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ABSTRACT

With the rapid advancement of Large Language Models (LLMs), developing ef-
fective critic modules for precise guidance has become crucial yet challenging.
In this paper, we initially demonstrate that supervised fine-tuning for building
critic modules (which is widely adopted in current solutions) fails to genuinely
enhance models’ critique abilities, producing superficial critiques with insufficient
reflections and verifications. To unlock the unprecedented critique capabilities, we
propose RefCritic, a long-chain-of-thought critic module based on reinforcement
learning with dual rule-based rewards: (1) instance-level correctness of solution
judgments and (2) refinement accuracies of the policy model based on critiques,
aiming to generate high-quality evaluations with actionable feedback that effec-
tively guides model refinement. We evaluate RefCritic on Qwen2.5-14B-Instruct
and DeepSeek-R1-Distill-Qwen-14B across five benchmarks. On critique and re-
finement settings, RefCritic demonstrates consistent advantages across all bench-
marks, e.g., 6.8% and 7.2% gains on AIME25 for the respective base models.
Notably, under majority voting, policy models filtered by RefCritic show superior
scaling with increased voting numbers. Moreover, despite training on solution-
level supervision, RefCritic outperforms step-level supervised approaches on Pro-
cessBench, a benchmark to identify erroneous steps in mathematical reasoning.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in ex-
ecuting complex reasoning tasks such as mathematical problem-solving and code generation Yang
et al. (2025a); Hui et al. (2024). As these models continue to evolve, their reasoning processes have
grown increasingly sophisticated, encompassing multiple elaborate steps and diverse pathways (Guo
et al., 2025; Team, 2025). This progression introduces a critical challenge: reasoning processes are
becoming substantially difficult for humans to supervise, making errors within these intricate chains
harder to identify and rectify. The escalating complexity of LLM-generated solutions necessitates
more effective analytical frameworks to evaluate and enhance reasoning quality, extending beyond
the constraints of human supervisory oversight.

Developing LLM critics has become a promising direction for evaluating complex reasoning
tasks (Liu et al., 2025; Zhang et al., 2024; Mahan et al., 2024; Wang et al., 2023; Ankner et al.,
2024), functioning as specialized modules to analyze reasoning processes and identify errors. Ide-
ally, LLM critics are expected to comprehensively analyze content generated by the policy model,
delivering targeted critiques that identify logical inconsistencies or factual errors and improve the
refinement quality of the policy model. However, contemporary approaches exhibit two critical
limitations. Firstly, they frequently produce superficial evaluations characterized by insufficient an-
alytical depth (Zheng et al., 2025; Tang et al., 2025a) and typically necessitate granular step-level
annotations of the solution for optimization (Yang et al., 2025b). Secondly, current implementations
mainly focus on metrics of critic performance while overlooking the practical utility of critiques in
enhancing policy model refinement.

In this paper, we propose RefCritic, a long chain-of-thought critic model with refinement feedback
to tackle the above limitations, which could generate in-depth critiques that not only achieve supe-
rior critic performance but also effectively guide policy model refinement through actionable feed-
back. This process begins with prompting open-source models (e.g., DeepSeek-R1-Distill-Qwen)
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Figure 1: The Critic model with Refinement Feedback RefCritic framework consists of two steps:
(1) cold-start via rejective sampling fine-tuning, (2) rule-based reinforcement learning with refine-
ment feedback. With this two-stage optimization, RefCritic generates in-depth critiques that achieve
superior critic performance and effectively guide policy model refinement through actionable feed-
back.

to generate seed data containing three essential components: long CoT analysis, solution validity
judgments, and refinement suggestions. After rigorous quality filtering based on judgment accuracy,
about 10K valid samples are obtained, which are utilized to establish cold-start critic models via
Supervised Fine-Tuning (SFT). We then conduct preliminary assessments to verify whether SFT is
sufficient for producing comprehensive critiques. Results reveal that SFT alone struggles to produce
in-depth critiques despite generating lengthy CoT content, as models frequently exhibit misleading
analytical patterns where correct judgments emerge from flawed reasoning processes (a persistent is-
sue observed in existing LLM critics), resulting in unreliable performance evaluations. Furthermore,
the absence of explicit policy model interaction during SFT leads to critiques that inadequately pri-
oritize feasible guidance for effective refinement. The above observations highlight the difficulty of
SFT in producing critiques with both accurate evaluations and practical feedback for refinement.

To further enhance the critic reliability and establish a causal connection between critique quality and
policy refinement outcomes, we implement a dual-reward reinforcement learning framework based
on cold-start models for finalizing RefCritic. The first reward signal stems from the instance-level
binary accuracy metric (0/1 values) for evaluating the critic models in solution judgment capability.
The second reward quantifies policy model improvement through accuracy gains after incorporating
refinement suggestions. Critically, the second reward establishes an explicit feedback loop where the
quality of effective critique is operationally defined by its capacity to drive measurable enhancements
to the policy model. This dual-reward design ensures that high-reward critiques are those that not
only accurately identify solution flaws but also provide actionable guidance leading to verifiable
performance gains.

We validate the effectiveness of RefCritic on multiple challenging mathematical datasets: AIME24,
AIME25, and Olympiad (He et al., 2024). In the refinement after critique setting, feedback generated
by RefCritic based on Qwen2.5-14B and DeepSeek-R1-Distill-Qwen-14B consistently enhances the
corresponding policy models’ performance, with improvements of 6.8% and 7.2% on AIME25, and
9.9% and 2.6% on Olympiad, respectively. In the majority vote with critique setting, RefCritic
demonstrates increasingly significant performance gains as the sampling count increases. With 64
samples, RefCritic achieves an average improvement of 3.6 percentage points on AIME25 com-
pared to scenarios without critique, consistently outperforming other critique baselines. Moreover,
RefCritic effectively enhances majority vote performance even when applied to more powerful mod-
els, like QwQ and DeepSeek-Distill-Qwen-32B. These performance improvements indicate that our
dual reward mechanism successfully aligns critique generation with both evaluation accuracy and
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refinement utility, enabling critic models to produce not only precise solution assessments but also
actionable feedback that effectively guides refinement processes. Furthermore, it is worth noting that
RefCritic generalizes effectively to step-level critique tasks without requiring any step-level labels
during training, achieving remarkable performance on ProcessBench (Zheng et al., 2024).

2 RELATED WORK

Test-time Scaling Test-time scaling techniques have emerged as a powerful approach to enhance
LLM reasoning capabilities through increased computational resources during inference (Charniak
& Johnson, 2005; Snell et al., 2024; Wu et al., 2024; Yao et al., 2023; Chen et al., 2024; Jaech et al.,
2024; Guo et al., 2025; Team, 2025). The effectiveness of these approaches can be improved by judg-
ment or verification mechanisms. Besides traditional process reward models (PRMs) that directly
predict numerical correctness scores for solution steps (Uesato et al., 2022; Lightman et al., 2023;
Zheng et al., 2025; 2023; Chen et al., 2025; Zhang et al., 2025), recent methods frame judgement as
language generation tasks that offer greater interpretability and scalability (Liu et al., 2025; Zhang
et al., 2024; Mahan et al., 2024; Wang et al., 2023; Ankner et al., 2024). Among them, a promising
approach is LLM Critics, which uses LLMs as critic models to verify solutions (McAleese et al.,
2024; Zheng et al., 2025; Yang et al., 2025b).

Critique for Math The judgment ability of LLMs has garnered significant research interest due
to their potential to enhance mathematical reasoning through explicit error detection and correction
guidance (Lan et al., 2024; Lin et al., 2024; Zheng et al., 2024). Current approaches fall into two
main categories: LLM-as-a-Critic (Zheng et al., 2025; Yang et al., 2025b) leverages off-the-shelf
models through careful instruction design, and specialized critic models(McAleese et al., 2024; Lan
et al., 2024; Shi & Jin, 2025) that employ fine-tuning or reinforcement learning to enhance judgment
ability. While recent research emphasizes that critique effectiveness should be validated through
correction outcomes (Tang et al., 2025b; Zheng et al., 2024), most existing critic models focus
exclusively on critique and ignore the future benefit it can bring to refinement. Our work addresses
these challenges through RefCritic, a novel framework that leverages reasoning models’ critique
abilities and incorporates refinement performance as a direct reward signal during critic training.
The most closely related concurrent works are ThinkPRM (Khalifa et al., 2025) and DeepCritic
(Yang et al., 2025b). The former uses SFT to enhance the capabilities of reasoning models, while the
latter improves the critique performance of instruction models on individual steps through complex
fine-tuning and simple RL. However, they fail to recognize how critiques serve as valuable feedback
mechanisms for policy model refinement.

3 SFT IS INSUFFICIENT FOR DEEP CRITIQUES

To better understand the challenges in developing effective critic models, we first examined a
straightforward approach widely adopted in previous research: supervised fine-tuning with rejection
sampling. This approach has demonstrated success in improving judgment capabilities of critics in
several studies (Tang et al., 2025a; Zheng et al., 2025; Khalifa et al., 2025).

Specifically, we employed Qwen2.5-14B-Instruct/DeepSeek-Distill-Qwen-14B as our policy model
and DeepSeek-Distill-Qwen-32B as the critic model1. Employing rejection sampling, we collected
approximately 10K critique training samples from a subset of NuminaMath. Each training sample
comprised a problem statement, model response, chain-of-thought reasoning, judgment on solution
correctness, and refinement suggestions. We subsequently fine-tuned the policy models on these
datasets to develop critique capabilities. To evaluate the effectiveness of these fine-tuned critic
models, we tested them on responses collected from AIME25, assessing their ability to identify
errors and provide feedback that could meaningfully improve policy model performance.

Our experiments revealed a significant disparity between the critic model capabilities and their prac-
tical utility. As shown in Table 1, whether it is a Qwen-based critic or DeepSeek-Distill-Qwen-based
critic, SFT-trained models significantly outperformed self-critique approaches in critique accuracy
metrics. However, when these critiques were used to refine policy model outputs, the resulting
performance improvements were minimal, sometimes even inferior to those achieved through self-

1For Qwen2.5-14B-Instruct, we provide an empty thinking process and only use the content after ”¡/think¿”.
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critique methods. This counterintuitive result suggests that conventional evaluation metrics for crit-
ics may not align with their actual utility in improving model performance.

Method Critique
Accuracy

Pass@1 after
Refinement

Qwen2.5-14B as Base Model
Pass@1 - 14.4
Self-Critique 51.8 14.5
SFT 80.6 15.0

R1-Qwen-14B as Base Model
Pass@1 - 49.2
Self-Critique 71.5 52.1
SFT 78.9 51.4

Table 1: Preliminary experiment on AIME25
to verify whether SFT can emerge deep critic.
We can see that although the SFT model
achieves strong performance in critique evalu-
ation, incorporating its feedback into the policy
model yields only marginal performance gains.
R1-Qwen represents DeepSeek-Distill-Qwen.

Further analysis of the SFT model outputs revealed
two critical limitations. First, critics often arrive
at correct judgments through flawed or superfi-
cial reasoning processes, creating a false impres-
sion of reliability despite inconsistent analytical
quality. This problem is particularly evident in
Qwen-based models, as the critique length after
SFT showed no significant increase, with an av-
erage length of less than 500 tokens. Second,
the feedback typically identified error locations
but lacked specific, actionable guidance for im-
provement. Critics frequently offered vague sug-
gestions or restated problem requirements rather
than providing concrete directions for correcting
mathematical misconceptions or reasoning flaws.
These findings directly support our hypothesis that
conventional SFT approaches, while successful in
training critics to make binary judgments, fail to
develop models that can provide the actionable,
improvement-oriented feedback necessary for ef-
fective solution refinement.

4 REFCRITIC

We propose RefCritic, a novel approach for developing effective critic modules that provide ac-
tionable feedback for mathematical reasoning tasks. As illustrated in Figure 1, RefCritic employs
a two-stage methodology. First, we develop a cold-start critic model via supervised fine-tuning
that activates the model’s reasoning judgment capabilities and enables structured output generation.
Second, we introduce a rule-based reinforcement learning framework with dual rewards optimizing
critics for both solution-level correctness and refinement effectiveness, measured by concrete im-
provements in policy model performance. This dual-reward mechanism ensures our critic models
not only accurately evaluate solutions but also provide guidance that leads to substantive improve-
ments in reasoning capabilities.

When faced with complex tasks such as critique generation, LLMs often exhibit problematic behav-
iors, including instruction unfollowing (He et al., 2025) and answer leakage (Yang et al., 2025b).
To address these challenges, we implement SFT with rejection sampling to standardize model out-
puts. Following our preliminary experimental setup, we leverage a more powerful model to generate
initial critic responses, then systematically filter out responses containing erroneous judgments, in-
struction violations, or solution leakage risks through rule-based screening. This curated dataset
serves as the foundation for our LLM training, ensuring the resulting critic model adheres to desired
output formats while maintaining evaluation integrity.

Despite the effectiveness of the supervised fine-tuning approach in producing format-compliant crit-
ics, the preliminary experiments revealed fundamental shortcomings that limit practical utility. As
previously demonstrated, SFT models exhibit a misleading combination of accurate judgments built
upon superficial reasoning, alongside feedback that identifies errors without providing actionable
remediation strategies. Rather than reiterating these limitations, we recognize them as symptomatic
of a deeper issue: conventional training methods optimize for solution classification accuracy rather
than refinement capability. This insight motivates us to shift from purely supervised learning toward
a reinforcement learning framework that explicitly rewards critics not just for evaluation correctness,
but for generating feedback that demonstrably improves subsequent solutions.

To address these limitations, we introduce a dual-reward reinforcement learning framework that
optimizes both judgment accuracy and refinement effectiveness. Our approach evaluates critics
based on two key metrics: (1) their ability to correctly classify solutions as right or wrong, and
(2) the tangible improvement their feedback produces when used by the policy model to revise
incorrect solutions. This framework ensures our critics develop both strong evaluation capabilities
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and the ability to generate constructive feedback that leads to measurable improvements in reasoning
outcomes.

RefCritic uses GRPO (Group Relative Policy Optimization) to train the critic model. Let πc

denote the critic model, and πθ denote the policy model, used for generating critiques and so-
lutions separately. For a question x from dataset D with golden answer a, the policy model
generates an initial solution y ∼ πθ(y|x). The correctness of this solution is determined by
c = I[y = a] ∈ {0(incorrect), 1(correct)}, where I[·] is a rule-based discriminator that determines
whether the generated answer matches the golden answer.

Then the critic model generates G critiques πc(x, y) → s = (z, ĉ), where z represents the extensive
reasoning process and ĉ ∈ {0, 1} represents πc’s judgment of response correctness.

For any critique si, its reward ri is assigned as:

ri =

{
1 if ĉ = c

0 otherwise
(1)

We apply the following objective to train the policy model:

J =

G∑
i=1

1

G|si|

|si|∑
t=1

{
min

[
ratioiÂi,t, clip (ratioi, 1− ϵ, 1 + ϵ) Âi,t

]
− βDKL

}
(2)

ratioi =
πθ(si,t|y, si,<t)

πθold(si,t|y, si,<t)
(3)

where G represents the number of critiques generated by πc for each original response y, si repre-
sents the i-th generated critique, and Âi,t represents the token-level advantage. GRPO eliminates
the need for a value function through group relative advantage estimation:

Âi =
ri − mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
(4)

where ri represents the reward of the i-th critique. When optimizing πc, ri is determined by whether
si contains a correct judgment ĉi.

However, this design has issues because the πc may not provide useful feedback for πθ to refine its
solution. Additionally, πc might arrive at correct judgments through incorrect reasoning (this is be-
cause we don’t use step-level supervision signals like PRM, only solution-level signals). Therefore,
we introduce refinement feedback to enhance πc’s Reward: R = Rc + λRr

The improved advantage estimation is:

Ãi =
Ri − mean({R1, R2, . . . , RG})

std({R1, R2, . . . , RG})
(5)

where Rc = r represents whether the critique s contains a correct judgment ĉ, ensuring that πc

can accurately identify solution correctness. Rr represents whether πc’s critique provides useful
feedback for πθ. To obtain Rr, we use πθ to generate N refined solutions {ŷi}Ni=1 based on each
critique from πc, where ŷ = πθ(x, y, s). The definition of Rr is:

Rr =

{
1
m

∑m
i=1 I[ŷi = a] if c = 0 and ĉ = 0

0 otherwise
(6)

λ is a hyperparameter that balances the importance between judgment accuracy and refinement ef-
fectiveness. A higher λ value places greater emphasis on the critic’s ability to provide actionable
feedback that leads to correct solutions, while a lower value prioritizes accurate solution classifica-
tion.

In summary, our RefCritic framework alleviates the key limitations of existing critic models through
this dual-reward reinforcement learning approach. By explicitly optimizing for both judgment accu-
racy and refinement effectiveness, we develop critics that not only accurately evaluate mathematical
solutions but also provide actionable feedback that leads to concrete improvements in reasoning
outcomes.

5
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models For our implementation of RefCritic, we utilize Qwen2.5-14B-Instruct (Yang et al.,
2025a) and DeepSeek-R1-Distill-Qwen-14B (Guo et al., 2025) as the backbone. In our frame-
work, these models perform two distinct functions: first, as policy models that generate solutions
for mathematical problems; and second, as the foundation models to develop our critic models.

Data Construction We construct our training dataset by filtering approximately 120k high-quality
mathematical problems from the 900k problems in NuminaMath-1.5 (LI et al., 2024). Our filtering
pipeline includes: (1) deduplication through exact string matching and semantic similarity; (2) prob-
lem filtering; (3) difficulty balancing. For critic training, we sample 8 responses per problem and
retain at most one correct and one incorrect per problem to ensure balanced training data. Detailed
process can be found in Appendix C.

Benchmarks We evaluate the performance of RefCritic on challenging mathematical bench-
marks, including AIME 2024/2025 (American Invitational Mathematics Examination problems),
and OlympiadBench (He et al., 2024). Since RefCritic was trained only on math problems, we con-
duct out-of-distribution tests on the code generation task LiveCodeBench (Jain et al., 2024) and the
science QA benchmark GPQA-Diamond (Rein et al., 2024). Furthermore, to evaluate RefCritic’s
capability for fine-grained error localization, we leverage ProcessBench (Zheng et al., 2024) to as-
sess its ability to accurately identify the specific step where an error occurs.

Training Details In the SFT stage, we train the critic models with a learning rate of 7e-6 and a
batch size of 512 for three epochs. For the RL stage, we employ the GRPO algorithm (Shao et al.,
2024) to enhance critic performance. We sample 8 critics for each input, each rollout comprising 128
inputs, and conduct on-policy training with a learning rate of 1e-6. We set the maximum sequence
length to 8K and 16K tokens for Qwen2.5-Instruct and DeepSeek-R1-Distill-Qwen, respectively.
For refinement feedback, we use policy models to generate 8 refinements for each critic. Consid-
ering the cost of sampling refinements, we initially set λ=0 to achieve rapid improvement in critic
performance for 600 steps, where no refinement is generated. We subsequently adjust to λ=1 to
balance the trade-off between the two reward components and continue training for 300 steps.

Evaluation Details For evaluation, both policy and critic models apply temperature=0.6 and
top p=0.95. For AIME24/25, we pre-sample 128 responses as the response pool for performance
calculations. For OlympiadBench/GPQA/LiveCodeBench, we sample only 32 responses due to their
larger scale. Then, we randomly select responses from the response pool for metric calculation and
report the average results over 1000 trials. We adopt multiple evaluation settings. Majority Vote with
Critique(Majc@N ): The critic first evaluates the N sampled solutions and filters out those judged
as incorrect. We then apply a majority vote on these remaining solutions to find the final answer.
textitRefinement after Critique(Passr@1): The policy model generates an initial solution, which
is then critiqued by the critic. If judged as incorrect, the policy model refines the solution based on
the feedback. We report the pass@1 accuracy of the final refined answer. Process Critique Evalu-
ation: For process-level evaluation, since our critic models were trained to output natural language
critiques rather than explicit step indices, we use Qwen2.5-14B-Instruct to identify the step index
the critic judges incorrect.2 Following ProcessBench, we report the F1 score, which is the harmonic
mean of precision for correct and incorrect solutions.

5.2 MAIN RESULTS

As shown in Table 2, we present the performance of RefCritic against various baselines on AIME24,
AIME25, and OlympiadBench datasets. In the one-round critique and refinement settings, RefCritic
consistently provides the most effective feedback for policy model improvement, demonstrating
the effectiveness of incorporating refinement performance as a reward in our reinforcement learning
approach. Specifically, on the challenging AIME25 dataset, RefCritic-Qwen-14B and RefCritic-R1-
14B enhance the policy model’s Pass@1 performance by 6.8% and 7.2%, respectively, significantly
outperforming both self-critique baselines and models trained via supervised fine-tuning. Similar
patterns emerge across AIME24 and Olympiad benchmarks, confirming that directly optimizing for

2We only provide the solution and critique, without the corresponding problem. Every critic we evaluated
would go through this process.
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Model
AIME25 AIME24 Olympiad

Passr@1 Majc@8 Majc@64 Passr@1 Majc@8 Majc@64 Passr@1 Majc@8 Majc@16

Qwen-14B Maj 14.4 19.2 23.3 13.7 16.5 16.6 45.8 52.2 53.6
Qwen-14B as Critic 14.5 19.1 22.7 13.7 18.5 21.2 45.8 52.3 54.0

RefCritic-Qwen-14B(Ours)
SFT 15.0 19.3 23.4 15.2 19.2 23.9 46.6 52.5 54.3
RLλ=0 18.5 20.8 22.4 19.1 20.5 23.8 51.4 55.4 57.4

RLλ=0
after−−−→ RLλ=1 21.2 21.5 24.4 23.0 21.4 26.6 55.7 57.3 59.2

R1-Qwen-14B Maj 49.1 61.6 62.0 67.6 78.7 80.1 77.7 82.7 83.3
R1-Qwen-14B as Critic 50.0 60.6 62.9 70.5 79.3 82.4 78.8 82.7 83.3

RefCritic-R1-14B(Ours)
SFT 51.3 61.6 62.8 71.4 79.4 83.1 78.7 83.0 84.4
RLλ=0 55.1 64.2 67.1 73.5 80.4 82.8 80.4 83.8 84.5

RLλ=0
after−−−→ RLλ=1 56.3 65.2 68.1 72.8 80.4 82.5 80.3 83.9 84.7

Table 2: Performance comparison of different approaches on AIME24/25 and Olympiad. Qwen-
14B Maj and R1-Qwen-14B Maj denote the baseline that performs majority vote directly. Passr
indicates the performance after one round of critique and refinement. Majc indicates the majority
vote performance after using the critic filtering solutions. RLλ=1 indicate RL with Refinement
Feedback. Considering the cost of sampling refinements, we initially set λ = 0 to achieve rapid
improvement in critic performance.

policy model refinement performance during RL training enables critic models to generate more
actionable feedback.

When scaling up the policy model’s response generation and applying critic model filtering, Re-
fCritic achieves superior performance across nearly all experimental settings. For instance, on
AIME25, RefCritic-RL improves Majc@64 with an average benefit of 3.6%(1.1% for RefCritic-
Qwen and 6.1% for RefCritic-R1). These results demonstrate that our refinement-oriented critic not
only enhances feedback quality but also improves critical evaluation capabilities. Notably, as the
sampling scale increases from 8 to 64, the overall performance gains from RefCritic become more
pronounced, indicating our critic models’ high discriminative accuracy in identifying and preserv-
ing high-quality solutions from larger candidate pools. We also propose some ablation studies to
understand the role of the two RL training stages in Appendix B.

5.3 OUT-OF-DISTRIBUTION PERFORMANCE

Model
LCBench GPQA

Passr@1 Passr@1 Majc@16

Qwen-14B Maj 18.9 19.5 23.3
Qwen-14B as Critic 20.9 19.5 22.7

RefCritic-R1-14B(Ours)
SFT 21.5 19.2 22.8
RLλ=0 21.8 18.9 24.0

RLλ=0
after−−−→ RLλ=1 22.9 20.0 24.3

R1-Qwen-14B Maj 51.0 58.7 61.6
R1-Qwen-14B as Critic 52.4 57.7 60.6

RefCritic-Qwen-14B(Ours)
SFT 52.3 58.0 62.5
RLλ=0 53.6 59.0 64.6

RLλ=0
after−−−→ RLλ=1 54.1 59.3 65.1

Table 3: Performance comparison of different ap-
proaches on LiveCodeBench and GPQA.

Additionally, we evaluated RefCritic on out-of-
distribution tasks. Considering that the model
was trained on mathematical data, we chose
to use LiveCodeBench to verify its perfor-
mance on coding, and GPQA to evaluate its
performance in challenging knowledge reason-
ing. We found that RefCritic still performs well
on out-of-distribution benchmarks. Although
the improvements are not as substantial as in
the mathematical tasks, they still bring consid-
erable gains. Specifically, RefCritic-R1-14B
achieved a 3.1% performance improvement on
LCB3, and improved Majc@64 from 61.6% to
65.1% on the GPQA task, representing a 3.5%
performance gain. Similar progress also ap-
peared in RefCritic-Qwen-14B. These results
suggest that RefCritic’s critic capabilities can
be applied to a wide range of tasks.

5.4 CRITIC PERFORMANCE

In this section, we evaluate RefCritic on ProcessBench to explore whether it can accurately identify
true error locations in solutions. The experimental results presented in Table 4 demonstrate that Re-
fCritic significantly outperforms most previous baselines, including methods that utilize step-level

3Since coding tasks cannot perform Majority Vote, we only report Passr@1 performance.
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Model GSM8K MATH Omni-Math Olympiad Avg.

PRM
Math-Shepherd-PRM-7B* 47.9 29.5 24.8 23.8 31.5
RLHFlow-PRM-8B-DS* 38.8 33.8 16.9 16.9 26.6
Qwen2.5-Math-PRM-7B* 68.2 62.6 50.7 44.3 56.5

Prompt LLM as Critic
Qwen2.5-14B-Instruct 61.7 52.6 41.3 43.1 49.7
Qwen2.5-72B-Instruct 74.6 61.8 51.7 52.8 60.2
R1-Qwen-7B 75.3 74.4 56.9 63.5 67.5
R1-Qwen-14B 75.9 76.2 59.6 63.6 68.8
GPT-4o-0806* 79.2 63.6 51.4 53.5 61.9

Baseline Critic
SCRIT-72B (Tang et al., 2025a) 80.2 60.0 32.5 27.8 50.0
DeepCritic-7B (Yang et al., 2025b) 72.6 72.8 56.0 60.9 65.6
ThinkPRM-14B (Khalifa et al., 2025) 67.6 71.4 54.8 59.3 63.3

Our Critic
RefCritic-Qwen-14B 81.9 71.2 58.1 60.7 68.0
RefCritic-R1-14B 86.3 82.0 67.6 72.3 77.1

Table 4: The evaluation results of PRMs, LLM as a critic, and RefCritic critic models on Pro-
cessBench. The metric is the F1 score, the harmonic mean of precision for correct and incorrect
solutions. All our critic models are followed by an extract model (Qwen2.5-14B-Instruct) to get the
error step for easy evaluation. Content marked with ”*” sourced from Processbench. As shown in
Table 8, we use the same template as used in Processbench.

supervision. RefCritic-Qwen achieves an average performance of 68, while RefCritic-R1 reaches
an impressive 77 average performance. This indicates that our dual reward mechanism effectively
guides the model in developing accurate error identification capabilities.

This finding is consistent with the growth of the model output length during RL training. Specifi-
cally, the average output length of RefCritic-Qwen increased from about 500 tokens to 3500 tokens,
while RefCritic-R1 increased from 3000 tokens to 8000 tokens. This indicates the increasingly
detailed critiques, making step-level critique possible.

These findings demonstrate that even without explicit step-level supervision, our approach enables
critic models to develop a nuanced understanding of solution processes and identify errors with high
precision. This capability is crucial for generating actionable feedback that can effectively guide
policy models toward improved solutions.

5.5 TEST-TIME SCALING
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(a) Critique Scaling on RefCritic.
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(b) Scaling on RefCritic-Qwen.
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Figure 2: Test-time scaling with RefCritic. Subplot (a), scaling the number of critiques with Ref-
Critic. Subplot (b), scaling the number of sampled solutions with RefCritic-Qwen-14B on AIME24.
Subplot(c), scaling the number of sampled solutions with RefCritic-R1-14B on AIME25.

In this section, we investigate whether RefCritic’s critique capabilities and model performance ben-
efit from test-time scaling. We construct evaluation sets by sampling 16 solutions per problem from
the AIME25 and Olympiad datasets. For each question, we sample 64 critiques from RefCritic
to examine whether increasing critique quantity progressively enhances critique performance. Fig-
ure 2 (a) shows that RefCritic’s critique performance improves consistently with increased sampling
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accounts. On AIME25, performance increases steadily, achieving a 4% improvement with more
sampled critiques. This suggests that RefCritic benefits from test-time scaling through critique ag-
gregation, thereby enhancing its accuracy in critiquing mathematical solutions. The Olympiad scal-
ing curve is relatively flat, likely due to task difficulty for the policy model, though a clear scaling
trend remains visible. Figure 2 (b) and (c) illustrate the scaling performance of RefCritic-Qwen-14B
and RefCritic-R1-14B on AIME25, measured by maj@N across increasing rollout samples. The re-
sults demonstrate that RefCritic consistently outperforms baselines across different sampling scales,
with performance gaps broadening as sample numbers increase. This validates that our refinement-
oriented critic approach maintains effectiveness advantages in large-scale inference scenarios.

5.6 SUPERVISION OF STRONGER MODELS
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Figure 3: Supervision of RefCritic-R1-14B on stronger models like Qwen2.5-72B, DeepSeek-
Distill-Qwen-32B, and QwQ-32B.

We also investigate whether RefCritic can provide effective cross-model supervision for more pow-
erful reasoning models. We evaluate our approach using stronger models (QwQ, DeepSeek-Distill-
Qwen-32B, and Qwen 2.5-72B) on the AIME25 dataset. We compare three settings: (1) standard
majority voting, (2) self-critique where models evaluate their own solutions, and (3) cross-model
supervision using RefCritic-14B as critic. Figure 3 shows that even the most powerful reasoning
models exhibit minimal or negative performance gains from self-critique compared to standard ma-
jority voting. This reveals a consistent limitation in models’ self-critique abilities, regardless of scale
or reasoning capabilities. In contrast, RefCritic consistently improves performance across nearly all
settings, even when supervising larger, more capable reasoning models. With 32 samples, RefCritic
supervision improves QwQ performance by 1.5% over majority voting and 1.1% over self-critique.
Similar patterns occur for DeepSeek-Distill-Qwen-32B and Qwen 2.5-72B, confirming RefCritic’s
benefits across model families and scales.

6 CONCLUSION

In this work, we introduced RefCritic, a novel approach for training critic models to critique the cor-
rectness of solutions and provide effective refinement feedbacks from LLMs. Our method leverages
a dual-reward system that jointly optimizes for judgment accuracy and refinement effectiveness,
creating an explicit feedback loop between critique quality and policy model improvement. Our ex-
periments demonstrated that while SFT alone is insufficient for producing comprehensive critiques
despite generating better critiques, the integration of reinforcement learning with our designed re-
ward signals significantly enhances both the analytical depth and practical utility of critiques. Ex-
perimental results across challenging mathematical datasets and out-of-distribution benchmarks val-
idate RefCritic’s effectiveness in consistently enhancing policy model performance in both critique-
refinement and majority vote settings. Further experiments on ProcessBench demonstrate that even
without a step-level signal, RefCritic can effectively identify the error step.
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Model
AIME25 AIME24 Olympiad

Passr@1 Passr@1 Passr@1

Qwen-14B as Critic 14.5 13.7 45.8
RefCritic-Qwen-14B
SFT 15.0 15.2 46.6
RLλ=0 18.5 19.1 51.4
RLλ=1 19.5 21.4 54.3

RLλ=0
after−−−→ RLλ=0 19.6 21.7 53.6

RLλ=0
after−−−→ RLλ=1 21.2 23.0 55.7

Table 5: Ablation results on RefCritic-Qwen-14B.

A THE USE OF LARGE LANGUAGE MODELS

We utilized LLMs to aid and polish writing.

B ABLATION

We propose some ablation studies to understand the role of the two RL training stages in RefCritic,
namely λ=0 and λ=1. Considering the training cost, we only conduct experiments on RefCritic-
Qwen-14B, and ablations on DeepSeek-Distill-Qwen-14B will be added in future research. Specif-
ically, we aim to explore the importance of Refinement Reward. To this end, we mainly compared

two groups of experiments: 1) RLλ=0 and RLλ=1. 2) RLλ=0
after−−−→ RLλ=0 and RLλ=0

after−−−→
RLλ=1. Each group of experiments is optimized with the same parameters. The results of all these
ablation experiments are shown in Table 5. As expected, under the same settings, refinement reward
improves the refinement performance of models. Furthermore, first using RLλ=0 for Critic opti-
mization is also beneficial to RefCritic. RLλ=0 can quickly improve Critic performance at a lower

cost, making RLλ=0
after−−−→ RLλ=1 a setting that balances cost and performance.

C DATA CONSTRUCTION

We filtered about 120k problems from the 900k mathematical problems of NuminaMath-1.5 LI
et al. (2024). Detailed filter process and utilization can be found in the section C. Our training data
pipeline involves rigorous filtering to ensure high-quality and diverse mathematical problems.

Problem Deduplication We start with a deduplication process on the 900k mathematical prob-
lems from NuminaMath-1.5 LI et al. (2024). The deduplication process includes the string-based
process by performing exact matching after removing special characters such as ’$’, ’[’, ’]’, etc.,
and semantic deduplication, where we used gte-multilingual-base embeddings to compute cosine
similarity between problem pairs and removing those with similarity scores exceeding 0.95.

Problem Filter Then, we utilize Qwen2.5-72B-Instruct as a judge to filter problems based on
several criteria: unsolvable problems, proof problems requiring formal mathematical proofs, and
multiple-choice problems. We sample eight solutions for each problem with DeepSeek-Distill-
Qwen-7B to ensure appropriate difficulty distribution. We remove problems where DeepSeek-
Distill-Qwen-7B either solves all eight attempts correctly or fails on all eight attempts, thus elim-
inating trivial or impossibly difficult issues. After this comprehensive filtering process, we obtain
approximately 120k high-quality mathematical problems for training. All prompt templates are
provided in the Appendix.

Solution Sampling To create training data for critic models, we sample 8 responses from the
policy model for each problem, remove problems where all solutions are correct or incorrect, filter
out incomplete generations, and ensure balanced training by retaining at most two responses per
problem (one correct and one incorrect). For efficient scaling, all responses are sampled by sglang
inference services4.

4https://github.com/sgl-project/sglang
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D TEMPLATES

Given a student’s mathematical solution, analyze it step-by-step to
determine correctness. Do not solve the problem yourself, provide
feedback focus on the student’s work to help them learn. Conclude
your feedback as:

**Correctness**: Correct | Incorrect
(If incorrect)
**Comment**: Identify the specific error in the solution and help the
student recognize why their approach leads to an incorrect result.
Then, provide a comment that will help the student to resolve this
problem.

Do not expose any answer!

[Problem]
{problem}

[Solution]
{solution}

Table 6: The template we used for critique.

Review your solution to a mathematical problem and a feedback from your
teacher. Create an improved version that fixes the identified errors.
Please reason step by step and put your final answer within \\boxed{{}}.

[Problem]
{problem}

[Original Solution]
{solution}

[Teacher Feedback]
{critique}

Table 7: The template we used for refinement.

The following is a math problem and a solution (split into paragraphs,
enclosed with tags and indexed from 0):

[Math Problem]

{problem}

[Solution]

{solution}

Your task is to review and critique the solution paragraph by paragraph.
Once you identify an error in a paragraph, return the index of the
paragraph where the earliest error occurs.
Otherwise, return the index of -1 (which typically denotes "not found").

Please put your final answer (i.e., the index) in \boxed{}.

Table 8: The template we used for evaluating processbench.
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