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Abstract
Flow matching (FM) is a family of training algo-
rithms for fitting continuous normalizing flows
(CNFs). Conditional flow matching (CFM) ex-
ploits the fact that the marginal vector field of a
CNF can be learned by fitting least-squares re-
gression to the conditional vector field specified
given one or both ends of the flow path. In this
paper, we extend the CFM algorithm by defining
conditional probability paths along “streams”, in-
stances of latent stochastic paths that connect data
pairs of source and target, which are modeled
with Gaussian process (GP) distributions. The
unique distributional properties of GPs help pre-
serve the “simulation-free” nature of CFM train-
ing. We show that this generalization of the CFM
can effectively reduce the variance in the esti-
mated marginal vector field at a moderate compu-
tational cost, thereby improving the quality of the
generated samples under common metrics. Addi-
tionally, adopting the GP on the streams allows
for flexibly linking multiple correlated training
data points (e.g., time series). We empirically
validate our claim through both simulations and
applications to image and neural time series data.

1. Introduction
Deep generative models aim to estimate and sample from an
unknown probability distribution. Continuous normalizing
flows (CNFs, Chen et al. (2018)) construct an invertible and
differentiable mapping, using neural ordinary differential
equations (ODEs), between a source and the target distri-
bution. However, traditionally, it has been difficult to scale
CNF training to large datasets (Chen et al., 2018; Grath-
wohl et al., 2019; Onken et al., 2021). Recently, Lipman
et al. (2023); Albergo & Vanden-Eijnden (2023); Liu et al.
(2023) showed that CNFs can be trained via a regression
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objective and proposed the flow matching (FM) algorithm.
FM exploits the fact that the marginal vector field inducing
a desired CNF can be learned through a regression formu-
lation, approximating per-sample conditional vector fields
using a smoother such as a deep neural network (Lipman
et al., 2023). In the original FM approach, the training
objective is conditioned on samples from the target distri-
bution, and the source distribution has to be Gaussian. This
limitation was later relaxed, allowing the target distribution
to be supported on manifolds (Chen & Lipman, 2024) and
the source distribution to be non-Gaussian (Pooladian et al.,
2023). Tong et al. (2024) provided a unifying framework
with arbitrary transport maps by conditioning on both ends.
While their framework is general, its application requires
the induced conditional probability paths to be readily sam-
pled from, and as such, they considered several Gaussian
probability paths. Moreover, most existing FM methods
only consider the inclusion of two endpoints, and hence
cannot accommodate data involving multiple correlated ob-
servations, such as time series and data with a grouping
structure. Notably, Albergo et al. (2024) recently proposed
multimarginal stochastic interpolants, which aim to learn a
multivariate distribution based on correlated observations.

In this paper, we go one level deeper in Bayesian hierar-
chical modeling of FM algorithm and specify distributional
assumptions on streams, which are latent stochastic paths
connecting the two endpoints. Our approach extends the
stochastic interpolant framework proposed by Albergo &
Vanden-Eijnden (2023); Albergo et al. (2023), and it leads
to a class of CFM algorithms that condition at the “stream”
level, which broadens the range of conditional probability
paths allowed in CFM training. By endowing the streams
with Gaussian process (GP) distributions, these GP-CFM al-
gorithms provide a smoother marginal vector field and wider
sampling coverage over its support. Furthermore, condition-
ing on GP streams allows for flexible integration of corre-
lated observations through placing them along the streams
between two endpoints and for incorporating additional
prior information, while maintaining the analytical tractabil-
ity and computational efficiency of CFM algorithms.

In summary, the main contributions of this paper are as
follows.

1. We generalize CFM training by augmenting the spec-
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ification of conditional probability paths through la-
tent variable modeling on the streams. We show that
streams endowed with GP distributions lead to a sim-
ple stream-level CFM algorithm that preserves the
“simulation-free” training.

2. We demonstrate that appropriately specified GP
streams can lead to smoother marginal vector fields
and reduced variance in marginal vector estimation,
and thereby generate higher quality samples.

3. We show that the GP-based stream-level FM can read-
ily accommodate correlated observations. This allows
FM training to borrow information across training sam-
ples, thereby improving the marginal vector field es-
timation and enhancing the quality of the generated
samples. Our approach offers additional flexibility to
accommodate designs that are challenging for existing
approaches, such as allowing correlated observations
to be observed along irregularly spaced time points.

4. These benefits are illustrated by simulations and appli-
cations to image (CIFAR-10, MNIST and HWD+) and
neural time series data (LFP), with code for Python im-
plementation available at https://github.com/
weigcdsb/GP-CFM.

2. Background and Notation
We start by reviewing the necessary background and defin-
ing the notation for flow matching (FM). At the end of this
section, we briefly present a Bayesian decision-theoretic
perspective on FM training, providing an additional justifi-
cation for FM algorithms beyond gradient matching (more
details in Appendix A).

Consider i.i.d. training observations from an unknown pop-
ulation distribution q1 over Rd. A CNF is a time-dependent
diffeomorphic map ϕt that transforms a random variable
x0 ∈ Rd from a source distribution q0 into a random
variable from q1. The CNF induces a distribution of
xt = ϕt(x0) at each time t, which is denoted by pt, thereby
forming a probability path {pt : 0 ≤ t ≤ 1}. This probabil-
ity path should (at least approximately) satisfy the boundary
conditions p0 = q0 and p1 = q1. It is related to the flow map
through the change-of-variable formula or the push-forward
equation

pt = [ϕt]∗p0.

FM aims at learning the corresponding vector field ut(x),
which induces the probability path over time by satisfying
the continuity equation (Villani, 2008).

The key observation underlying FM algorithms is that the
vector field ut(x) can be written as a conditional expectation
involving a conditional vector field ut(x|z), which induces
a conditional probability path pt(·|z) corresponding to the

conditional distribution of ϕt(x) given z. Here, z is the
conditioning latent variable, which can be the target sample
x1 (e.g., Ho et al. (2020); Song et al. (2021b); Lipman et al.
(2023),) or a pair of (x0, x1) on source and target distribu-
tion (e.g., Liu et al. (2023); Tong et al. (2024)). Specifically,
Tong et al. (2024), generalizing the result from Lipman et al.
(2023), showed that

ut(x) =

∫
ut(x|z)

pt(x|z)q(z)
pt(x)

dz = E (ut(x|z)|xt = x) ,

where the expectation is taken over z, which one can rec-
ognize is the conditional expectation of ut(x|z) conditional
on the event that xt = x. The integral is with respect to the
conditional distribution of z given xt = x.

The FM algorithm is motivated by the goal of approximat-
ing the marginal vector field ut(x) through a smoother vθt
(typically a neural network), via the objective

LFM(θ) = Et∼U(0,1),x∼pt(x)∥v
θ
t (x)− ut(x)∥2.

In the following, we follow earlier works and assume t ∼
U(0, 1) though the algorithms discussed are valid for other
sampling distributions of t as well. The FM objective is not
identifiable due to the non-uniqueness of the marginal vector
fields that satisfy the boundary conditions without further
constraints. FM algorithms address this by fitting vθt to the
conditional vector field ut(x|z) after further specifying the
distribution of q(z) along with the conditional probability
path pt(x|z), through minimizing the finite-sample version
of the marginal squared error loss. The corresponding loss is
referred to as the conditional flow matching (CFM) objective

LCFM(θ) = Et∼U(0,1),z∼q(z),x∼pt(x|z)∥v
θ
t (x)−ut(x|z)∥2.

Traditionally, optimizing the CFM objective is justified be-
cause it has the same gradients w.r.t. θ to the corresponding
FM loss (Lipman et al., 2023; Tong et al., 2024). In Ap-
pendix A we detail another justification for CFM without
involving the gradient-matching argument. In particular, we
view this algorithm from a Bayesian estimation perspective
and show that approximating the conditional vector field
by minimizing the marginal squared error loss (LFM) can
be interpreted as computing the “posterior expectation” of
ut(x|z) under a prior-likelihood setup. This is the Bayes
rule under square error loss and is exactly equal to ut(x).

This Bayesian estimation justification holds for any coher-
ently specified probability model q(z). So long as the condi-
tional probability path pt(x|z) is tractable, a suitable CFM
algorithm can be designed. Therefore, one can enrich the
specification of q(z) using Bayesian latent variable model-
ing strategies. This motivates us to generalize CFM training
to the stream level, which we describe in the next section.
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3. Stream-level Flow Matching
3.1. A Per-stream Perspective on Flow Matching

A stream s is a stochastic process s = {st : 0 ≤ t ≤ 1},
where each st is a random variable in the sample space of
the training data. We focus on streams connecting one end
x0 in the source to the other x1 in the target. From here on,
s will take the place of the latent quantity z.

Instead of defining a conditional probability path and vec-
tor field given one endpoint at t = 1 (Lipman et al., 2023)
or two endpoints at t = 0 and 1 (Tong et al., 2024), we
shall consider defining it given the whole stream connect-
ing the two ends. To achieve this, we need to specify a
probability model for s. This can be separated into two
parts—the marginal model on the endpoints π(x0, x1) and
the conditional model for s given the two ends. That is

(x0, x1) ∼ π and s|s0 = x0, s1 = x1 ∼ ps(·|x0, x1).
(1)

Our model and algorithm will generally apply to any choice
of coupling distribution π that satisfies the boundary con-
dition, including, for example, the popular OT-CFM and
Schrödinger bridge (entropy-regularized)-CFM, considered
in Tong et al. (2024). We defer the description of the spe-
cific choices of ps(·|x0, x1) to the next section and for now
focus on describing the general framework.

Given a stream s, the “per-stream” vector field ut(x|s) rep-
resents the “velocity” (or derivative) of the stream at time
t, conditional on the event that st = x, i.e., the stream s
passes through x at time t. Assuming that the stream is
differentiable within time, the per-stream vector field is

ut(x|s) := ṡt = dst/dt,

which is defined only on all pairs of (t, x) that satisfy st = x.
See Appendix B for a more detailed discussion on how the
per-stream perspective relates to the per-sample perspective
on FM.

While the endpoint of the stream s1 = x1 is an actual
observation in the training data, for the task of learning the
marginal vector field ut(x), one can think of our “data” as
the event that a stream s passes through a point x at time
t, that is st = x. Under the squared error loss, the Bayes
estimate for the per-stream conditional vector field ut(x|s)
will be the “posterior” expectation given the “data”, which
is exactly the marginal vector field

ut(x) = E(ut(x|s)|st = x) = E(ṡt|st = x). (2)

Following Theorem 3.1 in Tong et al. (2024), we can show
that the marginal vector ut(x) indeed generates the proba-
bility path pt(x). (See the proof in the Appendix J.1.) The
essence of the proof is to check the continuity equation for
the (degenerate) conditional probability path pt(x|s).

A general stream-level CFM loss for learning ut(x) is then

LsCFM(θ) = Et,s∥vθt (st)− ut(x|s)∥2= Et,s∥vθt (st)− ṡt∥2

where the integration over s is with respect to the marginal
distribution of s induced by π(x0, x1) and ps(·|x0, x1). As
in previous research such as Lipman et al. (2023); Tong et al.
(2024), we can show that the gradient of LsCFM equals that
of LFM with details of the proof in Appendix J.2. However,
stream-level CFM can be justified from a Bayesian decision-
theoretic perspective without gradient matching. For more
details, see Appendix A.

3.2. Choice of the Stream Model

Next, we specify the conditional model for the stream given
the endpoints ps(·|x0, x1). This model should emit streams
differentiable with respect to time, with readily available
velocity (either analytically or easily computable). Previous
methods such as optimal transport (OT) conditional path/
linear interpolant (Liu et al., 2023; Lipman et al., 2023;
Tong et al., 2024) achieve high sampling efficiency but can
provide rather poor coverage of the (t, x) space, resulting in
extensive extrapolation of the estimated vector field vθt (x).
Furthermore, Albergo et al. (2023) demonstrated that the
stochastic interpolant suppresses spurious intermediate fea-
tures, thereby smoothing both the path and the vector field.
Consequently, introducing stochasticity to the path simpli-
fies the estimation and accelerates sample generation. Thus,
it is desirable to consider stochastic models for streams that
ensure smoothness while allowing streams to diverge and
provide more spread-out coverage of the (t, x) space.

To preserve the simulation-free nature of CFM, we con-
sider models where the joint distribution of the stream and
its velocity is available in closed form. In particular, we
model the streams using Gaussian processes (GPs). A de-
sirable property of a GP is that its velocity is also a GP,
with mean and covariance directly derived from the original
GP (Rasmussen & Williams, 2005). This enables efficient
joint sampling of (st, ṡt) given observations from a GP in
stream-level CFM training. By adjusting covariance kernels
for the joint GP, one can fine-tune the variance level to con-
trol the level of regularization, thereby further improving
the estimation of the marginal vector field ut(x) (Section
4.1). The prior path constraints can also be incorporated
into the kernel design. Additionally, a GP conditioning on
the event that the stream passes through a finite number of
intermediate locations between two endpoints again leads
to a GP with analytic mean and covariance kernel (Section
4.2). This is particularly useful for incorporating multiple
correlated observations.

Specifically, given M time points t = (t1, t2, . . . , tM ) with
t1 = 0 and tM = 1, we let st = (st1 , st2 , . . . , stM ), and
consider a more general conditional model for ps(· | st =
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Algorithm 1 Gaussian Process Conditional Flow Matching
(GP-CFM)

Input: observation distribution π(xobs), initial net-
work vθ, and a GP defining the conditional distribution
(st, ṡt) | st = xobs ∼ N (µ̃t, Σ̃t), for t ∈ [0, 1].
Output: fitted vector field vθt (x).
while Training do
xobs ∼ π(xobs)
t ∼ U(0, 1)
(st, ṡt) | st = xobs ∼ N (µ̃t, Σ̃t)
LsCFM(θ)← ∥vθt (st)− ṡt∥2
θ ← update (θ,∇θLsCFM(θ))

end while

xobs), where xobs = (xt1 , xt2 , . . . , xtM ) are a set of “ob-
served values” that we require the statistic process s to
pass through at time (t1, t2, . . . , tM ). Note that this con-
tains the special case of conditioning on two endpoints (i.e.,
M = 2) described in Section 3.1. We consider a more
general construction for M ≥ 2 because later we will use
this to incorporate multiple correlated observations (such as
time series or other measurements from the same subject).

We construct a conditional GP for s that satisfies the bound-
ary conditions, with a differentiable mean function m and
covariance kernel k11. Since the derivative of a GP is also a
GP, the joint distribution of s and the corresponding velocity
process ṡ := {ṡt : t ∈ [0, 1]} given st is also a GP, with
the mean function for ṡ being ṁ(t) = dm(t)/dt and ker-
nels defined by derivatives of k11 (Rasmussen & Williams,
2005). To facilitate the construction of this GP, we consider
an auxiliary GP on s with a differentiable mean function
ξ and covariance kernel c11. Using the property that the
conditional distribution of Gaussian remains Gaussian, we
can obtain a joint GP model on (s, ṡ) | st, which satisfies
the boundary conditions. For computational efficiency and
ease of implementation, we assume independence of the GP
across dimensions of s. Notably, while we are modeling
streams conditionally given s as a GP, the marginal (i.e.,
unconditional) distribution of s at all time points is allowed
to be non-Gaussian, which is necessary for satisfying the
boundary condition and for the needed flexibility to model
complex distributions. The detailed derivation can be found
in Appendix C, and the training algorithm for GP-CFM is
summarized in Algorithm 1.

Several conditional probability paths considered in previous
works are special cases of the general GP representation.
For example, if we set m(t) = tx1 + (1− t)x0 (therefore,
ṁ(t) = x1 − x0) and k11(t, t′) = σ2Id, the path reduces
to the OT conditional path used in I-CFM with constant
variance (Tong et al., 2024). The I-CFM path can also be
induced by conditional GP construction (Appendix C) using
a linear kernel for c11, with more details in Appendix D. In

the following, we set ξ(t) = 0 and use squared exponential
(SE) kernel for c11 for each dimension (may be with addi-
tional terms such as in Figure 2). The details of SE kernel
can be found in Appendix E.

Probability paths with time-varying variance, such as those
considered in Song & Ermon (2019); Ho et al. (2020);
Lipman et al. (2023), also motivate the adoption of non-
stationary GPs whose covariance kernel could vary over
t. For example, to encourage samples that display larger
deviation from those in the training set (and hence more
regularization), one could consider using a kernel producing
larger variance as t approaches the end with finite training
samples (Figures 2 and 8). Moreover, because the GP model
for s is specified given the two endpoints, both its mean and
covariance kernel can be specified as functions of (x0, x1).
For example, if x1 is an outlier of the training data, e.g.,
from a tail region of q1, then one may incorporate a more
variable covariance kernel for ps(·|x0, x1) to account for
the uncertainty in the optimal transport path from x0 to x1.

4. Numerical Experiments
In this section, we demonstrate the benefits of GP stream
models through several simulation examples. Specifically,
we show that using GP stream models can improve the
generated sample quality at a moderate cost of training
time, by appropriately specifying the GP prior variance to
reduce the sampling variance of the estimated vector field.
Moreover, the GP stream model makes it easy to integrate
multiple correlated observations along the time scale.

4.1. Adjusting GP Variance to Improve Sample Quality

We first show that one can improve the estimation of ut(x)
by incorporating additional stochasticity in the sampling of
streams with appropriate GP kernels. A similar observation
has been made by Albergo et al. (2023), who also explained
that this is because the stochastic interpolant can smooth
the conditional probability path and suppress spurious in-
termediate modes. This applies to our GP-stream algorithm
as well. See Appendix F for an illustration of the smoother
conditional probability paths produced by our approach.

We have found it helpful to understand this phenomenon
from the perspective of variance reduction in the estimation
of the marginal vector field. As illustrated in Figure 1A,
for estimating 2-Gaussian mixtures from standard Gaussian
noise, the straight conditional stream used in I-CFM covers
a relatively narrow region (gray). For points outside the
searching region, there are no “data” and the neural network
vθt (x) must be extrapolated during sample generation. This
is a form of overfitting, which causes highly variable esti-
mates of the vector field in the extrapolated regions and can
lead to potential “leaky” or outlying samples that are far
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from the training observations.

In constructing the GP streams, we condition on the end-
points but expand the coverage region (red) by tweaking
the kernel function (e.g., decrease the SE bandwidth in this
case). This provides a layer of regularization that protects
against extrapolation errors. As illustrated in Equation 1, the
OT strategy for endpoints coupling (Tong et al., 2024) can
be complementary to our GP-stream method to enhance per-
formance. Therefore, we train the CNFs via four algorithms,
i.e., I-CFM, GP-I-CFM, OT-CFM and GP-OT-CFM (OT for
endpoints coupling and GP for stream model), 100 times
using a 2-hidden layer multi-layer perceptron (MLP) with
100 training samples at t = 1, and calculate 2-Wasserstein
(W2) distance between generated and test samples. For fair
comparisons, we set σ = 0 for linear interpolant (I-CFM
and OT-CFM), and use noise-free GP streams (GP-I-CFM
and GP-OT-CFM). The results are summarized in Table 1.
Empirically, the models trained by GP-stream CFM have
smaller W2 distance than the corresponding linear inter-
polant (i.e., GP-I-CFM vs. I-CFM and GP-OT-CFM vs. OT-
CFM), and the model trained by combining two strategies
(GP-OT-CFM, OT for coupling and GP for stream) performs
best. We further generate 1000 samples and streams for I-
CFM and GP-I-CFM with the largest W2 distance in Figure
1B, starting with the same points from standard Gaussian.
In this example, several outliers are generated from I-CFM.

Figure 1. GP streams reduce extrapolation by expanding cov-
erage area. Generate samples of 2-Gaussian mixture from the
standard Gaussian. Training observations are shown in red, gen-
erated samples in orange, and noise source samples in black. A.
FM with straight conditional stream (e.g., I-CFM) may generate
“leaky” or outlier samples due to extrapolation errors. The FM
method with GP conditional stream has a broader coverage area.
B. We train models with I-CFM and GP-I-CFM 100 times and
calculate 2-Wasserstein (W2) distance. Among these 100 trained
models, generate 1000 samples (orange) and streams (blue) for
I-CFM and GP-I-CFM with largest W2 distance (worst case).

We can further modify the GP variance function over time
to efficiently improve sample quality. Here, we consider
the task of estimating and sampling a 2-Gaussian mix-
ture from the standard Gaussian, with 100 training sam-
ples at t = 1. For constant noise, diagonal white noise is
added to perturb stream locations while retaining the SE
kernel. For varying noise, we add a non-stationary dot

Table 1. Comparison of linear and GP streams Consider gener-
ating 2-Gaussian target from standard Gaussian. Here, we train
models with I-CFM, GP-I-CFM, OT-CFM and GP-OT-CFM 100
times and calculate 2-Wasserstein (W2) distance between gener-
ated and test samples. Results of 100 seeds are summarized by
mean and standard error.

MODELS MEAN SE

I-CFM 1.54 0.08
GP-I-CFM 1.51 0.08
OT-CFM 1.43 0.05
GP-OT-CFM 1.35 0.05

product kernel to the SE kernel. Specifically, denote the
kernel for auxiliary GP on s in dimension i as ci11, for
i = 1, . . . , d. Let ci11(t, t

′) = cSE11 (t, t
′) + αtt′ for increas-

ing variance and ci11(t, t
′) = cSE11 (t, t

′)+α(t−1)(t′−1) for
decreasing variance, where {t, t′} ∈ [0, 1] and cSE11 (t, t

′) =

σ2 exp
(
− (t−t′)2

2l2

)
. (See Appendix C for additional de-

tails.) Some examples of the streams connecting two end-
points under different variance schemes are shown in Fig-
ure 2. We train the models 100 times and calculate the
2-Wasserstein (W2) distance between generated and test
samples, and the results are summarized in Table 2. In this
example, with infinite samples at t = 0 but 100 samples at
t = 1, injecting noise at t = 0 worsens estimation. However,
when approaching the target distribution (t = 1), adding
noise can improve estimation with small samples (100). The
noise perturbs the limited data, encouraging broader explo-
ration and adding regularization to reduce estimation error.
In addition to using a standard Gaussian source, we further
consider the transformation between two 2-Gaussian mix-
tures with finite samples (100) at both ends. Results are
shown in Appendix G. In this scenario, injecting noise near
either endpoint improves estimation.

Figure 2. Change variance over time by tweaking the covari-
ance kernel. Examples of conditional stream between two points,
under different variance change scheme.

4.2. Incorporating Multiple Correlated Training
Observations

Besides generally improving FM-based fitting of a marginal
vector field, an additional benefit of GP streams is that they
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Table 2. Comparison of different variance schemes of GP-I-
CFM Reconsider the generation of 2-Gaussian target from stan-
dard Gaussian. We train models under each variance scheme 100
times and calculate 2-Wasserstein (W2) distance for each. The
results of 100 seeds are summarized by mean and standard error.

VARIANCE SCHEME MEAN SE

NO NOISE 0.269 0.013
CONSTANT NOISE 0.305 0.011
DECREASING NOISE 0.329 0.013
INCREASING NOISE 0.243 0.012

enable the flexible inclusion of multiple correlated observa-
tions in the training data, such as in time series. Correlations
between training observations allow information sharing and
can improve estimation at each time point.

We first illustrate the main idea through a toy example. Con-
sider 100 paired observations and place the two observations
in each pair at t = 0.5 and t = 1, respectively (Figure 3 A)
while t = 0 corresponds to the standard Gaussian source.
Here, we show the generated samples (at t = 0.5 and t = 1)
and the corresponding streams for GP-I-CFM and I-CFM.
Again, 2-hidden layer MLP is used in this case. The I-
CFM strategy employs two separate models with I-CFM
algorithms (Figure 3B), whereas GP-I-CFM offers a single
unifying model for all observations, resulting in a smooth
stream across all time points (Figure 3C).

Figure 3. GP streams accommodate correlated points flexibly.
A. Paired data with observations on t = 0.5 (red) and t = 1 (orange).
B. The generated samples (red for t = 0.5 and orange for t = 1)
and streams (blue) for I-CFMs. The I-CFMs contain two separate
models trained by I-CFM, t = 0 (standard Gaussian noise) to t =
0.5 and t = 0.5 to t = 1. C. The generated samples for GP-I-CFM.

In some cases, the GP streams may not be well separated,
and thus may confuse the training of the vector field at
crossing points. In Figure 4, we show a time series dataset
over 3 time points, where training data at t = 0 and t = 1
are on one horizontal side while points at t = 0.5 are on
the opposite side (Figure 4A). Therefore, these streams
have two crossing regions (marked with blue boxes in Fig-
ure 4A), where the training of the vector field is deterio-
rated when simply using the GP-I-CFM (Figure 4B). An

easy solution is to further condition the neural net vθt (x)
on covariate (subject label) c, so that the optimization ob-
jective is LcCFM = Et∼U(0,1),s∼q(s|c)∥vθt (st, c) − ṡt∥2,
where q(s | c) represents the distribution of s given c. The
covariate-dependent FM (guided-FM) algorithm has been
proposed in Isobe et al. (2024); Zheng et al. (2023), and the
validity of approximating the covariate-dependent vector
field using the above optimization objective in our stream-
level CFM is shown in the Appendix J.3. In this example,
similar subjects have close starting points at t = 0, and we
let c = x0. By conditioning on c (covariate model), the
neural net is separated for different subjects, and hence the
training of the vector field will not be confused (Figure 4C).

Figure 4. Further conditioning on the starting points helps with
stream generation. A. Paired data with observations on three time
points: t = 0 (black), t = 0.5 (red) and t = 1 (orange). The two
stream cross regions are marked with light blue square. B. The
generated samples and streams for GP-I-CFM (without covariate),
where the initial points at t = 0 are generated from noise using a
separate I-CFM. C. The generated samples and streams for GP-
I-CFM with covariate using the same starting points, where the
neural network is further conditioning on data at t = 0.

5. Applications
We apply our GP-based CFM methods to two hand-written
image datasets (MNIST and HWD+), CIFAR-10 dataset,
and a mouse brain local field potential (LFP) dataset to
illustrate how GP-based algorithms 1) reduce sampling vari-
ance (MNIST and CIFAR-10) and 2) flexibly incorporate
multiple correlated observations and generate smooth trans-
formations across different time points (HWD+ and LFP
dataset). The reported running times for the experiments are
obtained on a server configured with 2 CPUs, 24 GB RAM,
and 2 RTXA5000 GPUs.

5.1. Variance Reduction

We explore the empirical benefits of variance reduction
using FM with GP conditional streams on MNIST (Deng,
2012) and CIFAR-10 (Krizhevsky, 2009) databases. Here,
we consider four algorithms in the MNIST application: two
linear stream models (I-CFM, OT-CFM) and two GP stream
models (GP-I-CFM, GP-OT-CFM). The I-CFM and GP-I-
CFM are implemented for the CIFAR-10 example.
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In the MNIST application, we set σ = 0 for linear stream
models and use noise-free GP stream models for fair compar-
isons. U-Nets (Ronneberger et al., 2015; Nichol & Dhariwal,
2021) with 32 channels and 1 residual block are used for all
models. It takes around 50s, 51s, 52s, and 53s for I-CFM,
OT-I-CFM, GP-I-CFM, and GP-OT-CFM to pass through
all training dataset once for model training. To evaluate how
much the GP stream-level CFM can further improve the
estimation, we train each algorithm 100 times, and calculate
the kernel inception distance (KID) (Bińkowski et al., 2018)
and Fréchet inception distance (FID) (Heusel et al., 2017)
for each. The histograms in Figure 5 show the distribution of
these 100 KIDs and FIDs, with results summarized in Table
3. According to KID and FID, the independent sampling al-
gorithms (I-algorithms) are comparable to optimal transport
sampling algorithms (OT-algorithms). However, algorithms
using GP conditional stream exhibit lower standard error
and fewer extreme values for KID and FID, thereby reducing
the occurrence of outlier samples (as in Figure 1).

Figure 5. Application to MNIST dataset. We compare the per-
formance of four algorithms (I-CFM, OT-CFM, GP-I-CFM and
GP-OT-CFM) on fitting MNIST dataset. We fit the models 100
times for each, and evaluate the quality of the samples by KID and
FID. The figures above show the historams of KID and FID.

Besides the MNIST dataset, to evaluate the performance in
the high-dimensional image setting, we perform an experi-
ment on unconditional CIFAR-10 generation (Krizhevsky,
2009) from a standard Gaussian source. We use a similar
setup to that of Tong et al. (2024), such as time-dependent
U-Net (Ronneberger et al., 2015; Nichol & Dhariwal, 2021)
with 128 channels, a learning rate of 2 × 10−4, clipping
gradient norm to 1.0 and exponential moving average with
a decay of 0.9999. Again, four algorithms (I-CFM, OT-
CFM, GP-I-CFM, and GP-OT-CFM) are implemented. We
add diagonal white noise 10−6 into GP-stream models to
prevent a potential singular GP covariance matrix, and set
σ = 10−3 in linear interpolations for fair comparisons. The
models are trained for 400,000 epochs, with a batch size
of 128. The linear interpolation (I-models) runs around 3.6
iterations per second, while GP-stream (GP-models) runs
around 3.0 iterations per second. Figure 9A in Appendix
H shows 64 generated images from four trained models,
using a DOPRI5 adaptive solver. Visually, images gener-
ated by GP-stream (e.g., GP-I-CFM) are generally sharper

and exhibit more details compared to those generated by
the linear interpolant (I-CFM). The mean (with standard
error) Fréchet inception distance (FID) (Heusel et al., 2017),
calculated by the clean-fid library (Parmar et al., 2022) with
50,000 samples and the running time to generate 10 images
20 times using the DOPRI5 solver, is reported in Table 4.

In terms of FID, GP-I-CFM is the best and significantly
improves the I-CFM. In this case, the OT-CFM is com-
parable to I-CFM, as observed in the MNIST application
(Figure 5 and Table 3). It may suggest that the benefit of
OT-CFM is less significant with increasing dimension, since
in the high-dimensional case, minibatch OT approximation
is poor for true OT and further adopting the GP stream strat-
egy (GP-OT-CFM) does not remedy the issue. In terms of
sample generation time, using GP stream or OT coupling
strategy leads to a more computationally efficient model.
However, combining these two strategies does not improve
the efficiency of sample generation in this case.

5.2. Multiple Training Observations

Finally, we demonstrate how our GP stream-level CFM
can flexibly incorporate correlated observations (between
two endpoints at t = 0 and t = 1) into a single model and
provide a smooth transformation across different time points,
using the HWD+ dataset (Beaulac & Rosenthal, 2022) and
LFP dataset (Steinmetz et al., 2019). The HWD+ example
concerns transformations on artificial time, and the LFP
dataset is time series data from the mouse brain. Here, we
show results for the HWD+ dataset; refer to Appendix I for
the LFP application.

The HWD+ dataset contains images of handwritten digits
along with writer IDs and characteristics, which are not
available in the MNIST dataset used in Section 5.1. Here,
we consider the task of transforming from “0” (at t = 0)
to “8” (at t = 0.5), and then to “6” (at t = 1). The inter-
mediate image, “8”, is placed at t = 0.5 (artificial time)
for “symmetric” transformations. All three images have the
same number of samples, totaling 1,358 samples (1,086 for
training and 272 for testing) from 97 subjects. The U-Nets
with 32 channels and 1 residual block are used. Both mod-
els with and without covariates (using starting images, as in
Figure 4C) are considered. Each model is trained both by
I-CFM and GP-I-CFM. The I-CFM transformation contains
two separate models trained by I-CFM (“0” to “8” and “8”
to “6”). Noise-free GP-I-CFM and I-CFM with σ = 0 are
used for fair comparisons. In each training iteration, we
randomly select samples within each writer to preserve the
grouping structure of data. The runtime for all algorithms
(I-CFM, GP-I-CFM and corresponding labeled versions) is
similar, which takes 0.74s for passing all training data once.
However, since I-CFMs fit two separate models, the running
time is doubled.
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Table 3. Comparison of different algorithms for MNIST dataset Train models 100 times using different algorithms. Calculate the
mean and standard error for KID and FID.

I-CFM OT-CFM GP-I-CFM GP-OT-CFM

KID MEAN 0.0040 0.0036 0.0032 0.0031
SE 0.0002 0.0002 0.0001 0.0001

FID MEAN 44.50 44.21 43.55 42.99
SE 0.18 0.17 0.13 0.14

Table 4. Comparison of different algorithms for CIFAR-10
dataset We fit models by I-CFM, OT-CFM, GP-I-CFM and GP-
OT-CFM. For each trained model, we 1) calculate FID using 50000
samples 20 times and 2) generate 10 images 20 times. The means
and standard errors of each are summarized as follows.

MODELS FID SAMPLE GEN. TIME (S)

MEAN SE MEAN SE

I-CFM 3.75 0.006 1.30 0.01
OT-CFM 3.74 0.009 1.07 0.02
GP-I-CFM 3.62 0.008 1.27 0.02
GP-OT-CFM 3.75 0.009 1.20 0.01

The traces for 10 generated samples from each algorithm are
shown in Figure 9B in Appendix H, where the starting im-
ages (‘0‘ in the first rows) are generated by an I-CFM from
standard Gaussian noise. Visually, the GP-based algorithms
generate higher quality images and smoother transforma-
tions compared to algorithms using linear conditional stream
(I-CFM), highlighting the benefit of including correlations
across different time points. Additionally, the transforma-
tion generally looks smoother when the CFM training is
further conditioned on the starting images.

We then quantify the performance of different algorithms
by calculating the FID for “0”, “8” and “6”, and plot them
over time for each (Figure 6). For all FIDs, the GP-based
algorithms (green & red) outperform their straight connec-
tion (I-) counterparts (blue & orange) , especially for the
FID for “8” at t = 0.5 and the FID to “6” at t = 1. This
also holds for the FID for “0”, as the GP-based algorithms
are unified and the information is shared across all time
points. This aligns with the observation by Albergo et al.
(2024) that jointly learning multiple distributions better pre-
serves the original image’s characteristics during translation.
However, for the I-algorithms, the conditional version (or-
ange) performs worse than the unconditional one (blue), as
conditioning on the starting images makes the stream more
separated, requiring more data to achieve comparable perfor-
mance. In contrast, the data in GP-based algorithms is more
efficiently utilized, as correlations across time points for
the same subject are integrated into one model. Therefore,

explicitly accounting for the grouping effect by conditioning
on starting images (red) further improves performance.

Figure 6. Application to HWD+ dataset. We fit models for trans-
forming “0” to “8” and then to “6”. Both covariate and non-
covariate (on starting images) models are considered, and each
model is fitted by both I-CFM and GP-I-CFM. The I-CFM trans-
formation consists of two separate models trained by I-CFM (“0”
to “8” and “8” to “6”). The figures above show corresponding FID
to “0”, “8” and “6” for these four trained models over time.

6. Conclusion
We extend CFM algorithms using latent variable modeling.
In particular, we adopt GP models on the latent streams
and propose a class of CFM algorithms based on sampling
along the streams. Our GP-stream algorithm preserves the
simulation-free feature of CFM training by exploiting dis-
tributional properties of GPs. Not only can our GP-based
stream-level CFM reduce the variance in the estimated vec-
tor field thereby improving the sample quality, but it al-
lows easy integration of multiple correlated observations to
achieve borrowing of strength. The GP-CFM is complemen-
tary to and can be combined with modeling on the coupling
of endpoints (e.g., OT-CFM).

A potential drawback of GP-CFM is the Monte Carlo error
induced in the vector field estimation. This error can be
mitigated through techniques such as importance sampling
over time t, as in Song et al. (2021a) and antithetic sampling
of GP trajectories (Botev & Ridder, 2017).
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A. Bayesian Decision Theoretic Perspective on (stream-level) Flow Matching Training
It is well-known in Bayesian decision theory (Berger, 1985) that under squared error loss, the Bayesian estimator, which
minimizes both the posterior expected loss (which conditions on the data and integrates out the parameters) and the
marginal loss (which integrates out both the parameters and the data), is exactly the posterior expectation of that parameter.
This implies immediately that if one considers the conditional vector field ut(x|z) as the target of “estimation”, and the
corresponding “data” being the event that xt = x, i.e., that the path goes through x at time t, then the corresponding Bayes
estimate for ut(x|z) will be exactly the marginal vector field ut(x), as it is now the “posterior mean” of ut(x|z). We
emphasize again that here the “data” differs from the actual training and the generated noise observations, which in fact help
form the “prior” distribution. Therefore, the FM objective (LFM) defined in Section 2 provides a reasonable approximation
to ut(x).

In stream-level FM algorithm, because the (population-level) minimizer for the sCFM loss is ut(x), minimizing the sCFM
loss provides a reasonable estimate for the marginal vector field ut(x). To see this, rewrite the sCFM loss by the law of
iterated expectation as

LsCFM(θ) = EtEs

(
∥vθt (st)− ṡt∥2|t

)
.

The inner expectation can be further written in terms of another iterated expectation:

Es

(
∥vθt (st)− ṡt∥2|t

)
= EstEs

(
∥vθt (st)− ṡt∥2|t, st

)
.

For any x, Es

(
∥vθt (st)− ṡt∥2| t, st = x

)
= Es

(
∥vθt (x)− ṡt∥2| t, st = x

)
, whose minimizer is the conditional expectation

of ṡt given st = x, which is exactly ut(x). Hence, one can estimate ut(x) by minimizing LsCFM(θ). This justifies training
ut(x) through the sCFM loss without regard to any specific optimization strategy.

B. Discussion on Per-stream Perspective on Flow Matching
It is helpful to recognize the relationship between the per-stream vector field and the conditional vector field given
one or both endpoints introduced previously in the literature. Specifically, the per-sample vector field in Lipman et al.
(2023) corresponds to marginalizing out s given the end point x1, that is, ut(x | x1) = E (ut(x | s) | st = x, s1 = x1).
Similarly, the conditional vector field of Tong et al. (2024) corresponds to marginalizing out s given both x0 and x1, that is
ut(x | x0, x1) = E (ut(x | s) | st = x, s0 = x0, s1 = x1). Furthermore, when ps(· | x0, x1) is simply a unit-point mass
(Dirac) concentrated on the optimal transport (OT) path, i.e., a straight line that connects two endpoints x0 and x1, then
ut(x | s) = ut(x | x1) = ut(x | x0, x1) for all (s, t, x) tuples that satisfy s0 = x0, s1 = x1, st = x. Intuitively, when the
stream connecting two ends is unique, conditioning on the two ends is equivalent to conditioning on the corresponding
stream s. In this case, our stream-level FM algorithm (Section 3.2) coincides with those previous algorithms. More generally,
however, this equivalence does not hold when ps(· | x0, x1) is non-degenerate.

The per-stream view affords additional modeling flexibility and alleviates the practitioners from the burden of directly
sampling from the conditional probability paths given one (Lipman et al., 2023) or both endpoints (Tong et al., 2024).
While the per-stream vector field induces a degenerate unit-point mass conditional probability path, we will attain non-
degenerate marginal and conditional probability paths that satisfy the boundary conditions after marginalizing out the
streams. Sampling the streams in essence provides a data-augmented Monte Carlo alternative to sampling directly from
the conditional probability paths, which can then allow estimation of the marginal vector field ut(x) when direct sampling
from the conditional probability path is challenging. Additionally, as we will demonstrate later, by approaching FM at the
stream level, one could more readily incorporate prior knowledge or other external features into the design of the stream
distribution ps(· | x0, x1).

C. Derivation of joint conditional mean and covariance
For computational efficiency and ease of implementation, we assume independent GPs across dimensions and present the
derivation dimension-wise throughout the Appendices. We use sit to denote the location of stream s at time t in dimension i,
for i = 1, . . . , d. Suppose each dimension of stream s follows a Gaussian process with a differentiable mean function ξi

and covariance kernel ci11. Then, the joint distribution of sit1,...,tg = (sit1 , . . . , s
i
tg )

′ and ṡit1,...,tg = (ṡit1 , . . . , ṡ
i
tg )

′ at g time
points is
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(
sit1,...,tg
ṡit1,...,tg

)
∼ N

((
ξit1,...,tg
ξ̇it1,...,tg

)
,

(
Σi

11 Σi
12

Σi
12

⊺
Σi

22

))
, (3)

where ξit = ξi(t), ξ̇it = dξit/dt, ξ
i
t1,...,tg = (ξit1 , . . . , ξ

i
tg )

′, ξ̇it1,...,tg = (ξ̇it1 , . . . , ξ̇
i
tg )

′ and covariance Σi
jl is determined by

kernel cijl. The kernel function for the covariance between s and ṡ in dimension i is ci12(t, t
′) =

∂ci11(t,t
′)

∂t′ , and the kernel

defining covariance of ṡ is ci22 =
∂2ci11(t,t

′)
∂t∂t′ (Rasmussen & Williams (2005) Chapter 9.4). The conditional distribution of

(s, ṡ) in dimension i given M observations sit = xi
obs is also a (bivariate) Gaussian process. In particular, for t ∈ [0, 1], let

µi
t = (ξit, ξ̇

i
t)

′ and µi
obs = (ξit1 , . . . , ξ

i
ts), the joint distribution is(

sit, ṡ
i
t,x

i
obs

′
)′
∼ N

((
µi

t

µi
obs

)
,

(
Σi

t Σi
t,obs

Σi⊺
t,obs Σi

obs

))
,

where Σi
t = Cov(sit, ṡ

i
t) and Σi

obs = Cov(xi
obs). Accordingly, the conditional distribution (sit, ṡ

i
t) |xi

obs ∼ N (µ̃i
t, Σ̃

i
t),

where µ̃i
t = µi

t +Σi
t,obsΣ

i
obs

−1
(xi

obs − µi
obs) and Σ̃i

t = Σi
t − Σi

t,obsΣ
i
obs

−1
Σi⊺

t,obs.

D. Optimal transport path from Conditional GP Construction
In this section, we show how to derive the path in I-CFM (Tong et al., 2024) from the conditional GP construction (Appendix
C) using a linear kernel. Without loss of generality, we present the derivation of “noise-free” path with σ2 = 0 (i.e., the
rectified flow, Liu et al. (2023); Liu (2022)).

Let xi
obs = (xi0, x

i
1)

′, ξit = ξ̇it = 0 and ci11(t, t
′) = σ2

a + σ2
b (t− 1)(t′ − 1), such that

Σi
t =

(
σ2
a + σ2

b (t− 1)2 σ2
b (t− 1)

σ2
b (t− 1) σ2

b

)
, Σi

t,obs =

(
σ2
a − σ2

b (t− 1) σ2
a

−σ2
b 0

)
,

Σi
obs =

(
σ2
a + σ2

b σ2
a

σ2
a σ2

a

)
, Σi

obs

−1
=

1

σ2
b

(
1 −1
−1 1 +

σ2
b

σ2
a

) .

Therefore,

µ̃i
t = Σi

t,obsΣ
i
obs

−1
(
xi0
xi1

)
=

(
1− t t
−1 1

)(
xi0
xi1

)
=

(
(1− t)xi0 + txi1

xi1 − xi0

)
,

Σ̃i
t = Σi

t − Σi
t,obsΣ

i
obs

−1
Σi⊺

t,obs = O

E. Covariance under Squared Exponential kernel
Throughout this paper, we adopted the squared exponential (SE) kernel, with the same hyper-parameters for each dimension.
The kernel defining block covariance for s, (s, ṡ) and ṡ in dimension i from Equation 3 are as follows:

ci11(t, t
′) = α exp

(
− (t− t′)2

2l2

)
ci12(t, t

′) =
α

l2
(t− t′) exp

(
− (t− t′)2

2l2

)
ci21(t, t

′) = −ci12(t, t′) ci22(t, t
′) =

α

l4
[
l2 − (t− t′)2

]
exp

(
− (t− t′)2

2l2

)
.

F. GP stream produces a smoother probability path
The proposed GP-stream model can be considered as a more general framework than the stochastic interpolant (Albergo
et al., 2023), which can produce a smoother path and suppress spurious intermediate modes. This also holds for our
GP-stream model, and the smooth path makes it easier for vector field estimation and more computationally efficient
numerical integration for sample generations. The running time for generating high-dimensional images, i.e., CIFAR-10,
significantly shows the computational benefit (Table 4 in Section 5.1).

Here, we consider the transformation from a 2-Gaussian mixture to a 3-Gaussian mixture. The models trained by four
algorithms are compared: I-CFM, OT-CFM, GP-I-CFM, GP-OT-CFM. The generated paths and samples are shown in Figure
7. Generally, either I-CFM or OT-CFM produces spurious modes, and the path is not smooth.
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Figure 7. GP streams provide smoother probability paths. Here, we consider the transformation from a 2-Gaussian mixture to a
3-Gaussian mixture. We fit models by four algorithms: I-CFM, OT-I-CFM, GP-I-CFM and GP-OT-CFM. The generated samples at
t = 0, 0.25, 0.5, 0.75 and 1 for each model is visualize by histograms.

G. A Supplementary Example for Variance Changing over Time
Here, instead of generating data from standard Gaussian noise, we consider 100 training (unpaired) samples from a 2-
Gaussian to another 2-Gaussian (Figure 8A). The example streams connecting two points under different variance schemes
are shown in Figure 8B, again using additional nugget noise for constant noise, and a dot product kernel for decreasing and
increasing noise, as described in Section 4.1. We then fit 100 independent models and calculate the W2 distance between
generated and test samples at t = 1. The results are summarized in Table 5. Now, since both ends have finite samples,
injecting noise (a.k.a. adding regularization) at both ends helps.

Figure 8. Supplementary Example for Variance Change over Time.A. The 100 observations in training data at t = 0 and t = 1. B.
Examples of streams between two points, under different variance change scheme.
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Table 5. Comparison of different variance schemes of GP-I-CFM for 2-Gaussian to 2-Gaussian Train models 100 times and calculate
2-Wasserstein (W2) distance between generated and test samples for each. The results of these 100 seeds are summarized by mean and
standard error.

NO NOISE CONSTANT NOISE DECREASING NOISE INCREASING NOISE

MEAN 0.681 0.350 0.413 0.411
SE 0.044 0.036 0.032 0.032

H. Image Generations
In this section, we show generated sample images for the CIFAR-10 and HWD+ dataset.

Figure 9. Image Generation. A. 64 generated CIFAR-10 samples for I-CFM, GP-I-CFM, OT-CFM and GP-OT-CFM, starting from the
same standard Gaussian samples. B. 10 HWD+ sample traces for the four trained models. The starting images (“0”s in the first row) are
generated by an I-CFM from standard Gaussian noise, and all four trained models use the same starting images.

I. Application to LFP dataset
In this section, to illustrate the usage of proposed GP-CFM for time series data, we apply the labeled-GP-I-CFM to a session
of local field potential (LFP) data from a mouse brain. In the LFP dataset, the neural activity across multiple brain regions is
recorded when the mice perform a task on choosing the side with the highest contrast for visual gratings. The data contains
39 sessions from 10 mice, and each session contains multiple trials. Time bins for all measurements are 10 ms, starting 500
ms before stimulus onset. Here, we study LFP from stimulus onset to 500ms after stimulus, and hence each trial contains
data from 50 time points. See Steinmetz et al. (2019) for more details on the LFP dataset.

Here, we choose recordings from a mouse in one session, where the trial is repeated 214 times. For each single trial, the
data contains a time series from 7 brain regions. To illustrate the temporal smoothness over time in a visually significant
way, we subset the data so that there are 5 evenly-spaced time points. In summary, the training data have 214 observations
and the dimension for each observation is 5× 7. The observation time is scaled to [0, 1]. Here, we fit the data by covariate
GP-I-CFM, using the starting point as covariates, and generate 1000 LFP time series for each region (the starting LFP is
generated from an I-CFM). For each second, the algorithm can run around 100 iterations per second (it runs around 2.5
iterations per second and takes longer time to converge when using all 50 time points). The results are shown in Figure 10.
The generated time series can further be used to study neural activity in different brain regions. For example, the mean
trajectories in Figure 10A suggest that the LFPs in Cornu Ammonis region 3 (CA3) and dentate gyrus (DG) are highly
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correlated, which is consistent with the experiment fact that the rat DG does not project to any brain region other than the
CA3 field of the hippocampus (Amaral et al., 2007). Besides this, we can use the generated samples to make more scientific
and insightful conclusions. But this is beyond the scope of this paper.

Figure 10. Application to LFP data.We apply the GP-I-CFM with covariate (on starting point) to a session of local field potential (LFP)
data from 7 regions of mouse brain. In the training dataset, there are 214 observations (repeated trials). For each observation, it is a time
series data of 5 time points from 7 brain regions. Here, we generate 1000 LFP time series for each region, where the starting LFP is
generated from an I-CFM. A. The mean trajectories over 1000 samples. B. The generated 1000 time series for CA3 and DG.

J. Proof of propositions
In this section, we provide proofs for several propositions in the main text. All these proofs are adapted from (Lipman et al.,
2023; Tong et al., 2024).

J.1. Proof for conditional FM on stream

Proposition J.1. The marginal vector field over stream ut(x) generates the marginal probability path pt(x) from initial
condition p0(x).

Proof. Denote probability over stream as q(s) =
∫
ps(s | x0, x1)π(x0, x1)d(x0, x1) and pt(x | s) = δ(x− st), then

d

dt
pt(x) =

d

dt

∫
pt(x | s)q(s)ds

Assume the regularity condition holds, such that we can exchange limit and integral (and differentiation and integral) by
dominated convergence theorem (DCT). Therefore,

=

∫
d

dt
pt(x | s)q(s)ds

To handle the derivative on zero measure, define st-centered Gaussian conditional path and corresponding flow map as

pσ,t(x | s) := N (x | st, σ2I)

ψσ,t(z | s) := σz + st,

for z ∼ N(0, I), such that limσ→0 pσ,t(x | s) = pt(x | s). Then by Theorem 3 of Lipman et al. (2023), the unique vector
field defining ψσ,t(z | s) (and hence generating pσ,t(x | s)) is u∗t (x|s) = dst/dt = ut(st | s), for all (t, x). Note that
u∗t (x | s) extends ut(x | s) by defining on all x, and they are equivalent when st = x. Since u∗t (· | s) generates pσ,t(· | s),
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by continuity equation,

d

dt
pt(x) =

∫
d

dt
lim
σ→0

pσ,t(x | s)q(s)ds

=

∫
− lim

σ→0
div(u∗t (x | s)pσ,t(x | s))q(s)ds

Then by DCT,

= − lim
σ→0

div
(∫

u∗t (x | s)pσ,t(x | s)q(s)ds
)

= −div
(∫

u∗t (x | s) lim
σ→0

pσ,t(x | s)q(s)ds
)

= −div (E (ut(x | s) | st = x) pt(x))

By definition in equation 2,

= −div (ut(x)pt(x)) ,

which shows that pt(·) and ut(·) satisfy the continuity equation, and hence ut(x) generates pt(x).

J.2. Proof for gradient equivalence on stream

Recall

LFM(θ) = Et,x∥vθt (x)− ut(x)∥2,
LsCFM(θ) = Et,s∥vθt (st)− ut(x | s)∥2,

where x ∼ pt(x), s ∼ q(s) and q(s) =
∫
ps(s | x0, x1)π(x0, x1)d(x0, x1).

Proposition J.2. ∇θLFM(θ) = ∇θLsCFM(θ).

Proof. To ensure existence of all integrals and to allow the changes of integral (Fubini’s Theorem), we assume that q(s)
are decreasing to zero at a sufficient speed as ∥s∥ → ∞ and that ut, vt,∇θvt are bounded. To facilitate proof writing, let
pt(x | s) = δ(x− st).

The L-2 error in the expectation ca be re-written as

∥vθt (x)− ut(x)∥2 = ∥vθt (x)∥2 + ∥ut(x)∥2 − 2⟨vθt (x), ut(x)⟩
∥vθt (st)− ut(x | s)∥2 = ∥vθt (st)∥2 + ∥ut(x | s)∥2 − 2⟨vθt (st), ut(x | s)⟩

Thus, it’s sufficient to prove the result by showing the expectations of terms including θ are equivalent.

First,

Ex∥vθt (x)∥2 =

∫
∥vθt (x)∥2pt(x)dx

=

∫ ∫
∥vθt (x)∥2pt(x | s)q(s)dxds

= Es

∫
∥vθt (x)∥2δ(x− st)dx

= Es∥vθt (st)∥2
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Second,

Ex⟨vθt (x), ut(x)⟩ =
∫
⟨vθt (x), ut(x)⟩pt(x)dx

=

∫
⟨vθt (x),

∫
ut(x | s)pt(x | s)q(s)ds

pt(x)
⟩pt(x)dx

=

∫
⟨vθt (x),

∫
ut(x | s)pt(x | s)q(s)ds⟩dx

=

∫ ∫
⟨vθt (x), ut(x | s)⟩δ(x− st)q(s)dsdx

= Es⟨vθt (st), ut(x | s)⟩

These two holds for all t, and hence∇θLFM(θ) = ∇θLsCFM(θ)

J.3. Proof for gradient equivalence conditioning on covariates

Let x be response, c be covariates, and s be the stream connecting two endpoints (x0, x1). Given covariate c, denote the
conditional distribution of s as q(s | c) =

∫
ps(s | x0, x1, c)π(x0, x1)d(x0, x1) and marginal conditional probability path

as pt(x | c). Further, let

LcFM(θ) = Et,x∥vθt (x, c)− ut(x | c)∥2,
LcCFM(θ) = Et,s∥vθt (st, c)− ut(x | s)∥2,

where x ∼ pt(x|c) and s ∼ q(s | c)

Proposition J.3. ∇θLcFM(θ) = ∇θLcCFM(θ).

Proof. To ensure existence of all integrals and to allow the changes of integral (Fubini’s Theorem), we assume that q(· | c)
decreases to zero at a sufficient speed as ∥s∥ → ∞ and that vθt , ut, ∇θv

θ
t are bounded. To facilitate proof writing, let

pt(x | s) = δ(x− st).

The L-2 error in the expectations can be re-written as

∥vθt (x, c)− ut(x | c)∥2 = ∥vθt (x, c)∥2 + ∥ut(x | c)∥2 − 2⟨vθt (x, c), ut(x | c)⟩
∥vθt (st, c)− ut(x | s)∥2 = ∥vθt (st, c)∥2 + ∥ut(x | s)∥2 − 2⟨vθt (st, c), ut(x | s)⟩

Thus, it’s sufficient to prove the result by showing the expectations of terms including θ are equivalent.

First,

Ex∥vθt (x, c)∥2 =

∫
∥vθt (x, c)∥2pt(x | c)dx

=

∫ ∫
∥vθt (x, c)∥2pt(x | s)q(s | c)dxds

= Es

∫
∥vθt (x, c)∥2δ(x− st)dx

= Es∥vθt (st, c)∥2
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Second,

Ex⟨vθt (x, c), ut(x | c)⟩ =
∫
⟨vθt (x, c), ut(x | c)⟩pt(x | c)dx

=

∫
⟨vθt (x, c),

∫
ut(x | s)pt(x | s)q(s | c)ds

pt(x | c)
⟩pt(x | c)dx

=

∫
⟨vθt (x, c),

∫
ut(x | s)pt(x | s)q(s | c)ds⟩dx

=

∫ ∫
⟨vθt (x, c), ut(x | s)⟩δ(x− st)q(s | c)dsdx

= Es⟨vθt (st, c), ut(x | s)⟩

These two holds for all t, and hence∇θLcFM(θ) = ∇θLcCFM(θ).
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