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ABSTRACT

Pre-trained language models (PLMs) have achieved remarkable success in NLP
tasks. Despite the great success, mainstream solutions largely follow the pre-
training then fine-tuning paradigm, which brings in both high deployment costs
and low training efficiency. Nevertheless, fine-tuning on a specific task is essential
because PLMs are only pre-trained with language signal from large raw data. In
this paper, we propose a novel fine-tuning-free strategy for language models, to
consider both language signal and teacher signal. Teacher signal is an abstraction
of a battery of downstream tasks, provided in a unified proposition format. Trained
with both language and strong task-aware teacher signals in an interactive manner,
our FreeLM model demonstrates strong generalization and robustness. FreeLM
outperforms large models e.g., GPT-3 and InstructGPT, on a range of language
understanding tasks in experiments. FreeLM is much smaller with 0.3B parameters,
compared to 175B in these models.

1 INTRODUCTION

Pre-trained language models (PLMs), exampled by BERT Devlin et al. (2019), the GPT series Radford
et al. (2018; 2019); Brown et al. (2020) and their variants Liu et al. (2019); Joshi et al. (2020); Sun
et al. (2019); Raffel et al. (2020), have been widely applied in various language processing tasks and
achieved remarkable success Zhao et al. (2023).

Despite their great success, the pre-training then fine-tuning paradigm Devlin et al. (2019); Radford
et al. (2019) brings in very large costs for training and deployment in enterprise-level applications.
Even large companies are very careful in using billion-parameter PLMs online Sanh et al. (2019),
and remain showing high interest in small models. Before the era of PLMs, small models are
trained for specific tasks. For some tasks, these task-dedicated models may perform comparably
to or even better than large PLMs with fine-tuning Grinsztajn et al. (2022). Both the training and
deployment costs are manageable since the task-specific datasets and models are typically much
smaller. Nevertheless, additional efforts are essential to design task-specific models, one for each
task. Illustrated in Figure 1, pre-trained with much larger datasets, PLMs gain high generalization,
and can be fine-tuned to diverse downstream tasks for language understanding and generation. The
effort of designing task-specific small models is now replaced by the huge costs of pre-training on
large datasets and the high deployment costs.

To reduce deployment costs, zero-shot e.g., GPT-3 Brown et al. (2020) and few-shot models have
been investigated. Their performance, particularly on understanding tasks, remains unsatisfactory.
One of the reasons is that the PLMs are trained with only language signal which is not task-aware,
i.e., the training objective of PLMs does not well align with the task objective. Recently, instruction-
tuning-based models, i.e., InstructGPT Ouyang et al. (2022) and FLAN Wei et al. (2022), further
improves zero-shot performance. Their main design transfers everything into language text, then
uses self-supervised language signal to train the model. In this way, the language signal in their
training becomes more task-aware and relatively stronger. However, to achieve the best performance
on specific tasks, adaptation remains necessary.

The idea of enhancing task awareness in training motivates us to consider a reasonably sized model
that is capable of generalizing to a good range of pre-defined tasks. The ultimate goal is to achieve
good performance on all these pre-defined tasks (and potentially unseen tasks) with low training and
deployment costs. We believe this is an ideal setting for an enterprise to handle all their own specific
tasks with a single model trained on their own data, without additional fine-tuning.
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Figure 1: An overview of pre-trained language models and our proposed fine-tuning-free language
model.

The key challenge then becomes how to unify the pre-defined tasks as a strong task-aware supervision
signal for model training. To this end, we propose FreeLM, a fine-tuning-free language model.
Illustrated in Figure 1, FreeLM is trained with both language signal and teacher signal in an iterative
way. During training, in different iterations, the model alternately learns (i) the language signal from
large raw data, and (ii) the teacher signal from unified data prepared based on all pre-defined tasks.
Benefiting from the interplay between both signals, FreeLM is able to handle all pre-defined tasks
with high accuracy, and handle unseen tasks well as a typical pre-trained language model does.

In addition to the fine-tuning-free strategy, a major contribution is that we make the very first attempt
to unify a good range of language tasks through a unified data format, called proposition format.
Datasets constructed for all pre-defined tasks are then mapped to this unified proposition format,
and become the unified data in Figure 1. Through the proposition format, we provide proposition
correctness judgment to help the language model know the facts. The unified format also implicitly
facilitates mutual improvements among these tasks, which further contributes to better generalization
and robustness.

To the best of our knowledge, this is the first attempt to propose an effective fine-tuning-free strategy
for large language model training. We also demonstrate how to unify multiple tasks through a unified
format to make the PLM more task-aware through strong supervision signals. Through experiments,
we show that FreeLM greatly outperforms state-of-the-art models on language understanding tasks,
compared to GPT-2, 175B GPT-3 and InstructGPT. We also show that the generation ability of
FreeLM is even better than GPT-2. FreeLM achieves good performance on unseen tasks, and has
excellent generalization and robustness.

2 RELATED WORK

In this work, we focus on both language generation and language understanding tasks. Thus, we only
consider unidirectional Transformers like GPT as basic models, and do not consider masked language
models (e.g., BERT) or encoder-decoder language models (e.g., T5). Next, we brief auto-regressive
language models and instruct-tuning-based models.

2.1 AUTO-REGRESSIVE LANGUAGE MODELS

Auto-regressive language models are trained to predict the next token based on all previous tokens.
The unidirectional nature empowers these models with language generation capability. The impacts
of model scale and model structure are the two key research directions.

On model scale, the most typical and also the most influential auto-regressive LMs are the GPT series,
i.e., GPT-1 Radford et al. (2018), GPT-2 Radford et al. (2019), and GPT-3 Brown et al. (2020). In
particular, the success of GPT-3 has made researchers realize that the violent aesthetics of the model
scale and large raw data can have such a good generation performance. To make the models bigger,
even methods like MoE Nie et al. (2021) are proposed. However, large scale brings in large costs and
many challenges, particularly the high costs of fine-tuning on downstream tasks.

To improve the model structure, GLM Du et al. (2022) is designed to utilize the autoregressive blank
infilling. Transformer-XL Dai et al. (2019) tries to solve the longer-term dependency, and its variant
XL-Net Yang et al. (2019) hopes to learn bidirectional contexts. However, these models do not
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perform better than GPT-3 as the models get larger. The vital reason remains how to effectively and
efficiently utilize data.

2.2 INSTRUCT-TUNING BASED MODELS

A larger model size does not mean that it can produce output that better meets user expecta-
tions Ouyang et al. (2022). One solution is to fine-tune large language models based on a wide
range of tasks, human feedback, and so on. The typical and most representative model is Instruct-
GPT Ouyang et al. (2022). Through reinforcement learning, data from tasks, and human feedback,
InstructGPT achieves impressive performance on both language understanding and generation tasks.
Experiments even show that InstructGPT can align with humans compared with original GPT-3.
EFL Wang et al. (2021), designed for few-shot learning, reformulates potential NLP tasks into an
entailment task based on RoBERTa-large. Entailment task is hard to handle well more types of
tasks, while our unified proposition is more generic to fit more tasks. In addition, EFL suffers from
degradation in generation abilities.

In our model design, we aim to achieve better results on both understanding and generation tasks
without fine-tuning. InstructGPT adopts a method like “all in language”. EFL gives up the generation
ability. To our understanding, these models do not effectively utilize the teacher supervision signal.
In this paper, we design an iterative training strategy on both language raw data and task-aware
data. The key idea here is to teach the model to be task-aware data, while not forgetting its role of a
language model, i.e., to model language.

3 TASK UNIFICATION

Our goal is to train a task-aware language model which learns from language as a typical PLM does,
and also learns from a good number of task-specific datasets. Shown in Figure 1, FreeLM learns from
both language data and unified data, where the latter is the result of unifying pre-defined tasks.

Language Data. For language data, the choice is relatively straightforward. We adopt OpenWeb-
Text Gokaslan & Cohen (2019), an open-source replication of the WebText Radford et al. (2019)
dataset proposed by OpenAI. It is built by scraping all outbound links from the social media platform
Reddit, which received at least 3 karmas. We use the same settings as GPT-2 on this dataset.

Unified Data in Proposition Format. Our key motivation is to enable enterprises to handle all
their own specific tasks with a single model trained on their own data, without additional fine-tuning.
However, it is challenging to access and conduct experiments on proprietary data. Even if that is
feasible, our results will be hard to be benchmarked against the current state-of-the-art. Without loss
of generality, we choose to unify seven well-defined, popular, and representative language tasks: 1.
question answering, 2. paraphrasing, 3. topic classification, 4. story cloze, 5. sentiment classification,
6. natural language inference, and 7. linguistic acceptability.

We unify these seven tasks by transforming them into a “proposition correctness judgment” task, to
judge whether a proposition is true. Specifically, for each task, we design some candidate templates,
then use the designed rule to transfer each instance into a proposition format:

“[tsk] task name [tsk] instance text(s) [sep] dy-
namic prompt [cls]”

The task name follows the original pre-define task name before unification like “question answering”.
Because each task has its own characteristic, hence we use dynamic prompt to fit them well considering
the ground-truth label.

We take the topic classification task as an example to explain the mapping, also illustrated in Figure 2.
We convert the class label into a natural language description based on a template selected from a
pre-designed template pool. In Figure 2, Template 1 is chosen among the N templates. Then we
could build a candidate proposition statement by appending the natural language description to the
original input text. The natural language description is the class labels in this example task.
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Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, 
Wall Street's dwindling...The classification label of the text should be ’World’
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Input: Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, Wall 
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Output:     0 -“World”    1 -“Sports”     2 -“Business”     3 -“Sci/Tech”
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Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, 
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World

Paraphrase Sentiment ClassificationTopic Classification ...Story Cloze

Figure 2: A template example for the topic classification task. This example also describes the
transform rule for task unification. The right of this figure details the list of 30 datasets for 7 tasks,
and numbers in parentheses indicate dataset size.

Transformer

theThe cat sat on mat .

the [eos]cat sat on mat .

Transformer

h[cls]

[tsk] natural language inference [tsk] The water is too cold.  [sep] 
The water is too hot. [sep] The former sentence entails the later.  [cls]

(a) Language Iterative Stage

h[tsk] …

True
False

(b) Teacher  Iterative Stage

hnatural hlanguage

Figure 3: (a) The language stage utilizes the standard language training method, and (b) the teacher
stage uses the unified proposition signal.

In our implementation, we utilize 30 datasets of the seven chosen tasks (see the right part of Figure 2).
For each dataset, we design at most 10 templates to build the proposition. Each item will randomly
choose one template when building unified data. According to the chosen template, the original input
context is concatenated with the label description to form a proposition. With the unified formatted
proposition as input, our FreeLM is responsible for giving a true-or-false judgment.

FreeLM designs task unification by unified proposition format, which brings a good generalization
effect. In other words, FreeLM only has one proposition correctness judgment task (except language
task), which endows FreeLM with the ability to handle almost all NLU tasks. As a comparison,
multi-task needs special design for each task to fit the multi-task model. More importantly, multi-task
could hardly gain generalization ability except the designed tasks.

4 FREELM

4.1 ARCHITECTURE AND ITERATIVE TRAINING

Figure 3 shows the architecture of the proposed FreeLM. The left part of the figure shows training
with language data, similar to the mainstream generative language models. The right part shows
training with task-aware unified data, through making correct judgments on unified propositions.

To train the model with both language and unified data, a straightforward choice is to first train
the model fully on language data, then fully on unified data, similar to pre-train then fine-tuning.
However, this strategy would lead the model to focus too much on tasks, and reduce its language
capability and generalization. In our design, language signal and teacher signal are used for training
in an iterative manner, analogous to “first read, then exercise”. Next, we detail the two training stages,
which take turns to train the model.

Language Iterative Stage. To keep the generation ability of language models, we choose the
auto-regressive language model, more specifically GPT-2, as our base model in FreeLM. As shown in
Figure 3(a), language signal guides the model to predict the next token with the previous token(s).
Given a text consists of N tokens T = {t1, . . . , tN}, FreeLM computes the probability PL of token
tk with the previous k − 1 tokens:

PL(tk|t1, . . . , tk−1) = softmax(Wvhtk−1
) (1)
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Here, htk−1
denotes the representation encoded by Transformer with the previous tokens

{t1, . . . , tk−1} as input. Wv represents the learnable parameters.

Teacher Iterative Stage. In the proposed fine-tuning-free structure, teacher signal aims to guide
the model to learn task-oriented knowledge. After unifying all tasks to proposition correctness
judgment, the model is expected to make correct judgements about the propositions. Let u = (Tp, y)
be a pair where Tp refers to the proposition statement, and y is the label of this proposition. When
the proposition is right, y is True, otherwise False.

Figure 3(b) shows the mechanism of teacher signal from unified data. According to the designed
transfer rule (see Section 3), each instance in the unified data is appended with a dedicated token
“[cls]”. Given an instance, we can calculate the representation h[cls] of token “[cls]” by the shared
Transformer of the language model. The proposition distribution PP is computed by a softmax
classifier based on the learned representation h[cls]:

PP (y|Tp) = softmax(Wph[cls] + bp), (2)

where Wp and bp are learnable parameters.

4.2 TRAINING OBJECTIVE

The training objective design has two parts. One is to maximize the likelihood of predicted tokens,
defined in Equation 3. The other is to minimize the cross-entropy of judging proposition correctness,
defined in Equation 4, where y is the ground truth of the given Tp.

J(θ) =
∑∑

k

logPL(tk|t1, . . . , tk−1) (3)

U(θ) =
∑

cross-entropy (PP (y|Tp), y) (4)

Note that the two objectives are alternately performed in each iteration, along with the two types of
training data.

5 EXPERIMENTS

We evaluate FreeLM from two perspectives: language understanding performance, and language
generation performance. Then we perform a detailed analysis of the impact of iterative processes, the
impact of special tokens in the proposition format, and the generalization ability on unseen data.

5.1 TRAINING DATASETS

As indicated in Section 3, for raw language data, we adopt the OpenWebText Gokaslan & Cohen
(2019). The unified data are composed with 30 datasets, listed in Figure 2, from the seven tasks.
Training sets are collected for all these datasets, except Story Cloze 2016 & 2018, whose validation
sets are collected.

For each instance in unified data, we construct a positive sample (i.e., true proposition) with the gold
label according to the build method. Simultaneously, we randomly choose another label to construct a
false proposition as a negative sample. In training set building, only one template would be randomly
chosen for each original instance. The maximum number of training set proposition samples per
dataset is set to 100K. The final unified training dataset contains about 1.76M samples.

5.2 EVALUATION ON LANGUAGE UNDERSTANDING

A key motivation of FreeLM is the understanding ability without fine-tuning. For understanding
ability, we evaluate FreeLM against strong baselines, including 175B GPT-3, InstructGPT,1 and
GPT-2, under the settings of zero-shot and few-shot on these baseline models.

1We use text-davinci-003 version through OpenAI API.
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Table 1: Comparison with GPT-2, GPT-3 and InstructGPT on GLUE validation set. F.T., Z.S. and
F.S. denote fine-tuning, zero-shot and few-shot, repectively. Best results are in bold face (without
considering GPT-2 w. F.T.).

Model
CoLA SST-2 MRPC MRPC QQP QQP MNLI MNLI QNLI RTE Average

Mat. Corr Acc. F1 Acc. F1 Acc. Mat. Acc. M.m. Acc. Acc. Acc. –

Fine-Tuning

GPT-2 w. F.T. 56.52 94.95 87.93 82.84 87.91 90.83 85.87 85.83 91.03 68.23 83.19

Few-Shot & Zero-Shot

GPT-2 w. Z.S. -3.26 51.83 81.22 68.38 52.88 36.19 35.60 34.30 46.40 51.62 45.52
GPT-2 w. F.S. 0.60 63.30 81.34 68.62 44.46 46.80 31.60 35.00 48.60 49.09 46.94
GPT-3 w. Z.S. 17.28 52.98 65.05 53.92 4.61 62.80 36.80 39.50 60.90 64.98 45.88
GPT-3 w. F.S. -4.45 93.34 70.92 59.80 6.31 64.40 44.10 46.60 53.80 65.70 50.05
InstructGPT w. Z.S. 63.81 92.08 83.75 77.94 64.20 78.70 46.20 48.90 71.89 86.64 71.41
InstructGPT w. F.S. 56.72 95.18 77.41 70.83 72.98 81.20 71.70 72.89 81.30 82.67 76.29

FreeLM 53.00 93.81 87.21 82.11 85.47 89.60 81.80 79.80 88.30 71.12 81.22

We mainly evaluate FreeLM in fine-tuning-free scenarios. That is, our FreeLM does not conduct
further task-oriented fine-tuning after training. Also, as an upper bound on the understanding ability
with the same scale, we show the results of GPT-2 fine-tuning.

Evaluation Metric. We choose General Language Understanding Evaluation (GLUE) as the bench-
mark, which consists of typical natural language understanding tasks, including natural language
inference (i.e., AX, MNLI Williams et al. (2018), RTE Bentivogli et al. (2009), QNLI Wang et al.
(2018), and WNLI Levesque et al. (2012)), sentiment classification (i.e., SST-2 Socher et al. (2013)
and STS-B Cer et al. (2017)), paraphrase (i.e., MRPC Dolan & Brockett (2005) and QQP) and
linguistic acceptability (i.e., CoLA). Validation sets of each dataset are used for evaluation. WNLI is
excluded from the benchmark following the previous work Devlin et al. (2019) because the GLUE
webpage2 notes that there are issues with the construction of this dataset. In addition, Ax is excluded
due to the lack of the validation set. As the regression task (i.e., STS-B) is not suitable for FreeLM,
we also exclude it from the benchmark.

We use the remaining seven tasks from the GLUE benchmark to evaluate. For experimental efficiency
and cost effectiveness on API, when evaluating GPT-3 and InstructGPT, we use the validation set of
GLUE for evaluation, and sample 1k instances for each task as the final evaluation set. All results are
compared fairly in the same setting.

Results against Baselines. The GLUE results are reported in Table 1. On both the average
metric and 7 out of 10 evaluation metrics, FreeLM outperforms all baselines, revealing its strong
understanding ability. In particular, our FreeLM gains about 5 points improvement on average
performance compared with the powerful InstructGPT. We also observe that MRPC, QQP, MNLI
and QNLI tasks obtain 7 or more points improvement in absolute accuracy. More importantly, the
scale of our FreeLM is only 0.3B. Even compared to the much larger GPT-3 with 175B parameters,
FreeLM achieves the state-of-the-art in the downstream tasks without fine-tuning, thanks to the strong
task-aware signal in training. Among baseline models, InstructGPT has significant advantages over
GPT-2 and GPT-3. Our results also show that InstructGPT is an extremely strong model.

As reported in Table 1, our FreeLM nearly matches the performance of GPT-2 with fine-tuning. As
GPT-2 is fine-tuned individually on each dataset, the comparison in essence is between one FreeLM
and 7 dedicated GPT-2(s). In this sense, GPT-2 with fine-tuning could represent an approximate
upper bound on 0.3B scale. InstructGPT, the strongest generative PLM, achieves the second-best
performance. As a comparison, FreeLM uses a classification-based approach while instruction tuning
uses a generation-based approach, which results in our model being more effective. More importantly,
the task unification (see Section 3) by one unified proposition format brings a good generalization
effect. An interesting point is that FreeLM performs significantly worse than InstructGPT, but
significantly better than GPT-2 with fine-tuning, on the accuracy of RTE. This result also suggests
that the ability of language models could be positively related to the scale.

2https://gluebenchmark.com/faq
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Table 2: Perplexity on FreeLM and GPT-2.
Model LAMBADA WikiText2 PTB

FreeLM 38.44 33.66 28.47
GPT-2 35.31 30.23 26.62

Table 3: Case study on generation ability. Consistency and inconsistency expressions are in blue and
red colors.

Case A
INPUT: Rick grew up in a troubled household. He never found good support in family, and turned to gangs.
It wasn’t long before Rick got shot in a robbery. The incident caused him to turn a new leaf.
GPT-2: "I was a gang member, but I didn’t know it at
the time," Rick said. "I had no idea what was going on.
I just wanted to get away from it. That’s how I ended
up on the streets. And that’s why I’m here today."

FreeLM: "When I got out of prison, I was a different
man," he says. "I was able to get my life back on
track. I went back to school, got a job, started a
family. And that’s what I’ve been doing ever since."

Case B
INPUT: Tony was happy to be going on his first cruise. He arrived at the docks and was ready with all his
luggage. When he walked around the corner he couldn’t believe the size of it. He boarded and the ship left
the docks.
GPT-2: When he got to his room he was surprised to
see that the room was bigger than he thought it would
be. There was a bed, a desk, and a TV. ...

FreeLM: "This is the first time I’ve ever been on a
cruise ship," he said. "I’ve never seen anything like
this before."

Case C
INPUT: Jasper has been avoiding getting a real job for months. He has hated all the previous office jobs
that he had. One day he sees a job opening at his local butcher. He applies successfully for the job at the
butcher.

GPT-2: "He said, ’I don’t want to hire you because
you’re too old,’" Jasper says. "And I was like, I’m not
old. I’ve been doing this for a long time, and I know
what it’s like to be rejected. ...

FreeLM: "It’s a great job,” he says. “I love it. I
love the people here. They treat me like a king. The
people are so nice. It makes me feel like I can do
anything I want to do in this world. ...

Not directly reflected in Table 1, through experiments, we also notice that FreeLM is robust and
insensitive for inference. Interestingly, we find that the results of the GPT family models predicted
by few-shot or zero-shot are sensitive to the settings of templates, parameters, and post-processing
methods. For example, we measure GPT-2 on the MRPC dataset with a zero-shot setting. The results
of the vocabulary probability distribution top_k = 50 are used to predict the classification. If we
calculate the average sum of the probability ratios of positive and negative words, the accuracy is
33.08. However, if we get the word by the highest probability value, the accuracy is more than
doubled to 68.13. The gap is so large that downstream tasks are hard to use reliably. On the other
hand, FreeLM is robust without the need of expert knowledge or parameter tuning.

5.3 EVALUATION ON LANGUAGE GENERATION

As aforementioned, while FreeLM gains better understanding ability, we hope that the model retains
its language generation ability, similar to GPT-2, for learning from the same language data. Hence,
we evaluate the generation performance of FreeLM against GPT-2. The evaluation is conducted on
three public datasets, i.e., LAMBADA Paperno et al. (2016), WikiText2, and PTB. We use perplexity
(PPL) to evaluate the generation performance, following common practice.

Results against Baselines. Table 2 reports the perplexity (PPL) of FreeLM and GPT-2. The PPL of
FreeLM is slightly higher than GPT-2. The minor gap could reflect that our model nearly reaches
GPT-2 in terms of generation. There are studies suggesting that PPL does not fully reflect the
generation ability of language models Wang et al. (2022). Nevertheless, there are no good alternative
metrics.
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Table 4: The effect of language signal for understanding, where L.S. refers to language signal.

Model
CoLA SST-2 MRPC MRPC QQP QQP MNLI MNLI QNLI RTE Average

Mat. Corr Acc. F1 Acc. F1 Acc. Mat. Acc M.m. Acc Acc. Acc. –

FreeLM 52.53 93.81 87.21 82.11 86.32 89.82 80.70 80.93 88.61 71.12 81.32
w.o. L.S. 40.14 92.43 85.71 79.17 85.66 89.11 77.56 78.57 87.28 71.48 78.71
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Figure 4: Effect of language signal on proposition loss.

Since generation evaluation does not have a gold standard, we provide a case study on a story cloze
task. The input texts come from the StoryCloze dataset Mostafazadeh et al. (2016). In order to make
the comparison objective and fair, we train a new FreeLM model by removing this dataset from the
unified data. Top-k random sampling with k = 50 is used for generation, width of 5 for beam search,
and the maximum generated length is 256. Table 3 shows three generated samples.

First, we find that the readability of the text generated by FreeLM is good by manual sampling
inspection. There are no obvious grammatical errors, which shows that FreeLM and GPT-2 perform
at the same level in the grammatical aspect. Second, Table 3 shows that there are many context
inconsistency phenomena in the texts generated by GPT-2. Our FreeLM could generate more
consistent text with the same texts as input. To clearly show the correct logical association, we use
the text in blue to highlight the relation. Meanwhile, we use the text in red to warn the logical errors.
Cases A and B show that our FreeLM is capable of generating more consistent texts. Interestingly,
although there is no obvious grammatical error in Case B, the generated text by GPT-2 almost has no
direct logical relationship with the input text. That is, it is not a high-quality generated result.

In simple words, our experiments show that the proposed FreeLM achieves the same level of PPL as
GPT-2. FreeLM could generate more consistent text. We believe that if we train our model at a larger
scale, better generation ability can be achieved.

5.4 DETAILED ANALYSIS

We conduct three sets of experiments to study (i) the impact of the iterative training, (ii) the proposition
format, and (iii) the generalization ability on unseen tasks.

The Iterative Training. If we remove the teacher signal, FreeLM will degenerate into a general
language model. Based on the results in Section 5.2 and 5.3, we conclude that the discarding
of the teacher signal will lead to a reduction in the performance of understanding tasks. At the
opposite extreme, we remove the language signal. The model could then only rely on the objective of
proposition correctness judgment for training. The comparison is under the same training parameters
and the same number of steps. Table 4 shows the results compared to standard FreeLM. After
removing language signal, almost all evaluation metrics show a significant drop. Interestingly, the
PPL of WikiText2 could increase to 8, 000, even 9, 000, compared to a regular scale 30 from GPT-2.
As a result, the generation ability is damaged seriously.

We have shown that language signal could help FreeLM learn better. Also, to evaluate whether
FreeLM can learn faster, we give the loss performance during training in Figure 4. We observe that

8
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Table 5: The effect of task prefix for understanding.

Model
CoLA SST-2 MRPC MRPC QQP QQP MNLI MNLI QNLI RTE Average

Mat. Corr Acc. F1 Acc. F1 Acc. Mat. Acc M.m. Acc Acc. Acc. –

FreeLM 52.53 93.81 87.21 82.11 86.32 89.82 80.70 80.93 88.61 71.12 81.32
w.o. prefix 48.15 92.78 86.76 81.37 86.06 89.53 80.23 80.32 88.76 71.84 80.58

Table 6: FreeLM vs. GPT-2 fine-tuning on unseen data.

Model
MRPC MRPC RTE COPA CB Average

F1 Acc. Acc. Acc. Acc. –

FreeLM 87.21 82.11 71.12 73.00 73.21 77.33
FreeLMU 81.22 72.06 66.79 68.00 68.64 71.34
GPT-2 w. F.T. 87.93 82.84 68.23 54.00 73.21 73.24

after 20k steps, the proposition loss of FreeLM decreases faster. It shows that the language signal
has a positive effect on task-oriented learning. In conclusion, language signal and teacher signal
could promote each other under the iterative training method.

The Proposition Format. Task prefix, such as “[tsk] Topic Classification [tsk]”, could guide the
model to narrow down the search space. In the implementation, the set of task prefix is {Linguistic
Acceptability, Topic Classification, Story Cloze, Sentiment Classification, Question Answering,
Paraphrase, Natural Language Inference}. Since the parameters of FreeLM are small, we utilize this
kind of task prefix to guide the model when meeting task-oriented understanding. To compare, we
train another FreeLM without task prefix. Other settings are the same as FreeLM. Table 5 gives the
comparison results.

We observe that the performance of most tasks is at a similar level. This phenomenon could prove
that FreeLM does not significantly rely on task prefix. We believe that when the size of FreeLM
exceeds 1B, task prefix will have little effect.

Generalization to Unseen Dataset. To evaluate the generalization ability of FreeLM, we train a
new model FreeLMU by removing 4 datasets from unified data. They are MRPC, RTE, COPA Gordon
et al. (2012) and CB De Marneffe et al. (2019). Other settings are exactly the same. Table 6 gives the
results compared to standard FreeLM.

We observe that the average score of FreeLMU nearly matches the performance of GPT-2 with
fine-tuning. More interestingly, the accuracy of the FreeLMU on the COPA dataset has increased
by 14 points than GPT-2 with fine-tuning. Compared to the standard FreeLM, the average drop is
about 6 points. It is an inspiring result because it reveals that our FreeLM has a good generalization
ability. We believe the reason is that we unify various tasks into one proposition correctness judgment
task. The phenomenon also reminds us that the design of teacher signal is a key to training a better
language model.

6 CONCLUSION

With the aim of reducing costs in training and deployment, we design a novel fine-tuning-free
language model. The model training benefits from the self-supervised language signal as a typical
language model does. It also becomes task-aware through the training on unified data. Evaluations
show that FreeLM retains its strong language capability as a language model in a similar scale i.e.,
GPT-2. Experiments also show that FreeLM’s understanding performance on the pre-defined tasks
is significantly better than GPT-3 and instructGPT with zero- or few-shot settings, even though our
model is much smaller, 0.3B versus 175B parameters. FreeLM also generalizes well if a task can
also be mapped to the unified format. We believe the key reason behind the strong performance of
FreeLM is the task unification and the alternative training. If an enterprise can design a similar unified
data format for all their tasks, like the proposition format in our setting, the proposed fine-tuning-free
training strategy could be a good consideration for cost saving.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Luisa Bentivogli, Bernardo Magnini, Ido Dagan, Hoa Trang Dang, and Danilo Giampiccolo. The
fifth PASCAL recognizing textual entailment challenge. In Proceedings of the Second Text
Analysis Conference, TAC 2009, Gaithersburg, Maryland, USA, November 16-17, 2009. NIST,
2009. URL https://tac.nist.gov/publications/2009/additional.papers/
RTE5_overview.proceedings.pdf.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1:
Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 1–14, Vancouver,
Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/S17-2001.
URL https://aclanthology.org/S17-2001.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Anna Korhonen,
David R. Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pp. 2978–2988. Association for Computational Linguistics, 2019. doi: 10.18653/v1/
p19-1285. URL https://doi.org/10.18653/v1/p19-1285.

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: In-
vestigating projection in naturally occurring discourse. In proceedings of Sinn und Bedeutung,
volume 23, pp. 107–124, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing, IWP@IJCNLP 2005, Jeju
Island, Korea, October 2005, 2005. Asian Federation of Natural Language Processing, 2005. URL
https://aclanthology.org/I05-5002/.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. GLM:
general language model pretraining with autoregressive blank infilling. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pp. 320–335. Association for Computational Linguistics, 2022. doi: 10.18653/
v1/2022.acl-long.26. URL https://doi.org/10.18653/v1/2022.acl-long.26.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. SemEval-2012 task 7: Choice of
plausible alternatives: An evaluation of commonsense causal reasoning. In *SEM 2012: The
First Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of
the main conference and the shared task, and Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012), pp. 394–398, Montréal, Canada, 7-8 June
2012. Association for Computational Linguistics. URL https://aclanthology.org/
S12-1052.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on tabular data? CoRR, abs/2207.08815, 2022. doi: 10.48550/arXiv.2207.08815.
URL https://doi.org/10.48550/arXiv.2207.08815.

10

https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://aclanthology.org/S17-2001
https://doi.org/10.18653/v1/p19-1285
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/I05-5002/
https://doi.org/10.18653/v1/2022.acl-long.26
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://aclanthology.org/S12-1052
https://aclanthology.org/S12-1052
https://doi.org/10.48550/arXiv.2207.08815


Under review as a conference paper at ICLR 2024

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. Spanbert:
Improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguistics,
8:64–77, 2020. doi: 10.1162/tacl\_a\_00300. URL https://doi.org/10.1162/tacl_a_
00300.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge.
In Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith (eds.), Principles of Knowledge
Representation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012,
Rome, Italy, June 10-14, 2012. AAAI Press, 2012. URL http://www.aaai.org/ocs/
index.php/KR/KR12/paper/view/4492.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
derwende, Pushmeet Kohli, and James F. Allen. A corpus and evaluation framework for
deeper understanding of commonsense stories. CoRR, abs/1604.01696, 2016. URL http:
//arxiv.org/abs/1604.01696.

Xiaonan Nie, Xupeng Miao, Shijie Cao, Lingxiao Ma, Qibin Liu, Jilong Xue, Youshan Miao, Yi Liu,
Zhi Yang, and Bin Cui. Evomoe: An evolutional mixture-of-experts training framework via
dense-to-sparse gate, 2021. URL https://arxiv.org/abs/2112.14397.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1144.
URL https://aclanthology.org/P16-1144.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/
papers/v21/20-074.html.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. URL http:
//arxiv.org/abs/1910.01108.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA,
A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1631–1642. ACL, 2013. URL
https://aclanthology.org/D13-1170/.

Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu,
Hao Tian, and Hua Wu. ERNIE: enhanced representation through knowledge integration. CoRR,
abs/1904.09223, 2019. URL http://arxiv.org/abs/1904.09223.

11

https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4492
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4492
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1604.01696
http://arxiv.org/abs/1604.01696
https://arxiv.org/abs/2112.14397
https://arxiv.org/abs/2203.02155
https://aclanthology.org/P16-1144
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://aclanthology.org/D13-1170/
http://arxiv.org/abs/1904.09223


Under review as a conference paper at ICLR 2024

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. CoRR,
abs/1804.07461, 2018. URL http://arxiv.org/abs/1804.07461.

Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao, and Hao Ma. Entailment as few-shot learner,
2021. URL https://arxiv.org/abs/2104.14690.

Yequan Wang, Jiawen Deng, Aixin Sun, and Xuying Meng. Perplexity from PLM is unreliable for
evaluating text quality. CoRR, abs/2210.05892, 2022. doi: 10.48550/arXiv.2210.05892. URL
https://doi.org/10.48550/arXiv.2210.05892.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=
gEZrGCozdqR.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge cor-
pus for sentence understanding through inference. In Marilyn A. Walker, Heng Ji, and
Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pp. 1112–
1122. Association for Computational Linguistics, 2018. doi: 10.18653/v1/n18-1101. URL
https://doi.org/10.18653/v1/n18-1101.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 5754–5764, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models. CoRR, abs/2303.18223, 2023. doi: 10.48550/
arXiv.2303.18223. URL https://doi.org/10.48550/arXiv.2303.18223.

A APPENDIX

IMPLEMENTATION DETAIL

We list the implementation details of the proposed FreeLM to support reproduction. To support
research, we will release the corresponding codes and trained parameters upon acceptance.

In our experiment of training FreeLM, we choose the medium version of GPT-2 with 345M parameters,
which makes up of 12 transformer blocks. The model dimension is 768. To speed up training and
save energy, we initialize the model with the pre-trained parameters provided by HuggingFace. All
the experiments are performed on 5 nodes each with eight 40GB NVIDIA Tesla A100 (40 cards total)
for about 8 days. We train FreeLM for 8 epochs on OpenWebText with a batch size of 4 on each card.
Each epoch takes around 13.5 to 17.5 hours to complete. We use AdamW optimizer with a learning
rate of 5e-5. The mixing ratio of the language iterative stage and teacher iterative stage samples is 2:1.
Experiment results on various mixing ratios show that 2:1 performs better on both NLU and NLG
tasks. A more precise ratio would lead to significantly high computational cost. On the other side,
enhancement on the raw data part benefits both NLU and NLG tasks due to the sharing transformer
blocks. Hence, more samples from raw data are necessary.

12

http://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2104.14690
https://doi.org/10.48550/arXiv.2210.05892
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/v1/n18-1101
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://doi.org/10.48550/arXiv.2303.18223


Under review as a conference paper at ICLR 2024

COMPUTATION COST

In the training process, we set the context window size to 256 for teacher iterative stage, which
is 1/4 of the context window size (i.e., 1024) for language iterative stage. Additionally, by using
a 2:1 mixing ratio of language iterative stage and teacher iterative stage samples, the additional
computation cost for FreeLM’s training is reduced to less than 1/8.
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