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Abstract
All natural languages contain hierarchical struc-
ture. In humans, this structural restriction is neu-
rologically coded: when presented with linear and
hierarchical grammars with identical vocabular-
ies, brain areas responsible for language process-
ing are only sensitive to the hierarchical grammar.
In this study, we investigate whether such func-
tionally specialized grammar processing regions
can emerge in large language models (LLMs)
whose processing mechanisms are formed solely
from exposure to language corpora. We prompt
transformer-based autoregressive LLMs to deter-
mine the grammaticality of hierarchical and linear
grammars in an in-context-learning setup. First,
we discover that models demonstrate higher ac-
curacy, and lower/comparable surprisals, on hi-
erarchical grammars. Next, we use attribution
patching to show that model components pro-
cessing hierarchical and linear grammars are dis-
tinct. Lastly, ablating components for hierarchi-
cal/linear grammars selectively reduces accuracy
for the corresponding grammar. Our findings indi-
cate that large-scale text exposure alone can lead
to functional specialization in LLMs.

1. Introduction
In 1861, Broca found evidence that particular cerebral func-
tions were localized in specific brain regions, and later
discovered evidence for a brain area specialized for lan-
guage processing (Broca, 1865). Since then, our mapping
of the brain has advanced tremendously; we now know
that functional specialization can arise not only from bi-
ologically coded mechanisms, but also from experience
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(Baker et al., 2007). The brain’s sensitivity toward the
structure of natural language (Chomsky, 1957; 1965) is
known to be a hallmark of human language processing:
natural language is structured hierarchically, and brain re-
gions selective towards hierarchical grammars have been
shown to be disjoint from regions selective towards linear
structures (Musso et al., 2003), as well as hierarchical but
non-linguistic structures such as those found in music or pro-
gramming languages (Malik-Moraleda et al., 2023; Ivanova
et al., 2020; Liu et al., 2020; Varley and Siegal, 2000; Varley
et al., 2005; Apperly et al., 2006; Fedorenko and Varley,
2016; Monti et al., 2009; Fedorenko et al., 2011; Amalric
and Dehaene, 2019; Ivanova et al., 2021; Chen et al., 2023).
As Malik-Moraleda et al. (2023) notes, “brain areas that
process language are exquisitely selective for language.”

Nonetheless, it is unclear whether language models would
demonstrate similar selectivity in the absence of human-like
learning biases. Recently, Kallini et al. (2024) find that
autoregressive Transformer-based models (Vaswani et al.,
2017) more easily acquire grammars that accord with the
structures found in human language. While that study in-
vestigates language acquisition, we focus on language pro-
cessing in pre-trained models. We ask two main research
questions to understand if language models are sensitive
towards hierarchical structures:

1. Do language models demonstrate behavioral distinc-
tions given hierarchical versus linear structures in oth-
erwise identical task settings?

2. Do language models present causally responsible com-
ponents for judging the grammaticality of hierarchical
versus linear inputs across structures and languages?

To answer these questions, we replicate Musso et al.’s ex-
periment on hierarchical and linear selectivity in language
processing, to the extent possible,1 on two large, pre-trained
models—Mistral-7B (Jiang et al., 2023) and Llama-70B
(Touvron et al., 2023), employing recent causal and mech-
anistic interpretability techniques to localize model mech-

1Musso et al. (2003)’s experiment required that subjects be
fluent in their native language but not have prior exposure to the
foreign languages they were tested on. We cannot guarantee this
condition for LLMs, whose training distributions consist of rela-
tively small (but significant) amounts of non-English documents.
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anisms. Our results suggest that models are more accurate
at processing hierarchical structures, and model regions re-
sponsible for processing hierarchical linguistic structure are
localizable and distinct. This suggests that functional spe-
cialization toward hierarchical linguistic structure can arise
solely from exposure to language data. Thus, even in the
absence of strong human-like inductive biases, human-like
linguistic modularities can emerge.

2. Methods
2.1. Models

We employ the 70B-parameter Llama 2 model(Touvron
et al., 2023) (denoted Llama-70B or Llama henceforth) and
Mistral-7B v0.1(Jiang et al., 2023) (denoted Mistral-7B or
Mistral henceforth) in our experiments. We select these
models because they are the best performing open-source
models at the time of the experiment (Touvron et al., 2023;
Jiang et al., 2023).

2.2. Data

We define 3 classes of hierarchical and linear grammars in
English, Italian, and Japanese. Sentences in each grammar
are generated using templates inspired by the constructs
defined in (Musso et al., 2003). For each structure, we
generate positive and negative examples. Each grammar, its
underlying rule, and examples of corresponding positive and
negative examples are available in Table 1. Full descriptions
of each grammar template are available in Appendix A.
We generate 1106 positive and negative examples for each
grammar, totaling to 39816 sentences across all grammars.

The difference between hierarchical and linear grammars
lies in whether their latent structure can be explained via
positional or hierarchical syntactic rules. Hierarchical gram-
mars contain rules that conform to the structure of natural
language, which is hierarchical. Linear grammars contain
rules that are defined by word positions or relative word
orderings—for example, insert a word at position 4.2 Such
rules are argued to be impossible in human language (Chom-
sky, 1957; 1965).

3. Experiments
We evaluate Mistral-7B and Llama-70B in an in-context
learning setup. Both LLMs are pre-trained on datasets pri-

2Note that the surface forms of the sentences are not necessarily
linear: in the EN inversion sentences, the functional difference
is that articles appear after the nouns, which is valid in some
languages. Rather, it is the underlying rule that explains each
grammar that defines whether it is hierarchical or linear.

marily consisting of English sentences.3

(a) Mistral-7B (b) Llama-70B

Figure 1: Few-shot accuracies of Mistral-7B (a, left) and
Llama-70B (b, right) on hierarchical and linear grammars.
We show means across grammars within a language and
structural category. For all grammars, both models are sig-
nificantly (p < .001; see Table 3) more accurate on hierar-
chical structures than linear structures. Individual grammar-
level accuracies are provided in Figure 4 in Appendix B.

3.1. Experiment 1: Are language models significantly
more accurate at classifying the grammaticality of
sentences from hierarchical grammars?

We first evaluate the accuracy of LLMs on grammaticality
judgments given examples from each grammar. Our goal
from this experiment is to ascertain the behavioural differ-
ences in models when processing hierarchical versus linear
sentences, as significant behavioural differences may indi-
cate different mechanisms for processing hierarchical and
linear grammars. Musso et al. (2003) found that humans
were more accurate at classifying examples of hierarchi-
cal grammars, even when they had no prior fluency in the
test languages; we therefore hypothesize that a similar phe-
nomenon would arise in LLMs if they contain functionally
specialized regions for processing hierarchical structure.4

We uniformly split the data (§2) in half to obtain our

389.7% of Llama’s pre-training dataset is English; 8.97% is cat-
egorized as unknown, with a significant subset of this unknown set
being programming code. This suggests that English training data
constitutes an even larger percentage of the training data. 0.11%
and 0.1% constitute Italian and Japanese sentences, respectively.
Mistral-7B is known to be trained on the Open Web, which is also
dominated by English text; see here (W3Techs, 2024)).

4Note that natural language is largely ambiguous with respect
to linear versus hierarchical structure (Chomsky, 1957); human
brains have biological preferences for hierarchical structures, but
LLMs do not have this preference built into their architecture (Min
et al., 2020; McCoy et al., 2018; Chomsky, 1980; Mueller et al.,
2022), so it is not clear a priori whether they would treat these
structures in the same way.
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Table 1: Dataset. List of grammars, descriptions of the rule defining each grammar, and corresponding positive and negative
examples. See Appendix A for full descriptions of each grammar.

Language Grammar Positive Example Negative Example

H
ie

ra
rc

hi
ca

l

English (EN) Declarative a woman reads a chapter a woman reads chapter a

Subordinate Sheela thinks that the woman reads the
chapter

Sheela thinks that the woman reads chapter the

Passive a chapter is read by a woman a chapter is read by woman a

Italian (IT) Declarative una donna legge un capitolo una donna legge capitolo un

Subordinate Sheela pensa che una donna legge un capi-
tolo

Sheela pensa che la donna legge capitolo un

Passive un capitolo è letto da una donna un capitolo è letto da donna una

Japanese (JP) Declarative 女性は章を読む 女性は章読むを

Subordinate シーラは女性が章を読むと考える シーラは女性が章を読む 考えると

Passive 章は女性に読まれる 章は女性読まれるに

L
in

ea
r

English (EN) Negation. Insert “doesn’t” or “don’t” at position
5.

a
1

woman
2

reads
3

a
4

doesn’t
5

chapter
6

a
1

woman
2

reads
3

a
4

chapter
5

doesn’t
6

Inversion. Invert the declarative word order. chapter
5

a
4

reads
3

woman
2

a
1

chapter
5

a
4

reads
3

a
1

woman
2

Wh-word. Insert wh-word at position 5. Did
1

a
2

woman
3

reads
4

a
5

when
6

chapter?
7

Did
1

a
2

woman
3

reads
4

a
5

chapter
6

when?
7

Italian (IT) Negation. Insert “no” at position 5. una
1

donna
2

legge
3

un
4

no
5

capitolo
6

una
1

donna
2

legge
3

un
4

capitolo
5

no
6

Inversion. Invert the declarative word order. capitolo
5

un
4

legge
3

donna
2

una
1

capitolo
5

un
4

legge
3

una
1

donna
2

Last-noun agreement. Make all determiners
agree with the gender of the final noun.

una un
1

donna
2

legge
3

un
4

capitolo
5

una
1

donna
2

legge
3

un
4

capitolo
5

Japanese (JP) Negation. Insert a negation word at position 4. 女性
1
は

2
章

3
ない

4
を

5
読む

6
女性

1
は

2
章

3
を

4
読む

5
ない

6

Inversion. Invert the declarative word order. 読む
5
を

4
章

3
は

2
女性

1
読む

5
を

4
章

3
女性

1
は

2

Past tense. Insert the past tense marker at posi-
tion 4.

女性
1
は

2
章

3
をた

4
読む

5
女性

1
は

2
章

3
読む

4
をた

5

train/test split. Given a structure, we first prompt an LLM
with an instruction describing the nature of the in-context-
learning task (see Appendix B.1). This is followed by 10
uniformly sampled demonstrations from the training split.
The model is then given the metalinguistic judgment task
of generating ‘Yes’ or ‘No’ when given an example from
the test split. Recent research suggests that metalinguistic
judgments are inferior to direct probability judgments (Hu
and Levy, 2023); to address these concerns, we also mea-
sure the difference between positive and negative samples
in each model’s sentence level surprisal on all hierarchical
and linear grammar samples. We report findings from the
surprisals task in Figure 5 and in Appendix B.2.

Results. We find (Figure 1, Figure 4, Table 2) that within
all languages, Llama-70B and Mistral-7B show higher la-
beling accuracy (p < .001 ; see Table 3) for sentences from
hierarchical as compared to linear grammars. Despite hav-
ing an order-of-magnitude fewer parameters, Mistral-7B
has a higher accuracy than Llama-70B on both hierarchi-
cal and linear grammars in English and Italian. We also

find that mean surprisal differences are higher for hierar-
chical grammars in English and Italian, but not Japanese.
An independent T-test further shows that differences in sur-
prisal distributions are statistically significant (Table 4) for
English and Italian (In Llama, but not Mistral), but not
Japanese. These significant behavioral differences suggests
a distinction in how these two structures are processed by
the model.

3.2. Experiment 2: Are the model components
implicated in processing hierarchical structures
disjoint from those implicated in processing linear
structures?

While §3.1 shows that models are more accurate at judging
the grammaticality of hierarchical grammars, it is unclear if
the model has specialized and distinct mechanisms for pro-
cessing hierarchical and linear grammars. To investigate, we
locate attention and MLP components that are most sensitive
towards processing hierarchical and linear syntax, and test

3
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whether these components have significant overlap. Given
our prompt (see Appendix B.1), we quantify the importance
of each attention or MLP component, z, in increasing the
logit difference m between the correct and incorrect labels
for a test sentence t. We do this by estimating the component
z’s indirect effect (IE; Pearl, 2001; Robins and Greenland,
1992) on y given a test sentence, t, and a minimally different
sentence, t′ that flips the prediction.5, using a linear approx-
imation to activation patching (Vig et al., 2020; Finlayson
et al., 2021; Geiger et al., 2020; Meng et al., 2022) called at-
tribution patching (Kramár et al., 2024; Syed et al., 2023).
We then identify the top 1% of model components by IE
from the MLP and attention. If there are distinct mecha-
nisms for processing hierarchical and linear grammars, we
expect significant overlap between components processing
hierarchical-hierarchical and linear-linear grammars, but not
hierarchical-linear grammars.

(a) Mistral-MLP (b) Mistral-Attention

(c) Llama-MLP (d) Llama-Attention

Figure 2: Mean pairwise overlap percentage of the top 1%
of MLP and attention components in Mistral-7B and Llama-
70B. Overlaps are significantly (p < .01; see Table 5) higher
for hierarchical-hierarchical pairs than linear-linear pairs,
and for hierarchical-hierarchical pairs than hierarchical-
linear pairs across languages.

Results. We find (Figure 2) that MLP and attention com-
ponents in Mistral-7B and Llama-70B show significantly
higher (p < 0.01) overlap for pairs of hierarchical grammars

5If t is a positive example, then t′ is the corresponding negative
example formed by swapping the appropriate words or modifying
the sentence, as depicted in Table 1. If t is a negative example,
then t′ is the corresponding positive example.

than pairs of linear grammars (See Table 5) across languages.
Further, we find that the mean overlap percentages between
hierarchical and linear grammar pairs within a language
are significantly lower than those between hierarchical-
hierarchical pairs (See Table 5 in App. C). This suggests
that large language models contain localized components
responsible for processing hierarchical syntax, that are dis-
tinct from those responsible for processing linear syntax;
this suggests that different parts of the model’s computation
are dedicated to processing different types of input struc-
tures. We also observe that linear structures that share a rule
across languages, such as inversions, show stronger overlaps
than arbitrary pairs of linear structures (Figures 6,7). This
serves as a sanity check that the component overlaps corre-
late (at least somewhat) based on structural similarities.

3.3. Experiment 3: Does ablating hierarchy-sensitive
components affect performance on linear
grammars, and vice versa?

(a) Mistral-7B

(b) Llama-70B

Figure 3: Change in accuracies after ablating the top
1% of attention and MLP components of the Mistral-7B
and Llama-70B models. For Mistral, ablating hierarchy-
sensitive components leads to a significant (p < .05) re-
duction in accuracy for hierarchical grammars, and ablating
linearity-sensitive components leads to a (not always signif-
icant) reduction in accuracy for linear grammars.

In Experiment 2, we found components responsible for pro-
cessing hierarchical and linear grammars. Here, we design
an ablation experiment to investigate the causal contribution
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of structure-selective model components on grammaticality
judgment performance. We first cache the mean activa-
tion for each MLP and attention output dimension over the
set of training examples6. Then, we run three additional
iterations of the grammaticality judgment task (§3.1) af-
ter: (i) Ablating the union of the top 1% of neurons by
ÎE for all hierarchical grammars, H . (ii) Ablating the sub-
sampled set (same size as H) of the top 1% of neurons for
all linear grammars, L (sub-sampling procedure described
in App.D.1). (iii) Ablating a uniform sub-sample of neurons,
where the number of ablated neurons is the same as in (i)
and (ii).

Results. For Mistral and Llama (See Figure 3a and 3b),
ablating components from H leads to a higher decrease on
the model’s accuracy on hierarchical structures than linear
structures, and vice-versa when ablating components from
L. Accuracy differences when ablating uniformly sampled
components causes a smaller (if any) decrease in accuracy
compared to ablations from H/L (Except in the case of Ital-
ian linear structures in Llama). These results hold for all
linear/hierarchical structures in English/Italian, and for all
hierarchical structures in Japanese. The results hold for 2
out of 3 linear structures in Japanese in Mistral, and none
of the 3 structures in Llama. Overall, our results suggest
that, for Mistral and Llama, the components discovered in
§3.2 selectively reduce model performance depending on
structure type for English and Italian. We also conduct Chi-
Square tests to investigate if the accuracy differences are
statistically significant (See section D.1 and Table 6, and
find that the results are mixed, i.e. selective ablations of
hierarchical and linear components results in significantly
different accuracies (as compared to the no ablations case)
75% of the time, while ablations of randomly sampled com-
ponents results in significantly different accuracies (when
compared to the baseline case) 67% of the time. This adds
additional causal evidence to the hypothesis that hierarchical
and linear processing is separate in LLMs, and that certain
components are functionally specialized toward processing
one or the other.

4. Discussion
We find behavioral and causal evidence supporting the hy-
pothesis that hierarchical and linear grammars are processed
using largely disjoint mechanisms in LLMs. Thus, as in
humans (Baker et al., 2007), general-purpose learners such
as neural language models can acquire functionally spe-
cific regions for the processing of valid linguistic structure.
These as well as our behavioral results extend prior evidence

6We note that unlike the setup in (Meng et al., 2022), our
prompts and test inputs have varying lengths. A given token po-
sition doesn’t have inherent meaning in our setup. Therefore we
aggregate activations across positions

that pre-training induces preferential reliance on syntactic
features over positional features (Mueller et al., 2022; Murty
et al., 2023; Ahuja et al., 2024).

Hierarchical grammars may also be easier to learn than
grammars that do not occur in human languages (Kallini
et al., 2024; Ahuja et al., 2024). This could explain why
language models are so attuned to this structure and learn
to explicitly represent it. That said, randomly shuffling
input data does not seem to destroy downstream perfor-
mance (Sinha et al., 2021), despite destroying performance
on structural probing tasks (Hewitt and Manning, 2019). Fu-
ture work should investigate the relationship between these
syntax-sensitive components and downstream performance.

We use causal localization in our experiments. While not
equivalent to explanation, localization can reveal distinc-
tions in where and how certain phenomena are encoded
in activation space. Future work could employ other tech-
niques from the training dynamics and interpretability liter-
ature to better understand how and when these components
arise during pre-training, as well as the functional sub-roles
of these distinct component sets.

Limitations
We acknowledge that our work could be improved in several
respects. First, neurons and attention outputs are problem-
atic units of analysis due to polysemanticity (Elhage et al.,
2022); i.e., observing the activations of a component is of-
ten not informative, as they are sensitive to many features
simultaneously. Further, the component sets we analyze
are unordered sets, which means that we do not yet under-
stand how many distinct mechanisms are responsible for the
behaviors we observe, nor what these mechanisms qualita-
tively represent. We have also not evaluated the effect of
these components on tasks outside of grammaticality judg-
ments; thus, we do not yet understand how selective nor how
robust these behaviors or localizations are under different
settings. Secondly, it is unclear if the results we observe are
due to the model’s selective processing of hierarchical ver-
sus linear structures or in-distribution vs out-of-distribution
structures since the model has only been exposed to hier-
archical structures in the training data. Thirdly, our experi-
ments have so far reflected results from a single run of exper-
iments on the model. We expect to repeat these experiments
using different random seeds, to improve the robustness of
the results. Finally, the grammaticality judgment task may
prime the model to be sensitive to valid linguistic structures
more generally, rather than the structures that we present
to the models; therefore, we cannot confidently conclude
that the significant accuracy differences we observe will
generalize to other task settings or prompt formats given the
same grammars.
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A. Grammar rule descriptions
We define 3 classes of hierarchical sentences in English,
Italian, and Japanese.

• Declarative sentence: For English sentences, sub-
jects and objects can be singular or plural nouns. Verbs
agree with their subjects. IT sentences are Italian
translations of the English sentences. Unlike Italian
and English which have SVO word order, Japanese
translations (JP sentences) have SOV word order.

• Subordinate sentence: In each language, matrix
subjects, subordinate subjects, matrix objects, and sub-
ordinate objects can be singular or plural nouns. In
English and Italian, verbs of the subordinate subject
and the subject agree with their respective subjects in
number. We generate subordinate clauses by using
verbs which take complementizer phrases as objects
(e.g., “Tom sees that the dog carries the fish”). English
and Italian both place the main clause’s verb before
the start of the subordinate clause, whereas Japanese
places the main verb after the end of the clause.

• Passive sentence: Subjects and objects can be sin-
gular or plural nouns. Verbs are always in the passive
form. Like in (Musso et al., 2003), in the passive con-
struction, we include the subject of a transitive verb
in a prepositional phrase. We use the verb and object
without the subject, since the use of the subject is not a
strict requirement in Italian.7

Linear Grammars Similar to (Musso et al., 2003), the
linear sentences we test are constructed by breaking the hi-
erarchical order between the subject and the nominal words.
While our linear sentences use English, Italian, and Japanese
lexicons, they break the hierarchical relationship between
the subject, verb, and object, using the strategies described
below.

• Negation: We break the hierarchical order by inserting
a negation word “doesnt́” after the fifth word in English
sentences. In Italian, we insert ‘non’ (IT ) after the
third word. In Japanese, we insertない (JP ) after the
third word.

• Inversion: We invert the order of the words in a sen-
tence (before tokenization) to form the second con-
struction.

7Italian verbal morphology provides all person and number in-
formation needed to understand the subject of a sentence, whereas
English morphology does not provide this information. That said,
there exist languages without the verbal person/number inflec-
tion that optionally allow dropping the subject of the sentence if
it is the topic of that sentence, such as Mandarin and Japanese;
thus, this structure is still attested and therefore still qualifies as a
hierarchical (UG-compliant) structure.

The third construction varies between languages.

• Italian: Last-noun agreement: We change the sub-
ject term’s gender to always match that of the final
noun in the sentence.

• English: Wh- word: We include a question in the sub-
ordinate clause of the sentence by inserting a ‘wh-’
word (who, why, what etc.) at the penultimate token
position.

• Japanese: Past Tense: The Japanese past tense con-
struction was built by adding the suffix -ta, not on the
verb element as in the hierarchical grammatical rule for
Japanese, but on the third word, counting from right to
left.

B. Experiment 1: Few-shot learning accuracy
Experiment 1 assesses the model’s accuracy on grammati-
cality judgments of hierarchical and linear structures. Here
we share (i) examples of prompts used in the experiment,
(ii) statistical comparisons of the accuracy distributions in
(Table 3) and (iii) grammar-wise accuracy in Figure 4

B.1. Example Prompts

Here are some example prompts from hierarchical struc-
tures. The prompt skeleton is in English, irrespective of
the language of the examples. Additionally, note that we
intentionally strip the whitespace after the final A:, to aid
consistent label generation. This was particularly impor-
tant when deploying experiments on Llama-70B which was
prone to generating streams of whitespace characters if we
did not strip the final whitespace in the input prompt.

B.1.1. ENGLISH EXAMPLE

"Here are English sentences that either follow
or break a grammar rule. Each sentence is
labeled ’Yes’ if it follows the rule and ’No’
if it doesn’t. Label the final sentence as ’Yes’
or ’No’ based on whether it follows the same
rule.

Q: Is this sentence grammatical? Yes or
No: a woman drinks espresso the
A: No

Q: Is this sentence grammatical? Yes or
No: the architects touch a mouse
A: Yes

Q: Is this sentence grammatical? Yes or
No: the women eat cucumber the
A: No
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Q: Is this sentence grammatical? Yes or
No: the writers drink a lemonade
A: Yes

Q: Is this sentence grammatical? Yes or
No: a teacher touches a lightbulb
A: Yes

Q: Is this sentence grammatical? Yes or
No: the actress touches toy a
A: No

Q: Is this sentence grammatical? Yes or
No: a boy kicks bottle a
A: No

Q: Is this sentence grammatical? Yes or
No: the woman pushes toy a
A: No

Q: Is this sentence grammatical? Yes or
No: a professor reads a poem
A: Yes

Q: Is this sentence grammatical? Yes or
No: the orators read a story
A: Yes

Q: Is this sentence grammatical? Yes or
No: the doctor drinks milkshake the
A:"

B.1.2. ITALIAN EXAMPLE

"Here are Italian sentences that either follow
or break a grammar rule. Each sentence is
labeled ’Yes’ if it follows the rule and ’No’
if it doesn’t. Label the final sentence as ’Yes’
or ’No’ based on whether it follows the same
rule.

Q: Is this sentence grammatical? Yes or
No: una donna beve espresso il
A: No

Q: Is this sentence grammatical? Yes or
No: l’ architette toccano il topo
A: Yes

Q: Is this sentence grammatical? Yes or
No: le donne mangiano cetriolo il
A: No

Q: Is this sentence grammatical? Yes or
No: le scrittrici bevono la limonata
A: Yes

Q: Is this sentence grammatical? Yes or
No: un’ insegnante tocca una lampadina
A: Yes

Q: Is this sentence grammatical? Yes or
No: l attrice tocca giocattolo un
A: No

Q: Is this sentence grammatical? Yes or
No: un ragazzo calcia bottiglia una
A: No

Q: Is this sentence grammatical? Yes or
No: la donna spinge giocattolo un
A: No

Q: Is this sentence grammatical? Yes or
No: una professoressa legge un poema
A: Yes

Q: Is this sentence grammatical? Yes or
No: gli oratori leggono la storia
A: Yes

Q: Is this sentence grammatical? Yes or
No: la dottoressa beve frappè il
A:"

B.1.3. JAPANESE EXAMPLE

"Here are Japanese sentences that either follow
or break a grammar rule. Each sentence is
labeled ’Yes’ if it follows the rule and ’No’
if it doesn’t. Label the final sentence as ’Yes’
or ’No’ based on whether it follows the same
rule.

Q: Is this sentence grammatical? Yes or
No: 女性はエスプレッソ飲むを
A: No

Q: Is this sentence grammatical? Yes or
No: 建築家たちはマウスを触る
A: Yes

Q: Is this sentence grammatical? Yes or
No: 女性たちは胡瓜食べるを
A: No
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Q: Is this sentence grammatical? Yes or
No: 作家たちはレモネードを飲む
A: Yes

Q: Is this sentence grammatical? Yes or
No: 教師は電球を触る
A: Yes

Q: Is this sentence grammatical? Yes or
No: 女優は玩具触るを
A: No

Q: Is this sentence grammatical? Yes or
No: 少年はボトル蹴るを
A: No

Q: Is this sentence grammatical? Yes or
No: 女性は玩具押すを
A: No

Q: Is this sentence grammatical? Yes or
No: 教授は詩を読む
A: Yes

Q: Is this sentence grammatical? Yes or
No: 演説家たちは小説を読む
A: Yes

Q: Is this sentence grammatical? Yes or
No: 医者はミルクセーキ飲むを
A:"

B.2. Experiment 1b: How do models’ surprisals
compare when processing hierarchical vs linear
structures?

Both Mistral-7B and LLama-70B demonstrate higher ac-
curacy on hierarchical grammars. However, it is unclear
whether this is due to hierarchically structured inputs be-
ing more predictable for the model. (Musso et al., 2003)
had participants press a button to mark a sentence as being
grammatical or not, based on the initial grammar template
that they were exposed to. They measured reaction times
(RT)—i.e., the time taken for a participant to process a sen-
tence and make a decision. Their experiment found that
reaction times were higher when participants were judging
sentences from hierarchical grammatical constructions as
compared to linear constructions. Following Hale (2001),
Levy (2008),Monsalve et al. (2012), Goodkind and Bicknell
(2018), Wilcox et al. (2023), Oh and Schuler (2023), we
use token surprisals from a language model as a proxy for
human reading times, which we then use as a proxy for the
LLM’s reaction time in this classification task.

We compare the sentence-level surprisals across hierarchical

and linear structures. The token-level surprisal S(tn) of
the nth token tn is the negative log-probability of tn given
context t1, ..., tn−1:

S(tn) = 1− log p(tn|t1, ..., tn−1) (1)

The sentence-level surprisal S(T ) is the sum of the token-
level surprisals for all tokens in the sentence.

S(T ) =

n∑
i=1

S(ti) (2)

For each example, we compute the difference in surprisals
S(T )−S(T ′), where T is the positive example (correspond-
ing to a sentence following the grammatical rule) and T ′

is the negative example; thus, if the model behaves as ex-
pected, surprisals should be negative, as it should assign
higher probability to the positive example. Then, we com-
pute the mean of this difference across examples within a
language and structural category (hierarchical or linear).

We hypothesize that the surprisal differences will be lower
for hierarchical grammars than linear grammars if the model
is specialized toward processing hierarchical grammars. If
the model can effectively process linear inputs with equal
ability, then surprisal differences should be comparable.

Results. We observe (Figure 5) that surprisal differences
between hierarchical and linear grammars are significant
for English for Llama (p < .05; see Table 4), but not for
other languages or for any pair in Mistral. These findings
are different from the findings with respect to reading speed
as shown in (Musso et al., 2003), where humans have better
reading speeds on hierarchical grammars as compared to
linear grammars over time; they also differ from past find-
ings with respect to surprisals during languqge acquisition
by the model (Kallini et al., 2024), where it is found that the
surprisal is significantly lower for hierarchical than linear
grammars. Thus, though large pre-trained models are pre-
dominantly conditioned on hierarchical inputs, they do not
always predict linear structures as being significantly more
unlikely in this task setting. This suggests that models might
have coherent ways of processing linear inputs, or at least
do not have significantly lower confidence in processing
them.

C. Experiment 2: MLP and Attention
Component Overlaps

Experiment 2 locates MLP and Attention components in-
volved in processing hierarchical and linear structures and
investigates if these components are disjoint. §C.1 describes
the attribution patching algorithm. The grammar level pair-
wise overlaps for all grammars across EN, IT, and JP is given
in Figures 7 and 6. Table 5 shows the statistical tests for
comparing overlaps between pairs of grammar structures.
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Table 2: Experiment 1: Few-shot classification accuracy of Llama and Mistral over our dataset of hierarchical and linear
grammars.

Mistral Llama

Structure Hierarchical Linear Hierarchical Linear

EN 0.92 0.62 0.85 0.55
IT 0.81 0.63 0.74 0.56
JP 0.83 0.73 0.87 0.68

Table 3: Experiment 1: Statistical comparisons of the accuracy distributions of Llama and Mistral models on a grammati-
cality judgment task. We compare the distributions of the model’s accuracy on predicting the grammaticality of hierarchical
and linear grammars, using both an independent samples t-test (where we consider the accuracies as being either a 1 or 0)
and a Chi-Square test (where we consider the accuracies as being either True or False) along with a Bonferroni correction.
Note that N=3316, and the adjusted p-value threshold = 0.05/3 = 0.016.

Language Mistral Llama

Chi-Square Test t-Test Chi-Square Test t-Test

EN (408.113, p < 0.001) (21.616, p < 0.001) (338.285, p < 0.001) (19.447, p < 0.001)
IT (147.666, p < 0.001) (12.469, p < 0.001) (120.378, p < 0.001) (11.211, p < 0.001)
JP (48.066, p < 0.001) (7.024, p < 0.001) (171.318, p < 0.001) (13.482, p < 0.001)

(a) Mistral-7B (b) Llama-70B

Figure 4: Structure-wise few-shot accuracies of Mistral-7B (a, left) and Llama-70B (b, right) on a labeling task involving
hierarchical and linear grammar inputs. Note that task-accuracy on hierarchical grammar inputs is consistently higher than
that on linear grammar inputs.
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(a) Mistral-7B (b) Llama-70B

Figure 5: Surprisal differences between positive and negative examples of hierarchical and linear sentences. The bars
represent the 95% confidence interval, and the dot represents the mean surprisal across examples. The difference between
the distributions is significant for hierarchical and linear structures in English for Llama, but not significant for Italian or
Japanese, and for any structures processed by Mistral.

Table 4: Statistical comparisons of the surprisal distributions of Llama and Mistral models on sentences from the grammati-
cality judgment task using an independent t-test. The values are represented as (t-statistic, p-value). p-value=0.001.

Language Mistral (t-Test) Llama (t-Test)

EN (-1.2, p = 0.22) (-2.66, p < 0.05)
IT (0.12, p = 0.90) (-0.91, p = 0.36)
JP (-0.05, p = 0.96) (-0.07, p = 0.94)

C.1. Activation and Attribution Patching

Activation patching (Vig et al., 2020; Finlayson et al., 2021;
Geiger et al., 2020; Meng et al., 2022), a common proce-
dure for computing the indirect effect of model components,
entails computing the IE as follows:

IE(l; z; t, t′) = l(t|do(zt = zt′))− l(t) (3)
Activation patching is computationally expensive, requiring
2 forward passes for all model components; i.e., we have
O(n) forward passes, where n is the number of components
we investigate. Therefore, we opt to use attribution patching
(Kramár et al., 2024; Syed et al., 2023), a first-order Taylor
approximation of the IE that we would have obtained via
activation patching:

ÎE(l; z; t, t′) = ∇zl|z=zt (zt′ − zt) (4)
We can measure this quantity using only 2 forward passes
and 1 backward pass for all z; i.e., we have O(1) passes.
While this approximation is not perfect, it correlates strongly
with the actual IE in typical cases (Kramár et al., 2024;
Marks et al., 2024). The top 1% of attention and MLP
components in the model are selected by ÎE values. We
compute the pairwise overlap percentage of this top 1%
neuron subset for each pair of grammars.

D. Experiment 3: Ablations of top 1% of
Attention and MLP Components

D.1. Sub-sampling top 1% of MLP and attention
neurons for ablation

Ablation neurons in sets (i) and (ii) are derived from
§3.2. We call the hierarchy-sensitive neuron set H and
the linearity-sensitive neuron set L. Due to the strong over-
laps between components responsible for processing hierar-
chical syntax and only minimal overlaps between compo-
nents responsible for processing linear syntax, we find that
|L| ≈ 2|H|. We therefore subsample L to be the same size
as H by (1) sorting components in L by their effect size
(as found in §3.2) and (2) keeping the top |Hℓ| components
from layer ℓ, where |Hℓ| is the size of H at layer ℓ. When
ablating the uniform subsample, we uniformly sample and
ablate |Hℓ| components in each layer ℓ.

We conduct statistical tests to determine if the accuracy dis-
tributions of hierarchical and linear sentences, that were
labeled differently with and without ablation, are signif-
icantly different. The results are shown in 6. Note that
non-random ablations lead to significantly different labeling
accuracies for hierarchical and linear grammatical struc-
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(a) Mistral Attention (b) Mistral MLP

Figure 6: Experiment 2: Confusion matrix showing the percentage of overlapping neurons in the Mistral-7B model for
EN, IT, and JP structures. Hierarchical structures show consistent overlaps as compared to linear structures, particularly for
English and Italian.

(a) Llama Attention (b) Llama MLP

Figure 7: Experiment 2: Confusion matrix showing the percentage of overlapping neurons in the Llama-70B model for
EN, IT, and JP structures. Hierarchical structures show consistent overlaps as compared to linear structures, particularly for
English and Italian.

tures 75% of the time. However, random ablations also
cause significantly different behaviours 67% of the time.
Therefore, while the ablations result in different labeling ac-
curacies for hierarchical and linear grammatical structures,
this difference is not always significant.
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Table 5: Experiment 2: Statistical comparisons of the neuron overlap percentages between pairs of hierarchical, linear and
hierarchical-linear structures, using a Mann-Whitney U test along with a Bonferroni correction. The highlighted row does
not show a statistically significant difference. Note that N=9, and the adjusted p-value threshold = 0.05/3 = 0.016

Llama Mistral

MLP (statistic, p value) Attention (statistic, p value) MLP (statistic, p value) Attention (statistic, p value)
H-H vs L-L 514.5, p = 0.008 526.5, p = 0.004 526.5, p = 0.004 526.5, p = 0.004
H-H vs H-L 695.0, p < 0.001 717.0, p < 0.001 709.0, p < 0.001 715.0, p < 0.001
L-L vs H-L 419.0, p = 0.35 459.0, p = 0.10 465.0, p = 0.08 459.0, p = 0.10

Table 6: Experiment 3: Chi-square statistics and p-values for Mistral and Llama models across different languages and
ablation types. Note that accuracy differences are significant even when

Mistral Llama

Language Real Unreal Random Real Unreal Random

EN (22.81, p < 0.001) (11.62, p < 0.001) (2.93, 0.09) (31.32, p < 0.001) (3.17, 0.08) (1.12, 0.29)
ITA (12.73, p < 0.001) (1.30, 0.25) (27.32, p < 0.001) (0.35, 0.55) (13.82, p < 0.001) (33.86, p < 0.001)
JAP (42.04, p < 0.001) (20.33, p < 0.001) (30.86, p < 0.001) (58.17, p < 0.001) (48.38, p < 0.001) (44.36, p < 0.001)
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