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ABSTRACT

Protein complex formation, a pivotal challenge in contemporary biology, has re-
cently gained interest from the machine learning community, particularly con-
cerning protein-ligand docking tasks. In this paper, we delve into the equally
crucial but comparatively under-investigated domain of protein-protein docking.
Specifically, we propose a geometric deep learning framework, termed EBMDock,
which employs statistical potential as its energy function. This approach produces
a probability distribution over docking poses, such that the identified docking pose
aligns with a minimum point in the energy landscape. We employ a differential
algorithm grounded in Langevin dynamics to efficiently sample from the docking
pose distribution. Additionally, we incorporate energy-based training using con-
trastive divergence, enhancing both performance and stability. Empirical results
demonstrate that our approach achieves superior performance on two benchmark
datasets DIPS and DB5.5. Furthermore, the results suggest EBMDock can serve
as an orthogonal enhancement to existing methods.

1 INTRODUCTION

Protein-protein interactions play a prominent role in diverse biological processes, e.g. signal trans-
duction (Pawson & Nash, 2000), enzymatic reactions (Frieden, 1971; Tetlow et al., 2004), and im-
mune responses (Huang, 2000). Understanding the complex formation between proteins is essential.
However, the experimental determination of protein structures is complex and expensive, highlight-
ing the potential advantage of computational approaches in studying protein-protein interactions,
especially universal and stable ones in need (Porter et al., 2019). We address the problem of protein-
protein docking and follow the common rigid docking setting in recent works (Ganea et al., 2022)
without considering the deformations of proteins, which is an approximation for data collection and
tractability by existing techniques.

Over the decades, a series of score-based approaches (Schindler et al., 2017; Schneidman-Duhovny
et al., 2005; Yan et al., 2017) have emerged for the prediction of complex structures, computationally
exploring the binding interactions between proteins, providing insights into protein-protein recog-
nition, binding affinity, and structural rearrangements. These methods typically entail a multi-step
procedure as follows: Firstly, they generate numerous complex candidates. Subsequently, a scoring
function is employed to rank these candidates (Moal et al., 2013; Basu & Wallner, 2016; Launay
et al., 2020; Eismann et al., 2021). Finally, the top-ranked candidates undergo a refinement pro-
cess utilizing energy or geometric models (Verburgt & Kihara, 2022). As a result, these methods
always rely on heavy candidate sampling and a well-tailored score function based on the spatial and
chemical properties of every single atom, facing the challenge of sampling efficiency and stability.
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Table 1: Comparison of different deep-learning based (rigid) Protein-Protein docking methods.
Methods Formulation Input Accuracy Efficiency Stability
AF-multimer (Evans et al., 2021) Iterative search sequence High low median
Equidock (Ganea et al., 2022) One-shot regression structure low high high
DIFFDOCK-PP (Ketata et al., 2023) Generative model structure median median median
EBMDock (Ours) Energy model structure median high high

On the other hand, there are also emerging lines of research in the area of geometric deep learning
and molecular representation learning, and these methods have also been extended to show promise
in learning protein structures. Previous works (e.g. EquiDock (Ganea et al., 2022), HMR (Wang
et al., 2023)) have approached protein-protein docking by treating it as a regression problem, uti-
lizing Kabsch algorithm (Kabsch, 1976) to align two given proteins and aiming to directly predict
the final pose (directly output a rotation matrix R and a translation vector t). While these methods
are efficient, they are limited to generating a single predicted result (one-point solution) without
characterizing other possible binding states during the actual docking process. DIFFDOCK-PP (Ke-
tata et al., 2023) formulates docking as a generative problem: given two proteins, it estimates the
distribution over all potential poses using a diffusion generative model. The generative model sac-
rifices efficiency for higher accuracy but lacks stability. Another line of protein structure predic-
tion is AlphaFold(AF) (Jumper et al., 2021), which involves taking the primary sequences of the
proteins as input and conducting a search for multiple sequence alignments (MSAs). Although
AF-multimer (Evans et al., 2021) achieves high accuracy, it suffers low efficiency and reliance on
template features. The comparison of different methods is shown in 1.

In this paper, we advocate for learning a differentiable energy function modeled by geometric deep
neural networks. It provides probability distribution over docking poses, based on which we can
apply efficient sampling methods to improve the solutions, either from scratch or from a given point
solution obtained from an alternative approach e.g. (Ganea et al., 2022; Wang et al., 2023) (using
our method as a plug-in), which also enhances the stability. Specifically, we resort to energy-based
training methods with Langevin dynamics sampling. This conducts implicit data augmentation,
which holds great potential, given the limited availability of existing protein complex structures and
their difficulty in obtaining through physical simulations.

We present EBMDock, an energy-based learning framework for generating docking poses repre-
sented by SE(3) transformations for protein-protein complexes. EBMDock features a learnable
energy function based on distance likelihood, employing geometric deep learning to extract residue
features and filter binding interface residues. Inspired by Deepdock (Méndez-Lucio et al., 2021),
we model distance distributions using Gaussian mixture models and compute energy as the average
negative distance log-likelihoods of binding interface residue pairs. Training involves contrastive di-
vergence and Langevin dynamics for generating negative samples to optimize the energy landscape.
In inference, we sample points from the energy distribution using Langevin dynamics, selecting
the lowest energy point as the docking pose prediction. Evaluation on the Database of Interacting
Proteins (DIPS) and the Docking Benchmarks 5.5 demonstrates that our method surpasses exist-
ing deep learning-based approaches and matches the performance of traditional docking software,
significantly speeding up the process. Combining EBMDock with EquiDock shows potential for
enhancing existing approaches as a plugin. The highlights of this paper are:

1) We propose a geometric deep learning-based energy function for (rigid) protein-protein docking
which employs statistical potential based on the distance likelihood. This approach formulates the
docking problem as an optimization problem, allowing for efficient and stable determination of the
optimal docking pose through differentiable sampling methods.

2) The probability distribution over docking poses is derived from the distance distribution and the
energy function acts as the measure of confidence, which enables our methods to function as a plugin
to boost other one-point solution methods.

3) We propose an energy-based learning framework for the protein docking problem for the first
time. Trained with contrastive divergence, which conducts implicit data augmentation, the energy
function can overcome data imbalance.

4) Quantitative results show that it outperforms recent deep learning-based models and the speed is
100x faster than traditional docking software. Meanwhile, it performs stably across datasets. Also,
empirical results show that it can boost existing deep-learning docking methods by a large margin.
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2 RELATED WORK

2.1 MOLECULAR DOCKING.
Existing molecular docking methods can be categorized into traditional score-based methods and
emerging deep learning-based methods. Score-based methods, exemplified by Attract (Schindler
et al., 2017), PatchDock (Schneidman-Duhovny et al., 2005) and HDock (Yan et al., 2017), always
involve a search algorithm to generate candidates and a scoring function to select (Moal et al., 2013;
Basu & Wallner, 2016; Launay et al., 2020; Eismann et al., 2021). Specifically, Attract uses a ran-
domized search algorithm and a physics-based scoring function. The scoring function in PatchDock
is based on the geometric shape and electrostatic complementarity of the protein surfaces, while
HDock combines both physics-based and empirical terms to estimate the binding energy. However,
these methods are all faced with the problems of expensive computation cost and dependence on
complex template libraries (Ruiz-Carmona et al., 2014). In contrast, deep learning-based approaches
aim to enhance efficiency while maintaining accuracy.

While several methods (Méndez-Lucio et al., 2021; Stärk et al., 2022; Lu et al., 2022; Corso et al.,
2023; Zhang et al., 2023) have been developed for protein-ligand docking, they may not directly
address the protein-protein docking task investigated in this study. Protein-ligand interactions are
often characterized by ligands binding to deep clefts on the protein surface (Vajda & Guarnieri,
2006), whereas protein-protein interactions involve larger surface areas (ranging from 700 to 1500
Å2) and relatively flat binding interfaces (Bahadur et al., 2004; Nooren & Thornton, 2003), posing
additional challenges. EquiDock (Ganea et al., 2022) and DIFFDOCK-PP (Ketata et al., 2023) are
among the few methods specifically designed for protein-protein docking. In this paper, we pursue
the energy-based treatment and propose a learnable energy function for protein-protein docking
equipped with binding interface prediction techniques (Sverrisson et al., 2021; Tubiana et al., 2022).

2.2 ENERGY-BASED MODELING

Energy-based learning (LeCun et al., 2006) is a learning paradigm that revolves around modeling and
learning the underlying distribution of data. Unlike traditional supervised learning where explicit
labels are provided in training, energy-based learning focuses on estimating and optimizing the
energy associated with different configurations or states of the system and has shown promising
results in various domains, including data generation (Du & Mordatch, 2019; Suhail et al., 2021; Xie
et al., 2021), out-of-distribution detection (Liu et al., 2020), molecular structure design (Hataya et al.,
2021) and combinatorial optimization (Li et al., 2023). There are several systematic approaches
to train energy-based models such as score matching (Vincent, 2011) and ratio matching, while
gradient-based MCMC methods (Welling & Teh, 2011; Titsias & Dellaportas, 2019) are widely
used in inference. This paper employs the contrastive divergence approach (Hinton, 2002) with a
Langevin dynamics sampling (Welling & Teh, 2011) method to train the energy function.

3 EBMDOCK METHODOLOGY

3.1 PRELIMINARIES AND PROBLEM SETUP

We start by giving the formal formulation of the rigid docking problem. We are given an unbounded
pair of proteins denoted as ligand (Lig) and receptor (Rec) arbitrarily, with n residues and m residues
respectively. For simplicity, we denoted the unbounded pair as C := (Lig,Rec). The locations of
residues are represented by the coordinates of its corresponding α-carbon atom, denoted as XL ∈
R3×n and XR ∈ R3×m. We aim to predict the conformation of their bounded (docked) state with
the structure of each part unchanged during the docking process, that is, we view each protein as
a rigid body. Keeping the position of receptor fixed, ligand rotate with R ∈ SO(3) and translate
with t ∈ R3 can lead to a docking pose (RXL + t,XR), which means the complex they form is
completely determined by a SE(3) transformation applied to the ligand. Following the traditional
score-based docking method, we consider that the underlying process of ascertaining (R∗, t∗) can
be modeled by a score function Fθ(R, t, C) parameterized by θ and the criteria:

R∗, t∗ = argmax
R∈SO(3),t∈R3

Fθ(R, t, C). (1)

3.2 ENERGY-BASED MODELING FOR RIGID DOCKING

To tackle the optimization problem, i.e. Eq. 1, we first need to construct a proper complex probability
density function pθ(R, t | C) positively related to the function Fθ(R, t, C). Here we employ
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the energy-based treatment, where Eθ(R, t, C) = −Fθ(R, t, C) and the higher score of function
Fθ(R, t, C) represents lower energy:

pθ(R, t | C) =
exp (−Eθ(R, t, C))

Z
,Z :=

∫
exp(−Eθ(R, t, C)). (2)

Since the observed data only illustrate the ground-truth docking pose, the energy-based modeling is
superior due to its maximum entropy (i.e., minimum prior) property (Jeffreys, 1946).

In contrast to the majority of prior research that trains energy models for generative modeling, our
focus is to determine the optimal docking pose of a protein pair and its corresponding (R, t). For this
purpose, the decision-making process (inference) of our energy-based model involves comparing
the energies associated with various docking poses corresponding to different (R, t), and selecting
the pose with the lowest energy. Therefore, our primary concern is the relative energies, and we can
avoid the need to estimate the partition function or compute expectations by training with a carefully
designed loss. This allows to parameterize the energy function using any neural architecture, and a
thorough discussion on the formulation of the energy loss can be found in (LeCun & Huang, 2005).

3.3 ENERGY MODEL ARCHITECTURE

In this section, we will formally introduce our proposed method, which is how to obtain the corre-
sponding energy from a given docking pose that is specific to a protein-protein complex.

Protein Representation Proteins consist of several sequences of amino acid residues that fold into
3-dimensional structures in space. In line with Ganea et al. (Ganea et al., 2022), we represent protein
as a graph G = (V, E). Due to the limitation of computation resources, we work on residue level
(our method can be extended to atom level smoothly), which means each node in the graph is an
amino acid residue in the protein and each node i has a 3D coordinate xi ∈ R3 which is the 3D
coordinate of α-carbon atom of the residue. We use k-nearest-neighbor (KNN) to build the graph of
protein and the initial node feature is the embedding of residue type.

Protein Feature Extractor After we build the ligand graph GL = (VL, EL), receptor graph
GR = (VR, ER) and get the initial node embedding FL ∈ Rd×n,FR ∈ Rd×m, we apply a
message-passing neural network (MPNN) as our node feature extractor. Here we applied a mod-
ified Equiformer as our backbone (Liao & Smidt, 2022), referred to as EquiformerPP. Equiformer
leverages the strength of Transformer architectures and incorporates SE(3)-equivariant features, and
we add a SE(3)-equivariant cross-attention module to aggregate interactions between the ligand and
the receptor. Specifically, the transformation process can be formulated as:

ZL ∈ R3×n,HL ∈ Rd×n,ZR ∈ R3×m,HR ∈ Rd×m = EquiformerPP (XL,FL,XR,FR) , (3)
where HL, HR are the output node representations and d is the output dimension. ZL, ZR are the
transformed coordinates of residues but we do not need them in the following.

Energy based on Distance Likelihood Potential based on distance likelihood has shown promise in
protein-small molecular conformation (Méndez-Lucio et al., 2021). Inspired by that, here we use a
deep learning approach to learn a distance distribution that is specific for a node pair (one on ligand
and one on receptor), which can be used to compute the energy of a certain docking pose later.

After message passing, we get the output representation of each node, {hl,1, . . . ,hl,n},
{hr,1, . . . ,hr,m}, then we employ a pairwise approach where we concatenate the features of each
ligand node with each receptor node. The concatenated features are passed through a mixture den-
sity network (MDN) (Bishop, 1994), which comprises a feedforward neural network that generates a
set of means µ, standard deviations σ, and mixing coefficients α to parametrize a Gaussian mixture
model for each ligand-receptor node pair. The mixture model depicts the conditional probability
density function of distance for each ligand-receptor node pair, enabling us to estimate the likeli-
hood of locating ligand node i separated from a receptor node j by any distance di,j . Specifically,
for ligand node feature hl,i and receptor node feature hr,j (where i, j means the index of node
respectively), the MDN applies an MLP to get a hidden state hij :

hi,j = MLP (cat(hl,i,hr,j)) . (4)
Then the hidden state is used to calculate the parameters required for the K = 6 mixed Gaussians:

µi,j = ELU (Linear (hi,j)) + 1; (5)
σi,j = ELU (Linear (hi,j)) + 1; (6)
αi,j = Softmax (Linear (hi,j)) . (7)
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Figure 1: Construction of EBMDock’s energy function. The ligand and receptor are represented
as k-NN graphs where each node is one residue. Features of the residues are extracted from the
graphs via EquiformerPP. Based on these features, residues on the binding interface are predicted,
and the distance distributions between these residues are modeled with Gaussian mixture models
parameterized by α, σ, µ. Given a SE(3) transformation (R, t) of ligand, the pairwise distance
between residues can be calculated and the energy is the mean of their negative log-likelihoods.

The negative log-likelihood of distance can be further defined as :

− logP (di,j | hl,i,hr,j) = − log

K∑
k=1

αi,j,kN (di,j | µi,j,k, σi,j,k) . (8)

Finally, we model the energy as a statistical potential, which is computed by averaging all the inde-
pendent negative log-likelihood values computed for each ligand-receptor node pair on the binding
interface. For any R ∈ SO(3), t ∈ R3, we can get the corresponding distance between each node
of ligand and receptor, and then we can calculate the energy by:

Eθ(R, t, C) = − 1

|BI|
∑

(i,j)∈BI

logP (di,j | hl,i,hr,j) , (9)

where BI is the set of residue pairs on the binding interface and |BI| is its cardinality. The docking
pose, in which each pair of residues is at the most possible distance from each other, corresponds to
the state of minimum energy.

Binding Interface Prediction Studies have shown that protein-protein interfaces display compara-
ble chemical and geometric patterns, implying that two proteins may interact if their surfaces exhibit
similar shapes and chemical functions (Gainza et al., 2020), thus predicting the functional sites is
crucial for comprehending how proteins interact with each other (Sverrisson et al., 2021). Also,
when taking the distance between all the receptor and ligand nodes into consideration, it may be
greatly affected by the average distance or the centroid distance between the ligand and receptor.

Taking the above factors into account, we first predict the interface where binding might occur, then
we only predict the distance distribution of those node pairs on the binding interface. We employ
two different approaches, one is predicting the binding site in ligand and receptor respectively, and
the other is predicting which pairs of nodes may interact, namely contact prediction. We model both
predictions as binary classification problems. To improve the accuracy of the binding interface pre-
diction, we calculate solvent-accessible surface area (SASA) (Lee & Richards, 1971; Mitternacht,
2016) for each protein and incorporate this as an extra feature. See Appendix A for details.

As for the binding site prediction, we classify the nodes in the ligand whose shortest distance to
the receptor is smaller than 8Å as positive samples and classify the remaining nodes as negative
samples. We do the same for nodes in the receptor. The probability of one ligand node (or receptor
node) vi (or vj) to be on the binding site can be formulated as:

pi = σS(MLP(hi)), pj = σS(MLP(hj)), (10)

where MLP denotes a multi-layer perceptron and σS is implemented as the sigmoid function.
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For contact prediction, the node pairs with distance within the threshold 15Å are classified as positive
samples. We use a MLP together with a sigmoid to get the contact probability of node vi and vj :

pij = σS(MLP(cat(hi,hj)). (11)

Note that both classification tasks have label-imbalance issues, thus we apply a weighted focal
loss (Qin et al., 2018; Lin et al., 2017) to prevent models from easily classifying all samples as
negative ones. The loss function takes the form:

Lfocal(p) = −ω(1− p)γ log(p), (12)

where ω and γ are hyperparameters.

It should be emphasized that both approaches potentially contribute to the identification of the bind-
ing interface. Detailed comparisons can be located in Appendix B. There are approaches designed
especially to find the protein-protein interaction interface (Tubiana et al., 2022; Sverrisson et al.,
2021), we can also utilize their results in our pipeline for energy calculation.

3.4 ENERGY-BASED LEARNING FRAMEWORK FOR DOCKING POSE PREDICTION

In this section, we describe our proposed energy-based learning framework for protein-protein rigid
docking pose prediction. We take the docking process as an optimization problem by sampling in
continuous space which has six degrees of freedom (three of translation and three of rotation), and
we use three Euler angles to characterize the rotation specifically.

Given a specific ligand-receptor pair, we use MDN to predict the corresponding distance distribution
of each selected node pair (either from binding site prediction or contact prediction), under which
we can calculate the energy of a given docking pose, thus explicitly provide the energy distribution
of all docking poses. Here, we train our energy model with contrastive divergence:

Le = Eθ(R
+, t+, C)− Eθ(R

−, t−, C), (13)

where for a specific protein complex, (R+, t+) is the ground-truth docking pose and (R−, t−)
is a docking pose sampled from the complex probability density function pθ(R, t | C), which
we call negative sample. The negative sample can be generated with Markov chain Monte Carlo
(MCMC) sampling. Since our energy function is fully differentiable with respect to (R, t), we
employ Langevin dynamics (Nijkamp et al., 2019; Grathwohl et al., 2019; Xie et al., 2016) as our
MCMC transition kernel following recent developments in Energy-Based Models (EBMs). Specifi-
cally, we start from a random sampled docking pose (R0, t0), and perform:

Rτ+1 = Rτ − λ

2
∇REθ(R, t, C) + ϵτ , (14)

tτ+1 = tτ − λ

2
∇tEθ(R, t, C) + ϵτ , (15)

where (Rτ , tτ ) represents the docking pose after τ iterations and ϵτ is sampled from a normal
distribution N (0, λ). The process is similar to gradient descent with an added Gaussian noise and
we can arrive at a low-energy docking pose through a series of steps. It is worth noting that the
energy is a statistical potential based on the distance likelihood and no neural network parameters
are involved in energy computation from (R, t). Given a pair of unbounded ligand and receptor, we
can get the predicted distance distribution based on only one forward propagation of the geometric
neural network. Thus given a docking pose (R, t), we can compute the distance log-likelihoods
quickly which yield the energy and its derivatives. This means our iterative Langevin dynamics
sampling is very efficient in practice.

3.5 ENERGY-BASED TRAINING AND INFERENCE

The overall training loss is composed of three parts, including the contrastive divergence Le, the
L2 regularization loss Lr on energy values, and weighted focal loss Lfocal(·) of binding interface
prediction. The L2 regularization loss Lr = Eθ(R

+, t+, C)2 + Eθ(R
−, t−, C)2 is used to avoid

the energy values get arbitrarily large causing gradient overflow problem. The total loss is:

Ltotal = Le + λ1Lr + λ2Lfocal(·), (16)
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Table 2: Statistics of two datasets for experiments.
Items DIPS-Het DB5.5

avg. # of residues per receptor / ligand 259.4 265.1
avg. # of residues on binding pocket per receptor / ligand 25.5 26.9

avg. # of pocket residue pairs per complex 1079.5 779.8
#train / #valid / #test 9,093 / 1,146 / 1,153 / / 253

Sample 𝐑!, 𝐭!

Langevin dynamic

𝜏 iterations

𝐸"(𝐑#, 𝐭#, 𝐶)

𝐸" 𝐑, 𝐭, 𝐶

Ground-truthPrediction

Contrastive Divergence

Figure 2: Energy-based training. EBMs are
trained with contrastive divergence, where the en-
ergy of the ground truth complex (green dot) de-
creases and the energy of the sampled complex
(blue dot) increases. Blue/green arrows indicate
forward computation while dashed arrows indi-
cate gradient back-propagation.

where λ1 and λ2 are hyperparameters. The
energy-based training is shown in Fig. 2.

For inference, we add an intersection loss
LIS(R, t, C) as part of the energy to avoid
atom clash, so the inference energy is:

Einfer = Eθ + αLIS , (17)

where α is a hyperparameter (see Appendix C
for details). Then we start from random
(R0, t0) and use the Langevin dynamics sam-
pling which approximately solves the problem
in an iterative manner to find (R∗, t∗) corre-
sponded to the lowest energy. The iteration for-
mula is the same as Eq. 14 & 15, and we will
take enough steps till convergence.

As the node features from EquiformerPP satisfy
SE(3) equivariance, and the energy calculation
process as well as the Langevin dynamics sam-
pling also exhibits equivariance, our framework maintains SE(3) equivariance.

4 EXPERIMENTS

In this section, we conduct experiments to comprehensively evaluate our EBMDock. All deep
learning-based methods run on a machine with i9-10920X CPU, RTX 3090 GPU, and 128G RAM.

4.1 EXPERIMENTAL SETTING

Datasets We conduct numerical experiments on two datasets: Database of Interacting Protein Struc-
tures (DIPS) (Townshend et al., 2019) and Docking Benchmarks 5.5 (DB5.5) (Vreven et al., 2015).
DIPS is a comprehensive dataset of protein complex structures, sourced from the Protein Data
Bank (Berman et al., 2000) and DB5.5 is a benchmark dataset renowned for its high-quality data
manually curated by domain experts. Similar to (Wang et al., 2023), we collect a modified version
of DIPS, referred to as DIPS-Het, to focus on interactions between different proteins. Both datasets
are tailored for rigid body docking. The statistics of datasets are demonstrated in Table 2.

Baselines We compare our EBMDock method with several state-of-the-art docking methods, in-
cluding score-based docking software HDock (Yan et al., 2017), PatchDock (Schneidman-Duhovny
et al., 2005) as well as deep learning-based algorithm EquiDock (Ganea et al., 2022), DIFFDOCK-
PP (Ketata et al., 2023) and AlphaFold-Multimer (Evans et al., 2021). We test HDock with the local
packages they provided and test PatchDock on the webserver. We test AlphaFold-Multimer through
the colab interface they provided. For DIffDOCK-PP, we use their best DIPS-validated model in
all related experiments. It should be noticed that HDock, PatchDock and AlphaFold-Multimer use
different training data compared to our models. They might have utilized parts of our test sets for
extracting templates or as training examples, which may lead to an optimistic result.

Evaluation Metrics To measure the quality of the predicted docking pose, we report Complex Root
Mean Square Deviation (CRMSD), Interface Root Mean Square Deviation (IRMSD), as well as
the overall quality of docking evaluation metric DockQ (Basu & Wallner, 2016). For CRMSD, we
use the Kabsch algorithm (Kabsch, 1976) to superimpose the predicted and ground-truth complex
before computing the RMSD between them. To compute IRMSD, we employ a similar approach
but only use the coordinates of the interface residues with a distance of less than 8Å to the other
protein’s residues in the ground-truth complex. DockQ is computed following the settings in (Basu
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Table 3: Rigid protein-protein docking results on 100 samples from the DIPS-Het test set. The
number of initial poses sampled from the diffusion or energy model is in parentheses. EBMDock-
interface means that we assume the binding interface is given. Note that DIFFDOCK-PP fails2on
some samples (6 out of 100). The results we presented are obtained after removing these outliers.

Metric Complex RMSD ↓ Interface RMSD ↓ DockQ ↑ Inference

Methods Mean Median std Mean Median std Mean Median std Time (sec)

PatchDock 19.34 17.95 10.30 17.16 16.17 10.35 0.04 0.02 0.20 2232
HDock 2.04 0.23 5.98 2.67 0.25 8.51 0.88 0.98 0.28 782

AlphaFold-Multimer 6.45 4.66 8.17 6.14 2.12 8.43 0.48 0.52 0.31 1940
EquiDock 11.73 10.94 7.19 11.43 10.82 6.60 0.12 0.05 0.18 3.9

DIFFDOCK-PP(5) 12.09 11.87 9.88 13.79 12.50 11.72 0.24 0.04 0.35 30.9

EquiDock+plugin(1) 10.16 9.13 8.09 10.23 9.13 8.08 0.17 0.08 0.20 5.0
EBMDock (5) 9.09 7.95 6.83 8.98 6.93 6.20 0.22 0.12 0.22 8.3

EBMDock(5)-interface 2.89 1.56 3.97 2.05 1.46 1.54 0.63 0.68 0.76 8.5

Table 4: Rigid protein-protein docking results on DB5.5. EBMDock* means using another inter-
face prediction method to roughly find the interaction interface. Note that DIFFDOCK-PP fails on
some samples (13 out of 253). The results we presented are obtained after removing these outliers.

Metric Complex RMSD ↓ Interface RMSD ↓ DockQ ↑ Inference

Methods Mean Median std Mean Median std Mean Median std Time (sec)

PatchDock 16.46 16.52 7.56 15.60 15.29 6.03 0.05 0.02 0.01 951
HDock 5.55 0.42 9.42 5.19 0.31 8.99 0.72 0.97 0.42 703

AlphaFold-Multimer 7.65 4.86 8.03 6.41 1.69 7.66 0.48 0.55 0.10 2540
EquiDock 17.15 15.90 5.31 14.56 14.10 4.91 0.03 0.02 0.04 3.8

DIFFDOCK-PP(5) 17.56 17.21 7.87 17.76 17.12 8.47 0.04 0.01 0.09 37.3

EquiDock+plugin(1) 16.78 15.94 5.11 13.76 12.73 4.56 0.05 0.02 0.04 4.9
EBMDock (5) 14.79 15.64 5.05 12.47 10.99 5.06 0.05 0.04 0.04 7.4
EBMDock*(5) 12.61 13.26 6.52 10.27 11.56 5.70 0.16 0.05 0.20 10.4

EBMDock(5)-interface 3.71 2.52 3.84 2.25 1.82 1.48 0.57 0.582 0.23 7.6

& Wallner, 2016). For a fair comparison, we utilize only the α-carbon coordinates for computing
all the metrics. In order to have a direct comparison of efficiency, we also report the inference time.

Training and Inference Details Our models are trained and evaluated on the training and validation
set of DIPS-Het, respectively. As for the training loss Ltotal, we set λ1 and λ2 as 0.1 and 50. When
computing the contrastive divergence Le, we randomly sample three groups of (R0

i , t
0
i ), 50 steps of

Langevin dynamics are then applied to them independently and the average of three energies serves
as the second term in Eq. 13 to ensure the stability of training. We use Adam with learning rate 3e-4
and weight decay 1e-4 as the optimizer. More implementation details can be found in Appendix F.

We evaluate on the full DB5.5 and 100 samples randomly selected from the DIPS-Het test set, we
provide the pdb id of the chosen 100 samples in Appendix F. Again, we randomly sample 5 groups
of (R0

i , t
0
i ) and use Langevin dynamics sampling with 100 steps. The (R100

i , t100i ) with the lowest
energy is the predicted SE(3) transformation. In addition, we use a deep learning-based method
EquiDock to generate an initial (R0, t0) for each complex and optimize it with our energy function
and Langevin dynamics sampling. Since other methods themselves are time-consuming, here we
only use our method as a plug-in to boost EquiDock. We also try to equip our method with another
interface prediction method on DB5.5, utilizing their results in our pipeline for energy calculation.

4.2 RESULTS OF DOCKING POSE GENERATION

Results are shown in Table 3 & 4 and Fig. 4 & 5. It can be observed that EBMDock consistently out-
performs EquiDock and PatchDock across both datasets. Compared to DIFFDOCK-PP, EBMDock
demonstrates superior performance across various metrics, except for a slight disadvantage in the av-
erage DockQ metric. The results show that both EBMDock and EquiDock achieve very low standard
deviations, indicating that EBMDock exhibits stability compared to all other methods. Utilizing an
existing interface prediction method (Tubiana et al., 2022) can further enhance our results, named
as EBMDock*(5). Providing the ground-truth binding interface, EBMDock consistently achieves
favorable conformation of the complex and delivers competitive results compared to HDock, named
as EBMDock(5)-interface. These results indicate that when we have a rough knowledge of the

2We consider cases with CRMSD metric exceeding 50Å as failure cases.

8



Published as a conference paper at ICLR 2024

AF-MULTIMER EQUIDOCK DIFFDOCK-PP EBMDOCK

0

10

20

30

40

C
om

pl
ex

 R
M

SD

AF-MULTIMER EQUIDOCK DIFFDOCK-PP EBMDOCK

0

10

20

30

40

50

In
te

rf
ac

e 
R

M
SD

AF-MULTIMER EQUIDOCK DIFFDOCK-PP EBMDOCK

0.0

0.2

0.4

0.6

0.8

1.0

D
oc

kQ

Figure 4: Distributions of three evaluation metrics on DIPS-Het test set (100 selected samples). Here
we choose to compare the results of the deep learning-based method.
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Ground Truth

Figure 5: Visualization of the protein complex 2ebg, which is successfully predicted by EBMDock.

interaction interface, our energy function and sampling technique exhibit remarkable effectiveness.
Additionally, when taking the predicted docking poses of EquiDock as the initial points, EBMDock
can improve the poses by moving them to the local minimum nearby, leading to a large improve-
ment beyond EquiDock, named as EquiDock+plugin(1). In terms of speed, EBMDock is 100 times
faster than traditional software and AF-multimer, and also nearly 5 times faster than DIFFDOCK-PP.
This result demonstrates the efficiency of our sampling approach and also aligns with the statements
mentioned in Section 3.4. More experiment results are shown in Appendix E.
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Figure 3: Sampling the top 3 candidates with
Langevin dynamics for a protein complex.

To further showcase sampling from the probability
distribution, here we show the Langevin dynamics
sampling process of the top 3 candidates for one cho-
sen protein complex in Fig. 3. For each candidate,
the DockQ increases as the energy decreases, indi-
cating the effectiveness of our energy function and
Langevin dynamics sampling. However, a low en-
ergy solution does not necessarily correspond to a
high DockQ because the energy landscape may have
more than one local optimum, some of which may be
far from the ground truth, as the ‘No.3’ candidate so-
lution shows: even though the ‘No.3’ candidate just
has slightly higher energy than the ‘No.2’ candidate
after 50 iterations, it might correspond to a local op-
timum that is far away from the global optimum.

Moreover, compared with HDock, PathDock, and AF-multimer, we only consider the residue types
and coordinates as the initial features and do not rely on any finely designed task-specific features.

5 CONCLUSION

We have presented EBMDock, an energy-based learning framework for protein-protein docking.
By leveraging advanced geometric neural networks and distance likelihood modeling, it provides
an energy probabilistic distribution over docking poses, enabling efficient sampling for improved
solutions. The framework incorporates energy-based training with Langevin dynamics sampling and
demonstrates superior performance compared to existing deep learning-based methods. EBMDock
also serves as a plugin to enhance the capabilities of other docking methods. Future work will
explore multiple protein docking which involves graph matching methods for multiple graphs (Jiang
et al., 2021).
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A SURFACE FEATURE

This section introduces the method we use to calculate surface-aware node features. We use solvent-
accessible surface area (SASA) (Lee & Richards, 1971; Mitternacht, 2016) to represent the surface
degree of each residue. Specifically, solvent-accessible surface area (SASA) measures the surface
area of a molecule that is accessible to solvent molecules. It provides valuable information about
the molecular shape, volume, and interactions with the surrounding environment. SASA can be
calculated using various algorithms. Here we adopt the Shrake-Rupley (Shrake & Rupley, 1973)
algorithm and the general steps involved are as follows:

• Define the probe radius, denoted as rprobe.

• Generate the solvent-accessible surface by placing a probe sphere of radius rprobe at discrete points
on the molecular surface. Determine if each point is accessible to the probe molecule, considering
no overlap with the molecule.

• Calculate the surface area of each atom using the area of its van der Waals sphere, denoted as Ai.
Calculate the overlapping area with adjacent atom j’s van der Waals spheres, denoted as Aij .

• Compute the SASA for each atom i by SASAi = Ai −
∑

j Aij . Then sum up the SASA values
for all atoms within the residue to obtain the SASA value of each residue.

We then normalize the calculated SASA values to a number between 0 and 1 to represent the surface
degree of each residue, a higher value indicates a greater surface degree. The normalization is
performed by dividing all SASA values in a protein by the largest one in it. We analyze the frequency
of unnormalized and normalized SASA values across all proteins in DB5.5, as shown in Fig. S6.
The SASA values of residues on the binding interface are also analyzed for comparison. It can be
observed that the distribution of SASA values of residues on the binding interface is different from
that of all residues, indicating that this feature can be helpful for binding interface prediction.

Figure S6: Distribution of unnormalized (left) and normalized (right) residue SASA across all pro-
teins in DB5.5. Residues on the binding interface are analyzed specially to be compared with all
residues.

B BINDING SITE PREDICTION VS CONTACT PREDICTION

In Section 3.3, we present two approaches for predicting the binding interface in protein complexes:
binding site prediction (BSP) and contact prediction (CP). BSP involves predicting the binding sites
on the ligand and receptor respectively, while CP focuses on predicting the residue pairs that interact
with each other. To construct the energy function, we select the relevant residue pairs based on the
prediction results and consider only those pairs in the calculation. For BSP, we use the Cartesian
product of the predicted binding sites on the ligand and receptor to identify the interacting residue
pairs. On the other hand, CP directly utilizes the predicted residue pairs without further modification.

During the training phase, we employ BSP and CP respectively to compute the loss for binding
interface prediction. Through experimentation, we observe that training the energy models with BSP
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loss as an auxiliary loss results in stabler performances. During the inference phase, we evaluate
the performance of BSP and CP on the DIPS-Het test set. The results, presented in Table S5,
demonstrate that CP outperforms BSP across all evaluation metrics. This indicates that CP is capable
of selecting high-quality residue pairs with better generalization capabilities.

Table S5: Comparison on DIPS-Het of different binding interface prediction methods. BSP means
binding site prediction, CP means contact prediction. AUC (area under the receiver operating char-
acteristic curve) and AP (average precision) are metrics of the binding interface prediction module.

Complex RMSD ↓ Interface RMSD ↓ DockQ ↑
Method AUC ↑ AP ↑ Mean Median Mean Median Mean Median

BSP 0.86 0.67 11.49 10.23 11.13 9.46 0.17 0.09
CP 0.95 0.58 9.74 8.98 9.23 7.90 0.20 0.11

C INTERSECTION LOSS

In a natural protein complex, the ligand and receptor should never intersect with each other. In
our energy function, however, the optimum points may lead to varying degrees of intersection. To
alleviate this issue, we add an auxiliary term to the energy function during inference—the inter-
section loss LIS(R, t, C). Following previous work (Sverrisson et al., 2021; Ganea et al., 2022),
the surface of a protein point cloud X ∈ R3×n is expressed as {x ∈ R3 : G(x) = γ}, where
G(x) = −σ ln (

∑n
i=1 exp (−∥x− xi∥2/σ)). For a point x ∈ R3 outside the protein, it has

G(x) > γ. To avoid intersections in the complex, each residue in the ligand should be outside
the receptor, so as to the residues in the receptor. As a result, we can write the intersection loss as:

LIS(R, t, C) =
1

n

n∑
i=1

max(0, γ −GR(RxLi + t)) +
1

m

m∑
j=1

max(0, γ −GL(R,t)(xRj)), (18)

where GR is the surface of receptor and GL(R,t) is the surface of ligand after transformed with
(R, t). We set the parameters γ = 8 and σ = 8 so that the ground truth has LIS(R

∗, t∗, C) = 0
and no “holes” are inside a protein. Finally, the energy function for inference is Einfer(R, t, C) =
Eθ(R, t, C) + αLIS(R, t, C). α is a parameter that controls the influence of intersection loss on
energy function and partly depends on the shape of the interface in the complex. We find α = 1.5
works well on DB5.5 and α = 0.5 works well on DIPS-Het. We conduct experiments on the DIPS-
Het test set with different α and the results are shown in Table S6.

Table S6: Docking Performance on DIPS-Het with different coefficient α of LIS .

Complex RMSD ↓ Interface RMSD ↓ DockQ ↑
α value Mean Median Mean Median Mean Median

0 9.74 8.98 9.23 7.90 0.20 0.11
0.5 9.09 7.95 8.98 6.93 0.22 0.12
5 9.66 9.13 10.16 9.67 0.19 0.08

50 11.63 11.40 13.00 12.41 0.08 0.04

D ADDITIONAL EXPERIMENTS

D.1 EXPERIMENTS ON ANTIBODY-ANTIGEN DOCKING

We have claimed that HDock and AlphaFold-Multimer use different training data compared to our
models. They might have utilized parts of our test sets for extracting templates or as training exam-
ples, which may lead to an optimistic result. For a fair comparison, we follow (Luo et al., 2023) and
select 68 antibody-antigen samples from the Protein Data Bank which were released after October
2022 and have not been used to train AlphaFold-Multimer or as templates in HDOCK. The PDB
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Table S7: Ablation studies on DIPS-Het.

Complex RMSD ↓ Interface RMSD ↓ DockQ ↑
Binding Interface Prediction CD Loss Mean Median Mean Median Mean Median

18.87 18.50 19.47 19.63 0.03 0.01
✓ 13.34 14.94 10.55 11.02 0.14 0.05
✓ ✓ 9.74 8.98 9.23 7.90 0.20 0.11

Table S8: Rigid protein-protein docking results on 68 antibody-antigen samples. The number
of initial poses sampled from the diffusion or energy model is in parentheses. EBMDock-interface
means that we assume the binding interface is given. Note that DIFFDOCK-PP fails on 4 samples
(Complex RMSD metric exceeds 50 Å). The results we presented are obtained after removing these
outliers.

Metric Complex RMSD ↓ DockQ ↑
Methods Mean std Mean std

HDock 15.78 6.36 0.09 0.19
AlphaFold-Multimer 13.65 5.89 0.11 0.17

EquiDock 18.47 2.71 0.04 0.02
DIFFDOCK-PP(5) 23.82 7.04 0.02 0.06

EBMDock (5) 14.87 4.93 0.05 0.02
EBMDock(5)-interface 6.51 5.13 0.32 0.22

id of these samples are listed here: 8dls, 8dlr, 8dfi, 8dfh, 8dcc, 8dad, 7zr8, 7zf8, 7xxl, 7xh8, 7x26,
7wsl, 7wsi, 7ws6, 7ws2, 7wrz, 7wrv, 7wro, 7wrl, 7wrj, 7wog, 7wlc, 7wef, 7wee, 7wed, 7wcr, 7wbz,
7urq, 7uaq, 7tty, 7ttx, 7ttm, 7tpj, 7tp4, 7tp3, 7tlz, 7the, 7tc9, 7t8w, 7t7b, 7t01, 7swp, 7su1, 7str,
7sem, 7sd5, 7sbu, 7sbg, 7sbd, 7sa6, 7s5p, 7rxp, 7rxi, 7rbu, 7qtk, 7n0a, 7lo8, 7lo7, 7kql, 7fjc, 7f7e,
7f6z, 7f6y, 7eng, 7ek0, 7ejz, 7ejy, 7e9p.

The results are shown in Table S8. Compared to Table 3 and 4, both HDOCK and AlphaFold-
Multimer exhibit a significant decrease in performance on unseen cases. Although EBMDOCK’s
results also decline, they are close to those of AF-Multimer and surpass HDOCK in CRMSD. Addi-
tionally, when EBMDOCK is able to obtain rough docking interface information, the docking results
are far superior to both AF-Multimer and HDOCK.

D.2 EXPERIMENTS ON FULL DIPS-HET TEST SET

In Table 3, we report the results on only 100 samples from the DIPS-Het test set. That’s because
methods like PatchDock, HDock, and AlphaFold-Multimer have too long inference time. These
baselines limit us from conducting a fair comparison on a more extensive dataset. We have shown
that our method is highly efficient and relatively stable, allowing scalability to large-scale datasets.
Here, we present our results on the full DIPS-Het test set (1153 samples) in Table S9.

E ABLATION STUDY

We conduct additional experiments on DIPS-Het to further examine the contributions of each pro-
posed technique. The model without binding interface prediction uses all ligand-receptor node pairs
to calculate energy, while the model without contrastive divergence simply minimizes the energy
of ground-truth complexes. The results in Table S7 show that both techniques improve the perfor-
mances. Specifically, the binding interface prediction module mainly improves the Interface RMSD
since it can find the residues on the protein-protein interfaces, while contrastive divergence con-
tributes to the overall performance, which is in line with our design purposes.

16



Published as a conference paper at ICLR 2024

Table S9: Rigid protein-protein docking results on full DIPS-Het test set. The number of initial
poses sampled from the energy model is in parentheses. EBMDock-interface means that we assume
the binding interface is given.

Metric Complex RMSD ↓ Interface RMSD ↓ DockQ ↑
Methods Mean Median std Mean Median std Mean Median std

EBMDock (5) 9.18 8.12 6.23 9.12 7.23 5.94 0.21 0.11 0.20
EBMDock(5)-interface 2.93 1.65 3.87 2.14 1.53 1.54 0.62 0.68 0.71

Figure S7: Architecture of Equiformer (Liao & Smidt, 2022). Equiformer embeds input 3D graphs
with atom and edge-degree embeddings and processes them with Transformer blocks, consisting of
equivariant graph attention and feed-forward networks. “⊗” denotes multiplication, “⊕” denotes
addition, and “DTP” stands for depth-wise tensor product.

∑
within a circle denotes summation

over all neighbors. Gray cells indicate intermediate irreps features.

F IMPLEMENTATION DETAILS

F.1 THE ARCHITECTURE OF EQUIFORMERPP

The origin architecture of Equiformer has been shown in Fig. S7, which is directly extracted from
the original paper Liao & Smidt (2022). Since the Equiformer is designed for one 3D graph, not
capturing any interaction of two graphs, we add a SE(3)-equivariant cross-attention module to ag-
gregate interactions between the ligand and the receptor. Here we will describe this cross-attention
module, shown in Fig. S8.

Equiformer
Layer

Cross
Attention

Equiformer
Layer

Cross
Attention

Ligand

Receptor

Figure S8: Demonstration of the cross-attention module.
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Given the ligand features yL and receptor features yR, the cross-attention layer enables communi-
cation between proteins:

y′L = Gate(
(yLWQ)(yRWK)T√

d
)(yRWV ),

y′R = Gate(
(yRWQ)(yLWK)T√

d
)(yLWV ),

where yL ∈ Rn×d, yG ∈ Rm×d denotes the features of the ligand/receptor protein, d denotes the
dimension of features, n/m denotes the number of nodes in the ligand/receptor graphs. WQ,WK ,
and WV are the parameter matrices for the query, key, and value in attention computation, respec-
tively. The gate is an equivariant activation function, which can be found in the original paper Liao
& Smidt (2022). The modified architecture is named EquiformerPP.

F.2 TEST SAMPLES

Here we provide the pdb id of the selected 100 samples: 6R17, 5W3X, 6J4O, 5CK3, 2V4I, 1M57,
2A4R, 5JH5, 1MU2, 7QIH, 5A63, 7ATE, 4ZXS, 4XSS, 4H62, 7RNW, 4OZ1, 5MR3, 6B1U, 4Y5O,
7ZVY, 2HHF, 6FC1, 7VKB, 4LN0, 3ZV0, 7SZ0, 1YRT, 1JEQ, 2D5R, 3BPQ, 5HQP, 4EEC, 6CWX,
1EGP, 3G5O, 2P1O, 1QOV, 3SND, 4DFC, 1E1H, 4IYP, 4HRT, 3L4Q, 5ZWB, 5YRH, 4Y61, 1TY4,
1LPH, 4J2L, 5ZWL, 5D7G, 6NVW, 3OJY, 2FBW, 5JKC, 7U7N, 7MU2, 2F8V, 6C0Y, 7NNL,
5BRK, 3MEU, 5H67, 4UE6, 6ZDX, 6U07, 5QZU, 5IC6, 7N1N, 5DOB, 4OYD, 3C5W, 6GZC,
7LTS, 3A5Z, 7KM6, 5ME5, 2DSP, 4I5N, 3SXU, 5M5E, 6KMQ, 1JLT, 7F5M, 5VLL, 6FTO, 4QLB,
5KY7, 3KYS, 7CNR.

F.3 EVALUATION METRICS

We have briefly described the evaluation metrics in Section 4.1, and we will give further expla-
nations here. We assess the performance of rigid protein docking using three metrics: Com-
plex RMSD, Interface RMSD, and DockQ. Let’s denote the ground truth and predicted complex
structures as Z∗ ∈ R3×(n+m) and Z ∈ R3×(n+m), respectively. When calculating the Complex
RMSD (C-RMSD), we first align Z with Z∗ using the Kabsch algorithm and then use the formula√

1
n+m |Z∗ − Z|2F , where | · |F denotes the Frobenius norm. For the calculation of Interface RMSD

(IRMSD), we follow a similar approach but only consider the coordinates of the interface residues
of the ground truth complex. These residues are defined as those within a distance of 8Å from the
other protein’s residues. DockQ is based on three standardized criteria from the Critical Assessment
of Predicted Interactions (CAPRI): Lrms, Irms, and fnat. To compute Lrms, we first superimpose
the backbone atoms of the receptors in the ground truth and predicted complex, and then calculate
the ligand RMSD based on the coordinates of the backbone atoms of corresponding ligands. For
Irms, we align the interface residues (residues with α-carbon within a distance of 8 Å from any
α-carbon in the other protein) and calculate the backbone RMSD. Lastly, fnat represents the recall
in recovering residue-residue contacts between the proteins, where two residues are considered ”in
contact” if their α-carbon atoms have a distance less than 8 Å. DockQ is a continuous score ranging
from 0 to 1, derived from Lrms, Irms, and fnat. A higher DockQ score indicates better performance
in terms of docking predictions. Note that backbone means that all atoms in residues are used for
calculation, not only the α-carbon atoms.

F.4 TRAINING DETAILS

Here we provide more details about the training process. We first preprocess the protein complexes
by randomly assigning the roles of ligand and receptor and randomly translating and rotating the
ligand while keeping the receptor fixed, which are used to examine the SE(3)-equivariance of our
method. The calculation of the energy function only considers the residue pairs on the binding
interface. Note that the information about the binding interface comes from ground truth during
training, and binding site prediction or contact prediction during inference. When computing the
contrastive divergence Le, we randomly sample three groups of (R0

i , t
0
i ) from the distribution of

U(−π, π) and N(µ, σ), respectively, where µ is a vector from the center of the ligand to the center
of receptor and σ is the average distance between two centers in complexes, set as 40Å in our
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𝜏 = 0
DockQ:0.004

𝜏 = 10
DockQ:0.017

𝜏 = 20
DockQ:0.154

Ground Truth

𝜏 = 30
DockQ:0.333

𝜏 = 40
DockQ:0.533

𝜏 = 50
DockQ:0.717

Figure S9: Visualization of Langevin dynamics sampling process of the protein complex 1a95.

experiments. Then τ steps of Langevin dynamics are applied to them independently and the average
of three energies serves as the second term in Eq. 13. Besides, we set bounds for R and t. For R,
the bounds are [−π, π], and values out of the range are handled by adding 2kπ, where k is a proper
integer. For t, the bounds are [−400, 400], a big enough range for protein complexes, and values
out of the range are simply clamped. As for the training loss Ltotal, we observe that the orders of
magnitude of three terms are 1, 10, and 1e-3, respectively. Accordingly, we set λ1 and λ2 as 0.1 and
50, respectively. More hyperparameters are demonstrated in Table S10. We train EBMDock on a
machine with i9-10920X CPU, RTX 3090 GPU, and 128G RAM for 3 days.

Table S10: Hyperparameter choices of EBMDock and the training phase settings.

Hyperparameters Values

N
et

w
or

k

Node degree (for k-NN) 10
Dimension of hi of EquiformerPP layers 128
Number of Mixed Gaussians 6
Dropout Rate 0.2
Binding Interface Prediction Focal Loss Weight ω 0.25
Binding Interface Prediction Focal Loss Gamma γ 2

L
D

Learning Rate of Langevin dynamics(λ2 ) 0.01
Number of Samples of Langevin dynamics 3
Number of Steps of Langevin dynamics (τ ) 50

Tr
ai

ni
ng

Batch Size 4
# Epoches 50
Optimizer Adam
Learning Rate 3e-4
Weight Decay 1e-4

G MORE VISUALIZATION

To show the effectiveness of Langevin dynamics sampling, we present a visual example of protein
complex 1a95 in Fig. S9. As the iterations τ increase, the predicted complexes have higher DockQ
and are closer to the ground truth.
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H DISCUSSION

In this section, we will discuss EBMDock and the possible improvements in future work further.

Firstly, EBMDock uses residue-level modeling but can be easily extended to the atom level. Since
internal structures of residues of the same class are relatively similar and modeling on residue level
can be computationally efficient, we represent the residues with their alpha carbon. To extend EBM-
Dock to the atom level, we only need to modify the nodes in the protein graph from representing a
residue to an atom. Instead of learning the statistical potential of residue distances, we would learn
the statistical potential of atomic distances. The rest of the network structure and training methods
remain unchanged. However, the computing time and memory consumption will increase a lot. If
we generalize our methods to flexible docking, which is very challenging, we can still use residue-
level modeling and rely on existing tools such as Rosetta to complete the side chain conformation
based on the predicted backbone structures.

Secondly, we believe energy-based modeling is promising for the protein-protein docking problem.
By carefully designing the deep learning-based energy function, energy-based modeling has clear
physical meaning while maintaining high inference efficiency. The AF-Multimer method, which is
based on multiple sequence alignments (MSAs), is difficult to improve in terms of efficiency and has
significant limitations when dealing with large-scale data. Although the accuracy of energy-based
modeling cannot match that of AF-Multimer currently, it has the potential to be used for large-scale
virtual screening. Besides, the performances of EBMDock are limited by the scarcity of protein
structural information while the protein sequence information is easily accessible and abundant.
Given sufficient time, we can leverage AF to predict complex structures and generate new training
data to further expand our approach.

Finally, the proposed energy-based learning framework has good extensibility. The backbone can
be replaced by new representation learning methods such as those based on the protein surface. The
energy function can be generalized to contain more terms. As long as an energy term is differen-
tiable, it can be incorporated into our framework easily. For example, the HDOCK and AF-Multimer
achieve good performance on old proteins because they directly use information from training sets
such as templates and sequence alignments. We can design new differentiable energy terms to mea-
sure how well the docking poses conform to the templates. We can also design energy terms based
on physics, for example, van der Waals dispersion/repulsion, directional hydrogen bond energy,
Coulomb electrostatic energy, and desolvation-free energy. As the calculation of these terms may
be expensive, we can approximate them using deep learning methods. We believe they can improve
the performance and will explore these possibilities in future work.

I RELATED WORK OF GEOMETRIC DEEP LEARNING

Graph structured data is a ubiquitous type of data and it finds particular resonance within the realm
of computational biology (Zhang et al., 2021; Yang et al., 2022a). Notably, complex biological en-
tities, ranging from molecules to proteins, can all be represented through graphs. Moreover, Graph
Neural Networks (GNNs), a method commonly used for graph structures, have been widely applied
in computational biology (Xu et al., 2019; Guo et al., 2020; Yang et al., 2022b; 2023). Unlike
generic graph data, molecular systems in 3D space exhibit symmetries, such as translations and ro-
tations (Satorras et al., 2021; Gasteiger et al., 2021). Recently, many studies have incorporated such
inductive biases into GNN design. These novel methods have demonstrated superior performance in
tasks including molecular property prediction (Liu et al., 2022), conformation generation (Hooge-
boom et al., 2022), particle system dynamics (Satorras et al., 2021), and conformation-based energy
estimation (Rezende et al., 2019).
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