ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

LLMs KNOW WHAT TO DROP: SELF-ATTENTION
GUIDED KV CACHE EVICTION FOR EFFICIENT LONG-
CONTEXT INFERENCE

Guangtao Wang ; Shubhangi Upasani, Chen Wu, Darshan Gandhi, Jonathan Li,
Changran Hu, Bo Li, Urmish Thakker

SambaNova Systems, Inc.

Palo Alto, CA 94303, USA

https://sambanova.ai/

ABSTRACT

Efficient long-context inference is critical as large language models (LLMs) adopt
context windows of ranging from 128K to 1M tokens. However, the growing
key-value (KV) cache and the high computational complexity of attention cre-
ate significant bottlenecks in memory usage and latency. In this paper, we find
that attention in diverse long-context tasks exhibits sparsity, and LLMs implic-
itly “know” which tokens can be dropped or evicted at the head level after the
pre-filling stage. Based on this insight, we propose Self-Attention Guided Evic-
tion (SAGE-KV), a simple and effective KV eviction cache method for long-
context inference. After prefilling, our method performs a one-time top-k se-
lection at both the token and head levels to compress the KV cache, enabling effi-
cient inference with the reduced cache. Evaluations on LongBench, InfiniteBench
and three long-context LLMs (Llama3.1-8B-Instruct-128k, Llama3-8B-Prolong-
512k-Instruct, and Qwen2.5-7B-Instruct-128k) show that SAGE-KV maintains
accuracy comparable to full attention while significantly improving efficiency.
Specifically, SAGE-KYV achieves 4x higher memory efficiency with improved ac-
curacy over the static KV cache selection method StreamLLM, and 2x higher
memory efficiency with better accuracy than the dynamic KV cache selection
method Quest.

1 INTRODUCTION

Long-context Large Language Models (LLMs) are essential for tasks like summarization, multi-
hop reasoning, question answering, code understanding, personalized chatbots, recommendations,
and in-context learning (Zhou et al., 2024; [L1 et al., 2024; Josh Achiam, 2023} [Team et al.| |2024)).
However, their deployment is limited by high computational costs, driven by the KV cache’s memory
demands and attention computation latency (L1 et al., 2024). As attention latency grows with KV
cache size, efficient memory and computation management are crucial for real-world feasibility.
Addressing these challenges is key to fully leveraging long-context LLMs.

Recent efforts to reduce KV cache requirements and accelerate inference in long-context LLMs
have gained increasing attention, mainly by exploiting attention sparsity (Zhang et al., |2023}; |[Liu
et al., 2024). Sparsity patterns fall into two main categories: static (Xiao et al., 2024cib) and dy-
namic (Xiao et al. [2024a}; |Tang et al.l 2024} [Liu et al., 2024} [Sun et all 2024). Static sparsity
methods predefine token selection rules, avoiding runtime computation and enabling faster infer-
ence. For instance, StreamLLM (Xiao et al., 2024c)) retains sink tokens (early context) and recent
tokens, reducing KV cache size without additional selection overhead.

Dynamic sparsity methods adaptively select representative tokens per generation step, often yielding
higher accuracy but at increased computational cost. They require careful hyperparameter tuning
(e.g., chunk size in InfLLM (Xiao et al., 2024a), or ANN index construction in RetrievalAtten-
tion (Liu et al., [2024)) and must retain the full KV cache as a candidate pool, limiting memory

*Corresponding author. xjtuwgt@ gmail.com, guangtao.wang @sambanovasystems.com

https://sambanova.ai/

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

savings. Although offloading KV caches to the CPU reduces GPU memory usage, it incurs high
retrieval latency (Sun et al., [2024). As a result, dynamic methods demand sophisticated CPU-GPU
coordination (Xiao et al.| [2024a; Lee et al., |2024b; |He & Zhai, 2024; |Liu et al} |2024), increasing
implementation complexity.

Input text Context Query

[Lims in Prefin |

ruveers [T] I I [1 _

Initial tokens ed tokens ken

Last-token x Evicted
tokens attn scores
Reduced KV Cache | | | | X | | X | | X |
by top-k selection

Initial tokens ~ Head-level Top-k selected tokens Recent tokens Last token

[LLMs in Decoding] iteration

Cache
w BT T=1_T>T I

Figure 1: The 1llustrat10n of SAGE KV w1th the single-pass KV cache selection. The full KV
cache consists of four parts: initial tokens, tokens for eviction, recent tokens, and the last token. To
construct a reduced KV cache, we select the top-k evicted tokens based on their attention scores with
the last token and concatenate them with the initial and recent tokens. The updated cache is used for
continuous token generation, with each new token (green) added to the recent tokens, updating the
recent window for the next step.

In this paper, we tackle efficient long-context inference in LLMs by leveraging the observation that,
after the pre-filling stage, LLMs naturally focus on critical information. We analyze the sparsity
of the attention score and find that the attention heads selectively highlight important tokens. This
insight motivates our optimization of KV cache compression at the head level. Based on this, we
propose Self-Attention Guided Eviction for KV Cache (SAGE-KV) (Fig. |I|), a novel method that
uses attention scores to guide eviction of KV cache, significantly improving inference efficiency
while preserving precision.

SAGE-KV employs a single-pass token-level KV cache selection strategy, compressing the KV
cache once after the pre-filling stage using attention scores (Fig.[I). Only the compressed KV cache
is retained, eliminating redundant KV selection during token generation, unlike block-level dynamic
methods. This reduces computational overhead while preserving essential information for inference.
By retaining only the most relevant tokens, SAGE-KV ensures both efficiency and accuracy. It
combines the fixed sparsity of static methods—benefiting from their single-pass processing and
structured cache—with the context-adaptive selection of dynamic methods. This synergy enables
SAGE-KYV to achieve superior efficiency while maintaining or even improving performance over
existing dynamic block-level KV selection approaches.

Extensive experiments across long-context LLMs and benchmarks validate these advantages.
SAGE-KYV achieves nearly 4x higher memory efficiency and improved accuracy compared to the
static KV eviction method StreamLLLM Xiao et al.[(2024c), and 2x higher memory efficiency over
the dynamic block-level KV eviction method Quest [Tang et al.| (2024). This simple yet effective
approach accelerates long-context inference while remaining easy to integrate, offering a promising
solution to the challenges of long-context LLM inference.

2 SELF-ATTENTION GUIDED KV CACHE EVICTION

Given a long input sequence s = [t;])¥.; of length NV, consisting of a context followed by a query,
the pre-filling step produces the full key-value cache for layer I: P! = [(k!, v})]¥|. As illustrated
in Fig.[I] the proposed method proceeds as follows.

Step 1: Full KV Cache Partition. We divide the KV cache P! into four parts: (1) initial tokens or
sink tokens S' = P! with length S, (2) evicted tokens E' = P% | ¢, with length E, (3) recent
tokens R = Pk ;.. v_; with length R=N — 1 — (S + E) and (4) the last token’s KV cache
P!,. Sink and recent tokens are retained separately, as attention analysis shows that initial and most
recent tokens typically receive higher attention scores across all heads (Xiao et al., 2024c)), which
refers to this as the “attention sink”.

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Step 2: Representative Token/KV Cache Selection. We select representative KV cache entries
based on the attention scores between the last token of the input sequence and the evicted tokens.
Let ' € RHa*dn denote the query vector corresponding to the last token’s KV cache PY;, where
H, is the number of query heads, dj, is the head dimension, and H, x d;, = d, the hidden dimen-
sion. In decoder-only LLMs, the last token’s hidden representation often serves as an embedding
for the entire input sequence (Lee et al., [2024a; BehnamGhader et al., [2024). Thus, ql acts as a
representative embedding for the full sequence.

For each layer [, we use ql to select the top-k KV cache entries, Efopk, based on the attention scores

with E!. This yields H, groups of the top-k KV caches, forming a representative set of key-value
pairs for the next-token generation.

Step 3: Reduced KV Cache Construction. The reduced KV cache C is formed by concatenating
sink token KV cache, selected top-k token KV cache, recent token KV cache as well as the last KV
cache, resulting in C = Concat(S, E;op, , R, PY;) with total length S + k + R + 1.

Step 4: Generation/Decoding. The output is generated using the reduced KV cache C. Each new
token’s KV pair is added to the recent window R, evicting the oldest entry in R to maintain its size.
This process repeats until generation completes.

3 EXPERIMENTS AND RESULTS

3.1 EXPERIMENTAL SETUP

Benchmarks and long context LLMs. We evaluate long-context performance on LongBench (Bai
et al.,|2023)) and InfiniteBench (Zhang et al.| [2024) using Llama3.1-8B-Instruct (128k)(Dubey et al.,
2024), Llama-3-8B-ProLong-512k-Instruct(Gao et al.,[2024), and Qwen2.5-7B-Instruct (128k) (Hui
et al.,[2024)), covering a diverse set of models.

Baselines. We compare our method with the following: (1) Full-Attention Models: which use
standard full attention; (2) Hugging Face StreamLLLLM (Xiao et al.,[2024c)): the official implemen-
tation; (3) Our StreamLLM Implementation: which addresses position conﬂictsﬂ in the Hugging
Face version by introducing (a) StreamL.LM g, which stores pre-RoPE KV cache and applies local
window relative positional encoding, and (b) StreamLLLMaps, which uses absolute positional encod-
ing; (See Appendix) (4) Quest (Tang et al., [2024): a block-wise top-k selection method; and (5)
InfLLM (Xiao et al., 2024a): which integrates sink tokens, recent tokens, and block-wise top-k
selection. See Appendix for SAGE-KV implementation details.
Table 1: Accuracy Comparison of KV Cache Eviction Methods on LongBench

Method 2wikimga govrep lcc mulfga mulnews narqa passret qasper rep-p trec hotpotqga musique gmsum samsum triqa Average
Llama3.1-8B-Instruct (128k)
FullAttention 50.01 3466 65.52 56.85 27.11 31.38 100.0 46.6 583 73.0 58.1 32.52 25.19 4375 92.11 53.01
StreamLLM 49.47 32,66 6537 5554 27.05 3098 790 4627 5487 650 5620 30.35 24.45 42.89 9193 50.14
StreamLLM 49.08 33.68 6548 5530 27.14 31.14 830 4572 5538 730 5744 30.37 24.61 43.69 9197 5113
StreamLLM 455 48.58 3396 6533 55.06 27.14 30.6 845 4571 56.11 730 57.58 30.08 24.37 43.65 9204 5118
Quest 45.83 3525 648 5536 27.25 28.14 995 4495 59.69 70.5 55.17 31.69 25.40 4275 8283 5127
InfLLM 45.61 3442 672 5121 27.69 2382 920 4475 6444 69.0 50.65 23.74 24.24 434 9216 5029

SAGE-KV (Ours) 48.33 3398 6501 56.16 26.95 3142 1000 4621 5546 730 58.08 33.29 24.32 4356 91.64 5249
Llama-3-8B-ProLong-512k-Instruct

FullAttention 2471 3323 6601 5391 27.67 29.66 1000 3105 674 735 3624 13.96 2553 4319 90.01 47.74
StreamLLM; 24.06 30.78 66.11 53.16 27.73 27.79 67.5 30.66 66.0 74.0 34.64 12.57 23.88 4355 9048 44.86
StreamLLMp 25.26 3238 6595 51.62 27.58 26.36 68.0 30.65 6649 740 35.31 11.84 24.66 43.53 89.51 44.88
StreamLLM 43 25.63 3248 6595 5274 27.54 26.67 68.5 30.54 65.8 740 34.28 11.52 24.60 43.12 89.38 4485
Quest 24.86 3190 65.20 50.75 28.13 26.18 99.5 2952 6733 725 35.58 14.89 25.77 43.11 86.76 46.80
InfLLM 24.84 28.37 38.10 68.31 25.43 49.18 14.34 2225 664 495 29.56 23.16 41.17 75.50 90.06 43.08
SAGE-KV (Ours) 25.57 3208 6596 54.74 27.72 29.90 100.0 30.03 6739 73.0 36.48 13.76 25.0 42.94 89.98 47.64
Qwen2.5-7B-Instruct (128k)
FullAttention 46.11 3346 62.03 5177 2591 28.79 100.0 4479 66.83 735 58.38 29.23 24.32 47.92 88.93 52.13
StreamLLM y 2 11.86 2970 6192 22.64 23.08 337 5958 1009 6487 725 11.33 7.05 16.88 4645 8819 353
StreamLLM 44.92 332 6218 49.10 25.73 2585 700 4479 6588 720 5073 24.83 23.20 4773 8941 48.64
StreamLLM 45.46 3323 61.82 49.63 2571 2365 715 4479 6529 725 52.61 24.9 2339 4745 88.64 4870
Quest 45.70 3273 6045 5041 25.77 2634 9783 4470 5995 730 57.65 28.79 24.50 47.02 8678 50.77
InfLLM 43.12 3290 5251 6045 24.65 4823 2811 2276 63.63 69.0 4327 23.05 45.20 66.5 8845 4746
SAGE-KV (Ours) 45.81 3253 6172 50.29 25.79 28.05 1000 4421 630 720 5590 29.16 23.17 4751 88.65 5119

Note: We do not compare with H2O, as prior work has already shown that Quest outperforms it (Tang et al.|2024].

3.2 RESULTS

Accuracy comparison on LongBench is represented in Table [If} which shows that:

'nttps://github.com/huggingface/transformers/issues/35350
*Please refer results of InfiniteBench in Appendix

https://github.com/huggingface/transformers/issues/35350

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

SAGE-KV achieves accuracy comparable to full attention by applying self-attention-guided KV
cache selection after pre-filling. Unlike per-token generation based selection, it selects KV entries
in a single pass using the last input token’s attention scores, leveraging LLMs’ inherent ability to
prioritize key tokens for effective answer generation.

StreamLLLM’s static sparse KV selection degrades accuracy in long-context LLMs by discarding
essential information from the middle of the input. Our implementation outperforms the Hugging
Face (HF) version, with significantly better results on Qwen2.5-7B-Instruction and slightly higher
accuracy on Llama3.1-8B-Instruct. The improvement likely stems from a flaw in HF’s RoPE ro-
tation reported in [Hugging Face Issue| (2024), which misaligns key cache positions and increases
relative token distances, particularly affecting Qwen2.5. Our implementation corrects this, ensuring
more stable performance and underscoring the importance of precise implementation for Stream-
LLM, especially in position-sensitive models.

Dynamic sparse KV methods like InfLLM and Quest retrieve blocks per step but underperform
SAGE-KV due to imprecise block-wise top-£ selection based on pooled vectors (Liu et al.| [2024;
Tang et al.| 2024} |Gao et al., 2024). While faster, this approach often misses key tokens. In con-
trast, SAGE-KYV ’s token-level selection better approximates full attention, boosting accuracy and
highlighting the importance of fine-grained KV management.

Memory efficiency analysis. We evaluate KV cache eviction methods on Llama3.1-8B-Instruct,
measuring average accuracy across eight LongBench tasks (See Appendix) under token budgets B
of 0.5k, 1k, 2k, 4k, and 8k. Results in Fig. @]reveal the following insights.

Accuracy vs. Token budget

(1) All methods perform better with a larger token budget, sug-

gesting improved information retention and accuracy. 5

(2) SAGE-KYV consistently outperforms StreamLLLM’s static > ’

sparse KV selection across all token budgets by reducing the : /’/-

significant information loss caused by discarding middle sec- "= /4 = oSt noave
tions. Instead, SAGE-KV employs a self-attention-guided ey e

top-k token selection strategy, preserving critical information o I = — e e ~

Token Budget

within the same budget. This demonstrates the effectiveness . - .
Figure 2: Token Budget Analysis.

of our adaptive KV eviction method.

(3) With a 2k token budget, SAGE-KYV achieves the same accuracy as StreamLLLM at 8k, improving
memory efficiency by ~4x on LongBench tasks. This highlights the advantage of attention-guided
KV eviction in balancing performance and memory usage.

(4) SAGE-KYV achieves 2x memory efficiency by matching Quest’s performance using half the
token budget (4k vs. 8k). Unlike Quest’s coarse chunk-level top-k selection, SAGE-KV uses token-
level selection for finer context retention, leveraging LLMs’ ability to identify important tokens.

4 CONCLUSION AND FUTURE WORK

We introduce SAGE-KV, an efficient KV cache eviction method for long-context LLM inference.
Exploiting attention sparsity, SAGE-KV compresses the KV cache after prefilling for direct use
in generation. Our experiments show that SAGE-KV matches the inference speed of static sparse
methods while preserving accuracy close to full attention. It achieves ~4x higher memory efficiency
and greater accuracy than the static eviction method StreamLLLM, and ~2x higher memory effi-
ciency with better accuracy than the dynamic method Quest. Additionally, SAGE-KV seamlessly
integrates with popular LLM frameworks, including Hugging Face Transformers, Meta’s LLaMA,
and Alibaba’s Qwen, ensuring broad applicability.

Future Work. Current long-context tasks focus on short outputs like QA and retrieval, but long-
text generation may require more than a single top-k selection. Future work will explore long-
output benchmarks and interval-based updates, where the LLM periodically refreshes key tokens to
enhance coherence and relevance.

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapa-
dos, and Siva Reddy. LIm2vec: Large language models are secretly powerful text encoders. arXiv
preprint arXiv:2404.05961, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. How to train long-context language
models (effectively). arXiv preprint arXiv:2410.02660, 2024.

Jiaao He and Jidong Zhai. Fastdecode: High-throughput gpu-efficient 1lm serving using heteroge-
neous pipelines. arXiv preprint arXiv:2403.11421, 2024.

Hugging Face Issue. SinkCache (StreamLLLM) implemented over Post-RoPE Key cache might result
in confused position for inference, 2024. URL |https://github.com/huggingface/
transformers/issues/35350.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Sandhini Agarwal Lama Ahmad Ilge Akkaya Florencia Leoni Aleman Diogo Almeida Janko Al-
tenschmidt Sam Altman Shyamal Anadkat et al. Josh Achiam, Steven Adler. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428, 2024a.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 155-172, 2024b.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei
Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache
management. arXiv preprint arXiv:2412.19442, 2024.

Di Liu, Meng Chen, Baotong Lu, Huigiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. In Forty-first International Confer-
ence on Machine Learning, 2024.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Inflim: Training-free long-context extrapolation for llms with an efficient
context memory. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a.

https://github.com/huggingface/transformers/issues/35350
https://github.com/huggingface/transformers/issues/35350

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming
heads. arXiv preprint arXiv:2410.10819, 2024b.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024c.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, et al. Infinite bench: Extending long context evaluation beyond
100k tokens. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15262-15277, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661-34710, 2023.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

A APPENDIX

A.1 STREAMLLM WITH RELATIVE AND ABSOLUTE POSITIONS

Relative Position

Token 7: 0313253 EISHGIE

Token 8: 0,1,2,3

Generating

Token 7 Token 9: 0,1,2,3

Generating

Token 8 .
oxen Absolute Position

G ti . 4
eneraiing [0 | 112 Token 7: 0,1,2,3 435

— - ‘ Token 8: 0,1,2,3 56
Initial Tokens Evicted Tokens Recent tokens Token 9: 0,1,2,3 -
Figure 3: Implementation of Absolute and Relative Positioning in StreamLLM. Relative position
assigns indices within StreamLLLM’s sliding window, dynamically shifting as the window moves to
maintain a bounded range. In contrast, absolute position assigns a fixed index to each token based
on its original sequence, increasing continuously as new tokens are added.

A.2 EXPERIMENTAL RESULTS OVER INFINITEBENCH

Table 2: Comparison of KV Cache Eviction Methods on InfiniteBench with Different LLMs

Method Code.Debug Choice.En Math.Find Number PassKey QA.CH Book.Sum QA.EN Diag.EN Average
Llama3.1-8B-Instruct (128k)
FullAttention 22.59 61.57 25.14 99.49 100.0 34.53 16.82 35.44 22.5 46.45
StreamLLMp 22.84 62.88 25.14 3.73 6.78 27.71 13.8 31.26 17.0 23.46
StreamLLMp 22.59 60.7 32.57 6.61 6.78 25.33 16.49 30.35 14.5 23.99
StreamLLM 43, 22.59 62.88 24.57 5.59 6.78 26.71 16.0 31.05 14.5 23.41
SAGE-KV (ours) 22.59 62.88 26.0 94.24 100.0 30.51 16.47 33.01 20.5 45.13
Llama-3-8B-ProLong-512k-Instruct
FullAttention 38.83 63.76 20.86 100.0 100.0 28.37 8.48 33.36 10.5 4491
StreamLLMy 39.85 64.19 20.86 5.08 6.78 23.8 7.69 28.2 9.0 22.83
StreamLLMp 36.55 63.76 21.43 6.78 6.78 2297 9.61 28.19 9.5 22.84
StreamLLM 43, 36.55 63.76 22.0 6.78 6.78 22.54 9.93 27.58 10.0 22.88
SAGE-KV (ours) 36.04 63.76 21.43 86.78 100.0 26.41 8.24 32.77 10.5 42.88
Qwen2.5-7B-Instruct (128k)
FullAttention 335 49.78 33.43 94.58 96.44 28.09 12.33 15.96 11.5 41.73 (26.37)
StreamLLMp 30.46 51.97 28.0 0.51 5.08 10.35 10.98 5.72 12.5 17.29 (21.43)
StreamLLM 27.41 51.09 39.43 6.78 6.78 22.79 14.97 14.77 11.0 21.67 (25.92)
StreamLLM 4,5 31.47 48.03 28.57 5.08 5.08 22.64 14.11 13.45 9.5 19.77 (23.97)
SAGE-KV (ours) 32.23 48.47 34.86 5.25 47.29 27.66 12.76 15.58 11.0 26.12 (26.08)

Note: For Qwen2.5-7B-Instruct, we also report average accuracy (in parentheses) excluding the “Number” and “PassKey” retrieval tasks.

Table[2]compares the accuracy of Llama-3-based and Qwen2.5 models on InfiniteBench. The results
show that:

SAGE-KYV achieves accuracy comparable to full attention in long-context LLaMA models, includ-
ing LLaMA3.1-8B-Instruct and LLaMA3-8B-ProLong-512k-Instruct. Unlike traditional methods,
it selects key tokens in a single pass using the last input token’s attention scores, eliminating per-
token selection during generation. For Qwen2.5-7B-Instruct, SAGE-KV matches full attention in
most tasks, except for two retrieval benchmarks (Number and PassKey), while still outperform-
ing StreamLLM. This highlights LLMs’ ability to naturally prioritize critical tokens for effective
response generation.

StreamLLM’s static sparse KV selection leads to suboptimal accuracy in long-context LLMs by dis-
carding essential information from the middle of the input sequence. However, our implementation
outperforms the official Hugging Face (HF) version, achieving significantly better performance with
Qwen2.5-7B-Instruction and slightly higher average accuracy with Llama3.1-8B-Instruct. These
findings underscore the importance of precise implementation in evaluating StreamLLM, espe-
cially for models sensitive to token-relative positioning, consistent with the results in LongBench
(Table[T).

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

A.3 IMPLEMENTATION DETAILS OF SAGE-KV WITH LLMS

Hyper-parameter settings. For our method SAGE-KV, suppose that the token budget is B and the

query group number is G = hy/h,, where hy and hy,, are the query head number and ke/value head

number, respectively, we set the sink window as B/4, and k = 2£, and the recent window size as

B/4. For Llama3.1-8B-Instruct and Llama-3-8B-ProLong-512k-Instruct, we set B = 8192, and thus
sink window size = 2048 and k = 1024, the local window size = 2048. For Qwen2.5, since the query
group number is 7, we set B = 8192, thus sink window size = 2048, k = 512 and the local window
size = 8192 - 2048 - 7 - 512 = 2560. For other baselines, we set the same token budget B 8192.
Absolute positioning is applied in SAGE-KYV to the reduced KV cache to maintain token order.

Task names for token budget analysis. We use the following eight LongBench tasks for hyper-
parameter analysis, as in (Tang et al) 2024): “gov-report”, “multifieldqa-en”, “narrativeqa”,

9% COT3 LT3

“passage-retrieval-en”, “qasper”, “repobench-p”, “hotpotqa”, and “triviaqa”.

	Introduction
	Self-Attention Guided KV Cache Eviction
	Experiments and Results
	Experimental Setup
	Results

	Conclusion and Future Work
	Appendix
	StreamLLM with Relative and Absolute Positions
	Experimental Results over InfiniteBench
	Implementation Details of SAGE-KV with LLMs

