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ABSTRACT

Multivariate time series forecasting (MTSF) aims to predict future values of multi-
ple variables based on past values of multivariate time series, and has been applied
in fields including traffic flow prediction, stock price forecasting, and anomaly
detection. Capturing the inter-dependencies among variables poses one significant
challenge to MTSF. Several methods that model the correlations between vari-
ables with an aim to improve the test prediction accuracy have been considered in
recent works, however, none of them have theoretical guarantees. In this paper,
we developed a new norm-bounded graph attention network (GAT) for MTSF by
upper-bounding the Frobenius norm of weights in each layer of the GAT model to
achieve optimal performance. Under optimal parameters, we theoretically show
that our model can achieve a generalization error bound which is expressed as
products of Frobenius norm of weight in each layer and the numbers of neighbors
and attention heads, while the latter is represented as polynomial terms with the
degree as the number of layers. Empirically, we investigate the impact of different
components of GAT models on the performance of MTSF. Our experiment also
verifies our theoretical findings. Empirically, we also observe that the generaliza-
tion performance of our method is dependent on the number of attention heads, the
number of neighbors, the scales (norms) of the weight matrices, the scale of the
input features, and the number of layers. Our method provides novel perspectives
for improving the generation performance for MTSF, and our theoretical guarantees
give substantial implications for designing attention-based methods for MTSF.

1 INTRODUCTION AND BACKGROUNDS

Substantial time series data generated in the real world make multivariate time series forcasting
(MTSF) a crucial topic in various scenarios, such as traffic forecasting, sensor signal anomaly
detection in the Internet of things, demand and supply prediction in the supply chain management,
and stock market price prediction in financial investment (Cao et al., 2020). Traditional methods
simply deploy time series models, e.g., auto-regressive (AR) (Mills & Mills, 1990), auto-regressive
integrated moving average (ARIMA) (Box et al., 2015) and vector auto-regression (VAR)(Box et al.,
2015; Hamilton, 2020; Lütkepohl, 2005) for forecasting. Specifically, ARIMA, though one of the
classic forecasting methods in univariate situations, fails to accommodate multivariate issues due
to high computational complexity. VAR, as an extension of AR model in multivariate situations, is
widely used in MTSF tasks due to its simplicity, however, it cannot handle the nonlinear relationships
among variables, leading to reduced forecasting accuracy. In addition to traditional statistical methods,
deep learning methods have been applied in MTSF problems and demonstrated potentials to solve
these problems (Tokgöz & Ünal, 2018).

The long short term memory (LSTM) (Graves, 2012), gated recurrent units (GRU) (Cho et al., 2014),
gated linear units (GLU) (Dauphin et al., 2017), temporal convolution networks (TCN) (Bai et al.,
2018), state frequency memory (SFM) network (Zhang et al., 2017) have found success in practical
time series tasks. However, another important issue in time series data, complex inter-dependency
(i.e., the correlations among multiple correlated time series), is still unaddressed in these methods,
restricting forecasting accuracy (Bai et al., 2020; Cao et al., 2020). For example, in the traffic
forecasting task, adjacent roads naturally interplay with each other. Another example is stock price
prediction, in which it is easier to predict a stock price based on the historical information of the
stocks in similar categories, while information on stocks from other sectors can be relatively useless.

Graph is a special form of data that describes the relationships between different entities. Recently,
graph neural networks (GNNs)(Scarselli et al., 2008) have achieved great success in handling graph
data with development in permutation-invariance, local connectivity, and compositionality. In general,
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GNNs assume that the state of a node is influenced by the states of its neighbors. By disseminating
information through structures, GNNs allow each node in a graph to be aware of its neighborhood
context. MTSF can be viewed naturally from a graph perspective. Variables from multivariate time
series can be considered as nodes in a graph where they are interlinked each other through hidden
dependency relationships. It follows that modeling multivariate time series data using GNNs can be a
promising way to preserve their temporal trajectory while exploiting the inter-dependency among time
series. In the meantime, due to the popularity of convolutional neural networks (CNNs), considerable
studies attempt to generalize convolutions to graph-structured data, leading to the creation of graph
convolutional networks (GCNs) (Duvenaud et al., 2015; Atwood & Towsley, 2016; Monti et al.,
2018; Niepert et al., 2016; Kipf & Welling, 2017). GCNs model a node’s feature representation by
aggregating the representations of its one-step neighbors. Many studies have shown that GNN- and
GCN-based methods outperform prior methods in time series forecasting tasks (Yu et al., 2017; Wu
et al., 2019; Chen et al., 2020).

The graph attention network (GAT) (Veličković et al., 2017), one of the most popular GNN architec-
tures, is considered a state-of-the-art neural architecture to process graph-structured data. Building on
the aggregating approach of GCNs, in GATs, every node computes the importance of its neighboring
nodes, and then utilizes the importance as weights to update its representations of the features during
the aggregation. Compared to the well-known GCNs, GATs have demonstrated equivalent, if not
improved, performance across well-established benchmarks of node multiclass classification. Within
the GAT framework, Guo et al. (2019); Deng & Hooi (2021) use GAT-based models to adaptively
adjust the correlations among multiple time series, showing better performance in accuracy over
GNNs and GCNs.

The numeric and experimental successes of GATs for MTSF notwithstanding, theoretical under-
standings of the underlying mechanisms of GATs for MTSF are still limited: none of them has
theoretical guarantees with respect to generalization error bounds, the most commonly used method
to theoretically evaluate the prediction model.

The generalization error bound provides a standard approach to evaluate neural networks as it
characterizes the predictive performance of a class of learning models for unseen data (Golowich
et al., 2018). Therefore, understanding the generalization error bound of GATs for MTSF will shed
light on the relationship between the architecture of the GATs and their generalization performance
for MTSF, advancing understandings of underlying mechanisms.

Studies show that deriving generalization error bound for neural network classes requires constraints
on the size of weights. Bartlett (1998) first gave a generalization error bound for neural networks by
bounding the size of the cover of neural network function classes, suggesting that the bound depends
on the number of training samples and the size of weights, rather than the number of weights. In the
following studies, the empirical Rademacher complexity (ERC) was shown as an essential component
of generalization error bound for neural network classes. Bartlett & Mendelson (2002) introduced the
generalization error bounds using the Rademacher complexity of the function classes that include
neural networks with constraints on the magnitudes of weights for binary classification. Bartlett et al.
(2017) then presented a margin-based generalization error bound using the Rademacher complexity
of neural network function classes with the spectral norms of weight matrices being controlled for
multiclass classification. Neyshabur et al. (2015) used the Rademacher complexity bounds showing
that the generalization error of deep neural networks can be upper bounded by a bound in terms of the
Frobenius norms of weights. Golowich et al. (2018) further demonstrated that the generalization error
bound for deep neural network classes with bounded Frobenius norm of weights can be independent
of the number of layers and the width of each layer if employing proper techniques. These methods
are also extended to graph-based neural networks. Garg et al. (2020) derived the generalization error
bounds for GNNs using Rademacher complexity for binary classification. Lv (2021) provided the
generalization error bound for GCNs via Rademacher complexity for binary classification.

Contributions. In this study, to capture the inter-dependencies among variables of MTSF, we
develop a GAT-based method for MTSF; to secure the generalization error bound, we require the
norm of weight matrix in our model to be bounded; to evaluate the performance of our method,
we compare our method with two SOTA methods and show our method outperforms over these
prior methods. We also provide the theoretical generalization error bound for our method, aiming to
develop models with a desired generalization error for MTSF.

Specifically, we derive the generalization error bounds of two-layer GAT models for multi-step
MTSF task. We also extend our generalization error bounds to deep GAT models with more than
two layers. Generalization error bounds derived in this study are based on the bound of ERC of GAT
models with the weight matrix norm being controlled. This approach is characterized by controlling
Frobenius norm of the hidden layer weight matrix, a common method to derive the norm-based
generalization error bounds for DNNs, CNNs, and GNNs. In particular, we show that ERC derived
for GAT models for MTSF has a polynomial dependence on the number of neighbors considered
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in attention representation and the number of attention heads being used. The aforementioned
ERC is also dependent on the product of norms of weight matrices of each layer, the L2-norm
of the input feature vector, and the Lipschitz constant of loss and activation functions. To further
understand the effectiveness of GATs for MTSF, in addition to theoretical analysis of the relationships
between components of the GAT model and this bound, we also investigate the influence of different
components of GATs models on the performance of MTSF using experiments with complex stock
price data. Our experimental results are consistent with theoretical findings. To our best knowledge,
we develop the first GAT-based method for MTSF with theoretical guarantees.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

In this paper, we focus on the task of MTSF, considering a multivariate situation that con-
tains N correlated univariate time series represented as {X1, . . . ,XN}, where we use Xi =
{xi,1,xi,2, . . . ,xi,t, . . .} to denote a sequence of time series i from time step 1 to infinity. Based
on a sequence of historical T time steps of values prior to current time t, our goal is to predict
the multi-step-away value of {y1, . . . ,yN} using an appropriate prediction model f , where each
yi = {yi,t+1, . . . ,yi,t+C} has values from C timestamps. In addition, the historical inputs can be
representative of multiple aspects if complemented with auxiliary features, so our problem can be
characterized as {y1, . . . ,yN} = f({x1,t, . . . ,x1,t−T+1} , . . . , {xN,t, . . . ,xN,t−T+1}). To accu-
rately capture the inter-dependency, the problem is formulated on the graph structure as introduced
below.

2.2 THE GRAPH STRUCTURE

Now we consider an undirected graph G = (N , E). N = (n1, . . . , nN ), |N | = N , is a set of node
labels representing the sources of N time series. E ⊂ N × N is the set of edges representing the
connection between series. We let xi ∈ X , i ∈ [N ] be a random variable representing the input
feature vector of node ni for time series i. For node i, its random input feature xi ∈ X ⊂ RD is a
multi-dimensional vector, which contains all the historical values from T time steps, in other words,
we let xi = (xi,t, . . . ,xi,t−T+1) be the concatenation of T time steps; its true label yi ∈ Y ⊂ RC is
the vector for the C-step-away values. During the learning period, some nodes, which will be treated
as the training set, know the C-step-away true values y. We denote the set of indices of those nodes
as M ⊂ N such that M = |M| < N . And for each node in the M, we order them based on their
node labels ni and re-index them based on their order number, j ∈ [M ]. Here the random input and
labels are S = {(x1,y1), (x2,y2), . . . , (xM ,yM )} over M. In the following paragraphs, we will
introduce the GATs for our problem.

2.3 GATS MODEL

We consider the GATs defined by Veličković et al. (2017), given the random feature matrix X =
[x1,x2, . . . ,xN ], a L-layers GAT model f , and the final output Z(L),

Z(L) =
[
f(x1)

>, . . . , f(xM )>
]>

= P(L) ⊕K
k=1 σ

(
P(L−1) · · · ⊕K

k=1 σ
(
P(2) ⊕K

k=1 σ
(
P(1,k)XW(1,k)

)
W(2)

)
· · ·W(L−1)

)
W(L).

In a GAT with more than two layers, the output of the hidden layer l is

Z(l) = ⊕K
k=1σ(P(l,k)Z(l−1)W(l,k)), (1)

Here we use subscript (l) or (l − 1) to indicate which layer the variable belongs to. We have
l ∈ {1, 2, . . . , L− 1}, and Z0 = X.

Here, W(l,k) ∈ RDl−1×Dl is an l − 1-to-l weight matrix for a hidden layer with Dl feature maps.
Here σ is the activation function.

And we let ⊕ denote the concatenation for the attention heads. This definition is specific to the GATs,
with its detailed description found in Veličković et al. (2017). And we have total K such matrices in
layer l with each matrix W(l,k) corresponding to one attention head. P(1,k), P(2) and P(L−1) are the
attention matrix introduced by us, and further function as an operator to incorporate the attention. We
will justify its equivalence to the original GAT models (Veličković et al., 2017) in later paragraphs.

3



Under review as a conference paper at ICLR 2023

Even though our analysis covers GATs with more than two layers, we will give a focus on two-layers
GATs model, which is also implemented by Veličković et al. (2017), with the following simple form:

Z(2) =
[
f(x1)

>, . . . , f(xM )>
]>

= P(2) ⊕K
k=1 σ

(
P(1,k)XW(1,k)

)
W(2). (2)

The first layer consists of K attention heads computing D1 features each (a total of K×D1 features),
followed by an activation function σ. Here, W(1,k) ∈ RD×D1 is an input-to-hidden weight matrix
for a hidden layer with D1 feature maps, and we have K such matrices.

The second layer is used for prediction: a single attention head that predicts the y. For C-step-away
forecasting, we have DL = C. The W(2) ∈ RKD1×C is a hidden-to-output weight matrix.

Attention Model We now give more explanation about the attention introduced in the GAT model.
In section 2 of the original GAT paper, Veličković et al. (2017) mentioned the learnable linear
transformation to transform the input features into higher-level features with sufficient expressive
power. In their process, they first apply a shared linear transformation, parameterized by the weight
matrix, W ∈ RD×D1 , to every node. Then they perform self-attention on the node: a shared
attentional mechanism a : RD1 × RD1 → R computes attention coefficients eij = a(x>

i W,x>
j W),

to indicate the importance of node j’s features to node i. They also inject the graph structure into the
mechanism by performing masked attention: they compute eij for nodes j ∈ N (i), the neighbors of
node i, which might include node i itself. Then they normalize the coefficients to make them easily
comparable across different nodes using the softmax function to obtain pi,j

pi,j = φ([ei,1, ei,2, . . .])
j =

exp ei,j∑
k∈N (i) exp ei,k

.

Then the output features from the first layer for each node will be: σ(
∑

j∈N (i) p
i,jx>

j W). They
also propose the K-head attention. The K independent attention mechanisms execute the afore-
mentioned transformation, and then their output are concatenated, resulting in the following feature
representation: ⊕K

k=1σ(
∑

j∈N (i) p
i,j
(k)x

>
j W(k)).

To make the above process more integrated, here in the GAT models, we introduce the attention
matrix P that contains the normalized attention coefficients used to compute a linear combination
of the neighborhood features, yielding the new feature representation for every node. This matrix
contains individual node’s importance weights with every other node in its neighborhood.

Let P(l) ∈ RN×N , l ∈ [L − 1], is the matrix of the graph attention ma-
trix defined by the attention coefficients 1. We use Ne ≤ N as the fixed num-
ber of neighbors for each node. And let N (n) be the set of neighbors for node n.

P(l) =


−p1

(l)−
−p2

(l)−
...

−pN
(l)−

 =


0 p1,i(l) p1,k(l) . . . p1,m(l)︸ ︷︷ ︸

{i,k,m}=N (1)...
pN,s
(l) pN,q

(l) . . . pN,j
(l) 0︸ ︷︷ ︸

{s,q,j}=N (N)

 ,

(3)

pn,e(l) ∈ [0, 1] is the coefficients of
node n attributed from node e. Each
row sum of the P(l) is equal to 1,
which is

∑
e∈N (n) p

n,e
(l) = 1. Here

pn
(l,k) (row n of P(l,k)) denotes node
n’s all coefficients, which are com-
puted by

pn
(l,k) = φ

(
M ·

[
Z(l−1)W(l,k)N(l,k), un · 1N

]
12

)
∈ RN , (4)

where φ is a softmax function, used to calculate the importance weight from other nodes. The
N(l,k) ∈ RDl×1 is a convolutional filter with filter size equal to 1× 1 and output channel size equal
to 1. The un is the n’s entry of Z(l−1)W(l,k)N(l,k). And M is a mask matrix with Mn,e = 1 for
n ∈ [N ] and e ∈ N (n), and 0 otherwise, and · is the element-wise product, 1N is the size N vector
with all entries equal to 1. In the paper by Veličković et al. (2017), the proposed attention mechanism
a consists of the following steps: firstly apply another convolutional filter N to the x>W, secondly
sum up these representations to get the attention coefficients—ei,j = x>

i WN + x>
j WN. We

integrate the result of this whole process into an attention matrix P(l), which functions exactly as the
attention mechanism in the original architecture introduced by Veličković et al. (2017). Since the sum
of row elements of the P equals one, we have the following property hold for P(l):

∥∥P(l)

∥∥
F
≤ N ,

i.e., the Forbunis norm of P(l) is bounded by the total number of nodes.
1In the final layer, we have P(L) ∈ RM×N , since we obtain output for the nodes in M.
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2.4 THE EMPIRICAL RISK FRAMEWORK FOR MTSF

We first introduce function spaces of GATs for MTSF. Let the X and Y be the feature and true label
spaces, respectively, and Q an unknown distribution over X × Y . Let F ⊂ VX be the hypothesis
class for predictions, where V is another space that might be different from Y . In our paper, we let
the function space F be the space of our GAT classes that contains the GAT functions f . We defer
the detailed definitions of F in later sections, i.e. in terms of Weights-bounded GATs for the MTSF
problem, see the definition 15.

Given F , X , and Y , we let g : V × Y → [0, B] be the loss function defined over F . We assume that
g is bounded, i.e., the range of loss is [0, B]. Additionally, we require B = 1 (if not, we can scale the
loss function) without loss of generality.

We also introduce the function class gF ⊂ [0, B]X×Y by composing the functions in F with g(·, ·),
i.e., gF = {(x,y) 7→ g(f(x),y) : f ∈ F} .
For any risk function g defined over F , given the training set S = {(x1,y1), . . . , (xM ,yM )} which
includes M i.i.d samples from X × Y according to distribution Q, the expected/population risk E(f)

and the empirical risk function Ê(f) are defined as:

E(f) = E
(x,y)∼Q

[g(f(x),y)], f ∈ F . (5) Ê(f) =
1

M

M∑
j=1

g(f(xj),yj). (6)

A predictor f ∈ F can be generalized if for any δ > 0, lim sup|S|=M→∞ Ê(f) → E(f) a.s.

A predictor with a generalization guarantee is closely related to the complexity of its hypothesis
space. In that sense, the generalization error bound for F is characterized by the condition where
E(f) is bounded by the summation of Ê(f), the ERC that is generally the dominating term, and an
error function associated with the confidence of the bound and the sample size M .

2.5 THE RADEMACHER COMPLEXITY

Suppose F = {f : x 7→ f(x)} is a model space. We define the ERC R(F)and Rademacher
complexity RS(F) as

R(F) = E
ε

 1

M
sup
f∈F

∣∣∣∣∣∣
M∑
j=1

εjf(xj) | x1, . . . ,xN

∣∣∣∣∣∣
 , (7)

RS(F) = E
S∼Q

R(F), (8)

where {ε1, · · · , εM} are i.i.d. Rademacher variables satisfying P (εj = 1) = P (εj = −1) = 1/2.

3 GENERALIZATION BOUND FOR THE GAT MODEL

3.1 NOTATION

We use bold-faced letters to denote vectors and capital letters to denote matrices or fixed parameters
(which should be clear from the context). Given a vector w ∈ RD, ‖w‖ refers to the Euclidean norm,

and for p ≥ 1, ‖w‖p =
(∑F

i=1 |wi|p
)1/p

refers to the Lp norm. For a matrix W, ‖W‖F refers to

the Frobenius norm, ‖W‖F =
√∑

i

∑
j |wi,j |2. A function f : Rn → Rm is L-Lipschitz, L ≥ 0,

if ‖f(a)− f(b)‖ ≤ L ‖a− b‖ for all a, b ∈ Rn. We use standard big-O notation, with Ω(·), Θ(·),
and O(·) hiding constants.

3.2 FUNCTION CLASS OF GATS

Given the inputs X = (xi, . . . ,xN ) as multiple time series with each xi as input feature for node
ni, the class of 2-layer GATs for MTSF f maps x to the output f(x) that represents a C-step-away
prediction expressed in equation 2. And We consider a subset of such class requiring each f with a
bounded weight norm, expressed as

F =
{
x 7→ f(xj) ∈ RC ;

∥∥W(1,k)

∥∥
F
≤M1,

∥∥∥wc
(2)

∥∥∥ ≤M2, j ∈ [M ]
}
, (9)
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here we use f(xj) to mean the output of f corresponding to node j, where j ∈ [M ], and we know
the true label yj of this node.

Furthermore, we also provide a model space Fc ⊂ RX with a single dimensional output that
corresponds to the c-th component of model output from f(x) for the c-th time step, expressed as

Fc =
{
x 7→ f(xj)

c,
∥∥W(1,k)

∥∥
F
≤M1,

∥∥∥wc
(2)

∥∥∥ ≤M2, c ∈ [C], j ∈ [M ]
}
. (10)

3.3 AN UPPER BOUND OF RADEMACHER COMPLEXITY OF GAT CLASS

Here we first provide an upper bound of ERC of GAT class Fc for single dimensional output of
MTSF.
Theorem 1 (Upper Bound of ERC of GAT class Fc for MTSF). Let the activation function σ(·)
be Lσ-Lipschitz continuous, and also satisfy σ(0) = 0 and σ(αz) = ασ(z) for all α ≥ 0. Assume
the L2-norm of the feature vector x comes from a bounded domain X = {x : ‖x‖ ≤ B}. Assume
the Frobenius norm of every weight matrix in the first layer of the GAT class is bounded, namely,∥∥W(1,k)

∥∥
F
≤ M1 with some constant M1 > 0 for every k. Also, the norm of the weight vector of

the second layer of the GATs is also bounded,
∥∥∥wc

(2)

∥∥∥ ≤ M2, where c ∈ [C], with some constant
M2 > 0. Let Ni denote the neighborhood of node i (including i), let the number of neighbors of each
node is equal to each other, namely, for some common constant Ne ∈ N+, assume Ne := |Ni| for
all node i ∈ N , furthermore, we consider the most general formulation, which allows every node to
attend on every other node, i.e., Ne = N . Then let R(Fc) be the ERC defined in the definition 7 for
GAT class Fc in the definition 17, given the M sized input set {x1, . . . ,xM}, then we have

R(Fc) = O(LσBK(N)3/2M−1/2M1M2).

We see that this bound has a polynomial dependence on the N , the total number of nodes. The N
appears here due to the fact that we consider all the nodes as neighbors, which can be replaced by the
Ne, the number of neighbors. A small Ne < N can result in a potentially smaller bound. The proof
details can be found in §A.

3.4 GENERALIZATION ERROR BOUND OF THE GAT CLASS FOR MTSF

In this section, we will give the final generalization error bound of the GAT class for MTSF. The
formal result is in the following theorem and the proof is in §B.
Theorem 2. Define the hypothesis class F as the definition 15. We suppose g is Lipschitz with
constant Lg . Then for any δ ∈ (0, 1), with probability at least 1− δ, for all f ∈ F , we have

E(f) ≤ Ê(f) + 2
√
2CLgR(Fc) + 3

√
ln(2/δ)

2M
,

where we have R(Fc) = O(LσBK(N)3/2M−1/2M1M2) from Theorem 1.

4 EXTENSION TO GAT CLASS WITH LAYERS L > 2

Now we extend the analysis to GATs with more than two layers for MTSF and provide corresponding
generalization error bounds. Here, the proof is done by a simple induction argument using the
"peeling-off" technique employed for Rademacher complexity bounds for neural networks. The
output of a L-layer GATs represents a multi-step-away prediction shown in expression 1.

We define the function class over M, according to the definition of the GATs network, with

F =
{
x 7→ f(xj) ∈ RC :

∥∥W(1,k)

∥∥
F
≤M1, . . . ,

∥∥∥wc
(L)

∥∥∥ ≤ML, c ∈ [C], j ∈ [M ]
}
. (11)

Furthermore, we require that the Frobenius norm of every weight matrix in every layer of the GAT
class is bounded, namely, for any l ∈ [L],

∥∥W(l,k)

∥∥
F
≤Ml with some constant Ml > 0 for every k.
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Also, we have single dimensional GAT function space defined as

Fc = {x 7→ f(xj)
c : f ∈ F , c ∈ [C] , j ∈ [M ]} . (12)

Also, the output up to layer l, l ∈ [L− 1], has the format as,[
fl(x1)

>, . . . , fl(xM )>
]>

= ⊕Kl

kl=1σ
(
P(l) · · · ⊕K2

k2=1 σ
(
P(2) ⊕K1

k1=1 σ
(
P(1,k)XW(1,k)

)
W(2)

)
· · ·W(l)

)
∈ RDl .

(13)

Thus, we define a layer-wised class of functions as

Fl =
{
fl : x 7→ fl(xj) ∈ RDl ,

∥∥W(1,k)

∥∥
F
≤M1, . . . ,

∥∥W(l,k)

∥∥
F
≤Ml, j ∈ [M ]

}
. (14)

We provide an upper bound of ERC of GAT class Fc with L layers with proof details in §C
Theorem 3 (Upper Bound of ERC of GAT class Fc with L layers). Let all the assumptions from
Theorem 1 be fulfilled. Furthermore, let the Frobenius norm of every weight matrix in the first L− 1
layers of the GATs be bounded, namely,

∥∥W(l,k)

∥∥
F
≤Ml with some constant Ml > 0 for every k.

Also, the norm of the weight vector of the last layer is also bounded,
∥∥∥wc

(L)

∥∥∥ ≤ML, where c ∈ [C],

with some constant ML > 0. Let R(Fc) be the ERC defined in Equation 7 for GAT class Fc in the
definition 12, given the M sized input set {x1, . . . ,xM}, then we have

R(Fc) = O((4LσK)L−1
L∏

l=1

Ml(BN
L−1/2M−1/2)).

Based on the theorem 3, we provide the generalization error bounds for the GAT class with more
than two layers in the following theorem.
Theorem 4 (Generalization Error Bounds for the GAT Class with More than Two Layers). Given
any real δ ∈ (0, 1), with probability at least 1− δ, for any f ∈ F defined in the definition 11, which
contains L-layer GATs, and given the M sized training data set S = {(x1,y1), . . . , (xM ,yM )}, we
have the generalization error for MTSF is upper bounded as

E(f) ≤ Ê(f) + 2
√
2CLgR(Fc) + 3

√
ln(2/δ)

2M
,

where R(Fc) is calculated in theorem 3.

To give the generalization error bound of a deep GAT, we firstly derive its ERC. To bound the
ERC, we apply the layer-peeling strategy that the ERC of L-layer networks is expressed by a factor
multiplied by the ERC of L− 1-layer networks. Specifically, we consider this factor as the matrix
Frobenius norm, and our current bounds scale with the product of these norms as the layer size
increases. However, the number of attention heads and the number of attention neighbors appear
as the polynomial terms with an order roughly equal to the number of layers L. The bound has an
exponential dependence on the network depth.

The generalization error bound in Theorem 4 implies that the following attempts can be taken to
reduce the generalization error: i) increase the training samples, ii) minimize the empirical loss, and
iii) design the neural network carefully to achieve a proper hypothesis class. Increasing the complexity
of the hypothesis class can decrease the approximation error but also increase the estimation error
due to a large ERC, which leads to undesired test performance in a practical task. In the next section,
we will empirically show how structural components of GATs related to complexity could affect the
test performance for a MTSF task, providing empirical support for our theoretical findings.

5 EXPERIMENT DETAILS

Our goal is to show the relationship between the upper bound of the generalization error of the GAT
model and variables in the ERC, including the number of attention heads, the number of neighbors,
the Frobenius norm of model weights, the number of model layers, the norm of inputs, and the
number of labeled nodes. We use the daily stock price data from Nasdaq and NYSE. The multivariate
time series have about 1500 stocks. For each stock, the one-week historical data is used to predict
future returns. For every stock, we assume that every feature is i.i.d. per day. By default, we use
a three-layer (input layer, hidden layer, and output layer) GAT to do single-step forecasting on the
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returns of each stock. For each variable, we try its various values with all other variables’s values
fixed. We repeat the experiment 20 times and report the loss on the out-of-sample test dataset to
represent its generalization error. We use minimum square error (MSE) as evaluation metrics 2.

6 EXPERIMENT RESULTS
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Figure 1: Experiment results on six variables in the ERC. We run the experiment 20 times and obtain
a standard deviation of the generalization error. (a) relationship between test loss and the number
of attention heads. (b) relationship between test loss and the number of neighbors. (c) relationship
between test loss and the upper bound of weight norm. (d) relationship between test loss and the
number of (hidden) layers. (e) relationship between test loss and the upper bound of input norm. (f)
relationship between test loss and the number of labeled nodes. The red line is a possible theoretical
upper bound. The plots show that all test losses generally conform to the big O of the theoretical
upper bound.

Number of Attention Heads - K. For three-layer GATs, Theorem 3 indicates that with the
increasing number of attention heads in the attention layer, the upper bound of ERC is y = O(K2).
The experiment results in Figure 1 shows test error beginning to increase quadratically after some
values of K. This is consistent with our theoretical results on the generalization error bound.

Number of Neighbors - Ne. For three-layer GATs, Theorem 3 indicates that with the increas-
ing number of neighbors considered for the attention operation, the upper bound of ERC is
y = O(N

L−1/2
e ). Figure 1 demonstrates that as the Ne increases, the test error conforms to

this theoretical error bound. But it is noteworthy that when the number is too small, the loss is also
high. It is possible that at certain range, the influence of the information loss due to the limited
number of neighbors is dominant.

Norm of Weight Matrix - Ml. We also have an empirical evaluation on the relationship between
the generalization error bound and the Frobenius norm of GAT models’ weights. Theorem 3 indicates
that with the increasing bound of the Frobenius norm, the upper bound of ERC increases polynomially.
The experiment results in Figure 1 corroborate the conclusion. When the weight norm increases, the

2It is known that MSE loss is not Lipschitz continuous over all Y , however, since we consider a finite
hypothesis class satisfying bounded input and weights conditions, the output of GATs is bounded, thus, the MSE
is a locally Lipschitz continuous function.

8



Under review as a conference paper at ICLR 2023

generalization error first decreases, then increases. The reason for the initial decrease is because the
bound on the norms is so small that it severely prevents the weights from having enough amount of
updates. Thus, the scales (norms) of the weight matrices should be neither too large (induces large
generalization error) nor too small (harms weights’ updates) and choosing proper scales is important
in practice as the current work has shown Li et al. (2018).

Number of Layers (Model Depth) - L. Theorem 3 and Theorem 1 indicate that the upper bound
of ERC increases exponentially with an increasing number of layers, suggesting that the number of
layers has negative impact on the test performance of GATs for MTSF. However, Sun et al. (2016)
reported that deeper nets which have larger representation power are able to fit training data better
and achieve smaller empirical error. This observation indicates a positive impact of the number of
layers’ positive on the test performance for MTSF. Our empirical results are consistent with the
above discussions about the double-edged impacts. The experiment results are shown in Figure 1 and
indicate that as the number of layers increases, the test error first decreases, and then increases. This
observation indicates that if the ERC increases quickly, the representation power cannot compensate
for the negative impact of the increased number of layers.

Norm of Inputs - B. The experiment results in Figure 1 show that when the input norm is greater
than certain values, the generalization loss of the GAT has a linear relationship with the upper bound
of the input norm. This empirical observation aligns with Theorem 3.

Number of Labeled Nodes - M . Theorem 3 also indicates that when the number of labeled nodes
increases, the generalization loss of the GAT decreases and the upper bound of the generalization
loss is y = O(M−1/2). The empirical results in Figure 1 confirm this relationship.

We include the details about how we control the above six variables in D.2. In addition, we conduct
experiments on two-layer GATs to show that empirical results are also consistent with error bounds
in Theorem 1. Results and discussions are in §E.

It is noteworthy that Figure 1 also shows that the test error decreases initially, then starts to increase
as Theorem 3 suggests. The inconsistency at the beginning could be brought about by other factors
that affect the test error. As seen in the Theorem 4, in addition to the ERC, the training error also
contributes to the upper bound. Nevertheless, the ERC becomes dominant by increasing the number
of attention heads, the number of neighbors, the upper bound of weights norm, and the number of
hidden layers, indicating the importance of a proper design of neural networks for MTSF to guarantee
a smaller test error. Among all the above factors that affect the generalization error, since the order
of the upper bound of the weights norm is the highest, properly controlling the upper bound of the
weights norm is especially significant.

Weights-bounded GAT Vanilla GAT
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Figure 2: Test loss of two types of GATs.
The train-test pipeline runs 20 times over
20 random seeds. The Weights-bounded
GAT has a better test loss than the vanilla
GAT regarding the minimum, maximum,
first quantile, third quantile and the me-
dian of the test loss.

As reported in the previous literature (Wu et al., 2021), in-
creasing the complexity hypothesis class in terms of larger
weight matrices bounds could decrease the approximation
error, but may also increase the estimation error, which
corresponds to the second term of RHS in Theorem 4.

Therefore, in practical training process, we generally start
with a simple neural network and gradually increase its
complexity in terms of larger weight matrix bounds to
improve the test performance, and the bound can be a
tuning parameter in our model. We call it weight control.

To show the meanings of weight control, we further de-
veloped an improved version of the GAT called Weights-
bounded GAT. And we conduct an additional experiment
to demonstrate its improvement over the vanilla GAT. As
the name suggests, the weight Frobenius norm of each
layer is bounded by a hyperparameter. We compare the
Weights-bounded GAT with the vanilla GAT using test
loss on the above stock return forecasting task. We repeat
the same train-test pipeline 20 times and collect 20 test
losses for each model. As Figure 2 shows, the Weights-
bounded GAT performs much better than the vanilla GAT.
While the neural network training process can only minimize the training error and has no guarantee
on generalization error, this generalization error bound analyzed in this study is more useful in the
sense that it provides a solid guideline on GAT structure design to improve the models generalization
performance for MTSF.
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7 ETHICS STATEMENT

We have read the code of ethics carefully and ensured that our paper conforms to them.

8 REPRODUCIBILITY STATEMENT

We make our best effort to ensure the reproducibility of the paper’s experiments and provide clear
guidelines. More specifically, we include detailed experiment setup information in D.1. Besides,
we give detailed description on the architecture of the neural network we use and we explain how
we control and adjust different variables in D.2. We list all the important hyperparameters and their
default values in D.3. We give the website link for the dataset we use in D.4. There is no extra data
processing steps to be conducted. All the work is done in the code in an end-to-end manner. We also
give the link to the source code in D.5.

We explain all assumptions of our theorems (Theorem 1, 2, 3, 4) clearly, and provide the complete
proof of the theorems in the appendix §A, §B, and §C.
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APPENDICES TO MULTIVARIATE TIME SERIES FORECASTING BY GRAPH ATTENTION
NETWORKS WITH THEORETICAL GUARANTEES

A PROOF OF THEOREM 1

Here we will derive the upper bound of ERC of two-layer GATs with on-dimensional output for the
single-time-step prediction.

As mentioned in section 2.3, our GATs model’s second layer l(2) uses Z(1) ∈ RN×KD1 as input, and
outputs Z(2) ∈ RM×C . The input to the first layer l(1) is a set of node features

X = (x1, . . . ,xN ) ,

, where each xi ∈ RD, D is the number of features in each node. The first layer produces Z(1) with
each z(1) ∈ RKD1 . The Z(1) is composed by concatenation of K outputs from the K identically
structured attention layers l(1,k), with each output denoted as

H(1,k) = σ(P(1,k)XW(1,k))

Now we write the output vector of GATs for all classes of node j, j ∈ [M ] as,

zj(2) =

KD1∑
kr=1

wkr
(2)

N∑
t=1

pj,t(2) ·
K∑

k=1

σ

(
D∑

d=1

wd,r
(1,k)

N∑
i=1

pt,i(1,k)x
i,d

)
.

Here we use index notation kr ∈ [KD1] because we already have indexes k ∈ [K] and r ∈ [D1].
And it is easy to show that above output can be easily written as in vector format:

zj(2) =

KD1∑
kr=1

wkr
(2)

N∑
t=1

pj,t(2) ·
K∑

k=1

σ

(
N∑
i=1

pt,i(1,k)

〈
wr

(1,k),xi

〉)
,

where wr
(1,k) represents the column r of W(1,k), wkr

(2) represents the row kr of W(2), and wc
(2)

represents the column c of W(2). Then the class of functions defined over the subset of the node set
M, |M| =M , will be

F =

{
x 7→ f(xj) =

KD1∑
kr=1

wkr
(2)

N∑
t=1

pn,t(2) ·
K∑

k=1

σ

(
N∑
i=1

pt,i(1,k)

〈
wr

(1,k),xi

〉)
∈ RC ; (15)

∥∥W(1,k)

∥∥
F
≤M1,

∥∥∥wc
(2)

∥∥∥ ≤M2, j ∈ [M ]

}
, (16)

Furthermore, we also provide a model space with a single dimensional output that corresponds to the
c-th component of model output from f(x) for the c-th time step. Now we write the output of node n
of time-step c of l(2) as

zj,c(2) =

KD1∑
kr=1

wkr,c
(2)

N∑
t=1

pn,t(2) ·
K∑

k=1

σ

(
F∑

d=1

wd,r
(1,k)

N∑
i=1

pt,i(1,k)x
d
i

)
,

and its vector format is

zj,c(2) =

KD1∑
kr=1

wkr,c
(2)

N∑
t=1

pn,t(2) ·
K∑

k=1

σ

(
N∑
i=1

pt,i(1,k)

〈
wr

(1,k),xi

〉)
.

Now let hypothesis class Fc ⊂ RX be a set of functions on x ∈ X . Specifically, we have such single
dimensional GAT function space defined as

Fc =

{
x 7→ f(xj)

c =

KD1∑
kr=1

wkr,c
(2)

N∑
t=1

pj,t(2) ·
K∑

k=1

σ

(
N∑
i=1

pt,i(1,k)

〈
wr

(1,k),xi

〉)
;

∥∥W(1,k)

∥∥
F
≤M1,

∥∥∥wc
(2)

∥∥∥ ≤M2, c ∈ [C], j ∈ [M ]

}
.

(17)
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We have the first layer’s matrix to be

W(1,k) =
[
w1

(1,k), . . . ,w
D1

(1,k)

]
.

The output of first layer l1 is

Z(1) =
[
h1>
(1,k),h

2>
(1,k), . . . ,h

N>
(1,k)

]>
∈ RN×KD1 .

We then further write the output of attention head k of first layer l(1) as

H(1,k) =
[
h>
(1,k,1),h

>
(1,k,2), . . . ,h

>
(1,k,N)

]>
∈ RN×D1 .

By the concatenation relationship, we have the row t of Z(1) to be

zt(1) =
[
h>
(1,1,t),h

>
(1,2,t), . . . ,h

>
(1,k,t)

]
∈ RKD1 . (18)

And we define each h(1,k,t) as

h(1,k,t) =
[
h1(1,k,t), h

2
(1,k,t), . . . , h

D1

(1,k,t)

]>
∈ RD1 ,

with each hr(1,k,t) ∈ R defined as

hr(1,k,t) = σ

(
N∑
i=1

pt,i(1,k)

〈
wr

(1,k),xi

〉)
.

Then the output of node j of class c can be re-written as

zj,c(2) = φ

(
N∑
t=1

pj,t(2) ·
〈
zt(1),w

c
(2)

〉)
,

where wc
(2) represents column c of W(2).

According to the definition of Fc in definition 17, and ERC, we have

R(Fc) =E
ε

 1

M
sup
f∈F

∣∣∣∣∣∣
M∑
j=1

εjf(xj)
c

∣∣∣∣∣∣
 = E

ε

 1

M
sup∥∥W(1,k)

∥∥
F
≤M1∥∥∥wc

(2)

∥∥∥≤M2

∣∣∣∣∣∣
M∑
j=1

εj

N∑
t=1

pj,t(2) ·
〈
zt(1),w

c
(2)

〉∣∣∣∣∣∣


=E
ε

 1

M
sup∥∥W(1,k)

∥∥
F
≤M1∥∥∥wc

(2)

∥∥∥≤M2

∣∣∣∣∣∣
〈 M∑

j=1

εj

N∑
t=1

pj,t(2) · z
t
(1),w

c
(2)

〉∣∣∣∣∣∣


≤M2

M
E
ε

 sup∥∥W(1,k)

∥∥
F
≤M1

∥∥∥∥∥∥
M∑
j=1

εj

N∑
t=1

pj,t(2) · z
t
(1)

∥∥∥∥∥∥


The inequality comes from the Cauchy-Schwartz inequality.

We further unfold the expectation, we have

E
ε

 sup∥∥W(1,k)

∥∥
F
≤M1

∥∥∥∥∥∥
M∑
j=1

εj

N∑
t=1

pj,t(2) · z
t
(1)

∥∥∥∥∥∥


=E
ε

 sup∥∥w(1,k)

∥∥=M1

K∑
k=1

∣∣∣∣∣∣
M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)∣∣∣∣∣∣
 ,

(19)
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The equality is due to the following derivation:

∥∥∥∥∥∥
M∑
j=1

εj

N∑
t=1

pi,t(2) · z
t
(1)

∥∥∥∥∥∥
2

=

KD1∑
kr=1

 M∑
j=1

εj

N∑
t=1

pj,t(2)h
r
(1,k,t)

2

=

K∑
k=1

D1∑
r=1

 M∑
j=1

εj

N∑
t=1

pj,t(2)h
r
(1,k,t)

2

=

K∑
k=1

D1∑
r=1

 M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
wr

(1,k),xi

〉)2

For a fixed k-th attention head, we let the w1
(1,k),w

2
(1,k), . . . ,w

D1

(1,k) be the the columns of W(1,k),
then, by positive homogeneity of σ, we have

K∑
k=1

D1∑
r=1

 M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
wr

(1,k),xi

〉)2

=
K∑

k=1

D1∑
r=1

∥∥∥wr
(1,k)

∥∥∥2
 M∑

j=1

εj

N∑
t=1

pj,t(2)σ

 N∑
i=1

pt,i(1,k)

〈 wr
(1,k)∥∥∥wr
(1,k)

∥∥∥ ,xi

〉2

The supremum of this quantity over w1
(1,k),w

2
(1,k), . . . ,w

D1

(1,k) under the constraint that∥∥W(1,k)

∥∥2
F

≤ M2
1 =

∑D1

r=1

∥∥∥wr
(1,k)

∥∥∥2 ≤ M2
1 is attained when

∥∥∥wr
(1,k)

∥∥∥ = M1 for some r

and
∥∥∥wr′

(1,k)

∥∥∥ = 0 for all other r′ 6= r. In the end, only the r terms remain. For simplicity of notation,
we use w(1,k) to mean that r’s column wr

(1,k).

Therefore, we have

E
ε

 sup∥∥W(1,k)

∥∥
F
≤M1

∥∥∥∥∥∥
M∑
j=1

εj

N∑
t=1

pj,t(2) · z
t
(1)

∥∥∥∥∥∥


=E
ε

 sup∥∥w(1,k)

∥∥=M1

K∑
k=1

∣∣∣∣∣∣
M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)∣∣∣∣∣∣


(a)
≤

K∑
k=1

E
ε

 sup∥∥w(1,k)

∥∥=M1

∣∣∣∣∣∣
M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)∣∣∣∣∣∣


(b)
≤2

K∑
k=1

E
ε

 sup∥∥w(1,k)

∥∥=M1

M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)

(20)

The inequality (a) is because sup(
∑

i xi) ≤
∑

i sup(xi).
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For the inequality (b) above, we have

E
ε

 sup∥∥w(1,k)

∥∥=M1

∣∣∣∣∣∣
M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)∣∣∣∣∣∣


(a)
=E

ε

 sup∥∥w(1,k)

∥∥=M1

 M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
+

+

 M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
−


(b)
≤E

ε

 sup∥∥w(1,k)

∥∥=M1

 M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
+


+ E

ε

 sup∥∥w(1,k)

∥∥=M1

 M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
−


(c)
=2E

ε

 sup∥∥w(1,k)

∥∥=M1

 M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
+


(d)
=2E

ε

 sup∥∥w(1,k)

∥∥=M1

M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
+


(e)
=2E

ε

 sup∥∥w(1,k)

∥∥=M1

M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
(21)

where the equality (a) above is due to |x| = (x)+ + (x)−, and the inequality (b) is due to supA+B ≤
supA +supB , and the equality (c) comes from the symmetry in the distribution of the εi random vari-
ables. The equality (d) is due to supA+

= (supA)+. The equality (e) is because the supremum is non-

negative, as when w(1,k) = 0, we can get the
∑M

j=1 εj
∑N

t=1 p
j,t
(2)σ

(∑N
i=1 p

t,i
(1,k)

〈
w(1,k),xi

〉)
= 0.

We then rewrite

M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
=

N∑
t=1

M∑
j=1

εjp
j,t
(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)

By the same argument in sup(
∑

i xi) ≤
∑

i sup(xi), we have

E
ε

 sup∥∥w(1,k)

∥∥=M1

M∑
j=1

εj

N∑
t=1

pj,t(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
≤

N∑
t=1

E
ε

 sup∥∥w(1,k)

∥∥=M1

M∑
j=1

εjp
j,t
(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉) (22)
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For any fixed t, we have

E
ε

 sup∥∥w(1,k)

∥∥=M1

M∑
j=1

εjp
j,t
(2)σ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
(a)
≤2max

j

∣∣∣pj,t(2)

∣∣∣ · E
ε

 sup∥∥w(1,k)

∥∥=M1

M∑
j=1

εjσ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
(b)
≤2E

ε

 sup∥∥w(1,k)

∥∥=M1

M∑
j=1

εjσ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
(23)

The inequality (a) is due to the contraction property of ERC. The inequality (b) is due to the definition
of graph attention matrix P, i.e., the maximum value of entries in each row is equal to 1.

Put (19), (20), (22), (23) together, we get

E
ε

 sup∥∥W(1,k)

∥∥
F
≤M1

∥∥∥∥∥∥
M∑
j=1

εj

N∑
t=1

pj,t(2) · z
t
(1)

∥∥∥∥∥∥
2


≤4

K∑
k=1

N∑
t=1

E
ε

 sup∥∥w(1,k)

∥∥=M1

 M∑
j=1

εjσ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉) (24)

Then we use the fact that σ is Lσ Lipschitz continuous and the contraction property of ERC. We
further derive that

4

K∑
k=1

N∑
t=1

E
ε

 sup∥∥w(1,k)

∥∥=M1

 M∑
j=1

εjσ

(
N∑
i=1

pt,i(1,k)

〈
w(1,k),xi

〉)
(a)
≤4Lσ

K∑
k=1

N∑
t=1

E
ε

 sup∥∥w(1,k)

∥∥=M1

〈 M∑
j=1

εj

N∑
i=1

pt,i(1,k)xi,w(1,k)

〉
(b)
≤4Lσ

K∑
k=1

N∑
t=1

E
ε

 sup∥∥w(1,k)

∥∥=M1


∥∥∥∥∥∥

M∑
j=1

εj

N∑
i=1

pt,i(1,k)xi

∥∥∥∥∥∥
2

2

∥∥w(1,k)

∥∥2
2


1/2


≤4LσM1

K∑
k=1

N∑
t=1

E
ε


∥∥∥∥∥∥

M∑
j=1

εj

N∑
i=1

pt,i(1,k)xi

∥∥∥∥∥∥
2

2




1/2

(c)
=4LσM1

K∑
k=1

N∑
t=1

 M∑
j=1

∥∥∥∥∥
N∑
i=1

pt,i(1,k)xi

∥∥∥∥∥
2

2

1/2

=4LσM1

K∑
k=1

N∑
t=1

 M∑
j=1

[∥∥∥Xpt
(1,k)

∥∥∥2
2

]1/2

,

(25)

Where the inequality (a) is by Cauchy-Schwartz, and the inequality (b) is by Jensen’s inequality. And
the equality (c) follows the i.i.d. condition of Rademacher sequences with zero-mean.
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Next, we continue to bound the rest,

4LσM1

K∑
k=1

N∑
i=1

 M∑
j=1

[∥∥∥Xpt
(1,k)

∥∥∥2
2

]1/2

≤ 4LσM1

√
M

K∑
k=1

N∑
i=1

(
‖X‖2

∥∥∥pt
(1,k)

∥∥∥
2

)

≤4LσM1

√
M

K∑
k=1

N∑
i=1

(
‖X‖2

∥∥∥pt
(1,k)

∥∥∥
1

)
= 4LσM1

√
M

K∑
k=1

N∑
i=1

(‖X‖2)

≤4LσM1

√
M

K∑
k=1

N∑
i=1

(
sup

‖w‖2=1

‖Xw‖2

)
≤ 4LσM1

√
M

K∑
k=1

N∑
i=1

 sup
‖w‖2=1

[
N∑
i=1

(〈
xi,w

〉)2]1/2
≤4LσM1

√
M

K∑
k=1

N∑
i=1

(
N∑
i=1

‖xi‖22

)1/2

≤ 4LσM1BK(N)3/2M1/2,

where the first inequality is by ‖Ax‖2 ≤ ‖A‖2 ‖x‖2.

Combined with the earlier result, we get

R(Fc) ≤ 4LσBK(N)3/2M−1/2M1M2

B POOF OF THEOREM 2

We now turn to prove the Theorem 2. Our proof strategy will be the following. We first provide a
classic theorem that was used to bound the expected loss based on the empirical loss and the upper
bound of ERC of loss functions associated with GATs for the multi-time-step situation F , then we
derive this upper bound of ERC of loss functions of F by extending the upper bound of ERC of GATs
with one-dimensional output for the single-time-step prediction Fc, based on the existing theorem in
literature.

Proof. From Theorem Mohri et al. (2018), we have the following holds for all f

E(f) ≤ Ê(f) + 2R(gF ) + 3

√
ln(2/δ)

2M
,

where E(f), R(gF ), and Ê(f) are defined in section 2.4.

In order to extend to multi-dimensional vector-valued functions for MTSF, we will use the contraction
inequality for the hypothesis class F of vector-valued functions f ∈ RC .

Lemma 5 (Corollary 4 in Maurer (2016)). let F be a class of vector-valued functions f =
(f1, . . . , fC) ∈ RC , with each fc ∈ Fc ⊂ RX , and let {x1, . . . ,xM}, {y1, . . . ,yM} be a data
set with each xj ∈ X and yj ∈ Y . Let ψ(·, ·) be a 1-Lipschitz function mapping V × Y to R, and
associated to F , where F ⊂ VX . Then we have

E
ε

sup
f∈F

M∑
j=1

εjψ((f(xj),yj)

 ≤
√
2E

ε

sup
f∈F

M∑
j=1

C∑
c=1

εjcfc(xj)

 (26)

where εcj is the c, j-th entry of a C ×M matrix of independent Rademacher variables.

However, the RHS of equation 26 has supremum over all f ∈ F which is hard to compute and we
can reduce it to scalar classes, and derive the following bound (Maurer, 2016):

E
ε

sup
f∈F

M∑
j=1

C∑
c=1

εjcfc(xj)

 ≤
C∑

c=1

E
ε

 sup
f∈Fc

M∑
j=1

εjf(xj)

 , (27)

Then we can derive the following upper bound for the loss function g(f(x),y) with f(x) being
vector-valued functions based on equation 26 and 27, where the RHS of equation 27 is related to
R(Fc):

R(gF ) ≤
√
2CR(Fc) (28)
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C PROOF THEOREM 3 AND THEOREM 4

Proof. For l = L, by the definition of network output

and the Rademacher complexity, we have

R(Fc) =E
ε

 1

M
sup
f∈F

∣∣∣∣∣∣
M∑
j=1

εjf(xj)
c

∣∣∣∣∣∣


=E
ε

 1

M
sup

f(L−1)∈FL−1∥∥∥wc
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εj

N∑
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pj,t(L) ·
〈
zt(L−1),w

c
(L)

〉∣∣∣∣∣∣


≤ML

M
E
ε

 sup∥∥W(L−1,k)

∥∥
F
≤ML−1

f(L−2)∈FL−2

∥∥∥∥∥∥
M∑
j=1

εj

N∑
t=1

pj,t(L) · z
t
(L−1)

∥∥∥∥∥∥


so we get

M

M2
R(F) ≤E

ε

 sup∥∥W(L−1,k)

∥∥≤ML−1

f(L−2)∈FL−2

∥∥∥∥∥∥
M∑
j=1

εj

N∑
t=1

pj,t(L) · z
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(L−1)

∥∥∥∥∥∥


We denote the RHS as R(L).

We further unfold the expectation, we have

E
ε

 sup∥∥W(L−1,k)

∥∥
F
≤ML−1

f(L−2)∈FL−2

∥∥∥∥∥∥
M∑
j=1

εj

N∑
t=1

pj,t(L) · z
t
(L−1)

∥∥∥∥∥∥


≤4

K∑
k=1

N∑
t=1

E
ε

 sup∥∥w(L−1,k)

∥∥=ML−1

f(L−2)∈FL−2

 M∑
j=1

εjσ

(
N∑
i=1

pt,i(L−1,k)

〈
w(L−1,k), z

i
L−2

〉)


This follows the same reason with equation 24.

Now for any l ∈ [L− 1], we have
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E
ε

 sup∥∥w(l,k)

∥∥=Ml
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Then we get the induction equation, which says
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k=1

N∑
t=1

R(l)

By induction, we get
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(
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Combining with the previous result, we get

R(Fc) ≤ (4LσK)L−1

(
L∏

l=1

Ml

)
BNL−1/2M−1/2
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D EXPERIMENT AND DATA

D.1 EXPERIMENT SETUP

The model is trained by the Adam optimizer (Kingma & Ba, 2014). The learning rate is 1e-4. The
number of training epochs is 30. The batch size is set to 5. We split the dataset into three parts for
training, validation and testing with a ratio of 0.6 : 0.2 : 0.2. All the deep learning models, are
implemented in Python with Pytorch and executed on a server with 8 NVIDIA GeForce GTX 2080Ti
GPUs. The Nvidia rriver version is 470.141.03 and the CUDA version is 11.4.

Table 1: Experiment environment. The list only includes major packages. All the packages are
installed using Anaconda and Pip.

Package Version
python 3.9.13
matplotlib 3.5.2
numpy 1.23.1
pandas 1.4.4
pytorch 1.12.1
torch-geometric 2.1.0.post1
torch-scatter 2.0.9
torch-sparse 0.6.15

D.2 NEURAL NETWORK ARCHITECTURE

We implement our neural network as a three-layer Graph Attention Neural network. This includes
the input layer, one hidden layer, and the output layer. Each layer is a GATConv layer from the
Pytorch-Geometric package 3. We use ELU activation (Clevert et al., 2015) and Dropout (Srivastava
et al., 2014) after both the input layer and the hidden layer.

For the number of heads variable, we change the number of attention heads of each layer and all
layers use the same number of attention heads. For the number of neighbors variable, we adjust the
dropout rate inside each layer’s attention mechanism (different from the dropout layer) so that only
a percentage of the nodes are considered when using the attention to aggregate information from
a node’s neighbors. For the weight norm variable, we adjust the bound of the Frobenius norm of
the weight matrix inside each layer by using weight clipping. Each element of the weight matrix is
clipped to the threshold to make sure the Frobenius norm of the matrix is less than or equal to the
bound. For the number of layers variable, we adjust the number of hidden layers ranging from 1 to 8.
For the input norm variable, we make sure each node’s feature vector’s L1 norm is less than or equal
to a bound ranging from 1 to 28. For the number of labeled nodes variable, we use a ratio to adjust
the size of the training dataset.

D.3 MODEL HYPERPARAMETERS

Table 2: Default hyperparameters. When we study the impact of different values of a variable such as
the number of heads, we keep all other variables fixed to the a set of same values.

Hyperparameter Value Comment
num-hid-layers 1 Number of hidden GATConv layers
num-heads 2 Number of attention heads; Same for all layers
num-neighbors 0.1 Neighbors to obtain attentions; Percentage of all nodes
num-labeled-nodes None Ratio of training set if not None
train-ratio 0.6 Ratio of training dataset
inputs-norm 1.0 Bound of the norm of the inputs
weights-bound None Bound of the norm of the model weights if not None
hidden-size 32 Out-channels of the input layer and hidden layer
lr 1e-4 Learning rate
dropout 0.1 Dropout rate after input layer and hidden layer

3https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
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D.4 DATA

We use the US daily stock market prices dataset from Kaggle 4.

D.5 SOURCE CODE

The source code is shared via Dropbox 5. Please refer to the included README file for detailed
execution guide.

E SUPPLEMENTAL EXPERIMENTS
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Figure 3: Additional experiment results using a two-layer GAT on three variables in the ERC whose
generalization error is related to the number of layers. We run the experiment 20 times and obtain
a standard deviation of the generalization error. (a) relationship between test loss and the number
of attention heads. (b) relationship between test loss and the number of neighbors. (c) relationship
between test loss and the upper bound of weight norm. The red line is a possible theoretical upper
bound. The plots show that when L equals to 2, all test losses still generally conform to the big O of
the theoretical upper bound.

In the experiment section, for all experiments, where the number of layers, L, needs to be fixed for
studying the relationship of the generalization error with different GAT components that impact the
ERC, including the number of attention heads, the number of neighbors, the upper bound of weights
norm, we use a three-layer GAT to demonstrate Theorem 3. However, the upper bound of input norm
and the number of labeled nodes affecting the ERC do not depend on the number of layers, thus, in
our supplemental experiment for two-layer GATs, we only consider the three variables (the number
of attention heads, the number of neighbors, and the upper bound of weights norm) that impact ERC
and depend on the number of layers. Notably, Theorem 1 for generalization error bound of two-layer
GATs is just a special case of Theorem 3 for deep GATs: when we let L equal to 2 in Theorem 3, the
generalization error bound is identical to the bound in Theorem 1 multiplied with some constants. We
now give empirical results on two-layer GATs to see if it is consistent with Theorem 1 and Theorem 3.

In this appendix section, we include more experiment results from a two-layer GAT on three variables
in the ERC. As Figure 3 shows, when the number of attention heads increases, the generalization
error also increases at a linear rate after certain values. When the number of neighbors increases,
the generalization error initially decreases when the number of neighbors is small, then starts
increasing following the trend of a polynomial function. As for the upper bound of weight norm, the
generalization error increases quadratically with the increment of the norm. The empirical results
for all three variables generally conforms to the theoretical bound suggests by Theorem 1 as well
as Theorem 3. For some inconsistency between the results and the reference red line or theoretical
results at the the beginning, the reason, as we have discussed, can be due to the trade-off between
approximation error and estimation error, since when the complexity of hypothesis class increases, the
former decreases and the latter increases. In the long run, the estimation error or the ERC dominate
the bound.

Thus, the results for L = 2 along with the three-layer experiments provide evidence for our theoretical
findings (Theorem 1 and Theorem 3).

4https://www.kaggle.com/datasets/paultimothymooney/stock-market-data
5https://www.dropbox.com/sh/gpa3283fgpq0yx1/AAAYnzAmnIhVdp4KFXw5wTzAa?

dl=0
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F SUPPLEMENT RESULTS

F.1 MTSF UNDER FULLY-SUPERVISED SETTING INSTEAD OF SEMI-SUPERVISED SETTING

We consider an undirected graph G = (N , E). N = (n1, . . . , nN ), |N | = N , is a set of node
labels representing the sources of N time series. E ⊂ N × N is the set of edges representing the
connection between series. We let xi ∈ X , i ∈ [N ] be a random variable representing the input
feature vector of node ni for time series i. For node i, its random input feature xi ∈ X ⊂ RD is a
multi-dimensional vector, which contains all the historical values from T time steps, in other words,
we let xi = (xi,t, . . . ,xi,t−T+1) be the concatenation of T time steps; its true label yi ∈ Y ⊂ RC

is the vector for the C-step-away values. We sample n training data over G, where n = N × V for
some V ∈ N+. In other words, we have V batches of samples over graph G. For any risk function g
defined over F , given the training set S = {(x1,y1), . . . , (xn,yn)} which includes n samples from
X ×Y according to distribution Q, the expected/population risk E(f) and the empirical risk function
Ê(f) are defined as:

E(f) = E
(x,y)∼Q

[g(f(x),y)], f ∈ F . (29) Ê(f) =
1

V

1

Ñ

V∑
v=1

Ñ∑
j=1

g(f(xj),yj). (30)

We introduce 1 ≤ Ñ ≤ N as the effective size of data because the data among nodes corresponding
to different time series are not independent. If Ñ = 1, all of the time series are fully dependent. If
Ñ = N , they are mutually independent. So the Ñ characterizes the strength of the independence
among different time series. Then we use ñ as the effective sample size of data which are i.i.d, where
V ≤ ñ ≤ NV = n. So the training set S will contain ñ data.

Given the inputs X = (xi, . . . ,xN ) as multiple time series with each xi as input feature for node
ni, the class of 2-layer GATs for MTSF f maps x to the output f(x) that represents a C-step-away
prediction expressed in equation 2. We consider a subset of such class requiring each f with a
bounded weights norm, expressed as

F =
{
x 7→ f(x) ∈ RC ;

∥∥W(1,k)

∥∥
F
≤M1,

∥∥∥wc
(2)

∥∥∥ ≤M2

}
. (31)

Furthermore, we also provide a model space Fc ⊂ RX with a single dimensional output that
corresponds to the c-th component of model output from f(x) for the c-th time step, expressed as

Fc =
{
x 7→ f(x)c,

∥∥W(1,k)

∥∥
F
≤M1,

∥∥∥wc
(2)

∥∥∥ ≤M2, c ∈ [C]
}
. (32)

Here we first provide an upper bound of ERC of GAT class Fc for single dimensional output of
MTSF.
Theorem 6 (Upper Bound of ERC of GAT class Fc for MTSF). Let the activation function σ(·) be
Lσ-Lipschitz continuous, and also satisfy σ(0) = 0 and σ(αz) = ασ(z) for all α ≥ 0. Assume that
the L2-norm of the feature vector x comes from a bounded domain X = {x : ‖x‖ ≤ B}. Assume
that the Frobenius norm of every weights matrix in the first layer of the GAT class is bounded, namely,∥∥W(1,k)

∥∥
F
≤M1 with some constant M1 > 0 for every k. Also, the norm of the weights vector of

the second layer of the GATs is bounded,
∥∥∥wc

(2)

∥∥∥ ≤M2, where c ∈ [C], with some constant M2 > 0.
Let Ni denote the neighborhood of node i (including i), let the number of neighbors of each node
be identical, namely, for some common constant Ne ∈ N+, assume Ne := |Ni| for all node i ∈ N ,
furthermore, we consider the most general formulation, which allows every node to attend on every
other node, i.e., Ne = N .

Then let R(Fc) be the ERC defined in the definition 7 for GAT class Fc in the definition 32, given
the ñ sized input set {x1, . . . ,xñ}, then we have

R(Fc) = O(LσBKM1M2(Ne)
3/2ñ−1/2).

Similar proof details can be found in §A.
Theorem 7. Define the hypothesis class F as the definition 15. We suppose g is Lipschitz with
constant Lg . Then for any δ ∈ (0, 1), with probability at least 1− δ, for all f ∈ F , we have
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E(f) ≤ Ê(f) + 2
√
2CLgR(Fc) + 3

√
ln(2/δ)

2ñ
,

where we have R(Fc) = O(LσBKM1M2(Ne)
3/2ñ−1/2) from Theorem 6.

F.2 RESULTS UNDER SUPERVISED SETTING

In this section, we provide the results of experiments under the fully-supervised setting. The
multivariate time series have about 1500 stocks, and all of these stocks are used for training and
testing.

We ensure that the training and testing data do not have any overlap. The results for the relationship
between the upper bound of the generalization error of the model and variables in the ERC are shown
in the Figure 4.
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Figure 4: Experiment results on six variables in the ERC. We run the experiment 20 times and obtain
a standard deviation of the generalization error. (a) relationship between test loss and the number
of attention heads. (b) relationship between test loss and the number of neighbors. (c) relationship
between test loss and the upper bound of weight norm. (d) relationship between test loss and the
number of (hidden) layers. (e) relationship between test loss and the upper bound of input norm. (f)
relationship between test loss and the training data set size. The red line is a possible theoretical
upper bound. The plots show that all test losses generally conform to the big O of the theoretical
upper bound.

From Figure 4 we can see that the overall pattern for different variables are still consistent with those
in Figure 1. For the last variable, we use the size of the training data set instead of the number of the
labeled nodes. Our Theorem 6 reports that the ERC has a polynomial O(ñ−1/2)’s dependence on
the effective sample size. As we can see from Figure 4f, the generalization loss decreases when the
training data set size increases. The red curve based on the theoretical value matches the pattern of
the yellow curve based on our experiments, though slightly lower than the yellow curve after certain
values of training data set size. This is because we need more samples in the experiment to satisfy the
effective samples in terms of the generalization error.
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Table 3: Comparison of Weight-bounded GAT with Baselines ASTGCN, GDN

Metrics (10−3)
MSE MAE STD(MSE) STD(MAE)

Weight-bounded GAT 2.04 30.61 0.9 10.55
ASTGCN 7.14 36.77 6.61 17.41

Guo et al. (2019)
GDN 8.11 46.31 3.62 24.21

Deng & Hooi (2021)

F.3 COMPARISON WITH OTHER BASELINES

So far, two current works (Guo et al., 2019; Deng & Hooi, 2021) use GAT-based models to model
multiple time series data, showing better performance in accuracy over other traditional linear methods
(e.g., VAR), neural-network based methods (e.g., LSTM), and graph-network based methods (e.g.,
GNNs and GCNs). Both works differ from ours as they do not consider any control of model variables
(e.g., the weight matrix norm) and they lack theoretical guarantees in terms of the generalization
error. GDN is proposed by Deng & Hooi (2021) and is used for anomaly detection in multivariate
time series. ASTGCN is developed by Guo et al. (2019) for multiple traffic flow forecasting. We
use GDN and ASTGCN as baselines to compare with Weight-bounded GAT. To adapt them into our
settings, we modify the output layer of GDN to perform the regression instead of classification task.
We also keep other hyper-parameters the same across three methods. Table 3 reports their average
test error and standard deviation from 20 runs. We use two evaluation metrics, the MSE and MAE.
Additionally, we also use figure 5 to show their generalization loss difference.
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Figure 5: Test loss of three methods.
The train-test pipeline runs 20 times over
20 random seeds. The Weight-bounded
GAT has a better test loss than the GDN
and ASTGCN regarding the first quan-
tile, third quantile and the mean of the
test loss.

As Table 3 and Figure 5 show, the Weight-bounded GAT
performs better than the GDN and ASTGCN. Apart from
using graph attention mechanism, GDN also learns a di-
rected graph to model the causal-effect relationship be-
tween different nodes, which can capture the asymmetric
dependency patterns. Learning a graph structure can bet-
ter dynamically capture the relationship between nodes,
but also increase the learning time and model complexity.
In the meantime, while using attention between nodes,
ASTGCN also considers the attention along the time axis.
Our method does not consider attention along the time as
the features in every time step has already embedded the
historical information. Compared to GDN and ASTGCN,
the weight-bounded control in our method plays an impor-
tant role in controlling the generalization error, which is
also verified in our theoretical analysis. This result further
corroborated the outperformance of our method over the
GAT-based SOTA methods for MTSF.

F.4 MODEL ARCHITECTURE
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Figure 6: The demonstration of the three-layer Weight-bounded GAT model we use. The input layer
and the hidden layer are both followed by an ELU activation and a dropout. Each GAT layer is
implemented using a Pytorch-Geometric GATConv layer.
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