Under review as a conference paper at ICLR 2025

FEDERATED INSTRUCTION TUNING OF LLLMS
WITH DOMAIN COVERAGE AUGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Domain-specific Instruction Tuning (FedDIT) utilizes limited cross-
client private data together with various strategies of instruction augmentation, ul-
timately boosting model performance within specific domains. To date, the factors
affecting FedDIT remain unclear, and existing instruction augmentation methods
primarily focus on the centralized setting without considering distributed environ-
ments. Our experiments reveal that the cross-client domain coverage, rather than
data heterogeneity, drives model performance in FedDIT. In response, we propose
FedDCA, which optimizes domain coverage through greedy client center selec-
tion and retrieval-based augmentation. For client-side computational efficiency
and system scalability, FedDCA*, the variant of FedDCA, utilizes heterogeneous
encoders with server-side feature alignment. Extensive experiments across four
distinct domains (code, medical, financial, and mathematical) substantiate the ef-
fectiveness of both methods. Additionally, we investigate privacy preservation
against memory extraction attacks utilizing various amounts of public data. Re-
sults show that there is no significant correlation between the volume of public
data and the privacy-preserving capability. However, as the fine-tuning rounds
increase, the risk of privacy leakage reduces or converges.

1 INTRODUCTION

Table 1: Performance (%) of different augmentation settings in each domain after FedDIT, under the
default setting elaborated in Appendix[A.2] Zero-shot directly inferences without fine-tuning, while
the Base Data utilizes only the client’s local data for FedDIT. Additionally, we compare FedDCA
with other two augmentation strategies performed on the server: random sampling (Random for
short) and direct retrieval (Direct Re. for short and is described in Appendix Ef[), respectively.

Domain \ Task/Metric \ Zero-shot Base Data Random Direct Re. FedDCA (ours)
Code | HumanEval/Pass@1 | 29.88 39.03 32.93 34.14 36.58
Med \ MMLU-Med/Acc. \ 70.60 68.40 71.30 72.20 74.50
FPB/Acc. 55.94 58.25 64.19 66.31 67.24
Fin. FiQA/Acc. 18.54 14.18 13.09 19.11 35.27
TFNS/Acc. 59.21 66.62 65.53 67.62 73.32
Math. \ GSMB8K/Exact Match \ 23.27 47.46 47.38 50.87 52.46

Recently, federated instruction tuning (FedIT) has gained attention as a novel approach that lever-
ages the principles of federated learning (FL) to facilitate collaborative training of large language
models (LLM) in distributed environments while maintaining the confidentiality of private data
(McMabhan et al., 2017 |Ye et al., [2024b}, Zhang et al., [2023c)). This methodology allows for the
exchange of model parameters among distributed data holders, thereby achieving a careful balance
between privacy preservation and efficient model optimization. Despite the establishment of various
FedIT frameworks (Ye et al.| 2024b}; [Kuang et al., 2023} |Zhang et al., 2023c)), existing literature has
not adequately addressed the practical challenges that Federated Domain-specific Instruction Tun-
ing (FedDIT) may encounter in real-world applications. For instance, FedIT generally necessitates

Under review as a conference paper at ICLR 2025

a sufficient amount of instruction data for fine-tuning, which is often a shortage in domain-specific
fine-tuning contexts (Zhang et al.| 2024b)).

In this study, we investigate FedDIT, a novel approach within the FL paradigm aimed at boosting
the performance of LLMs in specific domains. Unlike general FedIT, which seeks to enhance model
effectiveness across diverse tasks without accounting for local data shortage, FedDIT encounters
the unique challenge of clients possessing only a limited quantity of local domain-specific data. To
overcome this, FedDIT enrichs the local data through a specific instruction augmentation strategy.
This strategic enrichment is crucial for achieving effective instruction tuning and needs to be metic-
ulously designed to avoid performance degradation. Except for the code domain, which primarily
adheres to a standardized paradigm, our results reveal that when clients rely solely on their local
data for FedDIT, even the presence of high-quality in-domain local data can be insufficient due to
limited scale, leading to a decline in performance, as reflected in the underlined values in Tablem In
summary, the goal of FedDIT is to develop a domain-specific LLM that employs collaborative train-
ing and instruction augmentation while safeguarding client privacy, thereby ensuring the model’s
proficiency in executing tasks pertinent to its designated domain.

For simplify and better instruction quality (Zhang et al.| (2024b); [Toshniwal et al.|(2024])), we focus
on a specific scenario of FedDIT, where a server-hosted public dataset exists as an abstraction of
open-source instruction datasets on the web that encompasses multiple domains. This dataset is uti-
lized for different instruction augmentation strategies, thereby enhancing the model’s performance
in specific domains. We elaborate the setting of FedDIT in Appendix[A.2}

Additionally, the factors affecting FedDIT are still unclear. Compounding this uncertainty, introduc-
ing augmented instructions may further complicate results, making it difficult to ascertain effective
improvement strategies. Shepherd (Zhang et al., 2023c) approaches this problem from the perspec-
tive of heterogeneity, constructing heterogeneity based on the topic of general instruction datasets.
It demonstrates that, unlike the consensus of traditional FL, for general FedIT, heterogeneity has
a positive effect. By aggregating diverse instructions from clients, the diversity increases, thereby
enhancing the model’s adaptability to various tasks. However, it just scratches the surface and does
not explore issues in FedDIT.

Going one step further, we conduct experiments to unveil a significant finding (Appendix[A.3): there
is no monotonic correlation between the degree of non-independent and identically distributed (non-
iid) and LLM’s performance in the context of FedDIT. Inspired by Explore-Instruct (Wan et al.,
2023)), which shows the potential of domain coverage in domain-specific instruction tuning. The
cross-client domain coverage metric is initially defined, followed by an investigation into its impact
on FedDIT. Results demonstrate that domain coverage significantly influences model performance
in the corresponding domain.

To maximize the cross-client domain coverage without compromising client data privacy, we pro-
pose a novel FedDIT algorithm, Federated Instruction Tuning of LLMs with Domain Coverage
Augmentation, termed FedDCA. This algorithm employs a greedy client center selection process
and implements instruction augmentation through dense retrieval on the server side. The fundamen-
tal idea of FedDCA is to select client centers to expand the diversity and coverage of augmented
instruction datasets within a specific domain. By strategically optimizing domain coverage at each
step, FedDCA efficiently constructs the augmented train set that enhances both the learning and
generalization capabilities of the model, leading to superior performance on domain-specific tasks.
Furthermore, to mitigate computational overhead on the client side and enhance the system scalabil-
ity, we propose FedDCA*, which employs heterogeneous encoders of different sizes and capacities.
To achieve feature alignment, we train a projector on the server side using public data and employ
contrastive learning techniques.

We demonstrate the effectiveness of FedDCA through comprehensive experiments conducted across
four domains: code, medical, financial, and mathematical. These are compared against a range of
baselines, which can be categorized into unaugmented and augmented methods. In the unaugmented
setting, our method is compared with FedIT, which includes four orthodox FL techniques: FedAvg
(McMabhan et al.| 2017), FedProx (Li et al., [2020), SCAFFOLD (Karimireddy et al., [2020), and
FedAvgM (Hsu et al.,[2019). In the augmented setting, we compare FedDCA against methods such
as random sampling, direct retrieval, LESS (Xia et al., 2024), and Self-Instruction (Wang et al.,
2022). Additionally, we present the performance outcomes of FedDCA when applied under various

Under review as a conference paper at ICLR 2025

FL strategies. We also compare the computational efficiency on the client side between FedDCA
and its variant, FedDCA*. For privacy analysis, experiments against memory extraction attacks are
conducted to evaluate how different quantities of retrieved public data affect the privacy of client
local data. Results indicate that while reliance on local data increases memorization of sensitive
information, the risk of privacy leakage diminishes or converges in the augmented setting as the
training rounds progress.

The main contribution is as follows:

* We reveal a critical finding: in the context of FedDIT, data heterogeneity has a non-
monotonic relationship with model performance. Instead, cross-client domain coverage
substantially impacts LLM’s effectiveness, as elaborated in Appendix [A.3]

* We propose a novel FedDIT algorithm (Section [)), termed FedDCA, aimed at maxi-
mizing cross-client domain coverage through greedy client center selection followed by
retrieval-based instruction augmentation executed on the server. Additionally, we intro-
duce FedDCA* to further lessen the client-side computational overhead while enhancing
the system scalability. This variant utilizes a heterogeneous encoder structure, paired with
a projector on the server side for feature alignment.

* Through extensive experiments (Section [5)), we demonstrate the effectiveness of FedDCA
and FedDCA*. We also investigate privacy preservation against memory extraction attacks,
conducting experiments based on various amounts of public data. Results suggest that the
capacity for privacy preservation does not correlate significantly with the quantity of public
data. In contrast, the risk of privacy leakage tends to decrease or converge as the fine-tuning
rounds increase.

2 PRELIMINARIES

FedDIT aims to leverage cross-client private domain-specific instruction data and utilize the multi-
domain public data on the server to achieve instruction augmentation, collaboratively enhancing the
model’s performance in specific domains. Consider N distributed clients, each with local private
data DL. The server maintains a public dataset DP that encompasses multiple domains and is re-
sponsible for implementing data augmentation strategies and aggregating model parameters received
from clients. The training process follows the standard FL protocol (McMahan et al., [2017). For
computational efficiency, we adopt Low-Rank Adaption (LoRA) (Hu et al.,2022) as the fine-tuning
method, which involves tuning additional parameters A¢ while keeping the pre-trained LLM’s pa-
rameters ¢ frozen. In the initial training phase, the server dispatches ¢ and A¢ to each client for R
training rounds. In the ¢-th round, the server sends the aggregated A¢® to clients. Clients use A¢?
to update their local LoRA parameters A¢! and conduct instruction tuning based on augmented

instruction datasets Dj. Subsequently, the clients return Aqbffl to the server. The server then ag-
gregates {A¢.™ | k=1,..., N} to obtain Ag'*! for the next round.

3 PROBLEM FORMULATION

For better understanding, we list the frequently used notation in Appendix The objective of
FedDIT is to enhance the domain-specific performance of LLMs through FL without sharing private
data (Ye et al.| 2024b; [Zhang et al.| [2024b; [2023c). Under the FL framework, suppose we have N
clients, where each client ¢ has a local dataset DL with its size N, and an augmented dataset Dz
from the server public dataset DP, respectively. Due to constraints such as memory, computational
overhead, and maximum tolerated training time, client ¢;, can accept at most N7 public instructions.
Denote the augmentation strategy as A, through which the server performs instruction augmentation
on the public dataset. If A is null, it indicates that clients conduct FedDIT solely based on their
local private data, which may lead to performance degradation. Conversely, A may be classified into
two categories: (1) focusing exclusively on the client’s own local data distribution or (2) considering
the cross-client data distribution. In conclusion, the global objective of FedDIT is defined as follows:

N
arg min {F(gb, Ag) 2 Zpk ((1 =) Fy (¢, Ady; D},) + awF, (¢, Ady; D)) }’ (D

A k=1

Under review as a conference paper at ICLR 2025

where the first term and second term denote the accumulated fine-tuning loss computed on the client
ci’s local instructions D! and the augmented public instructions D7 from the server, respectively.
Py is the weight of the k-th client, which is determined by the ratio of k-th client’s data size to all
clients’ total data size. « is the ratio of the public data amount of its augmented instruction dataset

Dy, which is computed as Eq minimizes the summed empirical loss across clients’

Ny
NN
augmented instructions to pursue the in-domain utility of the obtained global model. Denote P as
the model parameters and D as a specific dataset, then the client ¢ s empirical loss F (¢, Agy; D)

base on D is calculated as:

|D|
1
Fy.(¢, Agy; D) =] > U(Pyyagyi), 2
j=1
where z; € D,Vj € {1,2,...,|D|}. The instruction tuning loss I(-;-) on a sample (z,y) is de-

fined as — Lyzll log (w (y¢|z,y<+)), where x is the formated instruction with Alpaca instruction

templateﬂ and y is the corressponding response.

In contrast to the problem formulations in many prior works on FedIT, the primary distinction in the
formulation of FedDIT lies in acknowledging the lack of in-domain instructions across clients. Fed-
DIT establishes a public multi-domain dataset on the server for domain-specific instruction augmen-
tation by a specific sampling strategy A. Therefore, each client only needs to hold a few high-quality
domain-specific private data to collaborate with other clients to obtain a strong domain-specific
LLM.

1. Client ¢, clusters local data and sends cluster centers Cy, to the server |

2. Greedy Client Center Selection & Domain Data Retrieval 3. Domain Specific Federated Instruction Tuning
T TSI T rounds
Server Side @ Server-Side @ Ié{:gl“ Data
2-1. Greedy Client Center 2-2. Domain Data Retrieval Federated Aggregation 'Dk =Diu
Selection g t-1 t g
g A A D
+ P Dy o Dy ¢ ApETt At eopo 3 LoRA
A . &
+ [] Client 1 Client N
Py Py D¢ Client k =
® DP
LXT] L XS
p{ DY Dy
Client 1 Client k Client N @ @ E @ E
@ 4 oo @] oo @ — = -
= = 4 D, ¢ Dy 4 Dy

Figure 1: Overview of FedDCA, which consists of three stages: 1) The client ¢; performs local
instructions clustering and sends cluster centers Cj to the server. 2) The server first does greedy
client center selection to maximize domain coverage and performs client-center-based domain data
retrieval, then sends the augmented instructions D,’i to the client ¢. 3) Clients fine-tune the LLM
collaboratively, and the LoRA parameters A¢ are exchanged between clients and the server.

4 METHOD

We propose Federated Instruction Tuning of LLMs with Domain Coverage Augmentation (Fed-
DCA), which enhances domain coverage to obtain a LLM that performs well on domain-specific
tasks. FedDCA follows the standard FedIT protocol(Ye et al.l [2024b) to perform federated in-
struction tuning. The novel design of FedDCA lies in the phase before training, which consists of
two key modules: greedy client center selection and domain data retrieval, which are elaborated
in the following; also see details in Algorithm [I] and Figure [} For computational efficiency and
system scalability, we introduce a variant of FedDCA with heterogeneous encoder setting, named
FedDCA™. We first formulate the optimization problem to solve for FedDCA.

"https://crfm.stanford.edu/2023/03/13/alpaca.html

https://crfm.stanford.edu/2023/03/13/alpaca.html

Under review as a conference paper at ICLR 2025

4.1 OPTIMIZATION PROBLEM

As domain coverage directly affects the in-domain performance of the LLM (Appendix [A.3)), Fed-
DCA aims to maximize the domain coverage of the cross-client augmented data ULY | D; respect to
the in-domain data distribution D%, which is defined in Eq.[5| However, as clients can not send the
local data to the server for privacy, directly finding a cross-client dataset that maximizes the domain
coverage in Eq.[5]is unrealistic. To find a proper client center set P that maximizes domain coverage
and uses it to perform instruction retrieval on the public data is an approximation problem.

Suppose there exists a metric space X, a set of cross-client local instruction embeddings £ € A,
and a set of cluster centers P € X. Each client c; has maximum ¢ clusters obtained by k-means
algorithm (Wul 2012)). In the federated setting, communication cost is always a critical factor. Con-
sequently, we formulate the optimization problem to include communication costs as follows:

N

argmin ¢ Y " [P;|+ > (minyepsim(d,p)) ¢, &)
P

i=1 deDd
st |Pi| < &, Vi € {1,2,...,N}. The second term is the domain coverage of the selected client
center set P, and sim(-,-) is the cosine similarity function. However, this optimization problem is
NP-hard. Specifically, to select N client center for retrieval, the time complexity is O (Cg\, (NN)) ,

where N is the size of the public data DP. As it is a factorial equation, the computational cost
explodes with N. What’s worse, usually, there are enormous amounts of public data on the server,
which makes a huge N. For computational efficiency, we propose a greedy algorithm to solve this
problem in O (N (N¢ + £log&)), which is described below.

4.2 GREEDY CLIENT CENTER SELECTION & DOMAIN DATA RETRIEVAL

l . 3 S i
[le 0 Greedy client"PZ, @ ?2 o (“rf:c»dy sclf:ctcd cllcr?;)&;cmcr‘
+Pr AO - O center selection/h @ A @] Original client center A @y @
00A " 0AQ 0@L OAY 0oa TORQ 00l P ®
ooa oo oon A
g QR Bt ok Kok e
A Fag Fx * Bg. Yk A EhoTh
A Qo0 * AT 00 * AL Qo0 x 0@
A‘A ASA A*A ATN A’A AN ?})3 A“A P A 7N 5_.,3
7‘)1 ?1 Pl 7)1

Figure 2: Greedy client center selection iteratively selects the client center in each step, which
synthetically considers both the representativeness of the cluster center and its distance from the
previously selected client center set P to maximize the cross-client domain coverage.

As described in Section[4.1] the goal of FedDCA is to find a proper client center set P that maximizes
the domain coverage d(D?, P), as defined in Eq. 3| For computational efficiency, we propose a
greedy algorithm as shown in Algorithm [T] and Figure 2] to solve this problem in polynomial time
and obtain a sub-optimal solution. Given the cluster centers {C;,¢ = 1,2,..., N} received from
each client, which are obtained by clustering local instructions. FedDCA on the server consists of
two main steps: greedy client center selection and client-center-based domain data retrieval.

Greedy client center selection. We will consider this problem from two aspects: 1) Select a client
center that can represent the distribution of the local data. 2) To optimize the cross-client domain
coverage, we filter client centers that are close to the previously selected client centers. First, we
randomly choose a client and select the largest cluster center as its center and be the initial of the
client center set P. Then, we iteratively select the client center Py of the top cluster size while
avoiding selecting the cluster center close to the previously selected client center to maximize the
domain coverage of P. Specifically, for the i-th iteration, we filter i-top cluster centers that have
the largest summed similarity with previously selected client centers and select the center of the rest
largest cluster as the ¢-th client center. This procedure is repeated until we have selected NV client
centers.

Domain data retrieval. For each client center Py, the server performs dense retrieval (detailed
in Appendix on public dataset DP to get the top-N; similar public instructions, then sends

Under review as a conference paper at ICLR 2025

Algorithm 1 FedDCA: greedy client center selection & domain data retrieval

Parameters: Number of clusters £; Encoder model wenc; Client local datasets D = {D1, D2,...,Dn};
Public dataset D?; Similarity score threshold c;; Number of public data samples retrieved per client N7,
Client centers P = {p1, p2, . . ., p~v }; Pre-encoded public instruction embeddings £.

1: fori e {1,2,...,N}do
2 & {wenc(a:) | (RS D’i,instr'uction}
3: Ci, Si < k-means(€).fit(€") > Cluster local instructions, return cluster centers C; and sizes S;
4: end for
5: Send {C;, Si | i € {1,2,..., N}} to the server for the greedy client center selection
6: P« {Cox | k=argmax(So)} > Initialize the client center set
7: fori € {1,2,...,N —1} do > Greedy client center selection
8: S« 3(Ci - PT,dim = —1) > Compute summed similarity score of each cluster center
9: T + (N —1)-argsort(S) > Filter ¢ cluster centers close to the client center set P
10: T’ « argsort(—S5;) > Sort cluster center by cluster size in descending order
11: j < firstelement of Z N Z' > Selected cluster center C;, ;
12: P<+—PUC; > Update the client center set
13: end for
14: fori € {1,2,...,N} do > Client center based domain data retrieval
15: S« P -ET > Compute similarity score between P; and £
16: S+ {s|seS,s<a} > Filter instructions with similarity score larger than «
17: T « indices of N} -top in &’
18: D! {D’|jeT}
19: D; « D'uD! > Obtain the augmented instruction dataset D;
20: end for
retrieved public datasets {DY, ..., D%} to each clients. Specifically, to avoid the overlap between

public data and local private data, we set a threshold « to filter the public instructions that have a
similarity score larger than o with the client center.

In summary, FedDCA establishes a comprehensive training set that captures the essence and distri-
bution of the domain by iteratively selecting client centers with unique coverage increments. This
ensures that selected centers are representative and achieve broad domain coverage. Additionally,
domain data retrieval exposes the model to a wider range of in-domain features, enhancing its under-
standing of domain-specific tasks. This not only enriches the training data but also reduces the risks
of overfitting to the limited local data available to each client, ultimately improving performance
across various tasks within the domain.

4.3 HETEROGENEOUS ENCODER WITH FEATURE ALIGNMENT

For the client-side computational efficiency and system scalability, we propose a heterogeneous
encoder method FedDCA* to reduce the client’s computational overhead by using a small encoder
w on the client side and a larger encoder w’ on the server side. However, the output dimension of
heterogeneous encoders may not be consistent. Therefore, we introduce a projector w), on the server
for feature alignment, as shown in Appendix We use contrastive learning (Khosla et al.| 2020)
and train w,, on the public instructions. Specifically, w, comprises two fully connected layers and
a ReLU activation layer in between, projecting w’s dimension to the output dimension of w’. For
Va; € DP, where i € {1,2,..., N}, w outputs embedding h;, " outputs embedding A/ and w,
outputs embedding ¢;. For input x;, the positive sample pair is (h}, ;) and negative sample pairs
are {;,j # i}. Let the batch size be B, then the training objective is defined as follows:

B . p

exp (sim(;, h})/T

Lo =S log o SRCM)T “
i=1 Zj:l L1240 exp (Slm(@i’ hj)/T)

where sim(-, -) denotes the cosine similarity and 7 denotes the temperature parameter.

The heterogeneous encoder setting, by employing a projector w,, for feature alignment, proves ef-
fective in FL contexts where clients and the server use different encoder sizes or capacities. This
approach facilitates mapping lower-dimensional client features H to the higher-dimensional server

Under review as a conference paper at ICLR 2025

space ' through a strategic training of w, with both positive and negative pairs. It adeptly aligns
similar feature representations closely while positioning dissimilar ones further apart. As aresult, the
heterogeneous encoder setting not only enhances system scalability and flexibility but also facilitates
the creation of a unified feature space that effectively integrates and utilizes diverse representations
collaboratively.

4.4 DISCUSSIONS

Computation. Through greedy client center selection, FedDCA solves the optimization problem
defined in Eq.[3in the polynomial time and is quite efficient. On the client side, the k-means algo-
rithm (Wu, [2012) is (’)(\D;C |). On the server side, as mentioned in Section the time complexity
of greedy client center selection is O (N (N€ + £log €)). Specifically, for each client, the similarity
computation between selected client center set P and client ¢ ’s cluster Cy, is O (N§), and the sorting
process is O (£ log). For domain data retrieval, given that the sorting algorithm is O (M log V),
where NV is the size of the public dataset. Thus the time complexity is O (N (AN log N)). In addition,
the heterogeneous encoder setting FedDCA* further reduces the computation overhead on the client
side.

Communication. In the domain instruction augmentation stage, each client sends £ cluster centers
to the server. Next, the server performs greedy client center selection and domain data retrieval,
then sends retrieved public data Dﬂ to the client ¢, whose size is IV ,f . In addition, in the fine-tuning
stage, FedDCA follows the standard FedIT procedure, which exchanges the LoRA parameters A¢y
between clients and the server. Specifically, for the Llama3-8B model, the number of trainable LoORA
parameters is just 13.6 million. Compared with the number of frozen pre-trained LLM parameters,
the communication for LoRA tuning is quite efficient.

Privacy. Comparing FedDCA with other FedIT methods (Zhang et al.|[2024b} |Ye et al.|[2024b)), the
difference lies in the greedy client center selection. In this stage, the client only uploads the cluster
center to the server, which is the average of embeddings to its cluster. In addition, the potential
privacy leakage can be further avoided through homomorphic encryption (Acar et al., 2018)), which
allows the server to directly compute on ciphertext for matrix multiplication for dense retrieval. For
the further concern of the domain inference attack from the server, please refer to Appendix [A.6]

5 EXPERIMENTS

To demonstrate the effectiveness of FedDCA and its variant FedDCA*, we conduct extensive ex-
periments across various domains and with several baselines. In Table 2] we highlight five critical
aspects of our approach compared with other methods (Xia et al.| [2024; Wang et al., 2022} |[Zhang
et al, [2024b). For additional details and results, please refer to Appendix [A]

Table 2: Key differences between FedDCA and other baselines. FedDCA demonstrates the ability
of: 1) privacy preserving, 2) no API cost, 3) no additional information required, 4) avoiding per-
formance degradation, and 5) aiming at domain coverage optimization. LESS requires additional
information, as it needs access to the validation set for gradient-based retrieval.

Privacy API Additional Performance Domain Coverage

Method Preserving Cost Information Degradation Oriented

FedAvg (McMahan et al., 2017)
Random Sampling

LESS (Xia et al., 2024)
Self-Instruct (Wang et al., 2022) X
Direct Retrieval
FedDCA (ours)

* % % X% %

*X X N % XX
*X XX N X X
x % %

5.1 EXPERIMENTAL SETUP

Dataset and Evaluation Metrics. To evaluate the performance of FedDCA, we conduct exper-
iments on four domains: code, medical, financial, and mathematical. The detail of constructing
the public dataset is described in Appendix [A.3] As default, we set the number of clients to 10,

Under review as a conference paper at ICLR 2025

while each client has 100 local instructions and obtains 5000 augmented public instructions from
the server. We analysis the effect of different retrieval amounts from 100 to 5000 on FedDCA in
Appendix [A_T0l For evaluation, we select a range of datasets, including HumanEval (H-Eval for
short) for coding (Chen et al.| 2021), MMLU-Med (abbreviated as M-Med) for medical
[2021)), and GSMSK for mathematics (Cobbe et al.,2021). Additionally, financial datasets such
as FPB, FiQA, and TFNS (Yang et al.,[2023a) are utilized. HumanEval is evaluated using Pass@1.
For MMLU-Med, FPB, FiQA, and TENS, we use accuracy as the evaluation metric. While GSM8K
is evaluated using exact match (EM). Please see Appendix[A.5]for more dataset details.

Baselines. We compare FedDCA and FedDCA* with the following baselines: 1) Unaugmented
methods, including zero-shot inference and FedIT, which are composed of four widely used FL
methods, including FedAvg (McMahan et al.},[2017), FedProx 2020), SCAFFOLD
ireddy et al.,[2020) and FedAvgM (Hsu et al.,[2019). 2) Augmented methods, which include random
sampling, direct retrieval, LESS (Xia et al., 2024), and Self-Instruct (Wang et al.,[2022). Addition-
ally, we report FedDCA’s performance with different FL strategies in Table [3] Specifically, zero-
shot inference shows the performance of the pre-trained LLM without FedDIT, which gives the
lower performance bound. Direct retrieval is described in Appendix [A:4] Self-Instruct augments
instruction in a generative way through GPT-3.5-turbo 2023). Based on the prompt pro-
vided by Self-Instruct, we define the prompts for generating instructions and responses as shown in

Appendix [A8]

Table 3: Performance (%) of FedDCA, FedDCA* and other nine baselines on various domains. For
augmented methods, we use FedAvg as the default FL strategy. We report FedDCA with different
FL strategies in the last four rows, and FedDCA+FedAvg and FedDCA+FedProx performs better
across four domains.

| Code | Medical | Financial | Mathematical
Method
| H-Eval | M-Med | FPB FiQA TFNS | GSMS8K
Unaugmented Methods
Zero-shot 29.88 70.60 55.94 1854 59.21 23.27
FedAvg (McMahan et al.|[2017) 39.03 68.40 58.25 14.18 66.62 47.46
FedProx (L1 et al. 37.20 69.10 56.51 1490 66.45 47.15
SCAFFOLD (Karimireddy et al.l 2020) | 37.80 70.20 62.71 1527 66.49 49.27
FedAvgM (Hsu et al.|2019) 32.32 64.70 68.14 29.27 70.32 46.85
Augmented Methods
Random Sampling 32.93 71.30 64.19 13.09 65.53 47.38
Direct Retrieval 34.14 72.20 66.31 19.11 67.62 50.87
LESS (Xia et al, [2024) 28.04 71.00 60.56 16.00 61.14 43.13
Self-Instruct (Wang et al.l, 2022) 32.92 71.90 59.73 20.67 66.54 50.79
FedDCA™ (ours 34.75 73.30 67.10 3054 71.01 51.55
FedDCA (ours) with different FL strategies

FedDCA+FedAvg 36.58 74.50 67.24 3527 73.32 52.46
FedDCA+FedProx 32.92 72.40 7293 38.18 77.55 51.25
FedDCA+SCAFFOLD 39.87 73.20 72.68 33.09 75.50 50.26
FedDCA+FedAvgM 33.53 68.90 7145 3145 7252 49.76

5.2 PERFORMANCE ANALYSIS

Performance. We evaluate the performance of FedDCA and compare it with several baselines on
four domains (see training details in Appendix [A77). As shown in Table [3] FedDCA outperforms
the other nine baselines in all domains, with a substantial improvement from at least 0.84% to the
maximum of 29.19% over other baselines. In particular, FedDCA+FedAvg and FedDCA+FedProx
performs better across four domains. In addition, to reduce the computation overhead of clients,
FedDCA* attempts to utilize heterogeneous encoders. We see that although FedDCA™ has a perfor-
mance drop than FedDCA, it still outperforms other baselines. Furthermore, we report FedDCA’s
performance with different FL strategies, and we can see that no FL. method can keep the leading
position in all domains. In specific, FedProx and SCAFFOLD FL strategies perform better in the
average performance. Overall, the result shows the effectiveness of FedDCA and FedDCA*.

Under review as a conference paper at ICLR 2025

Additionally, Table [3] can be divided into two parts: unaugmented methods and augmented meth-
ods. We can observe that FedIT methods perform well in the code domain, even better than most
augmented methods. This could be attributed to two reasons: 1) The code domain is more about
following a certain paradigm. 2) As the local data is few, so compared with the same epoch and
batch size, the unaugmented methods learn the same data more times, which is kind of not a fair set-
ting. However, FedDCA+SCAFFOLD still surpasses the best baseline in the code domain, further
demonstrating the effectiveness of FedDCA.

Efficiency. We see that direct retrieval is the best baseline in the average performance. However, it
does not consider cross-client domain coverage, resulting in an overlapping retrieved data distribu-
tion. Self-Instruct (Wang et al.||2022) represents the upper limit performance of the generation-based
method, which is restricted to the high expense of cost, limited API call frequency, and heavy qual-
ity screening process. On the other hand, FewFedPIT (Zhang et al.l [2024b) attempts to augment
local data by leveraging the pre-trained Llama2 model to perform self-instructed generation during
training. However, two concerns exist: 1) The pre-trained LLM cannot provide effective, stable,
and high-quality instruction generation. 2) Generating instructions locally is very costly regarding
both time and computational resources. Overall, generating instructions self-instructively is not a
satisfactory method for the FedDIT scenario. LESS (Xia et al., 2024) represents the augmentation
methods through gradient feature retrieval. However, its performance is underwhelming. Com-
pounding this issue, LESS presupposes access to the validation set, which is not always available,
and necessitates an initial warmup on the public dataset before calculating gradients for both the
public and validation data. This process becomes computationally burdensome with large public
datasets. In conclusion, FedDCA achieves better performance while requiring lower computational
resources and a more relaxed training condition, which shows its efficiency.

Domain coverage. Each method’s do- Table 4: Domain coverage of FedDCA, FedDCA* and
main coverage is shown in Table[l} Addi- other baselines on four domains. Since unaugmented
tionally, visualization of domain coverage methods do not affect domain coverage, we summa-
across different strategies can be found in rize the unaugmented methods here as FedIT, includ-
Appendix For augmented methods, ing four orthodox FL techniques: FedAvg, FedProx,

a correlation 1is evident between higher SCAFFOLD, and FedAvgM.
domain coverage in a specific domain

aqd i'mproved perfprmance; of the method Method | Code Med. Fin. Math.
within that domain. Given that Fed-

DCA aims to maximize the domain cover- FedIT | 08126 0.6990 0.8529 0.7871
age through greedy client center selection, Random 0.8512 0.7940 0.9196 0.8651
therefore it achieves the highest domain Direct Re. 0.9396 0.8830 0.9293 0.8967
coverage in all domains, which surpasses LESS 0.8509 0.7737 0.8917 0.8352
other baselines from 4.82% to 21.36% av- Self-Instruct | 0.8966 0.8586 0.9015 0.8811
erage relative improvement. Furthermore, FedDCA” 0.9532 0.8972 09538 0.9096

while FedDCA* employs a smaller en- FedDCA 0.9766 09348 0.9815 0.9320

coder on the client side to enhance com-

putational efficiency, this leads to a slight compromise in semantic precision, observed as a relative
drop of 2.89% in average domain coverage. Nevertheless, FedDCA™ still outperforms the best base-
line by an average of 2.78%. In brief, the result proves the effectiveness of FedDCA and FedDCA*
in domain coverage augmentation.

5.3 COMPUTATION ANALYSIS

Heterogenous encoder setting FedDCA™ allows the sys- Table 5: Computational cost compari-
tem to be more scalable and flexible based on different g¢on between FedDCA and FedDCA*.
client capacities. To show the computational efficiency = We report the encoding time on the pub-
of FedDCA* compared with FedDCA, we compare these lic dataset and the model size of each
two methods from the following aspects: 1) Encoder epcoder.

model size. 2) Encoding time overhead. We first give
the evaluation setup of computation analysis.

Encoding Model

. Method ‘ Ti Si
Evaluation setup. The encoders used for FedDCA and me 1ze
FedDCA* on the client side are bge—large—-en-v1.5 FedDCA 15min46s 335M
and a11-MiniLM-L6-v2 respectively (detailed in Ap- FedDCA* | 5min02s 22.7M

pendix [A.7). Then, we show the model size and the time

Under review as a conference paper at ICLR 2025

overhead of encoding the public instructions in Table [5| Compared to FedDCA, FedDCA* has sig-
nificant computational and time advantages while maintaining acceptable performance (shown in
Table[3). This is accomplished by employing heterogeneous encoders and configuring a projector
on the server to achieve dimensional mapping.

5.4 PRIVACY ANALYSIS

Next, we evaluate the privacy-preserving capability of different ratios of public data against memory
extraction attacks (Carlini et al.}2021; Zhang et al.,|2024a)), which utilizes the autoregression nature
of LLM to extract information from the memory (Xu et al., 2024).

Evaluation setup. We focus on one client’s instruction tuning in FedDIT, using FedDCA for in-
struction augmentation with 1000 to 5000 public instructions. We set up 10 clients with full partic-
ipation for 10 rounds. Specifically, we record the average ROUGE-L score (Linl 2004) of client
co for each round. The designed prompt to extract instructions memorized by the LLM is de-
tailed in Appendix [A.9] For each setting, we repeat memory extraction 100 times and report the
average ROUGE-L score based on each generated instruction and all local data instructions to eval-
uate the privacy-preserving capability of different public data amounts. Specifically, denoting the
generated AV instructions as Z and the client’s local instructions Z'. The calculation is defined as

~ SV ROUGE-L(Z;, TV).
Math. 5k

- —
0.14
012
0.00
Code. Med. Fin Math.

4
Domains Round

Base Data Code Base
1k —— Code 5k
2k 0.22 Med. Base
3k — Med. 5k
4k Fin. Base
020 — Fin. 5k
Math. Base

°

°

Average ROUGE-L Score
°

Average ROUGE-L Score

°

(a) Average ROUGE-L scores with different (b) Average ROUGE-L scores per round for base-
amounts of public data. data-only and augmented settings.

Figure 3: Privacy preservation analysis against memory extraction attack across four domains.

Results. We report the average ROUGE-L scores for base-data-only and various public data fine-
tuning in Figure[3(a)] The results show no significant correlation between the public data ratio and
privacy-preserving capability in the same training round. In addition, only using local data has a
higher risk of privacy leakage than augmented methods.

Figure [3(b)|shows the average ROUGE-L score trends per round for each domain, where augmented
fine-tuning uses 5000 public data. Initially, the ROUGE-L scores for augmented settings increase,
then decrease or converge, while the base-data-only scores continue to rise, especially in the code
domain. This indicates that with more training rounds, base-data-only fine-tuning captures more
privacy information, while the privacy leakage risk in augmented fine-tuning decreases or converges.

6 CONCLUSION

We reveal that in the context of FedDIT, there exists a non-monotonic relationship between data
heterogeneity and model performance, while the cross-client domain coverage has a significant im-
pact on model effectiveness. In response, we propose a novel FedDIT method called FedDCA,
which optimizes the domain coverage through greedy client center selection and retrieval-based in-
struction augmentation. Additionally, FedDCA* leverages heterogeneous encoders to reduce the
client-side computation overhead and improve system scalability. Experiments across four domains
demonstrate the effectiveness of FedDCA and the efficiency of FedDCA*. Further privacy analysis
indicates that as fine-tuning advances, the risk of private data leakage diminishes or converges in
FedDIT with instruction augmentation.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. A Survey on Homomorphic
Encryption Schemes: Theory and Implementation. ACM Comput. Surv., 51(4):79:1-79:35, July
2018. ISSN 0360-0300. doi: 10.1145/3214303.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633-2650, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

G. Cornuejols, G. Nemhauser, and L. Wolsey. The Uncapicitated Facility Location Problem. Tech-
nical report, Cornell University Operations Research and Industrial Engineering, August 1983.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYfO.

Wenxiang Jiao, Jen-tse Huang, Wenxuan Wang, Zhiwei He, Tian Liang, Xing Wang, Shuming Shi,
and Zhaopeng Tu. ParroT: Translating during chat using large language models tuned with hu-
man translation and feedback. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of
the Association for Computational Linguistics: EMNLP 2023, pp. 15009-15020, Singapore, De-
cember 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
1001. URL https://aclanthology.org/2023.findings-emnlp.1001.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learn-
ing. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
5132-5143. PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.press/v119/
karimireddy20a.html.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron

Maschinot, Ce Liu, and Dilip Krishnan. Supervised Contrastive Learning. In Advances in Neural
Information Processing Systems, volume 33, pp. 18661-18673. Curran Associates, Inc., 2020.

11

https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.findings-emnlp.1001
https://proceedings.mlr.press/v119/karimireddy20a.html
https://proceedings.mlr.press/v119/karimireddy20a.html

Under review as a conference paper at ICLR 2025

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie,
Yaliang Li, Bolin Ding, and Jingren Zhou. Federatedscope-llm: A comprehensive package for
fine-tuning large language models in federated learning. arXiv preprint arXiv:2309.00363, 2023.

Changho Lee, Janghoon Han, Seonghyeon Ye, Stanley Jungkyu Choi, Honglak Lee, and Kyunghoon
Bae. Instruction matters, a simple yet effective task selection approach in instruction tuning for
specific tasks. arXiv preprint arXiv:2404.16418, 2024.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated Optimization in Heterogeneous Networks. Proceedings of Machine Learning and Sys-
tems, 2(arXiv:1812.06127):429—-450, March 2020. doi: 10.48550/arXiv.1812.06127.

Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summa-
rization Branches Out, pp. 74-81, Barcelona, Spain, July 2004. Association for Computational
Linguistics.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=UnUwSIgK5W.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273-1282. PMLR, 2017. ISBN 2640-3498.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Code-
gen2: Lessons for training llms on programming and natural languages. arXiv preprint
arXiv:2305.02309, 2023.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqgiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatGPT good at search? investigating large language models as re-ranking
agents. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
URL https://openreview.net/forum?id=3Q6LON8y21.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
OpenMathlInstruct-1: A 1.8 Million Math Instruction Tuning Dataset, February 2024.

Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9(86):2579-2605, 2008. ISSN 1533-7928.

Fanqi Wan, Xinting Huang, Tao Yang, Xiaojun Quan, Wei Bi, and Shuming Shi. Explore-
Instruct: Enhancing Domain-Specific Instruction Coverage through Active Exploration. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 9435-9454, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.587.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=BkluglSFDS.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze Chen, Yuansen Zhang, Rui Zheng, Junjie
Ye, Qi Zhang, Tao Gui, et al. Instructuie: Multi-task instruction tuning for unified information
extraction. arXiv preprint arXiv:2304.08085, 2023a.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Privatelora: For efficient privacy
preserving llm. arXiv preprint arXiv:2311.14030, 2023b.

12

https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=3Q6LON8y2I
https://openreview.net/forum?id=BkluqlSFDS

Under review as a conference paper at ICLR 2025

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=gEZ2rGCozdgR.

Junjie Wu. Advances in K-means clustering: a data mining thinking. Springer Science & Business
Media, 2012.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prab-
hanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model
for finance. arXiv preprint arXiv:2303.17564, 2023.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS:
Selecting influential data for targeted instruction tuning. In International Conference on Machine
Learning (ICML), 2024.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned 1lms with
nothing. ArXiv, abs/2406.08464, 2024. URL https://api.semanticscholar.org/
CorpusID:270391432.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. Fingpt: Open-source financial large
language models. FinLLM Symposium at IJCAI 2023, 2023a.

Yi Yang, Yixuan Tang, and Kar Yan Tam. Investlm: A large language model for investment using
financial domain instruction tuning. arXiv preprint arXiv:2309.13064, 2023b.

Rui Ye, Zhenyang Ni, Fangzhao Wu, Siheng Chen, and Yanfeng Wang. Personalized Federated
Learning with Inferred Collaboration Graphs. In Proceedings of the 40th International Confer-
ence on Machine Learning, pp. 39801-39817. PMLR, July 2023.

Rui Ye, Rui Ge, Xinyu Zhu, Jingyi Chai, Yaxin Du, Yang Liu, Yanfeng Wang, and Siheng Chen.
Fedllm-bench: Realistic benchmarks for federated learning of large language models. arXiv
preprint arXiv:2406.04845, 2024a.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang,
and Siheng Chen. Openfedllm: Training large language models on decentralized private data
via federated learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD 24, pp. 6137-6147, New York, NY, USA, 2024b. Associa-
tion for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671582. URL
https://doi.org/10.1145/3637528.3671582.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv preprint arXiv:2405.03548, 2024.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Kama-
lika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
7252-7261. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/
yvurochkinl9a.html.

Boyu Zhang, Hongyang Yang, and Xiao-Yang Liu. Instruct-fingpt: Financial sentiment analysis by
instruction tuning of general-purpose large language models. FinLLM Symposium at IJCAI 2023,
2023a.

Jianging Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
FedALA: Adaptive Local Aggregation for Personalized Federated Learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 37(9):11237-11244, June 2023b. ISSN 2374-3468,
2159-5399. doi: 10.1609/aaai.v37i9.26330.

13

https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://api.semanticscholar.org/CorpusID:270391432
https://api.semanticscholar.org/CorpusID:270391432
https://doi.org/10.1145/3637528.3671582
https://proceedings.mlr.press/v97/yurochkin19a.html
https://proceedings.mlr.press/v97/yurochkin19a.html

Under review as a conference paper at ICLR 2025

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Guoyin Wang, and Yi-
ran Chen. Towards building the federated gpt: Federated instruction tuning. arXiv preprint
arXiv:2305.05644, 2023c.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023d.

Xinlu Zhang, Chenxin Tian, Xianjun Yang, Lichang Chen, Zekun Li, and Linda Ruth Petzold.
Alpacare: Instruction-tuned large language models for medical application. arXiv preprint
arXiv:2310.14558, 2023e.

Yiming Zhang, Nicholas Carlini, and Daphne Ippolito. Effective prompt extraction from language
models. In First Conference on Language Modeling, 2024a. URL https://openreview.
net/forum?id=0095CVdNuz.

Yue Zhang, Leyang Cui, Deng Cai, Xinting Huang, Tao Fang, and Wei Bi. Multi-task instruction
tuning of llama for specific scenarios: A preliminary study on writing assistance. arXiv preprint
arXiv:2305.13225, 2023f.

Zhuo Zhang, Jingyuan Zhang, Jintao Huang, Lizhen Qu, Hongzhi Zhang, Qifan Wang, Xun Zhou,
and Zenglin Xu. FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction
Tuning. arXiv preprint arXiv:2403.06131, 2024b.

Kun Zhou, Beichen Zhang, Jiapeng Wang, Zhipeng Chen, Wayne Xin Zhao, Jing Sha, Zhichao
Sheng, Shijin Wang, and Ji-Rong Wen. Jiuzhang3.0: Efficiently improving mathematical reason-
ing by training small data synthesis models. arXiv preprint arXiv:2405.14365, 2024.

14

https://openreview.net/forum?id=0o95CVdNuz
https://openreview.net/forum?id=0o95CVdNuz

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RELATED WORK

Federated Instruction Tuning. Instruction tuning has been widely applied across various applica-
tion areas of large language models (LLM), serving as a key technique to enhance the capabilities
and controllability of LLM (Zhang et al., 2023d; Wei et all 2022). Recently, federated instruc-
tion tuning (FedIT) has emerged as an effective strategy for the distributed optimization of LLMs,
leveraging federated learning (FL) protocols to improve the handling of privacy-sensitive tasks in
real-world scenarios. So far, several FedIT frameworks (Ye et al., 2024bja}; Zhang et al.,[2023c) have
been established to evaluate the effectiveness of FedIT across multiple datasets, tasks, and FL meth-
ods. While these platforms provide a foundation for research, they have not yet introduced more
complex federated algorithms and deeply investigate the challenging problems and factors affecting
FedIT, which are crucial for advancing this field.

PrivateLoRA (Wang et al., 2023b) addresses privacy and efficiency issues by exploiting the low-
rank properties of residual activations to reduce communication costs, significantly lowering the
communication overhead through collaborative computation between the server and clients while
effectively maintaining the privacy of local data. While FewFedPIT (Zhang et al., |2024b) focuses
on the few-shot learning setting in FedIT, using self-generated data by pre-trained LLMs locally to
mitigate the paucity of data and first discussing memory extraction attacks within FedIT.

Domain Instruction Augmentation. In the real world, there is an urgent need for training LLMs
with specific functionalities (e.g., reasoning capabilities) or domain-specific LLMs (e.g., code (Ni-
jkamp et al., 2023; [Luo et al., [2024)), medical (Zhang et al., [2023e)), financial (Yang et al.,|2023bza;
Zhang et al., 2023a} [Wu et al.| 2023)), mathematical (Yue et al.| 2024} [Luo et al.| [2023)). Existing
works tend to use open-source domain-specific instruction tuning datasets for training. However, the
target domain may not always have corresponding ready-made domain-specific instruction datasets.
Even if they exist, these datasets are often limited in scale.

Several studies investigate domain-specific instruction augmentation, which can be categorized into
three aspects: 1) Reusing human-curated public datasets (Wang et al., 2023a; |[Zhang et al.| [2023f;
Jiao et al., [2023]; [Lee et al., 2024; [Xia et al.,[2024). For instance, Parrot (Jiao et al., [2023)) enhances
translation capabilities of LLMs in chat by converting bilingual sentences into instruction-following
datasets. Furthermore, works like INSTA (Lee et al., 2024) and LESS (Xia et al.| [2024) attempt
efficient domain-specific instruction augmentation via dense retrieval. INSTA (Lee et al., [2024)
uses instructions without responses for effective retrieval. LESS (Xia et al., 2024) assumes access to
a validation set and uses the warmup LLM’s gradients of the train and validation sets for retrieval. 2)
Using seed tasks for self-instruct (Luo et al.l [2024; Wan et al., [2023): Explore-Instruct (Wan et al.,
2023), for example, employs activate exploration to tree-model domain tasks from both depth and
breadth, increasing seed instructions’ coverage of the domain, and subsequently generating broader
in-domain instructions through self-instruct. 3) Scaling instructions from the web: Recent works
(Yue et al., 2024; Zhou et al., [2024) highlight the immense potential of mining naturally occurring
instructions from the internet. Compared to generated data, web-mined instructions exhibit less
bias and greater diversity. MAmmoTH2 (Yue et al., [2024) firstly retrieves domain-relevant texts
and employs a LLM to extract Q-A pairs, further refining them into instruction-response pairs.
Jiuzhang3.0 (Zhou et al.,[2024) distills GPT’s instruction generation capabilities into a smaller model
and then uses it to generate instructions from the internet. In conclusion, models fine-tuned with
augmented instructions have shown promising domain-specific capabilities.

To obtain a well-performing LLM in the specific domain within the distributed environment, we uti-
lize a multi-domain dataset as public data on the server side and perform domain-specific instruction
augmentation based on the client’s local instructions.

A.2 THE SETTING OF FEDDIT

A.2.1 WHY THIS SETTING?
FedDIT enriches the local data through various instruction augmentation strategies (Zhang et al.}

2024b}, [Xia et al.} [2024; [Wang et al | [2022), which can be divided into two categories: 1) Generative
methods, which generate instructions through the pre-trained LLM locally or API. 2) Retrieval-based

15

Under review as a conference paper at ICLR 2025

methods, which retrieve instructions from the web. The former methods are either compromising
privacy or high computational overhead. Thus, in this work, we focus on retrieval-based methods to
utilize the diverse and high-quality public data.

In addition, we abstract the public data as a server-hosted multi-domain dataset. The presence
of a public dataset on the server is only one possible scenario. The core innovation of this work
lies in maximizing domain coverage, and the proposed algorithm is independent of the presence
of a public dataset on the server. Even if the server does not have a public dataset, clients can
retrieve public instructions based on the received client centers from the server, thereby achieving
data augmentation that maximizes domain coverage.

Overall, this setting is chosen for simplification, allowing more attention on the federated instruction
augmentation algorithms.

A.2.2 THE DEFINITION OF DOMAIN

The concept of “domain” is flexible and hierarchical. Currently, there is no precise definition of a
domain. For example, in Explore-Instruct (Wan et al [2023), “Brainstorming” and “Rewriting” are
considered two domains, but they could also be regarded as two tasks under the general domain. For
clarity, we adopt a clearer domain classification in this paper (e.g., code, medical, financial, math).

A.2.3 THE DISTRIBUTION OF PUBLIC DATA

If distributed clients aim to solve tasks based on existing knowledge, the public dataset will in-
evitably contain knowledge relevant to those domains. This could come from the original corpus
(which can be converted into instruction-response pairs using GPT) or from pre-constructed instruc-
tion datasets on the website. So the distribution of public dataset can be categorized as follows:
containing held-in or held-out instructions. The held-in indicate that the public dataset contains in-
structions of the specific task that clients aim to solve, while the held-out indicate that the public
dataset does not contain this task’s instructions.

The default setting in this work is that the public dataset contains held-in instructions. Further, we
show the effectiveness of FedDCA on the held-out settings in Appendix [A-T0}

A.3 WHAT TRULY COUNTS IN FEDDIT

This section will first analyze the correlation between different non-iid levels and the model’s per-
formance with separate experiments for both single and multiple domains in Section[A3.1] Further,
to demonstrate the impact of non-iid on FedDIT, we compare the performance of the global model
trained on augmented data based on iid and non-iid cross-client data distribution. Additionally, we
suggest that domain coverage is a key factor for FedDIT in Section[A.3.2]

A.3.1 DATA HETEROGENEITY IS NOT MATTER IN FEDDIT

Following the traditional approach of constructing different degrees of non-iid, which are widely
used in federated learning (Wang et al.| 2020} [Yurochkin et al.| 2019), we adopt Dirichlet distribu-
tion to construct various heterogeneity and use k-means with the cluster num & = 100 to pseudo
labeling instructions. Dirichlet distribution is affected by the hyperparameter «, which enhances
heterogeneity with a smaller « and decreases heterogeneity with a larger . We choose four widely
used heterogeneity, which are o = [0.01,0.1, 1, 10] (Ye et al., 2023; |Zhang et al., 2023b; |Li et al.,
[2021)). Figure [shows a visualization of the data distribution with different heterogeneity on the
code dataset.

We perform instruction tuning on different amount of clients with different heterogeneity. Specifi-
cally, the client’s number are 10 and 100 respectively with 2 randomly selected clients participate in
each round. For each domain, we only use the in-domain data and then perform FedIT. The training
details are shown in Appendix[A.7] We perform the experiments 3 times with different random seeds
(42, 43 and 44) and report the average performance and the standard deviation in each domain. As
shown in Table [f] the performance of LLM does not decrease due to the increase of data hetero-
geneity but shows a non-monotonic correlation, which indicates that the performance of LLM does
not directly depend on data heterogeneity and other factors that play a key role.

16

Under review as a conference paper at ICLR 2025

(@ a=10 b) a= © a=01 (d) a = 0.01

Figure 4: Visualization of client data distribution with « = [10, 1,0.1,0.01] in the code domain.

#Clients | Metric | o =10 a=1 a=0.1 a = 0.01

H-Eval | 36.17 £1.03 3454+£0.35 3271£275 34.75+2.65
M-Med | 71.80 £0.84 71.60£0.70 7133 £0.37 71.56+1.37
FPB 6641 =331 68.72+4.54 68.39+2.65 70.07+£3.50

10 FiQA 2290+£934 3248+9.85 2642+6.67 3842+£8.78
TENS 69.45+234 7299 +320 71.65+1.64 73.66+£2.90

GSMB8K | 56.51 £0.14 59.28 +£0.38 56.75+0.23 57.64 £0.29

H-Eval | 36.57 £1.84 36.57+348 34.12£0.26 36.88+0.13

M-Med | 70.73 £0.37 7220£045 71.83£0.37 71.60 % 0.45

100 FPB 67.87 £1.13 64.10+£2.07 66.71 £197 67.59+1.42

FiQA 3344 +£3.01 19.87+5.83 3393 +£354 33.69+£6.58
TENS 7222 +£0.74 7013 £259 73.01£022 71.99+0.95
GSMB8K | 54324041 5127+028 5894 +0.36 57.81£0.19

Table 6: Performance (%) of different heterogeneity in each domain with 10 and 100 clients.
A.3.2 DOMAIN COVERAGE: A KEY FACTOR IN FEDDIT

Explore-Instruct (Wan et al., [2023)) enhances the coverage of domain-specific seed tasks through
active exploration, then uses the self-instruct method for instruction data augmentation. This ap-
proach highlights the impact of domain coverage on domain-specific instruction tuning. Inspired
by Explore-Instruct, we attempt to conduct more in-depth and extensive experiments to study the
effect of domain coverage on FedDIT. Firstly, we define the domain coverage of cross-client data in
the FL setting. Assume the dataset of in-domain data D? represents the latent data distribution of
this domain and the cross-client data is defined as D¢ = Uj_, (D} U Dy). Inspired by the facility

location function (Cornuejols et al., [1983)), we define the domain coverage of D¢ respect to D? as

follows:
1

d(D?, D) = D7 Z max, e (penpd)sim(d, v), 5)
deD?

where sim(d, v) is the similarity between d and Table 7: Performance(%) and domain coverage of
v. Specifically, we use the cosine similarity jid and non-iid settings on different domains. The

function in FedDCA. Note that we only use hjgher domain coverage correlates with better per-
the in-domain data in D¢ to calculate the do- formance.

main coverage because the out-of-domain data
would mislead the domain coverage evaluation,
as shown in Figure 3] Test Set

| Performance (%) | Domain Coverage

] . _ | iid non-iid | iid non-iid
To better al;gn w1th the real—wor}d scenarios, HEval | 3536 3353 0.8538 07994
we explore instruction augmentation based on M-Med | 7020 71.00 | 07800 0.8027
both iid and non-iid cross-client data distribu- FPB 5858 64.19

tion and adopt direct data retrieval as described FiQA | 17.09 1927 | 0.8523 0.9327
in Appendix [A4] for FedDIT. We set the num- TENS | 66.16 69.09

ber of clients to 10, while each client has 100 GSMS8K | 40.50 38.50 | 0.9137 0.8448
local instructions and obtains 5000 augmented
public instructions from the server.

17

Under review as a conference paper at ICLR 2025

To construct iid data distribution, we randomly sample 1,000 from QO - In-domain data
multi-domain datasets (code, medical, financial, mathematical, and . .

general), which is detailed in Table[§|and divide them into 10 shards A : Out-of-domain data

as each client’s local data. To construct non-iid data distribution, we @) ®) OAO O A
perform k-means clustering with €& = 100. Each client randomly @) OO AO O o)
samples 100 instructions from different randomly selected clusters. O o) A
Furthermore, for both iid and non-iid settings, direct data retrieval O OO ®)

is performed based on the client’s local data.

Figure 5: Misleadning of out-
of-domain data on domain
coverage calculation.

Table [/ presents the performance of FedDIT on different domains
with iid and non-iid settings and shows the domain coverage in four
domains. We can observe that both iid and non-iid settings out-
perform in some domains, but both collectively indicate that higher
domain coverage correlates with better performance.

A.4 DIRECT DOMAIN DATA RETRIEVAL

In this section, we first show the detail of instruction-based dense retrieval in Appendix[A.4.1] which
is both used in direct retrieval and FedDCA. Then, we explain the direct retrieval algorithm in

Appendix [A.4.2]

A.4.1 INSTRUCTION BASED DENSE RETRIEVAL

Suppose an instruction dataset D consists of several instances. Each instance is a
(Instruction, Response) pair. For instructions that have Input, we concatenate the Instruction and
Input as Instruction, which is consistent with OpenFedLLM (Ye et al., 2024b). Then we use only
the instruction for encoding and dense retrieval. Denote £ as a cluster center and [as an instruction
of the public dataset DP, then we measure the instruction-based similarity score for dense retrieval as
follows: Score(E,I) = sim(E, wene(I)), where sim(-,-) is the cosine similarity function. Based
on the computed similarity between £ and each I in the public data, we then select the top-N;
instructions as the retrieved public data for domain data augmentation.

Algorithm 2 Direct domain data retrieval

Parameters:
Clients’ local datasets D = {D;,Ds,...,Dy}; Public dataset DP; Local datasets Dl =
{D}{, D}, ..., DY}; Number of clusters ; Encoder model wey,; Pre-encoded public instruc-
tion embeddings €.
1: D9« 0
2: fori e {1,2,...,N} do
3: E ¢+ {Wene(®) | 7 € DL ctructiont > Encode the local instructions
4: C + k-means(€). fit(£') > Cluster local instructions, return cluster centers C
5: S« C-&7 > Compute the similarity score between C and £
6: Z+ 0
7: forj € {1,2,....¢} do
8: S+ {s|se€S;,index(s) ¢ I} > Filter the selected indices
9: 7' «+ indices of the top—NT’f elements in S’ > Retrieve the top NT: indices
10: T+ ZIUuT > Update the selected indices
11: end for
12: D} «{D¥|jeTI} > Selected public instructions
13: D; + Df U Dﬁ > Obtain the augmented instruction dataset D;
14: end for

A.4.2 DIRECT RETRIEVAL

The direct domain data retrieval only utilizes instructions of the client’s local data without responses
to perform the retrieval-based domain data augmentation. The detailed algorithm is described in

18

Under review as a conference paper at ICLR 2025

Algorithm 2] For each client, we start by encoding the local instructions using the encoder model
Wene. Next, we apply the k-means algorithm to cluster the embeddings into & clusters. Then &
cluster centers are sent to the server for retrieval-based domain data augmentation. Subsequently,
the retrieved public data is sent to the client for instruction tuning.

A.5 TRAIN AND TEST DATASET INFORMATION

Here we provide the train and test dataset details of code (CodeAlpacg”), medical (MedAlpac;ﬂ),
financial (FinGPT (Yang et al.,[2023a))) and mathematical (MathInstruct’) domain, respectively.

Table 8: Dataset information of each domain.

Dataset name Domain Type Neagmpie Metric
CodeAlpaca Code Train 20,022 -
HumanEval Code Test 164 Pass@1
MedAlpaca Medical Train 33,955 -
MMLU-Med Medical Test 1,089 Acc
FinGPT Financial Train 76,772 -

FPB Financial Test 152 Acc
FiQA Financial Test 35 Acc
TENS Financial Test 299 Acc
Mathlnstruct Mathematical Train 224,567 -
GSMSK Mathematical Test 1,319 Exact Match
Alpaca General Train 52,002 -

As shown in Table [8] the public data consists of four domain-specific instruction datasets and a
general instruction dataset, which are CodeAlpaca, MedAlpaca, FinGPT, MathInstruct, and Al-
paca, respectively. For each domain’s FedDIT, we randomly select 1000 samples from the in-
domain instruction and split them into 10 shards as each client’s local dataset. The rest of
the instructions are used as the public dataset DP. For evaluation, we use HumanEval for
the code domain, MMLU-Med for the medical domain (specifically using subjects anatomy,
clinical_knowledge, college biology, collegemedicine, medical _genetics
and professional_medicine in MMLU), FPB, FiQA and TENS for the financial domain, and
GSMEK for the mathematical domain.

A.6 DISCUSSION ON DOMAIN INFERENCE ATTACK

The server may inference the clients’ data domain when the domain data retrieval is performed on
the server side. However, the proposed algorithm FedDCA is independent of the presence of a
public dataset on the server. Even if the server does not have a public dataset, clients can upload
their cluster centers to the server, which selects a set of client centers and sends them back to the
clients. Each client can then retrieve data from the website based on the received client center by
itself, thereby achieving data augmentation while maximizing the cross-client domain coverage.

In that case, since the server does not know the encoder used by the client, it cannot infer the
semantic meaning of the embedding. Thus, for the server, it becomes significantly more challenging
to infer the client’s domain, let alone apply any privacy protection techniques to the embeddings.

We provide two examples for illustration. Two different encoders are used as
client’s and server’s respectively: BAAI/bge-large-en-v1.5 (denoted as w;) and
google-bert/bert-large-uncased (denoted as wsy). Both encoders output 1024-
dimensional features.

nttps://huggingface.co/datasets/sahil2801/CodeAlpaca—-20k
*https://huggingface.co/datasets/medalpaca
*nttps://huggingface.co/datasets/TIGER-Lab/MathInstruct

19

https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k
https://huggingface.co/datasets/medalpaca
https://huggingface.co/datasets/TIGER-Lab/MathInstruct

Under review as a conference paper at ICLR 2025

Example 1: Both w; and w, take "hello world" as input, and the cosine similarity between
their embeddings is 0.1829.

Example 2: Three instructions are used:

e Instruction 1: Create an array of length 5 which contains all even numbers between 1 and
10.

 Instruction 2: Write a replace method for a string class which replaces the given string
with a given set of characters.

 Instruction 3: What is the sentiment of this news? Please choose an answer from
{negative/neutral/positive}. Teollisuuden Voima Oyj, the Finnish utility known as TVO,
said it shortlisted Mitsubishi Heavy’s EU-APWR model along with reactors from Areva,
Toshiba Corp., GE Hitachi Nuclear Energy, and Korea Hydro & Nuclear Power Co.

For these instructions, Instruction 1 is passed to w; and Instructions 2 and 3 are passed to ws, which
will result in three embeddings: ej, e2, and e3. The cosine similarity between e; and e5 is 0.1464,
while the similarity between e; and es is 0.1879. Instructions 1 and 2 are in the same domain,
whereas they have a lower cosine similarity.

In conclusion, as demonstrated above, when the clients do not perform domain-specific instruc-
tion retrieval on the server side, the server cannot infer the client’s domain based on the uploaded
embeddings.

A.7 IMPLEMENTATION DETAILS

We consider FedDIT in the cross-device scenario, N = 10
clients, R = 30 rounds, where we randomly sample 2 clients
to be available for each round. Then, each available client
performs FedDIT for 10 steps with AdamW optimizer, and 4o
the batch size is B = 32 in a round. The initial learning [9¢-7 2e~6
rate is 5e — 5 with a cosine learning rate scheduler. Our ex- |37 = ‘
periment utilizes the widely used LLM, Llama3-8Bﬂ as the |, @ :
base model with 2048 max sequence length and adopts LoRA ' 7e " a)
tuning method. The rank of LoRA is 16, and the scalar al-
pha is 16. For k-means 2012), we set cluster num &
= 10 and for FedDCA we set the similarity threshold o =
0.7. For FedDCA*, we set the temperature parameter 7 = ‘e for f li
0.5 for contrastive learning (Khosla et all 2020). We utilize > o S'9€ of cature alignment,
bge-large—en-vl. 5" as both the client and server’s en- which consists of two fully con-
coder as default, which outputs embeddings of 1024 dimen- gected layers and a Rel.U activa-
sions. While we utilize a11-MiniLM-L6-v2as the client’s tion layer in between.

small encoder which outputs embeddings of 384 dimensions and bge-large—-en-v1.5 as the
server’s encoder for FedDCA*.

Projector wy,

ReLU

Figure 6: The projector used on the

Projector. To reduce the computational overhead of clients, we propose a heterogeneous encoder
method called FedDCA*. We utilize a projector to perform the dimension alignment between the
small encoder on the client side and the large decoder on the server side. As shown in Figure [6]
where d; is the dimension of the client-side encoder, d, is the dimension of the server-side encoder.

A.8 PROMPTS USED IN THE SELF-INSTRUCT DATA GENERATION

To generate the Self-Instruct data, we prompt GPT-3.5 to generate the instruction with the designed
prompt in Figure[7} Specifically, we randomly sample two examples from the client’s local data to
guide GPT-3.5 generating the in-domain instruction and one example from the client’s local data for
one-shot in-context learning to guide GPT-3.5 generating responses into the example’s format.

Shttps://huggingface.co/meta—1lama/Meta—Llama-3-8B
Shttps://huggingface.co/BAAI /bge-large—en—-vl.5
"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

20

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Under review as a conference paper at ICLR 2025

You are asked to come up with Example 1:

instructions. Don't repeat instructions in Instruction: {}

examples. Here are some examples: Response: {}

Instruction 1: {} Generate the response of this instruction,
Instruction 2: {} Instruction: {}

Provide a new instruction below:

Figure 7: Prompts used in the Self-Instruct data generation. (a) Prompt for generating new instruc-
tions. Two examples are randomly sampled from the client’s local data for in-context demonstration.
(b) Prompt for generating responses. We prompt GPT-3.5 to generate responses with a randomly
selected example for one-shot in-context learning.

A.9 PROMPT USED FOR MEMORY EXTRACTION ATTACK

As we use Llama3-8B as our base model and format the instructions and responses into the Alpaca’s
format, to utilize the auto-regression nature of LLM to extract the instruction, we prompt the model
to generate the instruction using the prompt in Figure[8] which is exactly the prefix of the Alpaca’s
template.

Below is an instruction that describes a
task. Write a response that appropriately
completes the request.

#it#nstruction:

Figure 8: Prompt used for memory extraction attack.

A.10 FURTHER ANALYSIS

To further study the effect of different hyperparameters of FedDCA, we undertake a thorough anal-
ysis including various retrieval amounts and different k-means cluster numbers £. In addition, we
perform the ablation study on whether using the similarity threshold « in the greedy client center
selection.

Held-out Setting. Considering this setting in the financial domain, to construct the held-out set-
ting, given that the training set FinGPT and the test sets FPB, FiQA, and TFNS are all related to
sentiment analysis tasks. As clients aim to train a model adept at performing sentiment analysis
through federated learning, we keep the setting of test sets. Meanwhile, the FinGPT’s instructions in
public data are replaced with data from the Sujet-Finance-Instruct-177k dataset where
task_type=qga. The clients’ local data are still randomly sampled from FinGPT. This approach
yields held-out public data.

Table 9: Performance (%) on the test set of financial domain after 30 rounds’ federated instruction
tuning.

Method FPB FiQA TFNS
Zero Shot 5594 1854 59.21
Base Data 58.25 14.18 66.62
Random Sampling 60.39 945 6545
FedDCA 60.89 18.91 67.37

As shown in TableEl, it can be observed that even when in the held-out setting, FedDCA still achieves
performance improvements compared to other baselines. Additionally, using the Random Sampling
data augmentation strategy resulted in performance degradation on the FiQA dataset. This further
underscores the necessity of selecting an appropriate data augmentation strategy.

21

Under review as a conference paper at ICLR 2025

Effect of Retrieval Number. We report the performance and the corresponding domain coverage
of FedDCA with different retrieval amounts on the four domains in Figure [9] respectively. We can
see that the domain coverage of FedDCA is increasing along with the retrieval amount in different
trends, as well as the performance. Specifically, the domain coverage of each domain increases by
6.36%, 18.69%, 5.04%, and 8.06% in relative, respectively. Along with domain coverage increasing,
the performance of FedDCA is increasing by 3.05%, 2.20%, 4.08%, and 6.95% for each domain.
Noted that although the code domain is more about following a certain paradigm, which could
perform well with a few data and more fine-tuning rounds, it still could benefit from the instruction
augmentation.

~
w
o
o
[N
23

<

36 —*— HumanEval(Pass@1 —— MMLU-Med(Acc) —=— FPB(Acc) GSMB8K(Exact Match)

N ~
N w
o o
~
=)
o a
2 N
o o

<

N

o
a
o

Performance(%
2 o
8 3
Performance(%

Performance(%)

~

o
a
S
@

50.0
67
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

097 —*— Code 0925 —— Medical 098 —a— Financial Mathematical
- (9]

4
©
N

& 0.900

4
©
<Q

£ 0.96
g 2

0.875
o Q
Goes

O
c < 0.850
© 0.94 T

o
©
a

E 0825

o
@
3

5
a 0.93

Domain Coverage
o
©
8
Domain Coverage
o
©
8

4
©
*

[a]
0.02 0.800

0.86
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Retrieval Amount Retrieval Amount Retrieval Amount Retrieval Amount

Figure 9: Effect of different retrieval amounts on the performance of FedDCA and its domain cov-
erage. We show the results on four domains separately. Here, we use the FPB test set to evaluate the
performance in the financial domain.

In addition, to further prove the effectiveness of FedDCA is independent of the retrieval amount,
we conduct the experiment that each client samples 100 samples from the public dataset and then
performs FedDIT. Random* and FedDCA* represent the default setting, where each client samples
5,000 samples.

Table 10: Performance (%) of FedDCA and Random Sampling with different amounts of sampled
public data.

Method H-Eval MMLU-Med FPB FiQA TFNS GSM8K
Base Data 39.03 68.40 58.25 14.18 66.62 47.46
Random Sampling 34.53 69.80 60.89 14.54 65.57 48.77
Random Sampling* 32.93 71.30 64.19 13.09 65.53 47.38
FedDCA 35.97 70.20 6320 15.63 67.58 49.32
FedDCA* 36.58 74.50 67.24 3527 73.32 52.46

The results in Table[I0]show that even with a small amount of sampled data, the model performance
still improves compared to random sampling, except in the code domain, which tends to follow a
certain paradigm. This further demonstrates the effectiveness of FedDCA and its independence of
the retrieval amount.

How Far can FedDCA Go? Assume there exists a pre-trained model that has already fine-tuned
on the whole in-domain data of the internet or even all open-source public instruction datasets, is
there any room for instruction augmentation or FedDCA? To answer this question, we conduct the
following experiments on four settings: A) Fine-tuning on the whole public dataset. B) Following
A, perform further federated fine-tuning with only private clients’ local dataset. C) Following A,
each client randomly samples 100 public data for fine-tuning. D) Following A, each client samples
100 public data through FedDCA and then performs FedDIT.

As shown in Table [TT] even with only 100 samples selected via FedDCA, the method not only
prevents performance degradation but also helps the model achieve better generalization within the

22

Under review as a conference paper at ICLR 2025

Table 11: Performance (%) of setting A, B, C, and D in each domain.

Setting H-Eval M-Med FPB FiQA TFNS GSMS8K

38.41 69.10 7533 41.09 71.60 53.75
43.90 64.30 7797 6654 78.26 56.40
41.46 66.90 7450 29.81 70.51 57.01
44.12 7090 81.43 72.00 78.81 58.90

oQwy

domain. This is attributed to exposure to more diverse in-domain data during training. Meanwhile,
it can be observed that random sampling still leads to performance degradation compared to Setting
A, and even performs worse than Setting B, where no data augmentation is applied. In the financial
domain, performance degradation is also evident.

In conclusion, this experiment further highlights the necessity and effectiveness of FedDCA and
designing effective data augmentation algorithms for FedDIT.

Scalability. To evaluate the scalability of FedDCA, we conduct the experiment with 100 clients. In
each round, two clients are randomly selected for federated instruction tuning using FedAvg.

Table 12: Performance (%) and domain coverage of FedDCA and other baselines in various do-
mains. The client number is 100, and 2 clients are selected in each round.

Zero-shot Base Data Random Sampling FedDCA

Performance (%)
H-Eval 29.88 34.14 34.75 35.92
MMLU-Med 70.60 72.40 69.90 73.30
FPB 55.94 66.74 61.05 67.16
FiQA 18.54 33.45 12.00 34.51
TFNS 59.21 72.78 65.53 73.26
GSMSK 23.27 49.12 47.23 50.26
Domain Coverage
Code - 0.8282 0.8685 0.9242
Med. - 0.8377 0.8497 0.9090
Fin. - 0.9339 0.9408 0.9800
Math. - 0.8709 0.8812 0.9118

As shown in Table @ as the number of clients increases, the amount of local data on each client
gradually grows. The model trained using only base data even outperforms random sampling in
domains other than code and narrows the gap with FedDCA. However, because FedDCA aims to
maximize the cross-client domain coverage, it achieves higher domain coverage and better perfor-
mance. In conclusion, results further demonstrate the effectiveness and scalability of FedDCA.

Impact of Different Cluster Number. The hyperparameter £ is the number of clusters in the k-
means algorithm. The experiment is conducted on £ = [N,2N,4N,8N], where N is the number
of clients. Following the setting in Appendix [A77] we set N = 10. We report the domain coverage
of the augmented dataset via FedDCA with different cluster numbers £ on the four domains in
Figure |10} respectively. Results show that there is no best £ for all domains. Specifically, the best £
of code, medical, financial, and mathematical domains are 80, 80, 40, and 10, respectively.

Ablation Study. We conduct the experiment with FedDCA w/o similarity threshold « on the four
domains based on the FedAvg FL strategy. The performance and the corresponding domain coverage
are shown in Table 13| where FedDCA without the similarity threshold « is marked as FedDCA!T.
The result shows that the performance of FedDCA with similarity threshold « is slightly better than
FedDCA without using « in code, financial, and mathematical domains, as the similarity scores
in the medical domain are relatively lower. We show the similarity score distribution of the four
domains in Figure[T1] For each domain, we plot each similarity score’s distribution of 10 clients.

23

Under review as a conference paper at ICLR 2025

Code Medical Financial Mathematical

0.9819

0.9775 0.960 o~
0.9818

0.955 09340
0.9817

o
©
@
&
&

0.9816

In coverage

0.9815 0.8330

Domain coverage
s o o

© © ©

g & 8

s & 8
Domain coverage
Domal

0.9650 - 0.9814 0.9325

0.9625 0.935 0.9813 0.9320
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
k k k k

Figure 10: Impact of different cluster number £ on the cross-client domain coverage. We report the
domain coverage of the augmented dataset via FedDCA with different cluster numbers & on the four
domains.

The similarity score is computed between the selected client center and the public data. Then, we
show the similarity score distribution using the histogram plot.

Table 13: Ablation study on the performance and domain coverage of FedDCA w/o similarity thresh-
old a.

Metric Performance(%) Domain Coverage
FedDCA' FedDCA | FedDCA' FedDCA
H-Eval 35.97 36.58 0.8972 0.9348
M-Med 73.40 73.40 0.9348 0.9348
FPB 66.25 67.24
FiQA 23.27 35.27 0.9353 0.9815
TENS 69.34 73.32
GSMS8K 51.78 52.46 0.9128 0.9320

A.11 AUGMENTATION STRATEGY VISUALIZATION

To more intuitively compare the domain coverage of different instruction augmentation methods, we
randomly sample 5,000 instructions obtained through these methods and 10,000 in-domain instruc-
tions as the background, representing the distribution of specific domains in the public dataset. We
then visualized the results using t-SNE (van der Maaten & Hinton, 2008)), as shown in Figure @
The plot shows that FedDCA encompasses most of the in-domain data, which is consistent with
FedDCA'’s domain coverage of each domain shown in Table |4 Also, we can observe that the ran-
dom sampling strategy selects a lot of out-of-domain data while does not have good coverage in
specific domains.

A.12 FREQUENTLY USED NOTATION

24

Under review as a conference paper at ICLR 2025

-
S
-

EEEEEREE

(¢) Financial (d) Mathematical

Figure 11: The similarity score distribution of the four domains. For each domain, we plot each
similarity score’s distribution of 10 clients.

25

Under review as a conference paper at ICLR 2025

- o v .
- Feddca - reddca

LSNEFe
CSNE Feature 2

ESNE Feature 1 ESNE Feature 1

(a) Code (b) Medical

CSNE Feature 2
CSNE Feature 2

] 3 K 3
LSNE Feature 1 ESNE Feature 1

(c) Financial (d) Mathematical

Figure 12: Visualization of cross-client data distribution in different domains, performing t-SNE
dimensionality reduction on retrieved instructions through various augmentation strategies. We ran-
domly sample 10,000 in-domain samples as background while randomly sampling 5,000 samples
from the cross-client augmented dataset for different instruction augmentation methods for compar-
ison.

26

Under review as a conference paper at ICLR 2025

Table 14: Frequently used notation.

NOTATIONS

REMARK

N,C
D?, D% D¢, D!
Nj, NE

Dy, D{, Dy,

AP, C

b, A¢

W, Wene, Wp

Fy(w; D), l(w; z,y)

Clients number, client set C' = {c1,c2,...,cn}.
The public datasets, the in-domain data, the
cross-client dataset, client’s local private data.
Number of local private data on the k-th client,
number of the retrieved public data on the k-th
client.

The local private data on the k-th client, the
retrieved public data on the k-th client, the
augmented dataset on the k-th client.

A specific sampling strategy that performs
instruction augmentation on the server side,
selected client center set, the cluster centers
obtained locally and sent to the server for the
greedy client center selection.

LLM'’s pre-trained parameters, additional LoRA
parameters.

Merged model parameters from the frozen LLM’s
parameters ¢ and the additional LoRA parameters
A, encoder model, projector model.

Loss of model w over a specific dataset D, the
instructon tuning loss of model w over a data
sample (z,y).

27

	Introduction
	Preliminaries
	Problem Formulation
	Method
	Optimization Problem
	Greedy Client Center Selection & Domain Data Retrieval
	Heterogeneous Encoder with Feature Alignment
	Discussions

	Experiments
	Experimental Setup
	Performance Analysis
	Computation Analysis
	Privacy Analysis

	Conclusion
	Appendix
	Related Work
	The Setting of FedDIT
	Why This Setting?
	The Definition of Domain
	The Distribution of Public Data

	What Truly Counts in FedDIT
	Data Heterogeneity Is Not Matter In FedDIT
	Domain Coverage: A Key Factor in FedDIT

	Direct domain data retrieval
	Instruction Based Dense Retrieval
	Direct Retrieval

	Train and Test Dataset Information
	Discussion on Domain Inference Attack
	Implementation Details
	Prompts used in the Self-Instruct data generation
	Prompt used for memory extraction attack
	Further Analysis
	Augmentation strategy visualization
	Frequently Used Notation

