 Metrics Emulating Downstream Tasks

Many downstream applications, which initially served as the motivation to several DA methods, can be used
for evaluating the effectiveness of DA methods as estimators of model behaviour in counterfactual training
setups. We include two metrics that measure the effectiveness of DA methods in downstream tasks.

Mislabeling Detection The following metric mimics the downstream task of identifying mislabeled
samples in the training data (Koh & Liang), |2017; |Yeh et al., [2018} [Pruthi et all, |2020). Correctly labelled
datapoints can be classified by a model by relying on similar training samples of the same class. In contrast,
mislabeled samples diverge from the typical feature patterns of their labeled class and consequently require
individual memorization rather than generalization. Therefore, mislabelled datapoints are highly influential
on their own model prediction, allowing the user to leverage DA approaches to detect mislabeled datapoints.
To simulate this scenario, we randomly change the labels of a subset of the training data and retrain the
model. We then use the attribution method to calculate each training sample’s self-influence, T, (x;,i). To
quantify the performance of the mislabeling detection by a DA method, we traverse the training data set in
descending order of self-influence and record the cumulative density function of the percentage of mislabeled
samples we have identified. We report the area under the curve of this cumulative density function, linearly
transformed to a score between 0 and 1, where 0 corresponds to the minimum achievable area, 1 represents
the maximum achievable area, and random attribution by sampling from a uniform distribution yields an
expected score of 0.5.

Shortcut Detection Another candidate downstream application for DA is to identify the causes of shortcut
learning and backdoor poisoning attacks. If we modify the training dataset to introduce an artificial shortcut
to trigger a certain model prediction, DA methods should attribute the responsible training images highly
whenever the shortcut feature is present in the test sample. Similarly to previous work (Koh & Liang), 2017}
Hammoudeh & Lowd) [2022)), we formulate a shortcut detection metric: determine a perturbation w(-) which
takes a sample x; and adds a shortcut perturbation on it. Importantly, w applies a consistent and detectable
perturbation to all chosen samples. We use a small box in the center, and a frame around the images in our
experiments.

We select a class ¢’ as the shortcut class, and randomly sample a subset of datapoints from that class to apply
w. By retraining the model on this perturbed training data, the model learns a connection between the artifact
and the class ¢/. We now create a particular dataset for evaluation by applying the perturbation to all samples
and collecting all perturbed samples, which are not originally from class ¢’ but who, after the perturbation is
applied, are classified as class ¢, i.e. Deval = {(w(z),y) | (z,y) € D, y # ¢/, argmaxc(x) = ¢'}. This ensures
that if a test point is now classified as class ¢/, it is primarily due to the influence of the perturbation and
therefore, the perturbed training samples should be most influential for the classification as class ¢’. For all
such test points, we report the Area Under the Precision-Recall Curve (AUPRC) score for the detection of
perturbed training samples, following (Hammoudeh & Lowd) 2022]).

E.3 Retraining-based Metrics

The counterfactual relevance of training data can be empirically assessed through model retraining under
an identical training regime with modified training sets. As explained in Section [2.2] this approach is the
motivation for methods based on Influence Functions (Koh & Liang, |2017)). The subsequent metrics evaluate
the correspondence between observed changes in model behaviour and the attributions of the training data.

Linear Datamodeling Score (LDS) LDS measures the effectiveness of attributions as an estimator for
the effect of leaving out training samples by retraining the model on general subsets of the training data (Park
et al., 2023)). Given attributions T.(x,-), and a subset of training data indices S C [N], we define

§(Te, Syz) = Z Te(x,1)
i€S
to be the overall attribution of the subset for the output c¢. We know want to measure how strongly this
overall attribution is correlated with the model performance of a new counterfactual model, which was trained
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only on the subset S. To compute the LDS, we randomly sample subsets {S1,S2,S83,...,Sn}. We train
models {®q, Po, ..., P,,} independently on these subsets. Finally, we compute the average rank correlations
of actual outputs and predicted outputs over the test set:

LS (@)t |5 € [} AE (T So) | G € [m]}) (E.3)

|DtCSt‘ (2,y) €EDsest

where p(+,-) denotes Spearman rank correlation.

Corseset Selection A downstream application of data attribution is dataset distillation: limiting the
training dataset to fewer examples, while maintaining high test accuracy (Guo et al.| [2022; |Joaquin et al.,
2024)). In contrast to LDS, we are not interested in the model performance for randomly chosen subsets of the
training data, but instead for the highest attributed subset. To measure this in a metric, we need a strategy
to determine the global importance of a training point for the model performance on the entire test set. To
achieve this, we compute the average value of the absolute attributions of a training point over the test set.
We then restrict the training data to the most globally relevant datapoints and measure the test loss of a
model retrained on the restricted training set. We report the test loss when retrained on 10% of the data as

well as a weighted average
e pep(y) L5 (p)

S =
1 )
ZPEP P
where £S5 (p) is the test loss when retrained only on the most relevant p% of the training data and we use

steps of 10%, i.e. P = {10,...,90}. This is the only metric for which lower values indicate better performance.
Additionally, we report model accuracy variations across different training subsets in Appendix [F.4]

Adversarial Data Pruning Inspired by previous work, which investigates the sensitivity of model
predictions to ablation of the training data (Ilyas et al.l 2022), we measure the test loss of a model that was
retrained on a train set which had its most influential datapoints removed. Similarly to Coreset Selection,
we consider the highest attributed subset. But in contrast, we aim to judge how much exclusive relevant
information this subset holds that would induce an increase in the loss when the subset is removed. We use
the same strategy as in Coreset Selection to determine the global importance of training samples. We report
the test loss when retrained without the 10% most influential data as well as a weighted average

— Yper(3) 04 (p)

P =
1 )
2 pep P
where (2P (p) is the test loss when retrained without the most relevant p% of the training data and we again
choose P = {10,...,90}. As for the Coreset Selection metric, we also report model accuracy across different

training subsets in Appendix [F.5]

F Experiments: Additional Findings

F.1 Metric Scores for MNIST and CIFAR-10

Figures [F.1] and [F.2] show the evaluation results for MNIST and CIFAR-10 datasets respectively.

F.2 Surrogate Faithfulness Scores

Figure shows the surrogate faithfulness scores for DualDA and Representer Points, as well as artificially
sparsified Representer Points surrogate models.

F.3 DualDA: Effect of sparsity hyperparameter C

We evaluate how different choices of the sparsity hyperparameter affect DualDA attribution performance
across the evaluation metrics. We therefore evaluate all metrics by choosing C' over an expanded range from
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Metric score

Figure F.1: Evaluation results on the MNIST dataset. LiSSA and GradCos do not have a score for the
mislabeling detection metric. Note that Mislabeling Detection requires calculating the self-influence of
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the entire train set (see Appendix |E[) For LiSSA, calculating self-attributions for all training points is

computationally infeasible. As GradCos is defined as the cosine of the angle between the test and training

sample’s feature vectors, the self-attribution for GradCos is equal to 1 regardless of the sample.
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Figure F.2: Evaluation results on the CIFAR-10 dataset. LiSSA and GradCos do not have a score for
the mislabeling detection metric. Note that Mislabeling Detection requires calculating the self-influence
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of the entire train set (see Appendix @[) For LiSSA, calculating self-attributions for all training points is

computationally infeasible. As GradCos is defined as the cosine of the angle between the test and training

sample’s feature vectors, the self-attribution for GradCos is equal to 1 regardless of the sample.
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Figure F.3: Surrogate similarity metrics for DualDA with sparsity hyperparameter C' € {107°,1073,107!}
and Representer Points on the MNIST, CIFAR-10, and AwA2 dataset. Additionally, we sparsified Representer
Points artificially to the same sparsity levels as DualDA (in terms of the number of support vectors) with the
corresponding sparsity parameter C' and present corresponding surrogate similarity metrics as well.
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Figure F.4: Evaluation results on the MNIST dataset for DualDA with different sparsity hyperparameters.

1079 to 10" for DualDA. Figure shows the results for the MNIST dataset, Figure for CIFAR-10, and
Figure [F-6] for the AwA2 dataset. DualDA performs best in the Identical Class Test, irrespective of the chosen
hyperparameter. For the Identical Subclass Test, lower sparsity appears preferable for better performance,
boosting scores from 0.72 to 0.96 on the MNIST dataset and from a low of 0.45 to a maximum of 0.70 on
AwA2. However, on CIFAR-10, scores remain largely unaffected by the choice of C. Mislabeling Detection is
not affected by the sparsity level on MNIST and CIFAR-10, but on AwA2, higher sparsity allows the method
to achieve near-perfect performance. Shortcut Detection benefits substantially from lower sparsity levels. For
example, on MNIST, where DualDA with C' € {107°,1073,107} fails at the task as presented in Figure [F.1}
for C = 1072, DualDA achieves a perfect score. For the LDS metric, no clear pattern emerges: on MNIST,
lower sparsity yields worse results, but on CIFAR-10 and AwA2, it increases scores. Coreset Selection is
improved by higher sparsity on all tasks, likely because the SVM selects more important training points as
support vectors. This selection effect is reduced when we decrease sparsity and therefore select more support
vectors. The effect on Adversarial Data Pruning is also unclear: for MNIST and CIFAR-10, lower sparsity
yields better results, but on AwA2, the opposite is true.

These findings reveal that optimal sparsity settings are both metric- and dataset-dependent. While some
metrics show consistent patterns across datasets, others exhibit dataset-specific behaviors that require
hyperparameter selection for optimal performance.

Furthermore, we analyze how the sparsity hyperparameter affects the fit of the surrogate SVM. The
top row of plots in Figure [F.7] displays the training and test accuracies of DualDA surrogate models for
C € {107%,1075,1074,1073,1072,1071,10%,10%, 10%} in comparison to the test accuracy of the original
model. The middle row shows the training time in black. The final row displays the number of support
vectors per training class, where each coloured line represents one class. In general, the figure suggests that
an optimal choice for C always exists, satisfying the requirements for fast training to fit a DualDA surrogate,
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Figure F.5: Evaluation results on the CIFAR-10 dataset for DualDA with different sparsity hyperparameters.

closely matching the original model, and resulting in an adequate amount of support vectors to assure a
faithful DualDA surrogate generating sparse and faithful data attributions. Our extended results further
show that with an optimal choice of hyperparameter C', DualDA can be used as a highly effective method for
solving several DA-related downstream tasks.

F.4 Accuracy Rates for Coreset Selection Metric

Accuracy rates for the Coreset Selection task are presented in Appendix [F-4] for the MNIST dataset, in
Appendix [F.4] for the CIFAR-10 dataset, and in Appendix [F.4] for the AwA2 dataset. We observe that
increasing the sparsity hyperparameter enhances the performance of DualDA on this task, establishing it as
the top-performing method across multiple sparsity levels on all three datasets.

F.5 Accuracy Rates for Adversarial Data Pruning Metric

Accuracy rates for the Adversarial Data Pruning task are presented in Appendix for the MNIST dataset,
in Appendix for the CIFAR-10 dataset, and in Appendix for the AwA2 dataset. In contrast to
the Coreset Selection task, no consistent pattern emerges regarding the optimal sparsity level for DualDA:
reduced sparsity produces superior results on MNIST and CIFAR-10, whereas increased sparsity yields better
performance on AwA2. With optimized hyperparameters, DualDA achieves substantial performance gains:
when models are retrained on only 10% of the data, accuracy is reduced to 53.28% compared to 72.66%
achieved by the second-best method. On CIFAR-10, DualDA similarly attains the best performance at the
same data retention level, with an accuracy of 29.40% versus 44.51% for the second-best approach. On AwA2,
it reduces accuracy to 12.07%, performing competitively with the top method, LiSSA, which achieves 9.19%.
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Figure F.6: Evaluation results on the AwA2 dataset for DualDA with different sparsity hyperparameters.

‘ 10% 20% 30% 40% 50% 60% 70% 80% 90%

DualDA C =107° | 40.81% 56.88%  70.75%  77.49%  82.50%  87.21%  89.40%  98.66%  98.44%
DualDA C =107 | 4320% 57.33%  69.64% 78.86%  83.89%  86.91%  89.73%  98.28%  98.68%
DualDA C =105 | 83.23%  98.84%  98.78%  98.70%  98.79%  98.69%  98.58%  98.80%  98.65%
DualDA C =102 | 98.24%  98.41%  98.56%  98.74%  98.75%  98.68%  98.68% 98.89%  98.73%
DualDA C =10"! | 98.31% 98.49%  98.38%  98.73%  98.95%  98.71%  98.76%  98.70%  98.83%
DualDA C = 10! 98.35%  98.41%  98.54%  98.56%  98.56%  98.64%  98.75% = 98.63% = 98.54%

LiSSA 97.09%  98.18%  98.19%  98.71%  98.86%  98.70%  98.64% 98.89%  98.68%
Arnoldi 98.18%  98.84%  98.84%  98.65% 98.99% 98.80%  98.58%  98.76%  98.58%
EK-FAC 98.41%  98.61%  98.69%  98.78%  98.79% = 98.64% 98.86% 98.74%  98.73%
Tracln 97.20%  98.53%  98.60% 98.90% 98.74% 98.89%  98.56%  98.79%  98.56%
GradDot 98.31%  98.75%  98.80%  98.65%  98.54%  98.70% = 98.73%  98.59%  98.73%
GradCos 94.50%  96.41%  98.04%  98.40%  98.39%  98.39%  98.68%  98.81%  98.59%
TRAK 98.38% 98.86% 98.75%  98.83%  98.59%  98.73% = 98.84%  98.70%  98.75%

Representer Points | 98.43%  98.76% 98.96%  98.86%  98.84%  98.59%  98.83%  98.81%  98.71%

Table F.1: Coreset Selection accuracy rates on MNIST dataset (model retrained on top z% of training
data, sorted by attribution values of corresponding DA method). Higher accuracy rates indicate better DA
performance on the task of the metric. Best values are highlighted in bold.
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Figure F.7: Further analysis of the effect of the hyperparameter C' on the training of the SVM. First row:
Accuracy rates on the train and test set are compared to the accuracy rate of the original model on the
test set for all three datasets. The SVM performs well over a large range of hyperparameters, reaching
accuracy rates on the test set in line with the performance of the original models. However, overtly strong
regularisation substantially degrades performance on the CIFAR-10 and AwA2 datasets. Second row: The
training time for the surrogate is displayed for all three datasets. Overall, the training time is very short, but
exceedingly strong regularisation leads to a remarkable increase in training time. Third row: Each line plots
the number of support vectors, i.e. samples that have a non-zero contribution to the fit of the SVM, for one
class of the train set. Stronger regularisation leads to a reduction in support vectors.
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‘ 10% 20% 30% 40% 50% 60% 70% 80% 90%

DualDA C =107° | 22.711% 57.38%  68.79%  73.63%  77.16%  78.33%  78.58%  79.75% = 81.16%
DualDA C =10"7 | 24.10%  54.31%  66.96%  72.14%  75.20%  78.35% 81.25% 80.48%  81.73%
DualDA C =10"° | 28.60%  59.55%  71.43%  73.08%  79.04%  80.08%  79.93%  80.98%  81.28%
DualDA C =103 | 47.15%  69.35%  74.78%  77.98%  79.50%  77.16%  80.05%  80.48%  81.38%
DualDA C =10"! | 55.60%  73.18%  77.31%  77.13%  79.86%  81.15%  81.24%  80.10%  80.44%
DualDA C = 10! 56.90%  70.74%  76.23% 78.46% 79.16%  80.38%  80.19% = 78.24%  78.64%

LiSSA 68.71% 76.68% 79.71% 75.63% 80.40% 79.73%  81.13% = 79.04%  81.14%
Arnoldi 40.39%  50.61%  64.50%  75.69%  75.99%  77.53%  78.10%  81.16%  80.56%
EK-FAC 35.79%  51.74%  62.26%  73.46%  74.91%  79.74%  80.14%  80.49%  80.98%
Tracln 28.18%  47.41%  72.23%  78.10%  78.76% 81.18% 80.10%  81.35%  80.96%
GradDot 38.95%  51.83%  66.76%  75.23%  75.79%  76.63%  78.80% = 79.80% = 79.43%
GradCos 27.48%  57.81%  65.86%  71.35%  77.89% = 77.45%  80.20%  80.28%  81.79%
TRAK 38.23%  51.97%  65.44%  72.78%  75.96% = 77.61%  80.26% 81.75%  81.10%

Representer Points | 45.89%  60.93%  71.59%  77.03%  79.51%  80.83%  80.26%  80.94%  79.71%

Table F.2: Coreset Selection accuracy rates on CIFAR-10 dataset (model retrained on top 2% of training
data, sorted by attribution values of corresponding DA method). Higher accuracy rates indicate better DA
performance on the task of the metric. Best values are highlighted in bold.

‘ 10% 20% 30% 40% 50% 60% 70% 80% 90%

DualDA C =10"% | 57.01% 77.53% 80.87%  87.88%  89.44%  90.46%  92.48%  92.90%  93.38%
DualDA C =107 | 57.89%  74.54%  83.64% 88.08%  89.21%  90.21%  91.80%  92.88%  91.56%
DualDA C =10"% | 50.90%  78.39%  84.56%  89.18%  90.76%  90.81%  91.27%  91.40%  93.38%
DualDA C =102 | 85.18%  90.59%  90.59%  90.52%  91.89%  91.91%  93.43%  92.75%  93.38%
DualDA C =10"! | 77.62% 91.47% 92.39%  91.75% 93.10% 91.87%  92.92%  92.41%  93.87%
DualDA C = 10! 87.09% 90.65%  90.35%  91.91%  90.72%  89.25%  92.26%  91.62% = 92.68%

LiSSA 16.27%  33.93%  42.74%  44.79%  50.86%  61.67%  67.50%  79.00%  87.00%
Arnoldi 63.79%  89.99%  92.39% 93.05% 92.70%  92.46% = 92.30%  93.01%  93.38%
EK-FAC 59.59%  84.04% 92.57% 91.91%  92.88% = 92.28%  92.90%  93.38%  93.84%
Tracln 65.54%  86.08%  91.40%  92.26%  93.07%  93.32%  92.41% 93.53%  93.43%
GradDot 56.75%  83.71%  89.60%  90.98%  92.75%  93.40% 93.12%  92.79%  93.76%
GradCos 82.41%  84.57%  87.77%  89.42%  90.79%  92.74% = 93.34%  92.57% = 92.52%
TRAK 67.41%  89.80%  92.37%  91.67%  92.30%  92.83% 93.86% 93.53%  93.20%

Representer Points | 72.29%  90.22%  91.86%  92.79%  92.79%  93.31%  92.98%  93.09%  93.93%

Table F.3: Coreset Selection accuracy rates on AwA2 dataset (model retrained on top % of training
data, sorted by attribution values of corresponding DA method). Higher accuracy rates indicate better DA
performance on the task of the metric. Best values are highlighted in bold.
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‘ 10% 20% 30% 40% 50% 60% 70% 80% 90%

DualDA C =10"° | 53.28% 83.51%  90.00%  97.23%  97.10%  98.28%  98.66%  98.69%  98.74%
DualDA C =107 | 63.35%  81.85%  94.39%  96.39%  97.75%  98.60%  98.68%  98.79%  98.76%
DualDA C =10"° | 97.15% 97.31%  97.59%  97.88%  97.60%  97.20%  97.90%  97.96%  98.39%
DualDA C =10"3 | 97.74%  98.36%  98.41%  98.49%  98.54%  98.39%  98.50%  98.49%  98.71%
DualDA C' =10"1 | 97.94% 97.94%  98.38%  98.01%  98.71%  98.48%  98.54%  98.73%  98.63%
DualDA C = 10! 97.74%  98.40%  98.06%  98.65%  98.53%  98.31%  98.70%  98.70%  98.63%

LiSSA 98.18%  98.54%  98.56%  98.70%  98.66%  98.65%  98.50%  98.60%  98.86%
Arnoldi 74.96%  80.03%  89.20%  92.95%  96.83%  97.41%  97.89%  98.24%  98.46%
EK-FAC 74.76%  77.24%  86.80%  94.51%  96.98%  98.04% = 98.29%  98.08% = 98.54%
Tracln 78.38%  84.08% = 86.48% 89.23% 90.96% 93.48% 96.35% 96.85% 97.88%
GradDot 72.66% 74.76% 86.89%  94.18%  97.08% = 96.68%  97.78%  98.11%  98.65%
GradCos 93.93%  95.69%  98.28%  98.34%  98.46%  98.59%  98.76%  98.45%  98.80%
TRAK 82.69%  81.34% 80.51% 94.04%  96.93%  97.60%  97.84%  98.08% = 98.56%

Representer Points | 76.83%  93.61%  95.80%  96.93%  96.96%  97.09%  97.74%  97.96%  98.59%

Table F.4: Adversarial Data Pruning accuracy rates on MNIST dataset (model retrained on bottom x% of
training data, sorted by attribution values of corresponding DA method). Lower accuracy rates indicate
better DA performance on the task of the metric. Best values are highlighted in bold.

‘ 10% 20% 30% 40% 50% 60% 70% 80% 90%

DualDA C =109 | 30.84%  39.05%  55.66%  64.90%  67.63% 68.43% 69.25% 71.13% 78.70%
DualDA C =10"7 | 29.40% 36.18% 54.19% 62.94% 66.98% 69.06% 68.78% 72.59% 78.39%
DualDA C =10"5 | 64.96%  68.09%  69.68%  72.31%  71.99%  74.35%  76.35%  78.04%  79.39%
DualDA C =10"3 | 71.94%  70.41%  77.48%  77.46%  80.03%  81.56%  78.80%  81.75%  80.74%
DualDA C =10"1 | 72.53%  78.48%  78.71%  80.18%  80.53%  80.61%  81.43%  81.05%  81.08%
DualDA C = 10! 70.69%  73.94%  78.68%  T7.48%  79.71%  78.48%  81.34%  81.04%  81.89%

LiSSA 71.19%  75.44%  78.25%  77.94%  79.40%  80.11%  80.51%  81.20%  81.28%
Arnoldi 65.75%  70.56%  76.51%  77.74%  77.08%  78.78%  81.69%  80.44%  81.68%
EK-FAC 63.28%  69.44%  74.23%  73.88%  77.66%  78.50%  79.86%  80.95%  81.08%
Tracln 60.69%  62.95%  69.33%  71.99%  75.20%  77.09% = 79.60% = 79.74%  80.13%
GradDot 61.31%  66.90%  76.69%  T7.71%  79.04%  78.58%  81.06%  80.43%  80.84%
GradCos 44.51%  57.80%  59.44%  63.89%  68.49% = 69.90%  74.74%  78.98% = 82.31%
TRAK 65.79%  72.56%  75.08%  79.10%  78.36% = 78.20%  80.14%  82.71%  81.74%

Representer Points | 67.93%  75.59%  77.36%  78.46%  77.08%  77.98%  80.55% = 78.19%  82.14%

Table F.5: Adversarial Data Pruning accuracy rates on CIFAR-10 dataset (model retrained on bottom z%
of training data, sorted by attribution values of corresponding DA method). Lower accuracy rates indicate
better DA performance on the task of the metric. Best values are highlighted in bold.
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‘ 10% 20% 30% 40% 50% 60% 70% 80% 90%

DualDA C =1077 | 53.43% 70.60%  75.28%  77.95%  84.90%  87.66%  91.45%  93.29%  93.69%
DualDA C = 1077 | 46.50% 71.40%  73.26%  79.48%  83.16%  89.01%  91.34%  92.33%  93.43%
DualDA C =1075 | 65.59% 73.95%  80.63%  83.84%  86.35%  88.59%  89.10%  92.79%  92.52%
DualDA C =1072 | 13.90% 28.30%  42.00%  56.31%  67.46%  81.58%  91.67%  92.75%  93.38%
DualDA C =10"1 | 19.94% 42.61% 63.13%  81.69%  91.58%  91.14%  93.36%  91.36%  94.19%
DualDA C = 10! 12.07%  26.08%  36.98%  50.64%  61.83%  73.17%  83.95%  93.84%  92.81%

LiSSA 9.19% 20.38% 31.55% 40.22% 48.22% 62.53% 73.17% 80.59% 85.95%
Arnoldi 79.95%  89.64%  86.92%  91.82%  92.52%  92.20%  93.43%  93.76%  93.56%
EK-FAC 78.06%  88.28%  88.35%  91.56%  92.02%  93.20%  93.05% = 93.64% = 92.79%
Tracln 54.84%  69.59%  80.96%  82.59%  90.85%  90.19% = 91.36%  93.60% = 93.42%
GradDot 84.48%  88.92%  88.08%  90.11%  91.45%  92.19%  92.83%  93.49%  92.98%
GradCos 73.64% 88.61%  88.33%  90.46%  91.60%  92.13%  93.10%  94.02%  93.27%
TRAK 85.99%  88.79% = 89.18%  91.40%  90.15%  92.66%  93.32% = 93.82%  93.23%

Representer Points | 86.21%  90.08%  87.64%  90.04%  92.20%  92.06%  93.89%  93.67%  93.42%

Table F.6: Adversarial Data Pruning accuracy rates on AwA2 dataset (model retrained on bottom 2% of
training data, sorted by attribution values of corresponding DA method). Lower accuracy rates indicate
better DA performance on the task of the metric. Best values are highlighted in bold.
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Figure F.8: Mislabeling detection curves for the three datasets. Dashed grey lines indicate the best and worst
possible curves for a DA method, depending on the amount of poisoned samples for each dataset. The score
is the area under each curve which falls inside area inside the grey dashed curves, normalized to be between 0
and 1. Note that for the AwA?2 dataset, the curves for TracIn and GradDot overlap, such that only the curve
corresponding to GradDot is visible.

F.6 Details of Mislabeling Detection

In Figure [F.8] we present the curves produced by using different DA methods to detect mislabeled training
samples as explained in Appendix [E] under the paragraph about the Mislabeling Detection metric.

G Additional DualXDA Results
We present additional DualXDA explanations in Figures to [G.6
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Figure G.1: DualXDA explanations for the numeral “0” from the MNIST dataset. The XDA heatmaps
indicate, that in the strongest proponent the part missing part of the digit to close the loop is negatively

relevant for the classification as class “0”.
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Figure G.2: DualXDA explanations for the numeral “3” from the MNIST dataset. This example shows how
DualDA can be used to detect and understand mistakes in the training data: The most negatively relevant
training sample is an image of a “3” mistakenly labeled as a “5”.
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Figure G.3: DualXDA explanations for a dalmatian from the AwA2 dataset. Note that the most negatively
relevant training sample is a picture labelled as “collie” that also contains a dalmatian next to a collie breed
dog. This the interaction of those class-dependent features with the model can be observed in the XDA
heatmap for the training sample: The part of the image that contains the dalmatian looks similarly to the
test sample, but because the image is labeled “collie”, this area is negatively relevant for the classification of
the test sample as a dalmatian. On the other hand, the part that contains the collie looks different from the
test sample and is therefore not evidence contrary to the model decision. Therefore this area of the image is
red. In general, XDA marks black and white spotted areas as influential, either for the decision (if this is the
fur of dalmatians) or against the decision (when it is the fur of cows or the pattern of a blanket).
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Figure G.4: DualXDA explanations for a rabbit from the AwA2 dataset. For the proponents, the entire
body of the rabbit including the ears are relevant. However, the fur is also negatively relevant due to many
opponents having a similar fur colour. Yet because few other animals have similarly long ears, the hare’s ears
are the main identifying feature in the overall XDA map.
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Figure G.5: DualXDA explanations for a bee house from the ImageNet dataset. Opponents feature box-like
structures that look similar to apiaries. For the proponents, XDA considers the featured beekeeper hat
positive evidence towards the classification only if a similar hat is also shown in the training image.
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Figure G.6: DualXDA explanations for a scuba diver from the ImageNet dataset. Relevance
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is predominantly

placed on the oxygen mask if it is featured prominently in the testing image.
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H Unifying Concept-Level Explanations, Feature Attribution and Data Attribution

The formulation of DualDA can be combined with concept-level explanations to understand the impact
that individual concepts — which may be present or absent in the training and test data — have on their
combined DualDA attribution value. For a given concept k, assume through a concept-discovery method
such as linear probes we have obtained a Concept Activation Vector (CAV) o) (Kim et al. [2018). The larger
the dot product between the hidden activations fiest and the vector vy, the more likely it is that the concept
is present in the test sample. We further normalize the CAV v = Hﬁikl\z' Then, the amount of the DualDA
attribution that is explained by concept k can be quantified as

—\ (£ T T R
72 i | 1) = { (€7 2] ol B =€ )

Furthermore, if given a set of concepts K of which the corresponding CAVs {vy, | k € K} form an orthogonal
basis of the final hidden layer, then this concept decomposition fulfills a conservation property:

DD . DD .
Tc (xtcstal) = E Tc (l'tcstaZ | k) (H2)
kex

An example for such a basis is given by the final layer neurons, whose CAVs are the unit vectors of the
Cartesian coordinate system. Furthermore, the concept-attribution values TCD D(xtest,i | k) can be propagated
back through the network, similarly to the per-support-vector attributions originating from DualDA via XDA.
This will provide us for each concept with attribution maps for both training and test samples in which the
attribution that is mediated through the concept is localized in the input space.

An illustrative application of this methodology to an ImageNet sample is presented in Figure The
attribution decomposition is performed with respect to concepts encoded by neurons in the penultimate
network layer. Heatmaps are visualized for the three neurons contributing the highest relevance scores.
To determine their corresponding conceptual representations, we present the nine training samples that
maximize the activation of each neuron: the first neuron responds predominantly to turtle imagery, the
second exhibits selectivity for hemispherical structures oriented upward such as shells, domes, helmets,
and lamps, while the third demonstrates sensitivity to surfaces exhibiting scaled or dimpled textures
as on golf balls, reptilian skin, and artichokes. Although neuron-level decomposition provides valuable
interpretable insights, individual neurons frequently encode multiple concepts simultaneously, or encode
concepts incompletely, which complicates conceptual understanding of the neurons and results in more diffuse,
uniformly distributed activation patterns in the corresponding heatmaps. Future research should investigate
decomposition approaches utilizing linear probing techniques to identify more semantically coherent and
interpretable representational subspaces. Alternatively, methods such as PURE (Dreyer et al., 2024)) allow us
to first disentangle neurons into multiple monosemantic units, which improves the clarity of neuron-level
decompositions.
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Figure H.1: Attribution decomposition for a turtle image and its highest-attributed training sample, with
neuron-specific contributions ranked in descending order of attribution.
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