
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEDERATED INSTRUCTION TUNING OF LLMS
WITH DOMAIN COVERAGE AUGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Domain-specific Instruction Tuning (FedDIT) utilizes limited cross-
client private data together with various strategies of instruction augmentation, ul-
timately boosting model performance within specific domains. To date, the factors
affecting FedDIT remain unclear, and existing instruction augmentation methods
primarily focus on the centralized setting without considering distributed environ-
ments. Our experiments reveal that the cross-client domain coverage, rather than
data heterogeneity, drives model performance in FedDIT. In response, we propose
FedDCA, which optimizes domain coverage through greedy client center selec-
tion and retrieval-based augmentation. For client-side computational efficiency
and system scalability, FedDCA∗, the variant of FedDCA, utilizes heterogeneous
encoders with server-side feature alignment. Extensive experiments across four
distinct domains (code, medical, financial, and mathematical) substantiate the ef-
fectiveness of both methods. Additionally, we investigate privacy preservation
against memory extraction attacks utilizing various amounts of public data. Re-
sults show that there is no significant correlation between the volume of public
data and the privacy-preserving capability. However, as the fine-tuning rounds
increase, the risk of privacy leakage reduces or converges.

1 INTRODUCTION

Table 1: Performance (%) of different augmentation settings in each domain after FedDIT, under the
default setting elaborated in Appendix A.2. Zero-shot directly inferences without fine-tuning, while
the Base Data utilizes only the client’s local data for FedDIT. Additionally, we compare FedDCA
with other two augmentation strategies performed on the server: random sampling (Random for
short) and direct retrieval (Direct Re. for short and is described in Appendix A.4), respectively.

Domain Task/Metric Zero-shot Base Data Random Direct Re. FedDCA (ours)

Code HumanEval/Pass@1 29.88 39.03 32.93 34.14 36.58

Med. MMLU-Med/Acc. 70.60 68.40 71.30 72.20 74.50

Fin.
FPB/Acc. 55.94 58.25 64.19 66.31 67.24
FiQA/Acc. 18.54 14.18 13.09 19.11 35.27
TFNS/Acc. 59.21 66.62 65.53 67.62 73.32

Math. GSM8K/Exact Match 23.27 47.46 47.38 50.87 52.46

Recently, federated instruction tuning (FedIT) has gained attention as a novel approach that lever-
ages the principles of federated learning (FL) to facilitate collaborative training of large language
models (LLM) in distributed environments while maintaining the confidentiality of private data
(McMahan et al., 2017; Ye et al., 2024b; Zhang et al., 2023c). This methodology allows for the
exchange of model parameters among distributed data holders, thereby achieving a careful balance
between privacy preservation and efficient model optimization. Despite the establishment of various
FedIT frameworks (Ye et al., 2024b; Kuang et al., 2023; Zhang et al., 2023c), existing literature has
not adequately addressed the practical challenges that Federated Domain-specific Instruction Tun-
ing (FedDIT) may encounter in real-world applications. For instance, FedIT generally necessitates

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a sufficient amount of instruction data for fine-tuning, which is often a shortage in domain-specific
fine-tuning contexts (Zhang et al., 2024b).

In this study, we investigate FedDIT, a novel approach within the FL paradigm aimed at boosting
the performance of LLMs in specific domains. Unlike general FedIT, which seeks to enhance model
effectiveness across diverse tasks without accounting for local data shortage, FedDIT encounters
the unique challenge of clients possessing only a limited quantity of local domain-specific data. To
overcome this, FedDIT enrichs the local data through a specific instruction augmentation strategy.
This strategic enrichment is crucial for achieving effective instruction tuning and needs to be metic-
ulously designed to avoid performance degradation. Except for the code domain, which primarily
adheres to a standardized paradigm, our results reveal that when clients rely solely on their local
data for FedDIT, even the presence of high-quality in-domain local data can be insufficient due to
limited scale, leading to a decline in performance, as reflected in the underlined values in Table 1. In
summary, the goal of FedDIT is to develop a domain-specific LLM that employs collaborative train-
ing and instruction augmentation while safeguarding client privacy, thereby ensuring the model’s
proficiency in executing tasks pertinent to its designated domain.

For simplify and better instruction quality (Zhang et al. (2024b); Toshniwal et al. (2024)), we focus
on a specific scenario of FedDIT, where a server-hosted public dataset exists as an abstraction of
open-source instruction datasets on the web that encompasses multiple domains. This dataset is uti-
lized for different instruction augmentation strategies, thereby enhancing the model’s performance
in specific domains. We elaborate the setting of FedDIT in Appendix A.2.

Additionally, the factors affecting FedDIT are still unclear. Compounding this uncertainty, introduc-
ing augmented instructions may further complicate results, making it difficult to ascertain effective
improvement strategies. Shepherd (Zhang et al., 2023c) approaches this problem from the perspec-
tive of heterogeneity, constructing heterogeneity based on the topic of general instruction datasets.
It demonstrates that, unlike the consensus of traditional FL, for general FedIT, heterogeneity has
a positive effect. By aggregating diverse instructions from clients, the diversity increases, thereby
enhancing the model’s adaptability to various tasks. However, it just scratches the surface and does
not explore issues in FedDIT.

Going one step further, we conduct experiments to unveil a significant finding (Appendix A.3): there
is no monotonic correlation between the degree of non-independent and identically distributed (non-
iid) and LLM’s performance in the context of FedDIT. Inspired by Explore-Instruct (Wan et al.,
2023), which shows the potential of domain coverage in domain-specific instruction tuning. The
cross-client domain coverage metric is initially defined, followed by an investigation into its impact
on FedDIT. Results demonstrate that domain coverage significantly influences model performance
in the corresponding domain.

To maximize the cross-client domain coverage without compromising client data privacy, we pro-
pose a novel FedDIT algorithm, Federated Instruction Tuning of LLMs with Domain Coverage
Augmentation, termed FedDCA. This algorithm employs a greedy client center selection process
and implements instruction augmentation through dense retrieval on the server side. The fundamen-
tal idea of FedDCA is to select client centers to expand the diversity and coverage of augmented
instruction datasets within a specific domain. By strategically optimizing domain coverage at each
step, FedDCA efficiently constructs the augmented train set that enhances both the learning and
generalization capabilities of the model, leading to superior performance on domain-specific tasks.
Furthermore, to mitigate computational overhead on the client side and enhance the system scalabil-
ity, we propose FedDCA∗, which employs heterogeneous encoders of different sizes and capacities.
To achieve feature alignment, we train a projector on the server side using public data and employ
contrastive learning techniques.

We demonstrate the effectiveness of FedDCA through comprehensive experiments conducted across
four domains: code, medical, financial, and mathematical. These are compared against a range of
baselines, which can be categorized into unaugmented and augmented methods. In the unaugmented
setting, our method is compared with FedIT, which includes four orthodox FL techniques: FedAvg
(McMahan et al., 2017), FedProx (Li et al., 2020), SCAFFOLD (Karimireddy et al., 2020), and
FedAvgM (Hsu et al., 2019). In the augmented setting, we compare FedDCA against methods such
as random sampling, direct retrieval, LESS (Xia et al., 2024), and Self-Instruction (Wang et al.,
2022). Additionally, we present the performance outcomes of FedDCA when applied under various

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

FL strategies. We also compare the computational efficiency on the client side between FedDCA
and its variant, FedDCA∗. For privacy analysis, experiments against memory extraction attacks are
conducted to evaluate how different quantities of retrieved public data affect the privacy of client
local data. Results indicate that while reliance on local data increases memorization of sensitive
information, the risk of privacy leakage diminishes or converges in the augmented setting as the
training rounds progress.

The main contribution is as follows:

• We reveal a critical finding: in the context of FedDIT, data heterogeneity has a non-
monotonic relationship with model performance. Instead, cross-client domain coverage
substantially impacts LLM’s effectiveness, as elaborated in Appendix A.3.

• We propose a novel FedDIT algorithm (Section 4), termed FedDCA, aimed at maxi-
mizing cross-client domain coverage through greedy client center selection followed by
retrieval-based instruction augmentation executed on the server. Additionally, we intro-
duce FedDCA∗ to further lessen the client-side computational overhead while enhancing
the system scalability. This variant utilizes a heterogeneous encoder structure, paired with
a projector on the server side for feature alignment.

• Through extensive experiments (Section 5), we demonstrate the effectiveness of FedDCA
and FedDCA∗. We also investigate privacy preservation against memory extraction attacks,
conducting experiments based on various amounts of public data. Results suggest that the
capacity for privacy preservation does not correlate significantly with the quantity of public
data. In contrast, the risk of privacy leakage tends to decrease or converge as the fine-tuning
rounds increase.

2 PRELIMINARIES

FedDIT aims to leverage cross-client private domain-specific instruction data and utilize the multi-
domain public data on the server to achieve instruction augmentation, collaboratively enhancing the
model’s performance in specific domains. Consider N distributed clients, each with local private
data Dl

k. The server maintains a public dataset Dp that encompasses multiple domains and is re-
sponsible for implementing data augmentation strategies and aggregating model parameters received
from clients. The training process follows the standard FL protocol (McMahan et al., 2017). For
computational efficiency, we adopt Low-Rank Adaption (LoRA) (Hu et al., 2022) as the fine-tuning
method, which involves tuning additional parameters ∆ϕ while keeping the pre-trained LLM’s pa-
rameters ϕ frozen. In the initial training phase, the server dispatches ϕ and ∆ϕ to each client for R
training rounds. In the t-th round, the server sends the aggregated ∆ϕt to clients. Clients use ∆ϕt

to update their local LoRA parameters ∆ϕt
k and conduct instruction tuning based on augmented

instruction datasets Dk. Subsequently, the clients return ∆ϕt+1
k to the server. The server then ag-

gregates {∆ϕt+1
k | k = 1, . . . , N} to obtain ∆ϕt+1 for the next round.

3 PROBLEM FORMULATION

For better understanding, we list the frequently used notation in Appendix A.12. The objective of
FedDIT is to enhance the domain-specific performance of LLMs through FL without sharing private
data (Ye et al., 2024b; Zhang et al., 2024b; 2023c). Under the FL framework, suppose we have N
clients, where each client ck has a local dataset Dl

k with its size N l
k, and an augmented dataset Dg

k
from the server public dataset Dp, respectively. Due to constraints such as memory, computational
overhead, and maximum tolerated training time, client ck can accept at most Np

k public instructions.
Denote the augmentation strategy as Λ, through which the server performs instruction augmentation
on the public dataset. If Λ is null, it indicates that clients conduct FedDIT solely based on their
local private data, which may lead to performance degradation. Conversely, Λ may be classified into
two categories: (1) focusing exclusively on the client’s own local data distribution or (2) considering
the cross-client data distribution. In conclusion, the global objective of FedDIT is defined as follows:

argmin
∆ϕ

{
F (ϕ,∆ϕ) ≜

N∑
k=1

pk
(
(1− αk)Fk

(
ϕ,∆ϕk;D

l
k

)
+ αkFk (ϕ,∆ϕk;D

g
k)
)}

, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where the first term and second term denote the accumulated fine-tuning loss computed on the client
ck’s local instructions Dl

k and the augmented public instructions Dg
k from the server, respectively.

pk is the weight of the k-th client, which is determined by the ratio of k-th client’s data size to all
clients’ total data size. αk is the ratio of the public data amount of its augmented instruction dataset
Dk, which is computed as Np

k

N l
k+Np

k

. Eq.1 minimizes the summed empirical loss across clients’
augmented instructions to pursue the in-domain utility of the obtained global model. Denote P as
the model parameters and D as a specific dataset, then the client ck’s empirical loss Fk(ϕ,∆ϕk;D)
base on D is calculated as:

Fk(ϕ,∆ϕk;D) ≜
1

|D|

|D|∑
j=1

l(Pϕ+∆ϕk
;xj), (2)

where xj ∈ D,∀j ∈ {1, 2, . . . , |D|}. The instruction tuning loss l(·; ·) on a sample (x, y) is de-
fined as −

∑|y|
t=1 log (w (yt|x, y<t)), where x is the formated instruction with Alpaca instruction

template1 and y is the corressponding response.

In contrast to the problem formulations in many prior works on FedIT, the primary distinction in the
formulation of FedDIT lies in acknowledging the lack of in-domain instructions across clients. Fed-
DIT establishes a public multi-domain dataset on the server for domain-specific instruction augmen-
tation by a specific sampling strategy Λ. Therefore, each client only needs to hold a few high-quality
domain-specific private data to collaborate with other clients to obtain a strong domain-specific
LLM.

Figure 1: Overview of FedDCA, which consists of three stages: 1) The client ck performs local
instructions clustering and sends cluster centers Ck to the server. 2) The server first does greedy
client center selection to maximize domain coverage and performs client-center-based domain data
retrieval, then sends the augmented instructions Dg

k to the client ck. 3) Clients fine-tune the LLM
collaboratively, and the LoRA parameters ∆ϕ are exchanged between clients and the server.

4 METHOD

We propose Federated Instruction Tuning of LLMs with Domain Coverage Augmentation (Fed-
DCA), which enhances domain coverage to obtain a LLM that performs well on domain-specific
tasks. FedDCA follows the standard FedIT protocol(Ye et al., 2024b) to perform federated in-
struction tuning. The novel design of FedDCA lies in the phase before training, which consists of
two key modules: greedy client center selection and domain data retrieval, which are elaborated
in the following; also see details in Algorithm 1 and Figure 1. For computational efficiency and
system scalability, we introduce a variant of FedDCA with heterogeneous encoder setting, named
FedDCA∗. We first formulate the optimization problem to solve for FedDCA.

1https://crfm.stanford.edu/2023/03/13/alpaca.html

4

https://crfm.stanford.edu/2023/03/13/alpaca.html

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 OPTIMIZATION PROBLEM

As domain coverage directly affects the in-domain performance of the LLM (Appendix A.3), Fed-
DCA aims to maximize the domain coverage of the cross-client augmented data ∪Ni=1Di respect to
the in-domain data distribution Dd, which is defined in Eq. 5. However, as clients can not send the
local data to the server for privacy, directly finding a cross-client dataset that maximizes the domain
coverage in Eq. 5 is unrealistic. To find a proper client center set P that maximizes domain coverage
and uses it to perform instruction retrieval on the public data is an approximation problem.

Suppose there exists a metric space X , a set of cross-client local instruction embeddings E ∈ X ,
and a set of cluster centers P ∈ X . Each client ck has maximum ξ clusters obtained by k-means
algorithm (Wu, 2012). In the federated setting, communication cost is always a critical factor. Con-
sequently, we formulate the optimization problem to include communication costs as follows:

argmin
P

N∑
i=1

|Pi|+
∑
d∈Dd

(minp∈Psim(d, p))

 , (3)

s.t. |Pi| ≤ ξ,∀i ∈ {1, 2, . . . , N}. The second term is the domain coverage of the selected client
center set P , and sim(·, ·) is the cosine similarity function. However, this optimization problem is
NP-hard. Specifically, to select N client center for retrieval, the time complexity isO

(
CN

ξN (NN)
)

,
where N is the size of the public data Dp. As it is a factorial equation, the computational cost
explodes with N . What’s worse, usually, there are enormous amounts of public data on the server,
which makes a huge N . For computational efficiency, we propose a greedy algorithm to solve this
problem in O (N (Nξ + ξ log ξ)), which is described below.

4.2 GREEDY CLIENT CENTER SELECTION & DOMAIN DATA RETRIEVAL

Figure 2: Greedy client center selection iteratively selects the client center in each step, which
synthetically considers both the representativeness of the cluster center and its distance from the
previously selected client center set P to maximize the cross-client domain coverage.

As described in Section 4.1, the goal of FedDCA is to find a proper client center setP that maximizes
the domain coverage d(Dd,P), as defined in Eq. 3. For computational efficiency, we propose a
greedy algorithm as shown in Algorithm 1 and Figure 2 to solve this problem in polynomial time
and obtain a sub-optimal solution. Given the cluster centers {Ci, i = 1, 2, . . . , N} received from
each client, which are obtained by clustering local instructions. FedDCA on the server consists of
two main steps: greedy client center selection and client-center-based domain data retrieval.
Greedy client center selection. We will consider this problem from two aspects: 1) Select a client
center that can represent the distribution of the local data. 2) To optimize the cross-client domain
coverage, we filter client centers that are close to the previously selected client centers. First, we
randomly choose a client and select the largest cluster center as its center and be the initial of the
client center set P . Then, we iteratively select the client center Pk of the top cluster size while
avoiding selecting the cluster center close to the previously selected client center to maximize the
domain coverage of P . Specifically, for the i-th iteration, we filter i-top cluster centers that have
the largest summed similarity with previously selected client centers and select the center of the rest
largest cluster as the i-th client center. This procedure is repeated until we have selected N client
centers.

Domain data retrieval. For each client center Pk, the server performs dense retrieval (detailed
in Appendix A.4) on public dataset Dp to get the top-Np

k similar public instructions, then sends

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 FedDCA: greedy client center selection & domain data retrieval

Parameters: Number of clusters ξ; Encoder model wenc; Client local datasets D = {D1, D2, . . . , DN};
Public dataset Dp; Similarity score threshold α; Number of public data samples retrieved per client Np

k ;
Client centers P = {p1, p2, . . . , pN}; Pre-encoded public instruction embeddings E .

1: for i ∈ {1, 2, . . . , N} do
2: E ′ ← {wenc(x) | x ∈ Dl

i,instruction}
3: Ci, Si ← k-means(ξ).fit(E ′) ▷ Cluster local instructions, return cluster centers Ci and sizes Si

4: end for
5: Send {Ci, Si | i ∈ {1, 2, . . . , N}} to the server for the greedy client center selection
6: P ← {C0,k | k = argmax(S0)} ▷ Initialize the client center set
7: for i ∈ {1, 2, . . . , N − 1} do ▷ Greedy client center selection
8: S ←

∑
(Ci · PT , dim = −1) ▷ Compute summed similarity score of each cluster center

9: I ← (N − i)- arg sort(S) ▷ Filter i cluster centers close to the client center set P
10: I′ ← arg sort(−Si) ▷ Sort cluster center by cluster size in descending order
11: j ← first element of I ∩ I′ ▷ Selected cluster center Ci,j
12: P ← P ∪ Ci,j ▷ Update the client center set
13: end for
14: for i ∈ {1, 2, . . . , N} do ▷ Client center based domain data retrieval
15: S ← Pi · ET ▷ Compute similarity score between Pi and E
16: S ′ ← {s | s ∈ S, s < α} ▷ Filter instructions with similarity score larger than α
17: I ← indices of Np

k -top in S ′

18: Dg
i ← {D

p
j | j ∈ I}

19: Di ← Dl
i ∪Dg

i ▷ Obtain the augmented instruction dataset Di

20: end for

retrieved public datasets {Dg
1 , . . . , D

g
N} to each clients. Specifically, to avoid the overlap between

public data and local private data, we set a threshold α to filter the public instructions that have a
similarity score larger than α with the client center.

In summary, FedDCA establishes a comprehensive training set that captures the essence and distri-
bution of the domain by iteratively selecting client centers with unique coverage increments. This
ensures that selected centers are representative and achieve broad domain coverage. Additionally,
domain data retrieval exposes the model to a wider range of in-domain features, enhancing its under-
standing of domain-specific tasks. This not only enriches the training data but also reduces the risks
of overfitting to the limited local data available to each client, ultimately improving performance
across various tasks within the domain.

4.3 HETEROGENEOUS ENCODER WITH FEATURE ALIGNMENT

For the client-side computational efficiency and system scalability, we propose a heterogeneous
encoder method FedDCA∗ to reduce the client’s computational overhead by using a small encoder
ω on the client side and a larger encoder ω′ on the server side. However, the output dimension of
heterogeneous encoders may not be consistent. Therefore, we introduce a projector wp on the server
for feature alignment, as shown in Appendix A.7. We use contrastive learning (Khosla et al., 2020)
and train wp on the public instructions. Specifically, wp comprises two fully connected layers and
a ReLU activation layer in between, projecting ω’s dimension to the output dimension of ω′. For
∀xi ∈ Dp, where i ∈ {1, 2, . . . ,N}, ω outputs embedding hi, ω′ outputs embedding h′

i and wp

outputs embedding φi. For input xi, the positive sample pair is (h′
i, φi) and negative sample pairs

are {φj , j ̸= i}. Let the batch size be B, then the training objective is defined as follows:

L = −
B∑
i=1

log
exp (sim(φi, h

′
i)/τ)∑B

j=1 I[j ̸=i] exp
(
sim(φi, h′

j)/τ
) , (4)

where sim(·, ·) denotes the cosine similarity and τ denotes the temperature parameter.

The heterogeneous encoder setting, by employing a projector wp for feature alignment, proves ef-
fective in FL contexts where clients and the server use different encoder sizes or capacities. This
approach facilitates mapping lower-dimensional client features H to the higher-dimensional server

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

space H′ through a strategic training of wp with both positive and negative pairs. It adeptly aligns
similar feature representations closely while positioning dissimilar ones further apart. As a result, the
heterogeneous encoder setting not only enhances system scalability and flexibility but also facilitates
the creation of a unified feature space that effectively integrates and utilizes diverse representations
collaboratively.

4.4 DISCUSSIONS

Computation. Through greedy client center selection, FedDCA solves the optimization problem
defined in Eq. 3 in the polynomial time and is quite efficient. On the client side, the k-means algo-
rithm (Wu, 2012) is O(|Dl

k|). On the server side, as mentioned in Section 4.1, the time complexity
of greedy client center selection isO (N (Nξ + ξ log ξ)). Specifically, for each client, the similarity
computation between selected client center setP and client ck’s cluster Ck isO (Nξ), and the sorting
process is O (ξ log ξ). For domain data retrieval, given that the sorting algorithm is O (N logN),
whereN is the size of the public dataset. Thus the time complexity isO (N(N logN)). In addition,
the heterogeneous encoder setting FedDCA∗ further reduces the computation overhead on the client
side.

Communication. In the domain instruction augmentation stage, each client sends ξ cluster centers
to the server. Next, the server performs greedy client center selection and domain data retrieval,
then sends retrieved public data Dg

k to the client ck, whose size is Np
k . In addition, in the fine-tuning

stage, FedDCA follows the standard FedIT procedure, which exchanges the LoRA parameters ∆ϕk

between clients and the server. Specifically, for the Llama3-8B model, the number of trainable LoRA
parameters is just 13.6 million. Compared with the number of frozen pre-trained LLM parameters,
the communication for LoRA tuning is quite efficient.

Privacy. Comparing FedDCA with other FedIT methods (Zhang et al., 2024b; Ye et al., 2024b), the
difference lies in the greedy client center selection. In this stage, the client only uploads the cluster
center to the server, which is the average of embeddings to its cluster. In addition, the potential
privacy leakage can be further avoided through homomorphic encryption (Acar et al., 2018), which
allows the server to directly compute on ciphertext for matrix multiplication for dense retrieval. For
the further concern of the domain inference attack from the server, please refer to Appendix A.6.

5 EXPERIMENTS

To demonstrate the effectiveness of FedDCA and its variant FedDCA∗, we conduct extensive ex-
periments across various domains and with several baselines. In Table 2, we highlight five critical
aspects of our approach compared with other methods (Xia et al., 2024; Wang et al., 2022; Zhang
et al., 2024b). For additional details and results, please refer to Appendix A.

Table 2: Key differences between FedDCA and other baselines. FedDCA demonstrates the ability
of: 1) privacy preserving, 2) no API cost, 3) no additional information required, 4) avoiding per-
formance degradation, and 5) aiming at domain coverage optimization. LESS requires additional
information, as it needs access to the validation set for gradient-based retrieval.

Method Privacy
Preserving

API
Cost

Additional
Information

Performance
Degradation

Domain Coverage
Oriented

FedAvg (McMahan et al., 2017) " % % " %

Random Sampling " % % " %

LESS (Xia et al., 2024) " % " " %

Self-Instruct (Wang et al., 2022) % " % % %

Direct Retrieval " % % % %

FedDCA (ours) " % % % "

5.1 EXPERIMENTAL SETUP

Dataset and Evaluation Metrics. To evaluate the performance of FedDCA, we conduct exper-
iments on four domains: code, medical, financial, and mathematical. The detail of constructing
the public dataset is described in Appendix A.5. As default, we set the number of clients to 10,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

while each client has 100 local instructions and obtains 5000 augmented public instructions from
the server. We analysis the effect of different retrieval amounts from 100 to 5000 on FedDCA in
Appendix A.10. For evaluation, we select a range of datasets, including HumanEval (H-Eval for
short) for coding (Chen et al., 2021), MMLU-Med (abbreviated as M-Med) for medical (Hendrycks
et al., 2021), and GSM8K for mathematics (Cobbe et al., 2021). Additionally, financial datasets such
as FPB, FiQA, and TFNS (Yang et al., 2023a) are utilized. HumanEval is evaluated using Pass@1.
For MMLU-Med, FPB, FiQA, and TFNS, we use accuracy as the evaluation metric. While GSM8K
is evaluated using exact match (EM). Please see Appendix A.5 for more dataset details.

Baselines. We compare FedDCA and FedDCA∗ with the following baselines: 1) Unaugmented
methods, including zero-shot inference and FedIT, which are composed of four widely used FL
methods, including FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020), SCAFFOLD (Karim-
ireddy et al., 2020) and FedAvgM (Hsu et al., 2019). 2) Augmented methods, which include random
sampling, direct retrieval, LESS (Xia et al., 2024), and Self-Instruct (Wang et al., 2022). Addition-
ally, we report FedDCA’s performance with different FL strategies in Table 3. Specifically, zero-
shot inference shows the performance of the pre-trained LLM without FedDIT, which gives the
lower performance bound. Direct retrieval is described in Appendix A.4. Self-Instruct augments
instruction in a generative way through GPT-3.5-turbo (Sun et al., 2023). Based on the prompt pro-
vided by Self-Instruct, we define the prompts for generating instructions and responses as shown in
Appendix A.8.

Table 3: Performance (%) of FedDCA, FedDCA∗ and other nine baselines on various domains. For
augmented methods, we use FedAvg as the default FL strategy. We report FedDCA with different
FL strategies in the last four rows, and FedDCA+FedAvg and FedDCA+FedProx performs better
across four domains.

Method Code Medical Financial Mathematical

H-Eval M-Med FPB FiQA TFNS GSM8K

Unaugmented Methods

Zero-shot 29.88 70.60 55.94 18.54 59.21 23.27
FedAvg (McMahan et al., 2017) 39.03 68.40 58.25 14.18 66.62 47.46
FedProx (Li et al., 2020) 37.20 69.10 56.51 14.90 66.45 47.15
SCAFFOLD (Karimireddy et al., 2020) 37.80 70.20 62.71 15.27 66.49 49.27
FedAvgM (Hsu et al., 2019) 32.32 64.70 68.14 29.27 70.32 46.85

Augmented Methods

Random Sampling 32.93 71.30 64.19 13.09 65.53 47.38
Direct Retrieval 34.14 72.20 66.31 19.11 67.62 50.87
LESS (Xia et al., 2024) 28.04 71.00 60.56 16.00 61.14 43.13
Self-Instruct (Wang et al., 2022) 32.92 71.90 59.73 20.67 66.54 50.79
FedDCA∗ (ours) 34.75 73.30 67.10 30.54 71.01 51.55

FedDCA (ours) with different FL strategies

FedDCA+FedAvg 36.58 74.50 67.24 35.27 73.32 52.46
FedDCA+FedProx 32.92 72.40 72.93 38.18 77.55 51.25
FedDCA+SCAFFOLD 39.87 73.20 72.68 33.09 75.50 50.26
FedDCA+FedAvgM 33.53 68.90 71.45 31.45 72.52 49.76

5.2 PERFORMANCE ANALYSIS

Performance. We evaluate the performance of FedDCA and compare it with several baselines on
four domains (see training details in Appendix A.7). As shown in Table 3, FedDCA outperforms
the other nine baselines in all domains, with a substantial improvement from at least 0.84% to the
maximum of 29.19% over other baselines. In particular, FedDCA+FedAvg and FedDCA+FedProx
performs better across four domains. In addition, to reduce the computation overhead of clients,
FedDCA∗ attempts to utilize heterogeneous encoders. We see that although FedDCA∗ has a perfor-
mance drop than FedDCA, it still outperforms other baselines. Furthermore, we report FedDCA’s
performance with different FL strategies, and we can see that no FL method can keep the leading
position in all domains. In specific, FedProx and SCAFFOLD FL strategies perform better in the
average performance. Overall, the result shows the effectiveness of FedDCA and FedDCA∗.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Additionally, Table 3 can be divided into two parts: unaugmented methods and augmented meth-
ods. We can observe that FedIT methods perform well in the code domain, even better than most
augmented methods. This could be attributed to two reasons: 1) The code domain is more about
following a certain paradigm. 2) As the local data is few, so compared with the same epoch and
batch size, the unaugmented methods learn the same data more times, which is kind of not a fair set-
ting. However, FedDCA+SCAFFOLD still surpasses the best baseline in the code domain, further
demonstrating the effectiveness of FedDCA.

Efficiency. We see that direct retrieval is the best baseline in the average performance. However, it
does not consider cross-client domain coverage, resulting in an overlapping retrieved data distribu-
tion. Self-Instruct (Wang et al., 2022) represents the upper limit performance of the generation-based
method, which is restricted to the high expense of cost, limited API call frequency, and heavy qual-
ity screening process. On the other hand, FewFedPIT (Zhang et al., 2024b) attempts to augment
local data by leveraging the pre-trained Llama2 model to perform self-instructed generation during
training. However, two concerns exist: 1) The pre-trained LLM cannot provide effective, stable,
and high-quality instruction generation. 2) Generating instructions locally is very costly regarding
both time and computational resources. Overall, generating instructions self-instructively is not a
satisfactory method for the FedDIT scenario. LESS (Xia et al., 2024) represents the augmentation
methods through gradient feature retrieval. However, its performance is underwhelming. Com-
pounding this issue, LESS presupposes access to the validation set, which is not always available,
and necessitates an initial warmup on the public dataset before calculating gradients for both the
public and validation data. This process becomes computationally burdensome with large public
datasets. In conclusion, FedDCA achieves better performance while requiring lower computational
resources and a more relaxed training condition, which shows its efficiency.

Table 4: Domain coverage of FedDCA, FedDCA∗ and
other baselines on four domains. Since unaugmented
methods do not affect domain coverage, we summa-
rize the unaugmented methods here as FedIT, includ-
ing four orthodox FL techniques: FedAvg, FedProx,
SCAFFOLD, and FedAvgM.

Method Code Med. Fin. Math.

FedIT 0.8126 0.6990 0.8529 0.7871

Random 0.8512 0.7940 0.9196 0.8651
Direct Re. 0.9396 0.8830 0.9293 0.8967
LESS 0.8509 0.7737 0.8917 0.8352
Self-Instruct 0.8966 0.8586 0.9015 0.8811
FedDCA∗ 0.9532 0.8972 0.9538 0.9096
FedDCA 0.9766 0.9348 0.9815 0.9320

Domain coverage. Each method’s do-
main coverage is shown in Table 4. Addi-
tionally, visualization of domain coverage
across different strategies can be found in
Appendix A.11. For augmented methods,
a correlation is evident between higher
domain coverage in a specific domain
and improved performance of the method
within that domain. Given that Fed-
DCA aims to maximize the domain cover-
age through greedy client center selection,
therefore it achieves the highest domain
coverage in all domains, which surpasses
other baselines from 4.82% to 21.36% av-
erage relative improvement. Furthermore,
while FedDCA∗ employs a smaller en-
coder on the client side to enhance com-
putational efficiency, this leads to a slight compromise in semantic precision, observed as a relative
drop of 2.89% in average domain coverage. Nevertheless, FedDCA∗ still outperforms the best base-
line by an average of 2.78%. In brief, the result proves the effectiveness of FedDCA and FedDCA∗

in domain coverage augmentation.

5.3 COMPUTATION ANALYSIS

Table 5: Computational cost compari-
son between FedDCA and FedDCA∗.
We report the encoding time on the pub-
lic dataset and the model size of each
encoder.

Method Encoding
Time

Model
Size

FedDCA 15 min 46 s 335 M
FedDCA∗ 5 min 02 s 22.7 M

Heterogenous encoder setting FedDCA∗ allows the sys-
tem to be more scalable and flexible based on different
client capacities. To show the computational efficiency
of FedDCA∗ compared with FedDCA, we compare these
two methods from the following aspects: 1) Encoder
model size. 2) Encoding time overhead. We first give
the evaluation setup of computation analysis.

Evaluation setup. The encoders used for FedDCA and
FedDCA∗ on the client side are bge-large-en-v1.5
and all-MiniLM-L6-v2 respectively (detailed in Ap-
pendix A.7). Then, we show the model size and the time

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

overhead of encoding the public instructions in Table 5. Compared to FedDCA, FedDCA∗ has sig-
nificant computational and time advantages while maintaining acceptable performance (shown in
Table 3). This is accomplished by employing heterogeneous encoders and configuring a projector
on the server to achieve dimensional mapping.

5.4 PRIVACY ANALYSIS

Next, we evaluate the privacy-preserving capability of different ratios of public data against memory
extraction attacks (Carlini et al., 2021; Zhang et al., 2024a), which utilizes the autoregression nature
of LLM to extract information from the memory (Xu et al., 2024).

Evaluation setup. We focus on one client’s instruction tuning in FedDIT, using FedDCA for in-
struction augmentation with 1000 to 5000 public instructions. We set up 10 clients with full partic-
ipation for 10 rounds. Specifically, we record the average ROUGE-L score (Lin, 2004) of client
c0 for each round. The designed prompt to extract instructions memorized by the LLM is de-
tailed in Appendix A.9. For each setting, we repeat memory extraction 100 times and report the
average ROUGE-L score based on each generated instruction and all local data instructions to eval-
uate the privacy-preserving capability of different public data amounts. Specifically, denoting the
generated N instructions as I and the client’s local instructions Il. The calculation is defined as
1
N

∑N
i=1 ROUGE-L(Ii, Il).

Code Med. Fin. Math.
Domains

0.00

0.05

0.10

0.15

0.20

Av
er
ag
e
R
O
U
G
E
-L
 S
co
re

Base Data
1k
2k
3k
4k
5k

(a) Average ROUGE-L scores with different
amounts of public data.

0 2 4 6 8
Round

0.12

0.14

0.16

0.18

0.20

0.22

0.24
Av

er
ag

e
R

O
U

G
E

-L
 S

co
re

Code Base
Code 5k
Med. Base
Med. 5k
Fin. Base
Fin. 5k
Math. Base
Math. 5k

(b) Average ROUGE-L scores per round for base-
data-only and augmented settings.

Figure 3: Privacy preservation analysis against memory extraction attack across four domains.

Results. We report the average ROUGE-L scores for base-data-only and various public data fine-
tuning in Figure 3(a). The results show no significant correlation between the public data ratio and
privacy-preserving capability in the same training round. In addition, only using local data has a
higher risk of privacy leakage than augmented methods.

Figure 3(b) shows the average ROUGE-L score trends per round for each domain, where augmented
fine-tuning uses 5000 public data. Initially, the ROUGE-L scores for augmented settings increase,
then decrease or converge, while the base-data-only scores continue to rise, especially in the code
domain. This indicates that with more training rounds, base-data-only fine-tuning captures more
privacy information, while the privacy leakage risk in augmented fine-tuning decreases or converges.

6 CONCLUSION

We reveal that in the context of FedDIT, there exists a non-monotonic relationship between data
heterogeneity and model performance, while the cross-client domain coverage has a significant im-
pact on model effectiveness. In response, we propose a novel FedDIT method called FedDCA,
which optimizes the domain coverage through greedy client center selection and retrieval-based in-
struction augmentation. Additionally, FedDCA∗ leverages heterogeneous encoders to reduce the
client-side computation overhead and improve system scalability. Experiments across four domains
demonstrate the effectiveness of FedDCA and the efficiency of FedDCA∗. Further privacy analysis
indicates that as fine-tuning advances, the risk of private data leakage diminishes or converges in
FedDIT with instruction augmentation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. A Survey on Homomorphic
Encryption Schemes: Theory and Implementation. ACM Comput. Surv., 51(4):79:1–79:35, July
2018. ISSN 0360-0300. doi: 10.1145/3214303.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

G. Cornuejols, G. Nemhauser, and L. Wolsey. The Uncapicitated Facility Location Problem. Tech-
nical report, Cornell University Operations Research and Industrial Engineering, August 1983.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Wenxiang Jiao, Jen-tse Huang, Wenxuan Wang, Zhiwei He, Tian Liang, Xing Wang, Shuming Shi,
and Zhaopeng Tu. ParroT: Translating during chat using large language models tuned with hu-
man translation and feedback. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of
the Association for Computational Linguistics: EMNLP 2023, pp. 15009–15020, Singapore, De-
cember 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
1001. URL https://aclanthology.org/2023.findings-emnlp.1001.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learn-
ing. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
5132–5143. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
karimireddy20a.html.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised Contrastive Learning. In Advances in Neural
Information Processing Systems, volume 33, pp. 18661–18673. Curran Associates, Inc., 2020.

11

https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.findings-emnlp.1001
https://proceedings.mlr.press/v119/karimireddy20a.html
https://proceedings.mlr.press/v119/karimireddy20a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie,
Yaliang Li, Bolin Ding, and Jingren Zhou. Federatedscope-llm: A comprehensive package for
fine-tuning large language models in federated learning. arXiv preprint arXiv:2309.00363, 2023.

Changho Lee, Janghoon Han, Seonghyeon Ye, Stanley Jungkyu Choi, Honglak Lee, and Kyunghoon
Bae. Instruction matters, a simple yet effective task selection approach in instruction tuning for
specific tasks. arXiv preprint arXiv:2404.16418, 2024.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated Optimization in Heterogeneous Networks. Proceedings of Machine Learning and Sys-
tems, 2(arXiv:1812.06127):429–450, March 2020. doi: 10.48550/arXiv.1812.06127.

Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summa-
rization Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=UnUwSIgK5W.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017. ISBN 2640-3498.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Code-
gen2: Lessons for training llms on programming and natural languages. arXiv preprint
arXiv:2305.02309, 2023.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatGPT good at search? investigating large language models as re-ranking
agents. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
URL https://openreview.net/forum?id=3Q6LON8y2I.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset, February 2024.

Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9(86):2579–2605, 2008. ISSN 1533-7928.

Fanqi Wan, Xinting Huang, Tao Yang, Xiaojun Quan, Wei Bi, and Shuming Shi. Explore-
Instruct: Enhancing Domain-Specific Instruction Coverage through Active Exploration. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 9435–9454, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.587.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=BkluqlSFDS.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze Chen, Yuansen Zhang, Rui Zheng, Junjie
Ye, Qi Zhang, Tao Gui, et al. Instructuie: Multi-task instruction tuning for unified information
extraction. arXiv preprint arXiv:2304.08085, 2023a.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Privatelora: For efficient privacy
preserving llm. arXiv preprint arXiv:2311.14030, 2023b.

12

https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=3Q6LON8y2I
https://openreview.net/forum?id=BkluqlSFDS

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=gEZrGCozdqR.

Junjie Wu. Advances in K-means clustering: a data mining thinking. Springer Science & Business
Media, 2012.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prab-
hanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model
for finance. arXiv preprint arXiv:2303.17564, 2023.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS:
Selecting influential data for targeted instruction tuning. In International Conference on Machine
Learning (ICML), 2024.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing. ArXiv, abs/2406.08464, 2024. URL https://api.semanticscholar.org/
CorpusID:270391432.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. Fingpt: Open-source financial large
language models. FinLLM Symposium at IJCAI 2023, 2023a.

Yi Yang, Yixuan Tang, and Kar Yan Tam. Investlm: A large language model for investment using
financial domain instruction tuning. arXiv preprint arXiv:2309.13064, 2023b.

Rui Ye, Zhenyang Ni, Fangzhao Wu, Siheng Chen, and Yanfeng Wang. Personalized Federated
Learning with Inferred Collaboration Graphs. In Proceedings of the 40th International Confer-
ence on Machine Learning, pp. 39801–39817. PMLR, July 2023.

Rui Ye, Rui Ge, Xinyu Zhu, Jingyi Chai, Yaxin Du, Yang Liu, Yanfeng Wang, and Siheng Chen.
Fedllm-bench: Realistic benchmarks for federated learning of large language models. arXiv
preprint arXiv:2406.04845, 2024a.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang,
and Siheng Chen. Openfedllm: Training large language models on decentralized private data
via federated learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’24, pp. 6137–6147, New York, NY, USA, 2024b. Associa-
tion for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671582. URL
https://doi.org/10.1145/3637528.3671582.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv preprint arXiv:2405.03548, 2024.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Kama-
lika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
7252–7261. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
yurochkin19a.html.

Boyu Zhang, Hongyang Yang, and Xiao-Yang Liu. Instruct-fingpt: Financial sentiment analysis by
instruction tuning of general-purpose large language models. FinLLM Symposium at IJCAI 2023,
2023a.

Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
FedALA: Adaptive Local Aggregation for Personalized Federated Learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 37(9):11237–11244, June 2023b. ISSN 2374-3468,
2159-5399. doi: 10.1609/aaai.v37i9.26330.

13

https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://api.semanticscholar.org/CorpusID:270391432
https://api.semanticscholar.org/CorpusID:270391432
https://doi.org/10.1145/3637528.3671582
https://proceedings.mlr.press/v97/yurochkin19a.html
https://proceedings.mlr.press/v97/yurochkin19a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Guoyin Wang, and Yi-
ran Chen. Towards building the federated gpt: Federated instruction tuning. arXiv preprint
arXiv:2305.05644, 2023c.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023d.

Xinlu Zhang, Chenxin Tian, Xianjun Yang, Lichang Chen, Zekun Li, and Linda Ruth Petzold.
Alpacare: Instruction-tuned large language models for medical application. arXiv preprint
arXiv:2310.14558, 2023e.

Yiming Zhang, Nicholas Carlini, and Daphne Ippolito. Effective prompt extraction from language
models. In First Conference on Language Modeling, 2024a. URL https://openreview.
net/forum?id=0o95CVdNuz.

Yue Zhang, Leyang Cui, Deng Cai, Xinting Huang, Tao Fang, and Wei Bi. Multi-task instruction
tuning of llama for specific scenarios: A preliminary study on writing assistance. arXiv preprint
arXiv:2305.13225, 2023f.

Zhuo Zhang, Jingyuan Zhang, Jintao Huang, Lizhen Qu, Hongzhi Zhang, Qifan Wang, Xun Zhou,
and Zenglin Xu. FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction
Tuning. arXiv preprint arXiv:2403.06131, 2024b.

Kun Zhou, Beichen Zhang, Jiapeng Wang, Zhipeng Chen, Wayne Xin Zhao, Jing Sha, Zhichao
Sheng, Shijin Wang, and Ji-Rong Wen. Jiuzhang3.0: Efficiently improving mathematical reason-
ing by training small data synthesis models. arXiv preprint arXiv:2405.14365, 2024.

14

https://openreview.net/forum?id=0o95CVdNuz
https://openreview.net/forum?id=0o95CVdNuz

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RELATED WORK

Federated Instruction Tuning. Instruction tuning has been widely applied across various applica-
tion areas of large language models (LLM), serving as a key technique to enhance the capabilities
and controllability of LLM (Zhang et al., 2023d; Wei et al., 2022). Recently, federated instruc-
tion tuning (FedIT) has emerged as an effective strategy for the distributed optimization of LLMs,
leveraging federated learning (FL) protocols to improve the handling of privacy-sensitive tasks in
real-world scenarios. So far, several FedIT frameworks (Ye et al., 2024b;a; Zhang et al., 2023c) have
been established to evaluate the effectiveness of FedIT across multiple datasets, tasks, and FL meth-
ods. While these platforms provide a foundation for research, they have not yet introduced more
complex federated algorithms and deeply investigate the challenging problems and factors affecting
FedIT, which are crucial for advancing this field.

PrivateLoRA (Wang et al., 2023b) addresses privacy and efficiency issues by exploiting the low-
rank properties of residual activations to reduce communication costs, significantly lowering the
communication overhead through collaborative computation between the server and clients while
effectively maintaining the privacy of local data. While FewFedPIT (Zhang et al., 2024b) focuses
on the few-shot learning setting in FedIT, using self-generated data by pre-trained LLMs locally to
mitigate the paucity of data and first discussing memory extraction attacks within FedIT.

Domain Instruction Augmentation. In the real world, there is an urgent need for training LLMs
with specific functionalities (e.g., reasoning capabilities) or domain-specific LLMs (e.g., code (Ni-
jkamp et al., 2023; Luo et al., 2024), medical (Zhang et al., 2023e), financial (Yang et al., 2023b;a;
Zhang et al., 2023a; Wu et al., 2023), mathematical (Yue et al., 2024; Luo et al., 2023)). Existing
works tend to use open-source domain-specific instruction tuning datasets for training. However, the
target domain may not always have corresponding ready-made domain-specific instruction datasets.
Even if they exist, these datasets are often limited in scale.

Several studies investigate domain-specific instruction augmentation, which can be categorized into
three aspects: 1) Reusing human-curated public datasets (Wang et al., 2023a; Zhang et al., 2023f;
Jiao et al., 2023; Lee et al., 2024; Xia et al., 2024). For instance, Parrot (Jiao et al., 2023) enhances
translation capabilities of LLMs in chat by converting bilingual sentences into instruction-following
datasets. Furthermore, works like INSTA (Lee et al., 2024) and LESS (Xia et al., 2024) attempt
efficient domain-specific instruction augmentation via dense retrieval. INSTA (Lee et al., 2024)
uses instructions without responses for effective retrieval. LESS (Xia et al., 2024) assumes access to
a validation set and uses the warmup LLM’s gradients of the train and validation sets for retrieval. 2)
Using seed tasks for self-instruct (Luo et al., 2024; Wan et al., 2023): Explore-Instruct (Wan et al.,
2023), for example, employs activate exploration to tree-model domain tasks from both depth and
breadth, increasing seed instructions’ coverage of the domain, and subsequently generating broader
in-domain instructions through self-instruct. 3) Scaling instructions from the web: Recent works
(Yue et al., 2024; Zhou et al., 2024) highlight the immense potential of mining naturally occurring
instructions from the internet. Compared to generated data, web-mined instructions exhibit less
bias and greater diversity. MAmmoTH2 (Yue et al., 2024) firstly retrieves domain-relevant texts
and employs a LLM to extract Q-A pairs, further refining them into instruction-response pairs.
Jiuzhang3.0 (Zhou et al., 2024) distills GPT’s instruction generation capabilities into a smaller model
and then uses it to generate instructions from the internet. In conclusion, models fine-tuned with
augmented instructions have shown promising domain-specific capabilities.

To obtain a well-performing LLM in the specific domain within the distributed environment, we uti-
lize a multi-domain dataset as public data on the server side and perform domain-specific instruction
augmentation based on the client’s local instructions.

A.2 THE SETTING OF FEDDIT

A.2.1 WHY THIS SETTING?

FedDIT enriches the local data through various instruction augmentation strategies (Zhang et al.,
2024b; Xia et al., 2024; Wang et al., 2022), which can be divided into two categories: 1) Generative
methods, which generate instructions through the pre-trained LLM locally or API. 2) Retrieval-based

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

methods, which retrieve instructions from the web. The former methods are either compromising
privacy or high computational overhead. Thus, in this work, we focus on retrieval-based methods to
utilize the diverse and high-quality public data.

In addition, we abstract the public data as a server-hosted multi-domain dataset. The presence
of a public dataset on the server is only one possible scenario. The core innovation of this work
lies in maximizing domain coverage, and the proposed algorithm is independent of the presence
of a public dataset on the server. Even if the server does not have a public dataset, clients can
retrieve public instructions based on the received client centers from the server, thereby achieving
data augmentation that maximizes domain coverage.

Overall, this setting is chosen for simplification, allowing more attention on the federated instruction
augmentation algorithms.

A.2.2 THE DEFINITION OF DOMAIN

The concept of “domain” is flexible and hierarchical. Currently, there is no precise definition of a
domain. For example, in Explore-Instruct (Wan et al., 2023), “Brainstorming” and “Rewriting” are
considered two domains, but they could also be regarded as two tasks under the general domain. For
clarity, we adopt a clearer domain classification in this paper (e.g., code, medical, financial, math).

A.2.3 THE DISTRIBUTION OF PUBLIC DATA

If distributed clients aim to solve tasks based on existing knowledge, the public dataset will in-
evitably contain knowledge relevant to those domains. This could come from the original corpus
(which can be converted into instruction-response pairs using GPT) or from pre-constructed instruc-
tion datasets on the website. So the distribution of public dataset can be categorized as follows:
containing held-in or held-out instructions. The held-in indicate that the public dataset contains in-
structions of the specific task that clients aim to solve, while the held-out indicate that the public
dataset does not contain this task’s instructions.

The default setting in this work is that the public dataset contains held-in instructions. Further, we
show the effectiveness of FedDCA on the held-out settings in Appendix A.10.

A.3 WHAT TRULY COUNTS IN FEDDIT

This section will first analyze the correlation between different non-iid levels and the model’s per-
formance with separate experiments for both single and multiple domains in Section A.3.1. Further,
to demonstrate the impact of non-iid on FedDIT, we compare the performance of the global model
trained on augmented data based on iid and non-iid cross-client data distribution. Additionally, we
suggest that domain coverage is a key factor for FedDIT in Section A.3.2.

A.3.1 DATA HETEROGENEITY IS NOT MATTER IN FEDDIT

Following the traditional approach of constructing different degrees of non-iid, which are widely
used in federated learning (Wang et al., 2020; Yurochkin et al., 2019), we adopt Dirichlet distribu-
tion to construct various heterogeneity and use k-means with the cluster num ξ = 100 to pseudo
labeling instructions. Dirichlet distribution is affected by the hyperparameter α, which enhances
heterogeneity with a smaller α and decreases heterogeneity with a larger α. We choose four widely
used heterogeneity, which are α = [0.01, 0.1, 1, 10] (Ye et al., 2023; Zhang et al., 2023b; Li et al.,
2021). Figure 4 shows a visualization of the data distribution with different heterogeneity on the
code dataset.

We perform instruction tuning on different amount of clients with different heterogeneity. Specifi-
cally, the client’s number are 10 and 100 respectively with 2 randomly selected clients participate in
each round. For each domain, we only use the in-domain data and then perform FedIT. The training
details are shown in Appendix A.7. We perform the experiments 3 times with different random seeds
(42, 43 and 44) and report the average performance and the standard deviation in each domain. As
shown in Table 6, the performance of LLM does not decrease due to the increase of data hetero-
geneity but shows a non-monotonic correlation, which indicates that the performance of LLM does
not directly depend on data heterogeneity and other factors that play a key role.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) α = 10 (b) α = 1 (c) α = 0.1 (d) α = 0.01

Figure 4: Visualization of client data distribution with α = [10, 1, 0.1, 0.01] in the code domain.

#Clients Metric α = 10 α = 1 α = 0.1 α = 0.01

10

H-Eval 36.17 ± 1.03 34.54 ± 0.35 32.71 ± 2.75 34.75 ± 2.65
M-Med 71.80 ± 0.84 71.60 ± 0.70 71.33 ± 0.37 71.56 ± 1.37

FPB 66.41 ± 3.31 68.72 ± 4.54 68.39 ± 2.65 70.07 ± 3.50
FiQA 22.90 ± 9.34 32.48 ± 9.85 26.42 ± 6.67 38.42 ± 8.78
TFNS 69.45 ± 2.34 72.99 ± 3.20 71.65 ± 1.64 73.66 ± 2.90

GSM8K 56.51 ± 0.14 59.28 ± 0.38 56.75 ± 0.23 57.64 ± 0.29

100

H-Eval 36.57 ± 1.84 36.57 ± 3.48 34.12 ± 0.26 36.88 ± 0.13
M-Med 70.73 ± 0.37 72.20 ± 0.45 71.83 ± 0.37 71.60 ± 0.45

FPB 67.87 ± 1.13 64.10 ± 2.07 66.71 ± 1.97 67.59 ± 1.42
FiQA 33.44 ± 3.01 19.87 ± 5.83 33.93 ± 3.54 33.69 ± 6.58
TFNS 72.22 ± 0.74 70.13 ± 2.59 73.01 ± 0.22 71.99 ± 0.95

GSM8K 54.32 ± 0.41 51.27 ± 0.28 58.94 ± 0.36 57.81 ± 0.19

Table 6: Performance (%) of different heterogeneity in each domain with 10 and 100 clients.

A.3.2 DOMAIN COVERAGE: A KEY FACTOR IN FEDDIT

Explore-Instruct (Wan et al., 2023) enhances the coverage of domain-specific seed tasks through
active exploration, then uses the self-instruct method for instruction data augmentation. This ap-
proach highlights the impact of domain coverage on domain-specific instruction tuning. Inspired
by Explore-Instruct, we attempt to conduct more in-depth and extensive experiments to study the
effect of domain coverage on FedDIT. Firstly, we define the domain coverage of cross-client data in
the FL setting. Assume the dataset of in-domain data Dd represents the latent data distribution of
this domain and the cross-client data is defined as Dc = ∪Nk=1

(
Dl

k ∪Dg
k

)
. Inspired by the facility

location function (Cornuejols et al., 1983), we define the domain coverage of Dc respect to Dd as
follows:

d(Dd, Dc) =
1

|Dd|
∑
d∈Dd

maxv∈(Dc∩Dd)sim(d, v), (5)

Table 7: Performance(%) and domain coverage of
iid and non-iid settings on different domains. The
higher domain coverage correlates with better per-
formance.

Test Set Performance (%) Domain Coverage

iid non-iid iid non-iid

H-Eval 35.36 33.53 0.8538 0.7994
M-Med 70.20 71.00 0.7800 0.8027

FPB 58.58 64.19
0.8523 0.9327FiQA 17.09 19.27

TFNS 66.16 69.09
GSM8K 40.50 38.50 0.9137 0.8448

where sim(d, v) is the similarity between d and
v. Specifically, we use the cosine similarity
function in FedDCA. Note that we only use
the in-domain data in Dc to calculate the do-
main coverage because the out-of-domain data
would mislead the domain coverage evaluation,
as shown in Figure 5.

To better align with the real-world scenarios,
we explore instruction augmentation based on
both iid and non-iid cross-client data distribu-
tion and adopt direct data retrieval as described
in Appendix A.4 for FedDIT. We set the num-
ber of clients to 10, while each client has 100
local instructions and obtains 5000 augmented
public instructions from the server.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 5: Misleadning of out-
of-domain data on domain
coverage calculation.

To construct iid data distribution, we randomly sample 1,000 from
multi-domain datasets (code, medical, financial, mathematical, and
general), which is detailed in Table 8 and divide them into 10 shards
as each client’s local data. To construct non-iid data distribution, we
perform k-means clustering with ξ = 100. Each client randomly
samples 100 instructions from different randomly selected clusters.
Furthermore, for both iid and non-iid settings, direct data retrieval
is performed based on the client’s local data.

Table 7 presents the performance of FedDIT on different domains
with iid and non-iid settings and shows the domain coverage in four
domains. We can observe that both iid and non-iid settings out-
perform in some domains, but both collectively indicate that higher
domain coverage correlates with better performance.

A.4 DIRECT DOMAIN DATA RETRIEVAL

In this section, we first show the detail of instruction-based dense retrieval in Appendix A.4.1, which
is both used in direct retrieval and FedDCA. Then, we explain the direct retrieval algorithm in
Appendix A.4.2.

A.4.1 INSTRUCTION BASED DENSE RETRIEVAL

Suppose an instruction dataset D consists of several instances. Each instance is a
(Instruction,Response) pair. For instructions that have Input, we concatenate the Instruction and
Input as Instruction, which is consistent with OpenFedLLM (Ye et al., 2024b). Then we use only
the instruction for encoding and dense retrieval. Denote E as a cluster center and I as an instruction
of the public dataset Dp, then we measure the instruction-based similarity score for dense retrieval as
follows: Score(E , I) = sim(E , wenc(I)), where sim(·, ·) is the cosine similarity function. Based
on the computed similarity between E and each I in the public data, we then select the top-Np

k
instructions as the retrieved public data for domain data augmentation.

Algorithm 2 Direct domain data retrieval

Parameters:
Clients’ local datasets D = {D1, D2, . . . , DN}; Public dataset Dp; Local datasets Dl =
{Dl

1, D
l
2, . . . , D

l
N}; Number of clusters ξ; Encoder model wenc; Pre-encoded public instruc-

tion embeddings E .
1: Dg ← ∅
2: for i ∈ {1, 2, . . . , N} do
3: E ′ ← {wenc(x) | x ∈ Dl

i,instruction} ▷ Encode the local instructions
4: C ← k-means(ξ).fit(E ′) ▷ Cluster local instructions, return cluster centers C
5: S ← C · ET ▷ Compute the similarity score between C and E
6: I ← ∅
7: for j ∈ {1, 2, . . . , ξ} do
8: S ′ ← {s | s ∈ Sj , index(s) /∈ I} ▷ Filter the selected indices
9: I ′ ← indices of the top-N

p
k

ξ elements in S ′ ▷ Retrieve the top Np
k

ξ indices
10: I ← I ∪ I ′ ▷ Update the selected indices
11: end for
12: Dg

i ← {D
p
j | j ∈ I} ▷ Selected public instructions

13: Di ← Dg
i ∪Dl

i ▷ Obtain the augmented instruction dataset Di

14: end for

A.4.2 DIRECT RETRIEVAL

The direct domain data retrieval only utilizes instructions of the client’s local data without responses
to perform the retrieval-based domain data augmentation. The detailed algorithm is described in

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2. For each client, we start by encoding the local instructions using the encoder model
wenc. Next, we apply the k-means algorithm to cluster the embeddings into ξ clusters. Then ξ
cluster centers are sent to the server for retrieval-based domain data augmentation. Subsequently,
the retrieved public data is sent to the client for instruction tuning.

A.5 TRAIN AND TEST DATASET INFORMATION

Here we provide the train and test dataset details of code (CodeAlpaca2), medical (MedAlpaca3),
financial (FinGPT (Yang et al., 2023a)) and mathematical (MathInstruct4) domain, respectively.

Table 8: Dataset information of each domain.

Dataset name Domain Type Nsample Metric

CodeAlpaca Code Train 20,022 -
HumanEval Code Test 164 Pass@1

MedAlpaca Medical Train 33,955 -
MMLU-Med Medical Test 1,089 Acc

FinGPT Financial Train 76,772 -
FPB Financial Test 152 Acc
FiQA Financial Test 35 Acc
TFNS Financial Test 299 Acc

MathInstruct Mathematical Train 224,567 -
GSM8K Mathematical Test 1,319 Exact Match

Alpaca General Train 52,002 -

As shown in Table 8, the public data consists of four domain-specific instruction datasets and a
general instruction dataset, which are CodeAlpaca, MedAlpaca, FinGPT, MathInstruct, and Al-
paca, respectively. For each domain’s FedDIT, we randomly select 1000 samples from the in-
domain instruction and split them into 10 shards as each client’s local dataset. The rest of
the instructions are used as the public dataset Dp. For evaluation, we use HumanEval for
the code domain, MMLU-Med for the medical domain (specifically using subjects anatomy,
clinical knowledge, college biology, college medicine, medical genetics
and professional medicine in MMLU), FPB, FiQA and TFNS for the financial domain, and
GSM8K for the mathematical domain.

A.6 DISCUSSION ON DOMAIN INFERENCE ATTACK

The server may inference the clients’ data domain when the domain data retrieval is performed on
the server side. However, the proposed algorithm FedDCA is independent of the presence of a
public dataset on the server. Even if the server does not have a public dataset, clients can upload
their cluster centers to the server, which selects a set of client centers and sends them back to the
clients. Each client can then retrieve data from the website based on the received client center by
itself, thereby achieving data augmentation while maximizing the cross-client domain coverage.

In that case, since the server does not know the encoder used by the client, it cannot infer the
semantic meaning of the embedding. Thus, for the server, it becomes significantly more challenging
to infer the client’s domain, let alone apply any privacy protection techniques to the embeddings.

We provide two examples for illustration. Two different encoders are used as
client’s and server’s respectively: BAAI/bge-large-en-v1.5 (denoted as w1) and
google-bert/bert-large-uncased (denoted as w2). Both encoders output 1024-
dimensional features.

2https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k
3https://huggingface.co/datasets/medalpaca
4https://huggingface.co/datasets/TIGER-Lab/MathInstruct

19

https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k
https://huggingface.co/datasets/medalpaca
https://huggingface.co/datasets/TIGER-Lab/MathInstruct

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Example 1: Both w1 and w2 take "hello world" as input, and the cosine similarity between
their embeddings is 0.1829.

Example 2: Three instructions are used:

• Instruction 1: Create an array of length 5 which contains all even numbers between 1 and
10.

• Instruction 2: Write a replace method for a string class which replaces the given string
with a given set of characters.

• Instruction 3: What is the sentiment of this news? Please choose an answer from
{negative/neutral/positive}. Teollisuuden Voima Oyj, the Finnish utility known as TVO,
said it shortlisted Mitsubishi Heavy’s EU-APWR model along with reactors from Areva,
Toshiba Corp., GE Hitachi Nuclear Energy, and Korea Hydro & Nuclear Power Co.

For these instructions, Instruction 1 is passed to w1 and Instructions 2 and 3 are passed to w2, which
will result in three embeddings: e1, e2, and e3. The cosine similarity between e1 and e2 is 0.1464,
while the similarity between e1 and e3 is 0.1879. Instructions 1 and 2 are in the same domain,
whereas they have a lower cosine similarity.

In conclusion, as demonstrated above, when the clients do not perform domain-specific instruc-
tion retrieval on the server side, the server cannot infer the client’s domain based on the uploaded
embeddings.

A.7 IMPLEMENTATION DETAILS

Figure 6: The projector used on the
server side for feature alignment,
which consists of two fully con-
nected layers and a ReLU activa-
tion layer in between.

We consider FedDIT in the cross-device scenario, N = 10
clients, R = 30 rounds, where we randomly sample 2 clients
to be available for each round. Then, each available client
performs FedDIT for 10 steps with AdamW optimizer, and
the batch size is B = 32 in a round. The initial learning
rate is 5e − 5 with a cosine learning rate scheduler. Our ex-
periment utilizes the widely used LLM, Llama3-8B5 as the
base model with 2048 max sequence length and adopts LoRA
tuning method. The rank of LoRA is 16, and the scalar al-
pha is 16. For k-means (Wu, 2012), we set cluster num ξ
= 10 and for FedDCA we set the similarity threshold α =
0.7. For FedDCA∗, we set the temperature parameter τ =
0.5 for contrastive learning (Khosla et al., 2020). We utilize
bge-large-en-v1.56 as both the client and server’s en-
coder as default, which outputs embeddings of 1024 dimen-
sions. While we utilize all-MiniLM-L6-v27 as the client’s
small encoder which outputs embeddings of 384 dimensions and bge-large-en-v1.5 as the
server’s encoder for FedDCA∗.

Projector. To reduce the computational overhead of clients, we propose a heterogeneous encoder
method called FedDCA∗. We utilize a projector to perform the dimension alignment between the
small encoder on the client side and the large decoder on the server side. As shown in Figure 6,
where dl is the dimension of the client-side encoder, dg is the dimension of the server-side encoder.

A.8 PROMPTS USED IN THE SELF-INSTRUCT DATA GENERATION

To generate the Self-Instruct data, we prompt GPT-3.5 to generate the instruction with the designed
prompt in Figure 7. Specifically, we randomly sample two examples from the client’s local data to
guide GPT-3.5 generating the in-domain instruction and one example from the client’s local data for
one-shot in-context learning to guide GPT-3.5 generating responses into the example’s format.

5https://huggingface.co/meta-llama/Meta-Llama-3-8B
6https://huggingface.co/BAAI/bge-large-en-v1.5
7https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

20

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 7: Prompts used in the Self-Instruct data generation. (a) Prompt for generating new instruc-
tions. Two examples are randomly sampled from the client’s local data for in-context demonstration.
(b) Prompt for generating responses. We prompt GPT-3.5 to generate responses with a randomly
selected example for one-shot in-context learning.

A.9 PROMPT USED FOR MEMORY EXTRACTION ATTACK

As we use Llama3-8B as our base model and format the instructions and responses into the Alpaca’s
format, to utilize the auto-regression nature of LLM to extract the instruction, we prompt the model
to generate the instruction using the prompt in Figure 8, which is exactly the prefix of the Alpaca’s
template.

Figure 8: Prompt used for memory extraction attack.

A.10 FURTHER ANALYSIS

To further study the effect of different hyperparameters of FedDCA, we undertake a thorough anal-
ysis including various retrieval amounts and different k-means cluster numbers ξ. In addition, we
perform the ablation study on whether using the similarity threshold α in the greedy client center
selection.

Held-out Setting. Considering this setting in the financial domain, to construct the held-out set-
ting, given that the training set FinGPT and the test sets FPB, FiQA, and TFNS are all related to
sentiment analysis tasks. As clients aim to train a model adept at performing sentiment analysis
through federated learning, we keep the setting of test sets. Meanwhile, the FinGPT’s instructions in
public data are replaced with data from the Sujet-Finance-Instruct-177k dataset where
task type=qa. The clients’ local data are still randomly sampled from FinGPT. This approach
yields held-out public data.

Table 9: Performance (%) on the test set of financial domain after 30 rounds’ federated instruction
tuning.

Method FPB FiQA TFNS

Zero Shot 55.94 18.54 59.21
Base Data 58.25 14.18 66.62
Random Sampling 60.39 9.45 65.45
FedDCA 60.89 18.91 67.37

As shown in Table 9, it can be observed that even when in the held-out setting, FedDCA still achieves
performance improvements compared to other baselines. Additionally, using the Random Sampling
data augmentation strategy resulted in performance degradation on the FiQA dataset. This further
underscores the necessity of selecting an appropriate data augmentation strategy.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Effect of Retrieval Number. We report the performance and the corresponding domain coverage
of FedDCA with different retrieval amounts on the four domains in Figure 9, respectively. We can
see that the domain coverage of FedDCA is increasing along with the retrieval amount in different
trends, as well as the performance. Specifically, the domain coverage of each domain increases by
6.36%, 18.69%, 5.04%, and 8.06% in relative, respectively. Along with domain coverage increasing,
the performance of FedDCA is increasing by 3.05%, 2.20%, 4.08%, and 6.95% for each domain.
Noted that although the code domain is more about following a certain paradigm, which could
perform well with a few data and more fine-tuning rounds, it still could benefit from the instruction
augmentation.

1000 2000 3000 4000 5000
31

32

33

34

35

36

P
er
fo
rm

an
ce
(%

)

HumanEval(Pass@1)

1000 2000 3000 4000 5000

71.5

72.0

72.5

73.0

73.5

P
er
fo
rm

an
ce
(%

)
MMLU-Med(Acc)

1000 2000 3000 4000 5000
67

68

69

70

71

P
er
fo
rm

an
ce
(%

)

FPB(Acc)

1000 2000 3000 4000 5000
50.0

50.5

51.0

51.5

52.0

52.5

P
er
fo
rm

an
ce
(%

)

GSM8K(Exact Match)

1000 2000 3000 4000 5000
Retrieval Amount

0.92

0.93

0.94

0.95

0.96

0.97

D
om

ai
n
C
ov
er
ag
e

Code

1000 2000 3000 4000 5000
Retrieval Amount

0.800

0.825

0.850

0.875

0.900

0.925

D
om

ai
n
C
ov
er
ag
e

Medical

1000 2000 3000 4000 5000
Retrieval Amount

0.94

0.95

0.96

0.97

0.98

D
om

ai
n
C
ov
er
ag
e

Financial

1000 2000 3000 4000 5000
Retrieval Amount

0.86

0.88

0.90

0.92

D
om

ai
n
C
ov
er
ag
e

Mathematical

Figure 9: Effect of different retrieval amounts on the performance of FedDCA and its domain cov-
erage. We show the results on four domains separately. Here, we use the FPB test set to evaluate the
performance in the financial domain.

In addition, to further prove the effectiveness of FedDCA is independent of the retrieval amount,
we conduct the experiment that each client samples 100 samples from the public dataset and then
performs FedDIT. Random∗ and FedDCA∗ represent the default setting, where each client samples
5,000 samples.

Table 10: Performance (%) of FedDCA and Random Sampling with different amounts of sampled
public data.

Method H-Eval MMLU-Med FPB FiQA TFNS GSM8K

Base Data 39.03 68.40 58.25 14.18 66.62 47.46
Random Sampling 34.53 69.80 60.89 14.54 65.57 48.77
Random Sampling∗ 32.93 71.30 64.19 13.09 65.53 47.38
FedDCA 35.97 70.20 63.20 15.63 67.58 49.32
FedDCA∗ 36.58 74.50 67.24 35.27 73.32 52.46

The results in Table 10 show that even with a small amount of sampled data, the model performance
still improves compared to random sampling, except in the code domain, which tends to follow a
certain paradigm. This further demonstrates the effectiveness of FedDCA and its independence of
the retrieval amount.

How Far can FedDCA Go? Assume there exists a pre-trained model that has already fine-tuned
on the whole in-domain data of the internet or even all open-source public instruction datasets, is
there any room for instruction augmentation or FedDCA? To answer this question, we conduct the
following experiments on four settings: A) Fine-tuning on the whole public dataset. B) Following
A, perform further federated fine-tuning with only private clients’ local dataset. C) Following A,
each client randomly samples 100 public data for fine-tuning. D) Following A, each client samples
100 public data through FedDCA and then performs FedDIT.

As shown in Table 11, even with only 100 samples selected via FedDCA, the method not only
prevents performance degradation but also helps the model achieve better generalization within the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 11: Performance (%) of setting A, B, C, and D in each domain.

Setting H-Eval M-Med FPB FiQA TFNS GSM8K

A 38.41 69.10 75.33 41.09 71.60 53.75
B 43.90 64.30 77.97 66.54 78.26 56.40
C 41.46 66.90 74.50 29.81 70.51 57.01
D 44.12 70.90 81.43 72.00 78.81 58.90

domain. This is attributed to exposure to more diverse in-domain data during training. Meanwhile,
it can be observed that random sampling still leads to performance degradation compared to Setting
A, and even performs worse than Setting B, where no data augmentation is applied. In the financial
domain, performance degradation is also evident.

In conclusion, this experiment further highlights the necessity and effectiveness of FedDCA and
designing effective data augmentation algorithms for FedDIT.

Scalability. To evaluate the scalability of FedDCA, we conduct the experiment with 100 clients. In
each round, two clients are randomly selected for federated instruction tuning using FedAvg.

Table 12: Performance (%) and domain coverage of FedDCA and other baselines in various do-
mains. The client number is 100, and 2 clients are selected in each round.

Zero-shot Base Data Random Sampling FedDCA

Performance (%)

H-Eval 29.88 34.14 34.75 35.92
MMLU-Med 70.60 72.40 69.90 73.30
FPB 55.94 66.74 61.05 67.16
FiQA 18.54 33.45 12.00 34.51
TFNS 59.21 72.78 65.53 73.26
GSM8K 23.27 49.12 47.23 50.26

Domain Coverage

Code - 0.8282 0.8685 0.9242
Med. - 0.8377 0.8497 0.9090
Fin. - 0.9339 0.9408 0.9800
Math. - 0.8709 0.8812 0.9118

As shown in Table 12, as the number of clients increases, the amount of local data on each client
gradually grows. The model trained using only base data even outperforms random sampling in
domains other than code and narrows the gap with FedDCA. However, because FedDCA aims to
maximize the cross-client domain coverage, it achieves higher domain coverage and better perfor-
mance. In conclusion, results further demonstrate the effectiveness and scalability of FedDCA.

Impact of Different Cluster Number. The hyperparameter ξ is the number of clusters in the k-
means algorithm. The experiment is conducted on ξ = [N, 2N, 4N, 8N], where N is the number
of clients. Following the setting in Appendix A.7, we set N = 10. We report the domain coverage
of the augmented dataset via FedDCA with different cluster numbers ξ on the four domains in
Figure 10, respectively. Results show that there is no best ξ for all domains. Specifically, the best ξ
of code, medical, financial, and mathematical domains are 80, 80, 40, and 10, respectively.

Ablation Study. We conduct the experiment with FedDCA w/o similarity threshold α on the four
domains based on the FedAvg FL strategy. The performance and the corresponding domain coverage
are shown in Table 13, where FedDCA without the similarity threshold α is marked as FedDCA†.
The result shows that the performance of FedDCA with similarity threshold α is slightly better than
FedDCA without using α in code, financial, and mathematical domains, as the similarity scores
in the medical domain are relatively lower. We show the similarity score distribution of the four
domains in Figure 11. For each domain, we plot each similarity score’s distribution of 10 clients.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

20 40 60 80
k

0.9625

0.9650

0.9675

0.9700

0.9725

0.9750

0.9775

D
om

ai
n
co

ve
ra
ge

Code

20 40 60 80
k

0.935

0.940

0.945

0.950

0.955

0.960

D
om

ai
n
co

ve
ra
ge

Medical

20 40 60 80
k

0.9813

0.9814

0.9815

0.9816

0.9817

0.9818

0.9819

D
om

ai
n
co

ve
ra
ge

Financial

20 40 60 80
k

0.9320

0.9325

0.9330

0.9335

0.9340

0.9345

D
om

ai
n
co

ve
ra
ge

Mathematical

Figure 10: Impact of different cluster number ξ on the cross-client domain coverage. We report the
domain coverage of the augmented dataset via FedDCA with different cluster numbers ξ on the four
domains.

The similarity score is computed between the selected client center and the public data. Then, we
show the similarity score distribution using the histogram plot.

Table 13: Ablation study on the performance and domain coverage of FedDCA w/o similarity thresh-
old α.

Metric Performance(%) Domain Coverage
FedDCA† FedDCA FedDCA† FedDCA

H-Eval 35.97 36.58 0.8972 0.9348
M-Med 73.40 73.40 0.9348 0.9348

FPB 66.25 67.24
0.9353 0.9815FiQA 23.27 35.27

TFNS 69.34 73.32
GSM8K 51.78 52.46 0.9128 0.9320

A.11 AUGMENTATION STRATEGY VISUALIZATION

To more intuitively compare the domain coverage of different instruction augmentation methods, we
randomly sample 5,000 instructions obtained through these methods and 10,000 in-domain instruc-
tions as the background, representing the distribution of specific domains in the public dataset. We
then visualized the results using t-SNE (van der Maaten & Hinton, 2008), as shown in Figure 12.
The plot shows that FedDCA encompasses most of the in-domain data, which is consistent with
FedDCA’s domain coverage of each domain shown in Table 4. Also, we can observe that the ran-
dom sampling strategy selects a lot of out-of-domain data while does not have good coverage in
specific domains.

A.12 FREQUENTLY USED NOTATION

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 2

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

140000

160000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

25000

50000

75000

100000

125000

150000

175000

200000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 4

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

140000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 5

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

25000

50000

75000

100000

125000

150000

175000

200000
Fr
eq

ue
nc

y

Histogram of Similarity Scores 6

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

25000

50000

75000

100000

125000

150000

175000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 7

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

140000

160000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 8

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

25000

50000

75000

100000

125000

150000

175000

200000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 9

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 10

(a) Code

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

25000

50000

75000

100000

125000

150000

175000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

25000

50000

75000

100000

125000

150000

175000

200000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 2

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

25000

50000

75000

100000

125000

150000

175000

200000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

50000

100000

150000

200000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 4

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

50000

100000

150000

200000

250000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 5

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

50000

100000

150000

200000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 6

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

25000

50000

75000

100000

125000

150000

175000

200000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 7

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

50000

100000

150000

200000

250000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 8

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

25000

50000

75000

100000

125000

150000

175000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 9

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

25000

50000

75000

100000

125000

150000

175000

200000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 10

(b) Medical

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 2

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

140000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 4

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 5

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 6

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 7

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

140000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 8

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

140000

160000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 9

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 10

(c) Financial

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y
Histogram of Similarity Scores 2

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 3

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 4

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

140000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 5

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 6

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 7

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 8

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 9

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

0

20000

40000

60000

80000

100000

120000

Fr
eq

ue
nc

y

Histogram of Similarity Scores 10

(d) Mathematical

Figure 11: The similarity score distribution of the four domains. For each domain, we plot each
similarity score’s distribution of 10 clients.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

−10 −5 0 5 10
t-SNE Feature 1

−5

0

5

10

15

t-S
NE

 Fe
at
ur
e
2

code
Random Sampling
Direct Retrieval
FedDCA

(a) Code

−5 0 5 10 15
t-SNE Feature 1

−5

0

5

10

15

20

t-S
NE

 Fe
at
ur
e
2

medical
Random Sampling
Direct Retrieval
FedDCA

(b) Medical

−15 −10 −5 0 5 10 15 20 25
t-SNE Feature 1

−10

0

10

20

t-S
NE

 Fe
at
ur
e
2

financial
Random Sampling
Direct Retrieval
FedDCA

(c) Financial

−10 −5 0 5 10 15
t-SNE Feature 1

−5

0

5

10

15

20

t-S
NE

 Fe
at
ur
e
2

mathematical
Random Sampling
Direct Retrieval
FedDCA

(d) Mathematical

Figure 12: Visualization of cross-client data distribution in different domains, performing t-SNE
dimensionality reduction on retrieved instructions through various augmentation strategies. We ran-
domly sample 10,000 in-domain samples as background while randomly sampling 5,000 samples
from the cross-client augmented dataset for different instruction augmentation methods for compar-
ison.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 14: Frequently used notation.

NOTATIONS REMARK

N,C Clients number, client set C = {c1, c2, . . . , cN}.
Dp, Dd, Dc, Dl The public datasets, the in-domain data, the

cross-client dataset, client’s local private data.
N l

k, N
p
k Number of local private data on the k-th client,

number of the retrieved public data on the k-th
client.

Dl
k, D

g
k, Dk The local private data on the k-th client, the

retrieved public data on the k-th client, the
augmented dataset on the k-th client.

Λ,P, C A specific sampling strategy that performs
instruction augmentation on the server side,
selected client center set, the cluster centers
obtained locally and sent to the server for the
greedy client center selection.

ϕ,∆ϕ LLM’s pre-trained parameters, additional LoRA
parameters.

w,wenc, wp Merged model parameters from the frozen LLM’s
parameters ϕ and the additional LoRA parameters
∆ϕ, encoder model, projector model.

Fk(w;D), l(w;x, y) Loss of model w over a specific dataset D, the
instructon tuning loss of model w over a data
sample (x, y).

27

	Introduction
	Preliminaries
	Problem Formulation
	Method
	Optimization Problem
	Greedy Client Center Selection & Domain Data Retrieval
	Heterogeneous Encoder with Feature Alignment
	Discussions

	Experiments
	Experimental Setup
	Performance Analysis
	Computation Analysis
	Privacy Analysis

	Conclusion
	Appendix
	Related Work
	The Setting of FedDIT
	Why This Setting?
	The Definition of Domain
	The Distribution of Public Data

	What Truly Counts in FedDIT
	Data Heterogeneity Is Not Matter In FedDIT
	Domain Coverage: A Key Factor in FedDIT

	Direct domain data retrieval
	Instruction Based Dense Retrieval
	Direct Retrieval

	Train and Test Dataset Information
	Discussion on Domain Inference Attack
	Implementation Details
	Prompts used in the Self-Instruct data generation
	Prompt used for memory extraction attack
	Further Analysis
	Augmentation strategy visualization
	Frequently Used Notation

