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ABSTRACT

Some reinforcement learning (RL) algorithms can stitch pieces of experience to
solve a task never seen before during training. This oft-sought property is one
of the few ways in which RL methods based on dynamic-programming differ
from RL methods based on supervised-learning (SL). Yet, certain RL methods
based on off-the-shelf SL algorithms achieve excellent results without an explicit
mechanism for stitching; it remains unclear whether those methods forgo this
important stitching property. This paper studies this question for the problems
of achieving a target goal state and achieving a target return value. Our main
result is to show that the stitching property corresponds to a form of combinatorial
generalization: after training on a distribution of (state, goal) pairs, one would like
to evaluate on (state, goal) pairs not seen together in the training data. Our analysis
shows that this sort of generalization is different from i.i.d. generalization. This
connection between stitching and generalisation reveals why we should not expect
SL-based RL methods to perform stitching, even in the limit of large datasets and
models. Based on this analysis, we construct new datasets to explicitly test for
this property, revealing that SL-based methods lack this stitching property and
hence fail to perform combinatorial generalization. Nonetheless, the connection
between stitching and combinatorial generalisation also suggests a simple remedy
for improving generalisation in SL: data augmentation. We propose a temporal data
augmentation and demonstrate that adding it to SL-based methods enables them
to successfully complete tasks not seen together during training. On a high level,
this connection illustrates the importance of combinatorial generalization for data
efficiency in time-series data beyond tasks beyond RL, like audio, video, or text.

1 INTRODUCTION

Many recent methods view RL as a purely SL problem of mapping input states and desired goals,
to optimal actions [1H3]. These methods have gained a lot of attention due to their simplicity
and scalability [4]. These methods sample a goal g (or a return r) from the dataset, which was
previously encountered after taking an action a from a state s, and then imitate a by treating it as an
optimal label for reaching g (or achieving return r) from s. These methods, collectively known as
outcome conditional behavioral cloning algorithms (OCBC), achieve excellent results on common
benchmarks [3]. However, at a fundamental level, there are some important differences between RL
and SL. This paper studies one of those differences: the capability of some RL algorithms to stitch
together pieces of experience to solve a task never seen during training. While some papers have
claimed that some OCBC approaches already have this stitching property [2]], both our theoretical
and empirical analyses suggest some important limitations of these prior claims.

The stitching property [S] is common among RL algorithms that perform dynamic programming
(e.g., DON [6], DDPG [7], TD3 [8], IQL [9])). It is often credited for multiple properties of dynamic
programming algorithms like superior data efficiency and off policy reasoning (See Section [ for
detailed discussion). Importantly, we show that stitching also allows for a third property — the ability
to infer solutions to a combinatorial number of tasks during test time, like navigating between certain
state-goal pairs that never appear together (but do appear separately) during training. An example of
stitching is that humans don’t need access to optimal actions to go from an airport to new tourist places;
they can use their previous knowledge to navigate to a taxi-stand, which would take them to any
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location. But, purely supervised approaches to sequential problems like RL, do not explicitly take such
temporal relationships into account. Even in other sequential domains like language, a large body of
work is dedicated to study the combinatorial generalisation abilities of large language models [10-13]].
Our work shows that combinatorial generalisation is also required to solve tasks in the context of RL.

We start by formalising stitching as a form of combinatorial generalisation. We observe that when
data are collected from a mixture of policies, there can be certain (state, goal) pairs that are never
visited in the same trajectory, despite being frequented in separate trajectories. Information from
multiple trajectories should be stirched to complete these tasks. Because such tasks (state-goal
pairs) are seen separately, but never together, we call the ability of algorithms to perform these
tasks as combinatorial generalisation. This connection further motivates an inspiration from SL; if
generalisation is the problem, then data augmentation is likely an effective approach [14]. We propose
a form of temporal data augmentation for OCBC methods so that they acquire this stitching property
and succeed in navigating between unseen (start, goal) pairs or achieving greater returns than the
offline dataset. This form of data augmentation involves time, rather than random cropping or shifting
colors. Intuitively, temporal data augmentation augments the original goal, with a new goal sampled
from a different overlapping trajectory in the offline dataset. This data augmentation scheme does
require an estimate of distance between states to detect overlapping trajectories. We demonstrate that
this data augmentation is theoretically backed, and empirically endows OCBC algorithms with the
stitching property on difficult state-based and image-based tasks.

Our primary contribution is to provide a formal framework for studying stitching as a form of
combinatorial generalisation. Because of this connection, we hypothesize that OCBC methods do
not perform stitching. Perhaps surprisingly, simply increasing the volume of data does not guarantee
this sort of combinatorial generalization. Our empirical results support the theory: we demonstrate
that prior RL methods based on SL (DT [2] and RvS [3]]) fail to perform stitching, even when trained
on abundant quantities of data. Our experiments reveal a subtle consideration with the common
DA4RL datasets [15]: while these datasets are purported to test for exactly this sort of combinatorial
generalization, data analysis reveals that “unseen” (state, goal) pairs do actually appear in the dataset.
Thus, our experiments are run on a new variant of these datasets that we constructed for this paper to
explicitly test for combinatorial generalization [ﬂ On 10 different environments, including both state
and image based tasks, and goal and return conditioning, adding data augmentation improves the
generalisation capabilities of SL approaches by up to a factor of 2.5.

2 RELATED WORK

Prior methods that do some form of explicit stitching. Previous work on stitching abilities of
SL algorithms have conflicting claims. The DT paper [2]] shows experiments where their SL-based
method performs stitching. On the contrary, [16] provide an example where SL algorithms do not
perform stitching. RvS [3]] shows that a simple SL-based algorithm can surpass the performance of
TD algorithms. In tabular settings, [[17] show that the benefits of TD-learning arise from trajectory
stitching. We provide a formal definition of stitching as a form of combinatorial generalisation. In
contrast, generalisation in RL has been generally associated with making correct predictions for
unseen but similar states and actions [[18H20], planning [21]], ignoring irrelevant details [22-24]], or
robustness towards changes in the reward or transition dynamics [25H27]].

Offline RL datasets. A large amount of work is done to build offline RL datasets. [15] provided
a first standard offline RL benchmark, [28]] provide exploratory offline datasets to underscore the
importance of diverse data, [29} |30] focus on data efficiency and real world deployement and
[31] provide benchmarks that also compare the online evaluation budget of offline RL algorithms.
Although many offline RL papers informally allude to stitching, we devise new offline RL datasets
that precisely test the stitching abilities of offline RL algorithms.

Data augmentation in RL. Data augmentation has been proposed as a remedy to improve
generalisation in RL [32H38]], akin to SL [39]. Perhaps the most similar prior work are the ones which
use dynamic programming to augment existing trajectories to improve the performance properties
of SL algorithms [40-42]]. However, because these methods still require dynamic programming,
they don’t have the same simplicity that make SL algorithms appealing in the first place.

'Open sourced code and data is available: https://github.com/RajGhugarel9/
stitching-is—-combinatorial—-generalisation
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3 PRELIMINARIES

Controlled Markov processes. We will study the problem of goal-conditioned RL in a controlled
Markov process with states s € S and actions a € A. The dynamics are p(s’ | s, a), the initial state
distribution is po(sp), the discount factor is . The policy 7(a, | s, g) is conditioned on a pair of
state and goal s, g € S. For a policy , define p] (s; | so) as the distribution over states visited after
exactly t steps. We can then define the discounted state occupancy distribution and its conditional
counterpart as

pi(sw = g) £ ESNPO(S()) [pi(stJr =g | S0 = S)} (D
PL(sir =g ls0=15)% Zw% (ss=glso=s), @)

where sy is the variable that specifies a future state correspondlng to the discounted state occupancy
distribution. Given a state-goal pair s, g ~ prest($, g) at test time, the task of the policy is to maximise
the probability of reaching the goal g in the future

max J(r), where J(m) = Ey g p(s,) [P (sey =g s0=15)]. 3)

Data collection. Our work focuses on the offline RL setting where the agent has access to a fixed
dataset of N trajectories D = ({s}, a{, ..})¥,. Our theoretical analysis will assume that the dataset
is collected by a set of policies {3(a | s, h)}, where h specifies some context. For example, h could
reflect different goals, different language instructions, different users or even different start state
distributions. Precisely, we assume that the data was collected by first sampling a context from a
distribution p(h), and then sampling a trajectory from the corresponding policy B(a | s, h). We will
use the shorthand notation S, (- | -) = B(- | -, h) to denote the data collecting policy conditioned
on context h. Trajectories are assumed to be stored without h, hence the context denotes all hidden
information that the true data collection policies used to collect the data.

This setup of collecting data corresponds to a mixture of Markovian policieﬂ There is a classic
result saying that, for every such mixture of Markovian policies, there exists a Markovian policy that
has the same discounted state occupancy measure.

Lemma 3.1 (Rephrased from Theorem 2.8 of [43]], Theorem 6.1 of [44]]). Let a set of context-
conditioned policies {Br(a | s)} and distribution over contexts p(h) be given. There exists a
Markovian policy 3(a | s) such that it has the same discounted state occupancy measure as the
mixture of policies:

pi(sw) = Epn) [pﬁh(sw)} . 4)

The policy S(a | s) is simple to construct mathematically as follows. For data collected from the
mixture of context conditioned policies, let p®(h | s) be the distribution over the context given that
the policy arrived in state s.

Bla|s)= Zﬂha| A(h|s). ®)

Theorem 6.1 [44] proves the correctness of this construction. The policy B(a | s) is also easy to
construct empirically — simply perform behavioral cloning (BC) on data aggregated from the set of
policies. We will hence call this policy the BC policy.

Outcome Conditional behavioral cloning (OCBC). While our theoretical analysis will consider
generalisation abstracted away from any particular RL algorithm, we will present empirical results
using a simple and popular class of goal-conditioned RL methods: Outcome conditional behavioral
cloning [45] (DT [2], URL [1], RvS [3], GCSL [46] and many others [47}48]]). These methods take
as input a dataset of trajectories D = ({s, a, ..})~ ; and learn a goal-conditioned policy 7 (a | s, g)
using a maximum likelihood objective:

T??X)E(S a,g)~D [logm(a|s,g)]. (6)

’Note that the mixture is at the level of trajectories, not at the level of individual actions.



The sampling above can be done by first sampling a trajectory from the dataset (uniformly at random),
then sampling a (state, action) pair from that trajectory, and setting the goal to be a random state that
occurred later in that same trajectory. If we incorporate our data collecting assumptions, then this
sampling can be written as

2005 B (B g (ale), o0 (0) (08770 | 5 504)] ] ™

sep~pi (sers,a)
4  “STITCHING” AS A FORM OF COMBINATORIAL GENERALISATION

Before concretely defining stitching, we will describe three desirable properties that are colloquially
associated with “stitching” and the learning dynamics of TD methods. (Property 1) The ability to
select infrequently seen paths that are more optimal than frequent ones. While a shorter trajectory
between the state and the goal may occur infrequently in the dataset, TD methods can find more exam-
ples of this trajectory by recombining pieces of different trajectories, thanks to dynamic programming.
This property is enjoyed by both SARSA (expectation over actions) and Q-learning (max over actions)
methods, and is primarily associated with the sample efficiency of learning. (Property 2) The ability
to evaluate policies different from those which collected the data, and perform multiple steps of policy
improvement. This property is unique to Q-learning. (Property 3) Temporal difference methods
(both Q-learning and SARSA) can also recombine trajectories to find paths between states never seen
together during training. This property is different from the first property in that it is not a matter
of data efficiency — temporal difference methods can find paths that will never be sampled from the
data collecting policies, even if given infinite samples. All three of these properties are colloquially
referred to as “stitching” in the literature. While these properties are not entirely orthogonal, they are
distinct: certain algorithms may have just some of these properties. Obtaining all these properties in a
simpler (than TD) framework is difficult, and it remains unclear whether OCBC methods possess any
of them. To better understand the differences and similarities this study focuses on the third property.
We formalize this property as a form of generalisation, which we will refer to as combinatorial
generalisation.

Defining combinatorial generalisation will allow us to analyze if and when OCBC methods perform
stitching, both theoretically (this section) and experimentally (Section[6). Intuitively, combinatorial
generalisation looks at connecting states and goals, which are never seen together in the same
trajectory, but where a path between them is possible using the information present in different
trajectories. It therefore tests a form of “stitching” [[15}149], akin to “combinatoral generalisation” [SO-
52]. To define this generalisation, we will specify a training distribution and testing distribution. The
training distribution corresponds to sampling a context h ~ p(h) and then sampling an (s, g) pair from
the corresponding policy . This is exactly how OCBC methods are trained in practice (Section 3).
The testing distribution corresponds to sampling an (s, ¢g) pair from the BC policy 3(a | s) defined
in Equation . For each distribution, we will measure the performance f”(“'*g)(s, g) of goal-
conditioned policy 7(a | s, g)-

Definition 1 (Combinatorial generalisation). Let a set of context-conditioned policies { By (a | s
be given, along with a prior over contexts p(h). Let B(a | s) be the policy constructed via Eq. ().
Let w(a | s,g) be a policy for evaluation. The combinatorial generalisation of a policy w(a | s, g)

measures the differences in goal-reaching performance for goals sampled g ~ pi(sH | s) versus

goals sampled from g ~ 1) [pi" (s¢+ | 9)]:

w(-|s,9) _ m(-s,9)
swpﬁ(s) f (Svg):| ]Ehwp(h),swpih(s) f (879) . (8)
9"’1){: (st+s) ngih (st+1s)
test performance train performance

The precise way performance f is measured is not important for our analysis: “generalisation” simply
means that the performance under one distribution is similar to the performance under another. In our
experiments, we will look at performance measured by the success rate at reaching the commanded
goal. On the surface, it could seem like both the test and train distributions are the same. Lemma[3.]
about reducing mixtures of policies to a single Markovian policy seems to hint that this might be true.



Indeed, this distinction has not been made before while analysing OCBC methods [16} 45]. This
misconception is demonstrated by the following lemma:
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(a) MDP. (b) Br=1, Br=2. (© B.

Figure 1: (a) The MDP has 5 states and two actions (up and right). (b) Training distribution: Data is collected
using two contexts conditioned policies shown in blue and red. (c) Testing distribution: The behavior cloned
policy (equation is shown in purple. During training, the state-goal pair {s; = 2, s;4+ = 4} is never sampled,
as no data collecting policy goes from state 2 to state 4. But the behavior cloned policy has non zero probability
of sampling the state-goal pair {s; = 2, s+ = 4}. Because of this discrepancy between the train and test
distributions, OCBC algorithms do not have any guarantees of outputting the correct action for the state-goal
pair {s; = 2, s;+ = 4}. Whereas dynamic programming based methods can propagate rewards through the
backwards stitched path of 4 — 3 — 2 to output the correct action.

Lemma 4.1. There exist a collection of policies {8y} and context distribution p(h) such that,
conditioned on a state, the distribution of states and goals for the data collecting policies (training) is
different from the distribution of states and goals (testing) for BC policy .

Epn) {pﬁh (se+ | s)pﬁh (8)} # pi(sH | s)pﬁ(s) Sfor some states s, sy4. ©)

Proof. The proof is base on a simple counterexample, shown in Fig.[I] See the related caption for a
sketch of proof and Appendix [D.T]for the formal one. O

In summary, while the BC policy 3(a | s) will visit the same states as the mixture of data collecting
policies on average, conditioned on some state, the BC policy S(a | s) may visit a different
distribution of future states than the mixture of policies. Even if infinite data is collected from the data
collecting policies, there can be pairs of states that will never be visited by any one data collecting
policy in a single trajectory. The important implication of this negative result is that stitching requires
the OCBC algorithm to recover a distribution over state-goal pairs () which is different from the
one it is trained on (81, fn=2)-

In theory, the training distribution has enough information to recover the state-goal distribution of
the BC policy without the knowledge of the contexts of the data collecting policies. It is upto the
algorithm to extract this information. Many RL methods can recover the test distribution implicitly
and sidestep this negative result by doing dynamic programming (i.e., temporal difference learning).
One way of viewing dynamic programming is that it considers all possible ways of stitching together
trajectories, and selects the best among these stitched trajectories. But OCBC algorithms based on
SL [1H3L!46l147] can only have guarantees for iid generalisation [53]. And in line with previous works
studying other forms of combinatorial generalisation in SL [[10} [54]], it is not clear apriori why these
methods should have the combinatorial generalisation property, leading to the following hypothesis:
Conditional imitation learning methods do not have the combinatorial generalisation property.

We will test this hypothesis empirically in our experiments. In Appendix [A] we discuss connections
between stitching and spurious correlations.

5 TEMPORAL AUGMENTATION FACILITATES GENERALISATION

The previous section allows us to rethink the oft-sought “stitching” property as a form of
generalisation, and measure that generalisation in the same way we measure generalisation in



SL: by measuring a difference in performance under two objectives. Casting stitching as a form
of generalisation allows us to employ a standard tool from SL: data augmentation. When the
computer vision expert wants a model that can generalize to random crops, they train their model
on randomly-cropped images. Indeed, prior work has applied data augmentation to RL to achieve
various notions of generalisation [32,52]]. However, we use a different type of data augmentation
to facilitate stitching. In this section, we describe a data augmentation approach that allows OCBC
methods to improve their stitching capabilities.

Recall that OCBC policies are trained on
(s, a, g) triplets. To perform data augmentation,
we will replace g with a different goal g. To sam-
ple these new goals g, we first take the original
goal g and identify states from the offline dataset
which are nearby to this goal ( Section[5). Let
w denote one of these nearby “waypoint” states.
Looking at the trajectory that contains w, the
new goal g is a random state that occurs after w

in this trajectory. We visualize this data augmen- ]
tation in Fig.[J] Figure 2: DATA AUGMENTATION FOR STITCH-

ING: After sampling an initial training example

. (s,a,9) (Eq. (7)), we look for a waypoint state w in
Identifying nearby states. The problem the light blue region around the original goal g, and then
of sampling nearby states can be solved by sample a new augmented goal § from later in that trajec-
clustering all the states from the offline dataset tory. This is a simple approach to sample cross trajectory
before training_ This assumes a distance metric  goals g such that the action a is still an optimal action at
in the state space. Using this distance metric, State s.
every state can be assigned a discrete label
from k different categories using a clustering
algorithm [55} 56]]. Although finding a good distance metric is difficult in high-dimensional
settings [57]], our experiments show that using a simple L2 distance leads to significant improvement,
even for image-based tasks.

.

Method summary. Algorithm[I] summarizes how our data augmentation can be applied on top of
existing OCBC algorithms. Given a method to group states, we can add our data-augmentation to
existing OCBC algorithms in about 5 lines of code (marked in blue). In our experiments, we use the
k-means algorithm [55]. To sample nearby waypoint states, we randomly sample a state from the
same group (same cluster) as the original goal. The augmented goal is then sampled from the future
of this waypoint (See Fig.[2).

Algorithm 1 Outcome-conditioned behavioral cloning with (temporal) data augmentation. The key
contribution of our paper is this form of data augmentation, which is shown in blue text.

1: Input: Dataset: D = ({so, ao, - .. }).

2: Initialize OCBC policy g (als, g) with parameters 6.

3: Set € = augmentation probability, m = mini-batch size.

4: ({do,du,...})=CLUSTER({s0, $1, . - - }). > Group all states in the dataset.
5: while not converged do

6 fort=1,--- ,mdo

7
8
9

Sample (s, at, gi+) ~ D. > Equation
With probability € :
Get the group of the goal: k = d;..
10: Sample waypoint states from the same group: w ~ {s;; Vi such that d; = k} .
11: Sample augmented goal g from the future of w, from the same trajectory as w.
12: Augment the goal g1+ = g.
13: Collect the loss L£:(0) = — log mg(at | St, gt )-

14: Update 6 using gradient descent on the mini-batch loss - >~ | £,(6)
15: Return : o (als, g)

Theoretical intuition on temporal data augmentation. While data augmentations in general do
not have exact theoretical guarantees, we can prove that temporal data augmentation, under certain



smoothness assumptions, will generate additional state-goal pairs which may not be seen otherwise
during training. In Appendix [D.2] we show that there exists a hierarchy of distributions with
increasing stitching abilities, where O-step distribution corresponds to the train distribution (Eq. (9),
left) and the per-step distribution corresponds to the test distribution (Eq. (9), right). We prove that
applying temporal data augmentation once, samples state-goals from the 1-step distribution.

Lemma 5.1. Under the smoothness assumptions mentioned in Appendix[D.2| (Eq. (1)), for all
s, a pairs, temporal data augmentation p""P*8(g | s, a) approximately samples goal according the
distribution of one-step stitching policy (p"*" (g | s, a)).

Intuitively, the smoothness assumptions are required to ensure that nearby states have similar proba-
bilities under the data collection policies. In Fig. [2|for example, this ensures taking action a from
state s has similar probabilities of reaching nearby states w and g. For the complete proof as well as
more details see Appendix[D.2]

Umaze Medium Large

Miniworld

Figure 3: Goal conditioned RL : Different colors represent the navigation  Figure 4: Return condi-
regions of different data collecting policies. During data collection, these  tioned RL : We visualise our
policies navigate between random state-goal pairs chosen from their region of ~ new image based and partially
navigation. These visualisations are for the “point” mazes. The “ant” maze  observable environment cre-
datasets are similar. Appendix Fig. @ shows the “ant” maze datasets. ated using Miniworld [38]].

6 EXPERIMENTS

The experiments aim (/) to verify our theoretical claim that OCBC methods do not always exhibit
combinatorial generalisation, even with larger datasets or larger transformer models, and (2) to
evaluate how adding temporal augmentation to OCBC methods can improve stitching in both state-
based and image-based tasks. All experiments are conducted across five random seeds.

OCBC methods. RvS [3] is an OCBC algorithm that uses a fully connected policy network and
often achieves results better than TD-learning algorithms on various offline RL benchmarks [3].
DT [2]] treats RL as a sequential SL problem and uses the transformer architecture as a policy. DT
outputs an action, conditioning not only on the current state, but a history of states, actions and goals.
See Appendix [C.2]for implementation details.

6.1 TESTING THE ABILITY OF OCBC ALGORITHMS AND TEMPORAL DATA AUGMENTATION
TO PERFORM STITCHING.

While the maze datasets from D4RL [15] were originally motivated to test the stitching capabilities
of RL algorithms, we find that most test state-goal pairs are already in the training distribution. Thus,
a good success rate on these datasets does not necessarily require stitching. This may explain why
OCBC methods have achieved excellent results on these tasks [3]], despite the fact that our theory
suggests that these methods do not perform stitching. In our experiments, we collect new offline
datasets that precisely test for stitching (see Fig.[3]and Fig.[I2]for visualisation). To collect our
datasets, we use the same “point” and “ant” mazes (umaze, medium and large) from D4RL [13].
To test for stitching, we condition OCBC policies to navigate between (state, goal) pairs previously
unseen fogether, and measure the success rate. In Fig.[3] this conditioning corresponds to (state, goal)
pairs that appear in differently coloured regions. Each task consists of 2-6 randomly chosen (state,
goal) pairs from different regions in the maze. In Appendix [C.3] we discuss the important differences
between the D4RL and our datasets, which are necessary to test for stitching.



—— RvVS —— RVS + state augmentation (ours) RVS + only goal augmentation (ours)
— DT —— DT + state augmentation (ours) DT + only goal augmentation (ours)

point-maze ant-maze point-maze ant-maze
1.00 I 0.500 1.00 0.500

0.751 0.3751 0.75 0.375 1
| | B |
0.50 1 0.250 1 0.50 0.250 1
I i l ! I - '
0.254 0.125 4 0.25 I I I 0.125 4

0.00 -

success rate

0.000 - 0.00 0.000 - :
umaze medium large umaze medium large umaze medium large umaze medium large

Figure 5: Adding data augmentation outperforms the OCBC baselines on most tasks. “Only goal
augmentation” refers to an oracle version of our augmentation that uses privileged information (z, y coordinates)
when performing augmentation. Adding temporal data augmentation (both standard and oracle versions)
improves the performance of both RvS and DT on 5/6 tasks.

Results. In Fig.[5] we can see that both DT and RvS struggle to solve unseen tasks at test-time.
However, applying temporal data-augmentation to RvS improves the goal-reaching success rate on
5/6 tasks, because the augmentation results in sampling (state, goal) pairs otherwise unseen together.
To show that temporal data augmentation can also be applied to only important parts of the state,
based on extra domain knowledge, we also compare an oracle version of our data augmentation. This
oracle version uses only the x, y coordinates from the state vector to apply the K-means algorithm.
Figure[5]also shows that using extra domain knowledge can further improve performance.

—— RvS —— RvVS + data augmentation — DT —— DT + Data Augmentation

visual point-maze visual point-maze miniworld
1.00 1.00 2.0
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Figure 6: Temporal data augmentation on image-based tasks. It is difficult to find a reliable metric to apply
temporal data augmentation in high-dimensional tasks. We show that using a simple L2 distance metric can
surprisingly improve the combinatorial generalisation of OCBC algorithms on both goal-conditioned (left and
center) and return-conditioned (right) tasks.

6.2 CAN TEMPORAL DATA AUGMENTATION WORK FOR HIGH DIMENSIONAL TASKS?

As mentioned in Section[3] it can be difficult to provide a good distance metric, especially for tasks
with high-dimensional states. Although this is a limitation, we show that temporal data augmentation,
using a simple L2 distance metric, can improve the combinatorial generalization of OCBC algorithms
even on high-dimensional image-based tasks. To evaluate this, we use both image-based goal-
conditioned and return-conditioned tasks. For the goal-conditioned tasks, we use an image-based
version of the “point” mazes[3] The agent is given a top-down view of the maze to infer its location.
For the return conditioned tasks, we create a new task using Miniworld [58] (See Fig. @) called
“collect”. The task is to collect both the keys and return to the start position. A reward of 1 is received
after collecting each key. There are two data collecting policies, each collecting only one key. At test
time, the OCBC policy is conditioned on the unseen return of 2 (collect both keys).

Results. In Fig.[6] we can see that temporal data augmentation improves the performance of RvS
and DT on 4/4 and 3/4 tasks, respectively. Although temporal data augmentation can be successfully
applied to some high dimensional tasks, it is not guaranteed to succeed[5.1} There remains room for
other scalable and robust methods to achieve even better performance.
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Figure 7: Performance of DT trained on different
offline dataset sizes (left) and using a different num-
ber of hidden layers (right) averaged across all “point”
mazes. Even with larger datasets or models, the gener-
alisation of DT is worse than DT + data augmentation.
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Figure 8: Comparison of our data augmentation
trained with different numbers of centroids in the
K-means algorithm on “point” maze-medium and
“ant” maze-medium. Temporal data augmentation
corresponding to all values of k outperforms DT on

both tasks.
6.3 ABLATION EXPERIMENTS.

Does more data remove the need for augmentation? Although our theory (Lemma[.T)) suggests
that generalisation is required because of a change in distribution and is not a problem due to limited
data, conventional wisdom says that larger datasets generally result in better generalisation. To
empirically test whether this is the case, we train DT on 10 million transitions (10 times more than
Fig.[5) on all “point” maze tasks. In Fig.[7] (left), we see that even with more data, the combinatorial
generalisation of DT does not improve much. Lastly, scaling the size of transformer models [59] is
known to perform better in many SL problems. To understand whether this can have an effect on
stitching capabilities, we increased the number of layers in the original DT model. In Fig.[7| (right),
we can see that increasing the number of layers does not have an effect on DT’s stitching capabilities.

How sensitive is temporal data augmentation to the number of centroids used for K-means?
In Fig.[8] we ablate the choice of the number of centroids used in K-means on two environments —
“point” maze-medium and “ant” maze-medium. All choices of centroids significantly outperform the
RvS method on both tasks.

Combinatorial generalisation due to spurious relations. In most of our experiments, OCBC
algorithms do exhibit, albeit very low, combinatorial generalisation. We believe this occurs not due to
the combinatorial generalisation ability of OCBC algorithms, but due to certain spurious relations
that are present in the dataset. In Appendix [A] we discuss the relation of combinatorial generalisation
with spurious relations. In Appendix [B] we perform didactic experiments to show that combinatorial
generalisation in OCBC algorithms occurs because the OCBC policy network picks up on such
spurious relations.

7 DISCUSSION

In this work, we shed light on an area that the community has been investigating recently, can SL-based
approaches perform stitching. We formally show that stitching requires combinatorial generalisation,
and recent SL approaches to RL (OCBC methods) generally do not have any guarantees to perform
such generalisation. We empirically verify this on many state-based and image-based tasks. We
also propose a type of temporal data augmentation to perform the desired type of combinatorial
generalisation precisely and help bridge the gap between OCBC and temporal difference algorithms.

Limitations. Our proposed augmentation assumes access to a local distance metric in the state
space, which can be difficult to obtain in general. Lifting this assumption and developing scalable
OCBC algorithms that generalise is a promising direction for future work.

Overall, our work hints that current SL approaches may not efficiently use sequential data found in
RL : even when trained on vast quantities of data, these approaches do not perform combinatorial
generalisation (stitching). Due to the temporal nature of RL, it is possible to solve a combinatorial
number of tasks from the same sequential data. Similar gains in data efficiency can be made by
designing algorithms capable of combinatorial generalisation in other problems involving time series
data, for example, audio, videos, and text.
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A RELATIONSHIP WITH SPURIOUS CORRELATIONS.

Handling stitching is somewhat akin to handling spuri-
ous correlations studied in the SL community. In the RL
setting, we want to navigate from A to B given a dataset
that contains some trajectories with A and some with B
but none with both A and B. This is somewhat analogous
to common settings in object detection in computer vi-
sion, where the object background is highly indicative of
the object class. For example, the common waterbirds
dataset [61] aims to classify images of birds into two
classes, “land birds” and “water birds,” but the image
backgrounds are correlated with the class: water birds are
usually depicted on top of a background with water. For
evaluation, the classifier is shown an image of a “water
bird” on top of a land background (and vice versa). Sim-
ilar to the RL setting, SL evaluation is done using pairs of
inputs that are rarely seen together during training. How-
ever, whereas the SL setting aims to learn a classifier that
ignores certain aspects of the input, the RL setting is dif-
ferent because the aim is to learn a policy that can reason
about both inputs.

There is another connection between the RL setting and
spurious correlations, a connection that makes the RL
setting look the opposite of the SL setting. For some goal-
conditioned RL datasets, the current state is sufficient for
predicting which action leads to the goal — the policy does
not need to look at the goal. In other datasets, the goal is
sufficient for predicting the correct action. However, for
navigating between pairs of states unseen together in the
dataset, a policy must look at both the state and the goal
1nputs.

B DIDACTIC EXPERIMENTS.
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Figure 9: SPURIOUS CORRELATIONS: To
understand how spurious correlations are re-
lated to stitching, let’s look at this simple
determinisitc MDP in which three data col-
lecting policies (red, blue and green) collect
the offline dataset. Note that an OCBC al-
gorithm which ignores the state, can also
achieve a zero training loss Eq. (€) on this of-
fline dataset. Whenever 4 is the desired goal
in the dataset, action right is always optimal
irrespective of the current state. Any SL al-
gorithm that learns a minimal decision rule
will in fact learn to ignore the state to reduce
the training loss to zero in this case [60]]. But
during test time, starting at state 2 and condi-
tioned on goal 4 such an SL algorithm will
ignore the current state and move towards
right which is clearly suboptimal.
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Figure 10: MDP with 5 states and 2 actions (up and
right). All episodes end after taking two actions. Data
is collected using two policies (red and blue). The
only difference between v1 and v1-stochastic, is the

data collecting policies are stochastic at states 0 and 1.

The stitching task is to navigate from states 1 to 4.

Figure 11: MDP with 7 states and 2 actions (up and
right). All episodes end after taking three actions.
Data is collected using two policies (red and blue).
The only difference between v2 and v2-stochastic, is
the data collecting policies are stochastic at states 0
and 1. The stitching task is to navigate from states 0
to 4.

Can OCBC algorithms exhibit combinatorial generalisation? In Fig.[5] we can see that OCBC
algorithms do not always achieve zero performance. To understand why OCBC algorithms seldom
perform some amount of stitching, we use two offline datasets collected from a simple didactic MDP
(see Fig. . In v1, 3/10 random seeds of DT are successfully able to navigate from states 1 to
4, while 7/10 fail. We show that in the both cases, the DT model picks up on one of two spurious



relations present in the dataset. In the success seeds, the DT model learns to output action up and
ignore the goal, whenever it is in state 1. In the failure seeds, the DT model learns to output action
right, and ignore the state, whenever the goal is 4. In stochastic-v1, we deliberately remove the
spurious relation that leads to success — the model can no longer ignore the goal, as the optimal action
depends on it, i.e., if the goal is 1, then the optimal action is right , and if the goal is 3, the optimal
action is up. In stochastic-v1, we see that all 10 seeds of DT fail. To be certain that models ignore
either states or goals, we check that the model’s outputs remain invariant them. This affirms the
hypothesis that OCBC algorithms can succeed if the spurious relations in the offline datasets set them
up for success.

Similar to the above experiment, we perform more experiments on two offline datasets v2 and
stochastic-v2 (see Fig. . In v2, 10/10 random seeds of DT are able to successfully navigate from
states 0 to 4. The DT model in all cases picks up on the only spurious relation present in v2 — the
optimal action depends only on the current state and the goal can be ignored. We ensure that the
model actually ignores the goal at state 0, by checking that its outputs remain invariant to changing
goals. In stochastic-v2, we remove this spurious relation; the optimal action at state 0 depends on the
goal as well, i.e., if the goal is 0, then the optimal action is up, and if the goal is 6, the optimal action
is right. After removing the success spurious relation, we observe that the success of DT drops to
0/10 seeds. This result also algins with the same hypothesis that OCBC algorithms can succeed if
the spurious relations in the offline datasets set them up for success at test time.

C EXPERIMENTAL DETAILS

C.1 ENVIRONMENTS

Goal conditioned environments. We use the “point” and “ant” mazes (umaze, medium and large)
from D4RL [15]]. As discussed in Section@ we carefully collect our new offline datasets to test for
stitching combinatorial (see Fig.[3]for visualisation). In the “point" maze, the task is to navigate a
ball with 2 degrees of freedom that is force-actuated in the cartesian directions x and y. In the “ant”
maze task, the agent is a 3-d ant from Farama Foundation [62]]. To collect data for the “point” maze,
we use a PID controller. To collect data for the “ant” maze, we use the same pre-trained policy from
D4RL [13]. In Fig.[12] we provide a visualisation of the offline dataset in all “ant” mazes.

Return conditioned environments. For the return conditioned tasks, we create a new task using
Miniworld [S8] (See Fig. 4). The task is to collect both the keys and return to the start position. A
reward of 1 is received after collecting each key. This task is image based and partially observable.
The agent recieves a first person view of the world. At any time, it can choose amongst 5 actions
— {forward, backward, turn right, turn left, pickup}. There are two data collecting policies, each
collecting only one of the key. These data collection policies are implemented by controlling the
agent manually.

C.2 IMPLEMENTATION DETAILS

In this section we provide all the implementation details as well as hyper-parameters used for all the
algorithms in our experiments — DT, RvS, and RvS + temporal data augmentation.

DT. We used the exact same hyper-parameters that the original DT paper [2] used for their mujoco
experiments. The original DT paper [2] conditioned the transformer on future returns rather than
future goals. For our experiments, we switch this conditioning to goals instead. At every time-step
the transformer takes in as input the previous action, current state, and desired goal. The desired goal
remains constant throughout the episode, but is still fed to the transformer at every timestep. All
hyperparameters used for DT are mentioned in Table [I]

RvS. RvS is an OCBC algorithm which uses a fully connected neural network policy. We use
the hyperparameters as prescribed by the original paper [3]. All hyperparameters used for RvS are
mentioned in Table 2l
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RvS + temporal data augmentation. As mentioned in Algorithm[I} given a method to cluster states
together, it only requires 5 lines of code to add the temporal data augmentation on top of an OCBC
method. We use the k-means algorithm from scikit-learn [[63]] with the default parameters to group
states together. Adding data augmentation on top of RvS introduces 2 extra hyperparameters, which
we mention in Table[3] We do not tune both of these hyperparameters in our paper. Nevertheless, we
do ablate the choice of K in k-means.

Table 1: Hyperparameters for DT.

hyperparameter | value
training steps 2 x 10°
batch size 256
context len 5
optimizer AdamW
learning rate 1x1073
warmup steps 5000
weight decay 1x107*
dropout 0.1
hidden layers (self attention layers) 3
embedding dimension 128
number of attention heads 1

Table 2: Hyperparameters for RvS.

hyperparameter | value
training steps 1 x 10°
batch size 256
optimizer Adam
learning rate 1x1073
hidden layers 2

hidden layer dimension 1024

Table 3: Hyperparameters for temporal data augmentation.

hyperparameter | value

K (number of clusters for k-means) :
umaze 20
medium 40
large 80

€ (probability of augmenting a goal) 0.5

C.3 DIFFERENCES BETWEEN THE ORIGINAL D4RL AND OUR DATASETS.

We made two main changes in the way our datasets (Fig. |3} Fig. were collected compared to the
original D4RL datasets (Fig.[I3). First, we ensure that different data collecting policies have distinct
navigation regions, with only a small overlapping region. This change helps to clearly distinguish
between algorithms that can and cannot perform combinatorial generalisation. Second, the agent in
the original D4RL datasets often moves in a direction that is largely dependent on its current location
in the maze. For example in the topmost row of the umaze, the D4RL policy always moves towards
the right. To reduce such spurious relations, we randomize the start-state and goal sampling, for the
data collecting policies. That is, in the topmost row of our umaze datasets, the data collecting policy
moves both towards the right or left, depending on its start-state and goal. Details about how such
spurious relations can hamper combinatorial generalisation are discussed in Appendix
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Umaze Medium Large

Figure 12: Offline datasets that we collect for the “ant" mazes. Different colors represent the navigation regions
of different data collecting policies. See Fig. Elfor a similar visualisation of the “point" maze datasets.

Umaze Medium Large

Figure 13: Similar to Fig. and Fig.|12] we create a visualisation of the original d4rl dataset. This is not an
exact visualisation of the actual trajectories that are present inside those datasets, but a visualisation of the data
collecting policies that those datasets used [15]]. During data collection, the policy starts from one starting region,
which is marked by a white star. The policy navigates to a goal selected from one of the goal regions, which
are marked by white circles. During test time, start-states and goals are selected from similar starting and goal
regions, making it difficult to evaluate the combinatorial generalisation of offline RL algorithms.

D PROOFS

D.1 PROOF OF LEMMA [£.1]

We prove this Lemma by providing a simple counterexample. Consider the deterministic MDP
shown in [Figure 1| which has five states [1, 5] and two actions {right, up}. The states four and five
are absorbing states; once the agent enters one of these states, it will stay there for eternity. There
are two data collecting agents [3,—1 and [3;,—», which navigate upward from state two to state five,
and rightward from state one to state four respectively. Both policies collect equal amount of data
p(h =1) = p(h = 2) = 0.5. The BC policy 3 (equation[5)) is shown in purple to indicate that it is
obtained from combining data from both blue and red policies. We will prove that the training and
testing distribution (LHS and RHS of Eq. (9)) are not equal for the counterexample state-goal pair
{St = 2,St+ = 4}
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The LHS and RHS are unequal for all values of v € (0,1).

D.2 TEMPORAL DATA AUGMENTATION DOES APPROXIMATE ONE-STEP STITCHING.

Intuition. The reason why OCBC sampling does not lead to stitching is that it samples a context
h ~ p(h | s) at the start state, and commits to it by following 3, for the entire trajectory. On the
other hand, the BC policy follows an average of all behaviour policies at every step of trajectory
(>, Bu(a | s)pP(h | s)). One could think of the BC policy, as sampling a new context h ~ p(h) at
every timestep of the trajectory, and following the corresponding [, for that timestep. Intuitively,
this ensures that all possible combinations of behaviors are sampled by the BC policy. These two
ways of sampling trajectories : (1) sampling a context only once at the start and committing to it or
(2) sampling a new context at every timestep, are two extremes, and one can think of intermediate
ways of sampling trajectories. For example, sample a context A ~ p(h) and a time duration ¢ ~ p(t),

and follow f3;, for timesteps "t", and then sample a new context h ~ p(h) and follow f3;, for the rest
of the trajectory. Since this form of sampling trajectories changes context only once per trajectory,
we call the resulting non-stationary policy as one-step stitching policy. If we do this process twice
per trajectory, the resulting non-stationary policy is called two-step stitching policy. According to
this notation, the BC policy can be thought of as per-step stitching policyﬂ We will prove that for
any state-action pair, the support of the goals reached by n-step stitching policies as n increases,
is non decreasing. Hence, sampling from the distribution of n-step stitching policies with a larger
n, can sample unseen combinations of state-goal pairs. Finally, we will prove that applying data-
augmentation once, under smoothness assumptions, is approximating the distribution of the one-step
stitching policy.

N-step stitching policy. Before moving to the proofs, we need to define the distribution of future
states sampled from the n-step stitching policy. Let p(t) be the duration sampling distribution which
samples the timestep at which to change the context. We assume that p(¢) has non zero support for
all time-steps ({0, 1, ... }). In our case, p(t) is the geometric distribution (geom(1 — ~)). Hence, for
a state-action pair s, a, the distribution over goals reached by the n-step stitching policy is

P (g s a)

/ Zp(hl \ S»G)Pf_hl (wl | S, (l Hn“ ZP h | Wi — 1 (wi | wi—l)dwl:n

Lin p,

Here w; is the sub-goal at which the i*" switch is made and w,,  is defined as g.

Lemma D.1. Forn € N, for all s, a, the support of p"™* P (g | s, a) is at least equal to the support
of PP (g | s, a), assuming that the duration sampling distribution p(t) has non zero support for all
timesteps (for example, geom(1 — 7)).

3The BC policy is a stationary policy, as it samples a new contexts at every timestep. There is no dependency
on time.
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Proof. Assume that a goal-state g belongs to Supp p™**P(g | s, a). We will prove that this implies
that g € Supp p™!**P(g | s,a). Because g € Supp p"*(g | s,a), we can assume without loss of
generality that g is visited k time-steps after switching the context n times.

Before switching for n 4 1! time, the distribution of states visited by the n + 1-step policy is identical
to the distribution of n-step policy. The n + 1" switching duration is drawn from t,, .1 ~ p(t).
Because p(t) has support over all timesteps (Supp p(t) = {0 + N}), we know that p(t,,+1 > k) > 0.
That is, the probability that n -+ 1-step policy does not make the n+ 1 switch for atleast k timesteps is
non zero. This proves that for any finite value of k, there is a non zero probability that the distribution
of states visited by the n + 1-step policy is identical to the n-step policy for atleast &k timesteps after
the n*" switch. Hence the goal state g can also be visited by n + 1-step policy. Hence proved that
Supp p"™P(g | s,a) C Supp p™'*P(g | s,a). O

Using the above lemma, we can say that

Supp p"*®(g | s,a) C Supp p"*'P(

g | s,a) C Suppp™**P(g | s,a)... (10)
Hence proved that for any state-action pair, the support of the goals reached by n-step stitching
policies as n increases, is non decreasing. And from we know that there can be states which are
only visited by {n > 0}-step stitching policies. Hence, it is possible that the relations in Eq. are
strict.

Temporal data augmentation approximates one-step stitching policy. Under smoothness as-
sumptions for the discounted state occupancy distribution of the data collecting policies, we can show
that temporal data augmentation Fig. [2| approximates the distribution of one-step stitching policy.
Specifically, we assume that for all s, a, g pairs and all data collecting policies Sy, pih (9|s,a)is L
Lipschitz

P2 (9| 5,a) =P (w | 5,0)] < L(||g — wl]2) (11)
This is an important assumption for temporal data augmentation as it ensures that states which
are close together have similar reachability. Prior work has also studied this assumption [64H66]]
and applied it to practical settings [67]. Finally, our theoretical analysis uses a form of temporal
data augmentation which clusters states only with their nearest neighbour. That is, each group in
Algorithm|[T]contains atmost 2 unique states.

Lemma D.2. Under the smoothness assumptions above, for all s, a pairs, temporal data augmentation
PP (g | s, a) approximately samples goal according the distribution of one-step stitching policy
(" (g | 5,a)).

Proof.

P (g | s, a)

- / S bl | ,a) B w | 5,0)) S p(h | w)p (g | w)dw
wop 3

LS bl sl (| s.) £ D) Y pli [ wn)p(o | wi)dun
w1 p

h

= / S p(h ] s,a)pf (ws | 5,0) Y plh | wi)p (g | w)dw; + €L / S p(h [ w)p (g | wi)dw,
w1 h =~ w1 ~

h h

— [ bl sl (| 5.0) S plh | w)p (g | wn)dun £ O(eL)
w1 p i

=p"™P(g | s,a) £ O(eL)
O

Here € is the maximum cutoff distance used by the temporal data augmentation to group states
together.
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(a) is followed by the fact that temporal data augmentation first sample a waypoint w, and then
sample a future goal g from the trajectory containing w. This new trajectory can correspond to any

data collecting policy /3, with probability p(h | w). (b) wy is the initial goal sampled by temporal
data augmentation, which is then substituted by its nearest neighbour . It follows from Eq. (T that

pf_h (w]s,a)—eL < pf_h' (wy | 8,a) < pﬁh (w | s,a) + €L, as epsilon is the maximum possible 1.2
norm between w; and w.
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