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ABSTRACT

We introduce TANGOFLUX, an efficient Text-to-Audio (TTA) generative model
with 515M parameters, capable of generating up to 30 seconds of 44.1kHz au-
dio in 3.7 seconds on a A40 GPU. A key challenge in aligning TTA models
lies in creating preference pairs, as TTA lacks structured mechanisms like ver-
ifiable rewards or gold-standard answers available for Large Language Models
(LLMs). To address this, we propose CLAP-Ranked Preference Optimization
(CRPO), a novel framework that iteratively generates and optimizes preference
data to enhance TTA alignment. We show that the audio preference dataset gen-
erated using CRPO outperforms the static alternatives. With this framework,
TANGOFLUX achieves state-of-the-art performance across both objective and sub-
jective benchmarks. https://tangoflux56.github.io/TangoFlux/
holds the model-generated audio samples for comparison.

1 INTRODUCTION

Audio is integral to daily life and creative industries, from enhancing communication and storytelling
to enriching experiences in music, sound effects, and podcasts. However, creating high-quality audio,
such as foley effects or music compositions, demands significant effort, expertise, and time. Recent
advancements in text-to-audio (TTA) generation (Majumder et al., 2024; Ghosal et al., 2023; Liu et al.,
2023; 2024b; Xue et al., 2024; Vyas et al., 2023; Huang et al., 2023b;a) enabled automatic and rapid
creation of diverse and expressive audio content directly from textual descriptions. This technology
holds immense potential to accelerate audio production and creative multimedia workflows. However,
many existing models face challenges with controllability, often struggling to fully capture the details
in the input prompts, especially when the prompts are complex, containing many events with diverse
temporal relationships. This sometimes results in audios that omit certain events or place the events
in a wrong order. At times, the generated audio may even contain input-adjacent, but unmentioned
and unintended, events, that could be characterized as hallucinations.

Alignment often leverages reinforcement learning from human feedback (RLHF) or other reward-
based optimization methods to endow the generated outputs with human preferences, ethical con-
siderations, and task-specific requirements (Ouyang et al., 2022). Recently Majumder et al. (2024)
employed alignment for TTA model training. One critical challenge in implementing alignment for
TTA lies in the creation of preference pairs. Unlike LLM alignment, where off-the-shelf reward
models (Lambert et al., 2024a;b) and human feedback data or verifiable gold answers are available,
TTA domain as yet lacks such tooling.

While audio language models (Chu et al., 2024; 2023; Tang et al., 2024) can take audio inputs and
generate textual outputs, they usually produce noisy feedback, unfit for preference pair creation for
audio. BATON (Liao et al., 2024) employs human annotators to assign a binary label 0/1 to each
audio sample based on its alignment with a given prompt. However, such labor-intensive manual
approach is often impractical at a large scale.

To address these issues, we propose CLAP-Ranked Preference Optimization (CRPO), a simple yet
effective approach to generate audio preference data and perform preference optimization on rectified
flows. As shown in Fig. 1, CRPO consists of iterative cycles of audio sampling, preference pair
curation, and preference optimization, resembling a self-improvement algorithm. A notable aspect of
this approach is evolution by generating its own training dataset, dynamically aligning itself over
multiple iterations. We show the CLAP (Wu* et al., 2023) can serve as a proxy reward model for

1

https://tangoflux56.github.io/TangoFlux/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

AudioAudio

TangoFlux-base
π0

πt πt+1

AudioCaps
WavCaps

Prompt Audio

Audio Prompt

≪

CLAP
Audio

Prompt≪

1. Pre-training 2. Online Iterative Alignment

≪

Sampling Training Dataset

ℒCRPO

ℒFM

AudioCaps
ℒFM

Stable Audio 
VAE

Audio

w

l

6x MMDiT

18x DiT

TANGOFLUX

Figure 1: A depiction of the overall training pipeline of TANGOFLUX.

ranking generated audios by alignment with the text description. With this ranking, we construct
an audio preference dataset that post alignment yields superior performance to other static audio
preference datasets, such as, BATON and Audio-Alpaca (Majumder et al., 2024).

Unlike many closed TTA models (Evans et al., 2024b;a; Copet et al., 2024) that are trained on
proprietary data, our open-source TANGOFLUX is trained on open data, achieving state-of-the-
art performance on benchmarks and out-of-distribution human evaluation, despite its smaller size.
TANGOFLUX also supports variable-duration audio generation up to 30 seconds with an inference
time of 3.7 seconds on an A40 GPU. This is unlike diffusion-based TTA models (Ghosal et al., 2023;
Majumder et al., 2024; Liu et al., 2024b) that are known to require too many denoising steps for a
decent output, consuming much compute and time. This is achieved using a transformer (Vaswani
et al., 2023) backbone that undergoes pretraining, fine-tuning, and preference optimization with
rectified flow matching training objective.

Our contributions:

(i) We introduce TANGOFLUX, a small TTA model based on rectified flow with state-of-the-art
performance for fully non-proprietary training data.

(ii) We propose CRPO, a simple yet effective strategy for dynamically generating audio pref-
erence data and aligning rectified flows. By iteratively refining the preference data, CRPO
continuously improves itself, outperforming static audio preference datasets.

(iii) We conduct extensive experiments and highlight the importance of each component of CRPO
in aligning rectified flows for improving scores on benchmarks.

(iv) We will release the code and model weights.

2 METHOD

TANGOFLUX consists of FluxTransformer blocks, which are composed of Diffusion Transformer
(DiT) (Peebles & Xie, 2023) and Multimodal Diffusion Transformer (MMDiT) (Esser et al., 2024)
conditioned on a text prompt and a duration embedding to generate 44.1kHz audios of up to 30 second
long. TANGOFLUX learns a rectified flow trajectory to the latent audio representation encoded
by a variational autoencoder (VAE) (Kingma & Welling, 2022). As shown in Fig. 1, the training
pipeline consists of two stages: pre-training and alignment. TANGOFLUX is aligned with our CRPO
method which iteratively generates new synthetic data and constructs preference pairs for preference
optimization.

2.1 AUDIO ENCODING

We use the VAE from Stable Audio Open (Evans et al., 2024c), which is capable of encoding 44.1kHz
stereo audio waveforms into latent representations. Given a stereo audio X ∈ R2×d×sr with d as the
duration and sr as the sampling rate, the VAE encodes X into a latent representation Z ∈ RL×C ,
with L and C being the latent sequence length and channel size, respectively. The VAE decodes
the latent representation Z into the original stereo audio X . The entire VAE is kept frozen during
TANGOFLUX training.
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2.2 MODEL CONDITIONING

To control the generation of audio of varying lengths, we employ (i) text conditioning to control the
content of the generated audio and (ii) duration conditioning to dictate the output audio length, up to
a maximum of 30 seconds.

Text Conditioning. We obtain an encoding ctext of the given textual description from a pretrained
text-encoder. Given the strong performance of FLAN-T5 (Chung et al., 2022; Raffel et al., 2023)
as conditioning in text-to-audio generation (Majumder et al., 2024; Ghosal et al., 2023), we select
FLAN-T5 as our text encoder.

Duration Encoding. Inspired by the recent works (Evans et al., 2024c;a;b), to generate audios with
variable length, we use a small neural network to encode the audio duration into a duration embedding
cdur that is concatenated with the text encoding ctext and fed into TANGOFLUX to control the
duration of audio output.

2.3 MODEL ARCHITECTURE

Following the recent success of FLUX models in image generation1, we adopt a hybrid MMDiT and
DiT architecture as the backbone for TANGOFLUX. While MMDiT blocks demonstrated a strong
performance, simplifying some of them into single DiT block improved scalability and parameter
efficiency2. These lead us to select a model architecture with 6 blocks of MMDiT, followed by 18
blocks of DiT. Each block has 8 attention heads of 128 width, totaling a width of 1024. This setting
amounts to 515M trained parameters.

2.4 FLOW MATCHING

Several generative models have been successfully trained under the diffusion framework (Ho et al.,
2020; Song et al., 2022; Liu et al., 2022). However, this approach is known to be sensitive to the
choice of noise scheduler, which may significantly affect performance. In contrast, the flow matching
(FM) framework (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023) has been shown to be more
robust to the choice of noise scheduler, making it a preferred choice in many applications, including
text-to-audio (TTA) and text-to-speech (TTS) tasks (Liu et al., 2024a; Le et al., 2023; Vyas et al.,
2023).

Flow matching builds upon the continuous normalizing flows framework (Onken et al., 2021). It
generates samples from a target distribution by learning a time-dependent vector field that maps
samples from a simple prior distribution (e.g., Gaussian) to a complex target distribution. Prior work
in TTA, such as AudioBox (Vyas et al., 2023) and Voicebox (Le et al., 2023), has predominantly
adopted the Optimal Transport conditional path proposed by (Lipman et al., 2023). However, we
utilize rectified flows (Liu et al., 2022) instead, which is a straight line path from noise to distribution,
corresponding to the shortest path. See Appendix A.4 for the details on rectified flow.

Inference. For inference, we sample a noise x̃0 ∼ N (0, I) and use Euler solver to compute x1,
based on the model-predicted velocity u(·; θ) at each time step t. The results for the Heun solver are
presented in Appendix A.7.

2.5 CLAP-RANKED PREFERENCE OPTIMIZATION

CLAP-Ranked Preference Optimization (CRPO) leverages a text-audio joint-embedding model like
CLAP (Wu* et al., 2023) as a proxy reward model to rank the generated audios by similarity with the
input description and subsequently construct the preference pairs.

Tango2 (Majumder et al., 2024) and CLIP-DPO (Ouali et al., 2024) curate preference pairs via
prompt perturbation, sampling multiple outputs for each prompt to establish static rankings. However,
these approaches rely on static preference datasets, which can limit alignment generalization and
adaptability. In contrast, we adopt a dynamic preference optimization strategy: it generates new
synthetic preference pairs at the start of each training iteration. This online data generation allows

1https://blackforestlabs.ai/
2https://blog.fal.ai/auraflow/
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the model to continually refine its alignment through training which we show to further improve
performance.

We set π0 to a pre-trained checkpoint TANGOFLUX-base to align. Thereafter, CRPO iteratively
aligns checkpoint πk := u(·; θk) into checkpoint πk+1, starting from k = 0. Each alignment iteration
consists of three steps: (i) batched online data generation, (ii) reward estimation and preference dataset
creation, and (iii) fine-tuning πk into πk+1 via direct preference optimization. This alignment process
allows the model to continuously self-improve by generating and leveraging its own preference data.

This approach of alignment is inspired by a few LLM alignment approaches (Zelikman et al., 2022;
Kim et al., 2024a; Yuan et al., 2024; Pang et al., 2024). However, there are key distinctions to our
work: (i) we align rectified flows for audio generation, rather than autoregressive language models; (ii)
while LLM alignment benefits from numerous off-the-shelf reward models (Lambert et al., 2024b),
which ease the construction of preference datasets based on reward scores, LLM judged outputs, or
programmatically verifiable answers, the audio domain lacks such models or method for evaluating
audio. We demonstrate that the CLAP model can serve as an effective proxy audio reward model,
enabling the creation of preference datasets (see Appendix A.3). Finally, we highlight the necessity
of generating online data at every iteration, as iterative optimization on offline data leads to quicker
performance saturation and subsequent degradation.

2.5.1 CLAP AS A REWARD MODEL

CLAP reward score is calculated as the cosine similarity between textual and audio embeddings
encoded by the model. Thus, we assume that CLAP can serve as a reasonable proxy reward model
for evaluating audio outputs against the textual description. In Appendix A.3, we demonstrate that
using CLAP as a judge to choose the best-of-N inferred policies improves performance in terms of
objective metrics.

2.5.2 BATCHED ONLINE DATA GENERATION

To construct a preference dataset at iteration k, we first sample a set of prompts Mk from a larger pool
B. Then, we generate N audios for each prompt yi ∈ Mk using πk and use CLAP3 (Wu* et al., 2023)
to rank those audios by similarity with yi. For each prompt yi, we select the highest-rewarded or
-ranking audio xw

i as the winner and the lowest-rewarded audio xl
i as the loser, yielding a preference

dataset Dk = {(xw
i , x

l
i, yi) | yi ∈ Mk}.

2.5.3 PREFERENCE OPTIMIZATION

Direct preference optimization (DPO) (Rafailov et al., 2024c) is shown to be effective at instilling
human preferences in LLMs (Ouyang et al., 2022). Consequently, DPO is successfully translated
into DPO-Diffusion (Wallace et al., 2023) for alignment of diffusion models. The DPO-diffusion loss
is defined as

LDPO-Diff = −En,ϵw,ϵl log σ
(
− β

[
∥ϵwn − ϵθ(x

w
n )∥22 − ∥ϵwn − ϵref(x

w
n )∥22

− ∥ϵln − ϵθ(x
l
n)∥22 + ∥ϵln − ϵref(x

l
n)∥22

])
. (1)

n ∼ U(0, T ) is a diffusion step among T steps; xl
n and xw

n represent the losing and winning audios,
with ϵ ∼ N (0, I).

Following Esser et al. (2024), DPO-Diffusion loss is applicable to rectified flow through the equiv-
alence (Lipman et al., 2023) between ϵθ and u(·; θ), thereby the noise matching loss terms can be
substituted with flow matching terms:

LDPO-FM = −Et∼U(0,1),xw,xl,y log σ
(
− β

[
∥u(xw

t , y, t; θ)− vwt ∥22︸ ︷︷ ︸
Winning loss

−∥u(xl
t, y, t; θ)− vlt∥22︸ ︷︷ ︸

Losing loss

− ∥u(xw
t , y, t; θr)− vwt ∥22︸ ︷︷ ︸

Winning reference loss

+ ∥u(xl
t, y, t; θr)− vlt∥22︸ ︷︷ ︸

Losing reference loss

])
, (2)

3https://huggingface.co/lukewys/laion_clap/blob/main/630k-audioset-best.
pt
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where t is a flow matching timestep and xl
t and xw

t represent losing and winning audio, respectively.

The DPO loss for LLMs models the relative likelihood of the winner and loser responses, allowing
minimization of the loss by increasing their margin, even if both log-likelihoods decrease (Pal
et al., 2024). As DPO optimizes the relative likelihood of the winning responses over the losing
ones, not their absolute values, convergence actually requires both likelihoods to decrease despite
being counterintuitive (Rafailov et al., 2024b). The decrease in likelihood does not necessarily
decrease performance, but required for improvement (Rafailov et al., 2024a). However, in the context
of rectified flows, this behavior is less clear due to the challenges in estimating the likelihood of
generating samples with classifier-free guidance (CFG). A closer look at LDPO-FM (Eq. (2)) reveals
that it can similarly be minimized by increasing the margin between the winning and losing losses,
even if both losses increase. In Section 4.5, we demonstrate that preference optimization of rectified
flows via LDPO-FM suffer from this phenomenon as well.

To remedy this, we directly add the winning loss to the optimization objective to prevent winning loss
from increasing:

LCRPO := LDPO-FM + LFM, (3)

where LFM is the flow matching loss computed on the winning audio as shown in Eq. (5). While the
DPO loss is effective at improving preference rankings between chosen and rejected audio, relying
on it alone can lead to overoptimization. This can distort the semantic and structural fidelity of the
winning audio, causing the model’s outputs to drift from the desired distribution. Adding the LFM
component mitigates this risk by anchoring the model to the high-quality attributes of the chosen
data. This regularization stabilizes training and preserves the essential properties of the winning
examples, ensuring a balanced and robust optimization process. Our empirical results demonstrates
LCRPO outperform LDPO-FM as shown in Section 4.5.

3 EXPERIMENTS

3.1 MODEL TRAINING

We pretrained TANGOFLUX on Wavcaps (Mei et al., 2024) dataset for 80 epochs with the
AdamW (Loshchilov & Hutter, 2019), β1 = 0.9, β2 = 0.95, a max learning rate of 5 × 10−4.
During the alignment phase, we used the same optimizer, but an overall batch size of 48 and a
maximum learning rate of 10−5. See Appendix A.5 for the complete training details.

3.2 DATASETS

Training dataset. We use complete open source data which consists of approximately 400k audios
from Wavcaps (Mei et al., 2024) and 45k audios from the training set of AudioCaps. (Kim et al.,
2019). Audios shorter than 30 seconds are padded with silence to 30s. Longer than 30 second audios
are center cropped to 30 seconds. As the audio files are mono, we duplicated the channel to create
pseudostereo audios for compatibility with the VAE.

CRPO dataset. We initialize the prompt bank as the prompts of AudioCaps training set, with a total
of 45k prompts. At the start of each iteration of CRPO, we randomly sample 20k prompts from the
prompt bank and generate 5 audios per prompt, and use the CLAP model to construct 20k preference
pairs.

Evaluation dataset. For the main results, we evaluated TANGOFLUX on the AudioCaps test set,
using the same 886-sample split as (Majumder et al., 2024). Objective metrics are reported on this
subset. Additionally, we categorized AudioCaps prompts using GPT-4 to identify those with multiple
distinct events, such as ”Birds chirping and thunder strikes,” which includes “sound of birds chirping”
and “sound of thunder.” Subjective evaluation was conducted on an out-of-distribution dataset with
50 challenging prompts.

3.3 OBJECTIVE EVALUATION

Baselines. We compare TANGOFLUX to few existing strong text-to-audio generation baselines:
Tango, Tango 2, AudioLDM 2, Stable Audio Open, AudioX and GenAU-Full-L, in-

5
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Table 1: Comparison of text-to-audio models. Output length represents the duration of the generated
audio. Objective metrics include FDopenl3 for Fréchet Distance, KLpasst for KL divergence, and
CLAPscore for alignment.

Model #Params. Duration Steps FDopenl3 ↓ KLpasst ↓ KAD↓ CLAPscore ↑ IS↑ Inference
Time (s)

AudioLDM 2-large 712M 10 sec 200 108.3 1.81 1.78 0.419 7.9 24.8
Stable Audio Open 1056M 47 sec 100 89.2 2.58 4.15 0.291 9.9 8.6
Tango 866M 10 sec 200 107.9 1.20 1.71 0.407 7.8 22.8
Tango 2 866M 10 sec 200 108.4 1.11 1.38 0.447 9.0 22.8
GenAU-Full-L 1.25B 10 sec 100 93.2 1.37 0.96 0.447 12.0 5.3
AudioX 1.1B 10 sec 250 77.6 1.56 1.30 0.380 10.0 9.6
TANGOFLUX-base 515M 30 sec 50 80.2 1.22 0.67 0.431 11.7 3.7
TANGOFLUX 515M 30 sec 50 75.1 1.15 0.60 0.480 12.2 3.7

cluding the previous SOTA models. Across the baselines, we use the default recommended classifier-
free guidance (CFG) scale (Ho & Salimans, 2022) and number of steps. For TANGOFLUX, we use
a CFG scale of 4.5 and 50 steps for inference. Since TANGOFLUX and Stable Audio Open allow
variable audio generation length, we set the duration conditioning to 10 seconds and use the first 10
seconds of generated audio to perform the evaluation. We also report the effect of CFG scale in the
Appendix A.6.

Evaluation metrics. We evaluate TANGOFLUX using both objective and subjective metrics. Follow-
ing (Evans et al., 2024a), we report the five objective metrics: Kernel Audio Distance (KAD)(Chung
et al., 2025), Fréchet Distance (FDopenl3) (Cramer et al., 2019), Kullback–Leibler divergence (KLpasst)
, CLAPscore, and Inception Score (IS) (Salimans et al., 2016). These metrics allow high-quality audio
evaluation up to 48kHz. Further details on these metrics are presented in Appendix A.9.

3.4 HUMAN EVALUATION

Following prior studies (Ghosal et al., 2023; Majumder et al., 2024), our subjective evaluation covers
two key attributes of the generated audio: overall audio quality (OVL) and relevance to the text
input (REL). OVL captures the general sound quality, including clarity and naturalness, ignoring
the alignment with the input prompt. In contrast, REL quantifies the alignment of the generated
audio with the provided text input. At least four annotators rate each audio sample on a scale from 0
(worst) to 100 (best) on both OVL and REL. This evaluation is performed on 50 GPT4o-generated
and human-vetted prompts and reported in terms of three metrics: z-score, Ranking, and Elo score.
The evaluation instructions, annotators, and metrics are in Appendix A.11. Due to resource constraint,
we were not able to peform human evaluation on all the models.

4 RESULTS

4.1 MAIN RESULTS

Table 1 objectively compares TANGOFLUX with prior text-to-audio generation models on AudioCaps.
Our results suggest that TANGOFLUX consistently outperforms the prior works on all objective
metrics, except Tango 2 on KLpasst.

4.2 HUMAN EVALUATION RESULTS

The results of the human evaluation are presented in Table 2, with detailed comparisons of the models
across the evaluated metrics: z-scores, rankings, and Elo scores for both overall audio quality (OVL)
and relevance to the text input (REL).

z-scores: z-score mitigates individual scoring biases by normalization into a standard normal variable
with zero mean and one standard deviation. TANGOFLUX demonstrated the highest performance
across both metrics, with z-scores of 0.2486 for OVL and 0.6919 for REL. This indicates its superior
quality and strong alignment with the input prompts. Conversely, AudioLDM 2 scored the lowest
with z-scores of -0.3020 (OVL) and -0.4936 (REL), suggesting both lower sound quality and weaker
adherence to textual inputs as compared to the other models.
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Ranking: Ranks provide an ordinal measure of performance, complementing z-score. TANGOFLUX
achieved the best rank with a mean rank of 1.7 (OVL) and 1.1 (REL), and mode ranks of 2 (OVL) and
1 (REL), affirming its superiority in subjective evaluations. In contrast, AudioLDM 2 consistently
ranked lowest, with mean ranks of 3.5 (OVL) and 3.7 (REL), and mode ranks of 4 for both metrics.
StableAudio and Tango 2 had similar mean ranks for OVL (2.4), but Tango 2 outperformed
StableAudio on REL (mean ranks: 1.9 vs 3.3). Notably, StableAudio’s bimodal OVL ranks
(modes 1 and 3) suggest polarized annotator perceptions, likely due to misalignment between prompts
and outputs, as reflected in its REL rankings (mean 3.3, mode 3).

Elo Scores: Elo scores provide a probabilistic measure of model performance, by accounting for
pairwise relative performance. Here, TANGOFLUX again excelled, achieving the highest Elo scores
for both OVL (1,501) and REL (1,628). The Elo results highlight the robustness of TANGOFLUX,
as it consistently outperformed other models in pairwise comparisons. Tango 2 emerged as the
second-best performer, with Elo scores of 1,419 (OVL) and 1,507 (REL). StableAudio follows,
showing competitive performance in OVL (1,444), but a weaker REL score (1,268). Like other
metrics, AudioLDM 2 ranked last with the least Elo scores (1,236 for OVL and 1,196 for REL).

Table 2: Human evaluation results on OVL and REL; SA Open := Stable Audio Open.

Model

z-scores Ranking Elo
OVL REL OVL REL OVL REL

Mean Mode Mean Mode
AudioLDM 2 -0.3020 -0.4936 3.5 4 3.7 4 1,236 1,196
SA Open 0.0723 -0.3584 2.4 1, 3 3.3 3 1,444 1,268
Tango 2 -0.019 0.1602 2.4 2 1.9 2 1,419 1,507
TANGOFLUX 0.2486 0.6919 1.7 2 1.1 1 1,501 1,628

4.3 CRPO BEATS STATIC PREFERENCE DATASETS

Table 3: Comparison of TANGOFLUX checkpoints aligned with different preference datasets. Along
with objective metrics, we report human evaluation results – z-scores and Elo ratings. We embolden
the best and underline the second-best scores for each metric.

Model Objective Metrics z-scores Elo
FDopenl3 CLAPscore KLpasst OVL REL OVL REL

TANGOFLUX 75.1 0.480 1.15 0.17 0.18 1,546 1,520
TANGOFLUX-crpo-1 79.1 0.453 1.18 0.12 0.07 1,446 1,467
TANGOFLUX-base 80.2 0.431 1.22 -0.06 -0.21 1,325 1,253
TANGOFLUX-alpaca 80.0 0.448 1.20 -0.02 -0.00 1,428 1,366
TANGOFLUX-baton 80.5 0.437 1.20 -0.21 -0.04 1,253 1,392

To show the superiority of CRPO, we compare its performance with two other static audio preference
datasets: Audio-Alpaca (Majumder et al., 2024) and BATON (Liao et al., 2024) (see Appendix A.12
for details).

We apply preference optimization to TANGOFLUX-base, for one iteration since Audio-Alpaca
and BATON are fixed datasets. Table 3 reports objective metrics FDopenl3, KLpasst, CLAPscore and
human evaluation results. Since all these models are variants of TANGOFLUX, we conducted human
evaluation using 50 prompts from the AudioCaps test set.

Our results demonstrate that preference optimization with the CRPO dataset outperforms both Audio-
Alpaca and BATON across all objective and subjective metrics. This highlights that CRPO is a highly
effective approach for constructing audio preference datasets for optimization. TANGOFLUX also
shows superior performance over TANGOFLUX-crpo1 in both subjective and objective benchmarks,
highlighting the effectiveness of the iterative process in CRPO.
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Figure 2: Trajectory of CLAPscore and KLpasst across training iterations: offline training peaks early
at the peaking CLAPscore and increasing KLpasst; in contrast, the CLAPscore of online training keeps
increasing until iteration 4, while KLpasst has a clear downward trend.

4.4 BATCHED ONLINE DATA GENERATION IS KEY

In Fig. 2, we present the results of five training iterations of CRPO, both with and without generating
new data at each iteration. Our findings suggest that training on the same dataset over multiple
iterations leads to quick performance saturation and eventual degradation. Specifically, for offline
CRPO, the CLAPscore decreases after the second iteration, while the KLpasst increases significantly.
By the final iteration, the performance degradation is evident from CLAPscore and KLpasst being worse
than first iteration, emphasizing the limitations of offline data. In contrast, the online CRPO with
data generation before each iteration outperforms the offline CRPO w.r.t. CLAPscore and KLpasst.

This performance degradation could be ascribed to reward over-optimization (Rafailov et al., 2024a;
Gao et al., 2022). Kim et al. (2024a) showed that the reference model serves as a regularizer in
DPO training for language models. Several iterations of updating the reference model with the same
dataset thus may hamper the due regularization of the loss. In Section 4.5, we show the paradoxical
performance degradation with loss minimization, indicating over-optimization.

4.5 LCRPO VS LDPO-FM
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Figure 3: Comparing LDPO-FM and LCRPO w.r.t. (a) CLAPscore, (b) FDopenl3, and (c) KLpasst across
iterations.
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Figure 4: Winning and losing losses of LDPO-FM and LCRPO across iterations. Both losses increase
with their margin.

To study the relationship between the winning and losing losses of LCRPO and LDPO-FM (see Eq. (2)),
we calculate the average winning and losing losses of the final checkpoint (epoch 8) of each iteration
on the training set. The losses are plotted in Fig. 4. Simultaneously in Fig. 3, we present the
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benchmark performances of the checkpoints by LCRPO and LDPO-FM on AudioCaps training set. Here,
we only use fixed preference data by TANGOFLUX-base.

As shown in Fig. 4, the winning and losing losses of both LCRPO and LDPO-FM increase with each iter-
ation, along with their difference/margin. Despite the increase in losses, Fig. 3 shows that benchmark
performance improves, with LCRPO achieving superior results in CLAPscore while maintaining similar
KLpasst and FDopenl3 across all iterations. We observe a notable acceleration in loss growth from
LDPO-FM after iteration 3, which may indicate performance saturation or degradation. In contrast,
LCRPO exhibits a more gradual and stable increase in loss, maintaining a smaller margin and more
controlled growth, leading to less performance degradation as compared to LDPO-FM. This highlights
the role of the winning loss as a regularizer of the optimization dynamics by preventing the increase
in margin at the cost of unmitigated increase of both winning loss and losing loss.

Our findings of increase in winning and losing losses in tandem with the margin is consistent with
aligning LLMs with DPO (Rafailov et al., 2024b). This paradoxical performance improvement from
both LCRPO and LDPO-FM is also noted by Rafailov et al. (2024a) in the context of LLMs.

4.6 INFERENCE TIME VS PERFORMANCE

TANGOFLUX beats the other models in terms of performance per unit of inference time, measured
w.r.t. CLAPscore and FDopenl3. See Appendix A.8 for more details.

5 RELATED WORKS

Text-To-Audio Generation. TTA Generation has lately drawn attention due to AudioLDM (Liu
et al., 2024b; 2023), Tango (Majumder et al., 2024; Ghosal et al., 2023; Kong et al., 2024), and
Stable Audio (Evans et al., 2024a;c;b) series of models. These adopt the diffusion framework (Song
& Ermon, 2020; Rombach et al., 2022; Song et al., 2022; Ho et al., 2020), which trains a latent
diffusion model conditioned on textual embedding. Another common framework for TTA generation
is flow matching which was employed in models such as VoiceBox (Le et al., 2023), AudioBox (Vyas
et al., 2023), FlashAudio (Liu et al., 2024c). ETTA (gil Lee et al., 2024),GenAU (Ali et al., 2024)
highlights the benefits of scaling both data—using synthetic captions—and model size to enhance
TTA generation performance.

Alignment Method. Preference optimization is the standard approach for aligning LLMs, achieved
either by training a reward model to capture human preferences (Ouyang et al., 2022) or by using
the LLM itself as the reward model (Rafailov et al., 2024c). Recent advances improve this process
through iterative alignment, leveraging human annotators to construct preference pairs or utilizing
pre-trained reward models. (Kim et al., 2024a; Chen et al., 2024; Gulcehre et al., 2023; Yuan et al.,
2024). Verifiable answers can enhance the construction of preference pairs. For diffusion and
flow-based models, Diffusion-DPO shows that these models can be aligned similarly (Wallace et al.,
2023). However, constructing preference pairs for TTA is challenging due to the absence of “gold”
audio for given text prompts and the subjective nature of audio. BATON (Liao et al., 2024) relies on
human annotations, which is not scalable.

6 CONCLUSION

We introduce TANGOFLUX, a flow-based text-to-audio model aligned using synthetic preference
data generated online during training. Objective and human evaluations show that TANGOFLUX
produces audio more representative of user prompts than existing diffusion-based models, achieving
state-of-the-art performance with significantly fewer trained parameters. These advancements make
TANGOFLUX a practical and scalable solution for widespread adoption.

ETHICAL CONSIDERATIONS

There is a possibility of misuse of the audio generation model in fabricating harmful multimedia
content.
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REPRODUCIBILITY STATEMENT

We shall publicly release the implementation of model training, inference, and evaluation upon
acceptance. We also mention the hyperparameters in the appendix. An anonymized implementation
is shared in the supplementary materials.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We employed LLMs to assist with two key tasks: ensuring grammatical accuracy and improving the
paper’s narrative flow.

A.2 AUDIO SAMPLE COUNT PER PROMPT VS TTA PERFORMANCE

In this ablation study on the initial iteration of TangoFlux-base, we compared generating N audio
samples per prompt for preference dataset creation (by pairing the worst and best outputs) where
N = 2, 5, 10. All setups were trained for 8 epochs from TangoFlux-base, and we tracked the CLAP,
FD, and KL metrics—using the maximum CLAP score per epoch for evaluation. The results in
Table 4 show slightly better performance (higher CLAP score, lower FD) when using more samples.
The decision on the optimal N largely depends on the specific application and available resources. If
computation cost is a limiting factor, opting for a lower N might be a worthwhile compromise.

Table 4: Audio sample count vs TTA performance.

2 5 10

CLAP 0.443 0.453 0.455
FD 80.0 79.1 77
KL 1.24 1.18 1.21

A.3 CLAP AS A REWARD MODEL

To validate CLAP as a proxy reward model for evaluating audio output, we further evaluate
TANGOFLUX under a CLAP-driven Best-of-N policy, where N ∈ {1, 5, 10, 15}. We use CLAP
630k-audioset-best.pt checkpoint to rank the generated audios. The results in Table 5 suggest that
increasing N yield better CLAPscore and KLpasst while FDopenl3 remains about the same. This indicates
that the CLAP can identify well-aligned audio outputs that better represent the textual descriptions,
without compromising diversity or quality, as implied by the lower KLpasst and similar FDopenl3.

Table 5: Best-of-N FD, KL, and CLAPscore.

Model N FDopenl3 ↓ KLpasst ↓ CLAPscore ↑

TANGOFLUX

1 75.0 1.15 0.480
5 74.3 1.14 0.494
10 75.8 1.08 0.499
15 75.1 1.11 0.502

Tango 2

1 108.4 1.11 0.447
5 108.8 1.05 0.467
10 108.4 1.08 0.474
15 108.7 1.06 0.473

A.4 RECTIFIED FLOWS

Given a latent representation of an audio sample x1, a noise sample x0 ∼ N (0, I), time-step t ∈ [0, 1],
we can construct a training sample xt where the model learns to predict a velocity vt =

dxt

dt that
guides xt to x1. While there exist several methods of constructing transport path xt , we used
rectified flows (RFs) (Liu et al., 2022), in which the forward process are straight paths between target
distribution and noise distribution, defined in Eq. (4). It is empirically shown that rectified flows are
more sample efficient and degrade less than other formulations, while consuming fewer sampling
steps (Esser et al., 2024). The model u(xt, t; θ) directly regresses the ground truth velocity vt using
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Table 6: TANGOFLUX with different classifier free guidance (CFG) values.

Model Steps CFG FDopenl3 ↓ KLpasst ↓ CLAPscore ↑

TANGOFLUX

50 3.0 77.7 1.14 0.479
50 3.5 76.1 1.14 0.481
50 4.0 74.9 1.15 0.476
50 4.5 75.1 1.15 0.480
50 5.0 74.6 1.15 0.472

the flow matching loss in Eq. (5).

xt = (1− t)x1 + tx̃0, vt =
dxt

dt
= x̃0 − x1, (4)

LFM = Ex1,x0,t ∥u(xt, t; θ)− vt∥2 . (5)

A.5 MODEL TRAINING

We pretrained TANGOFLUX on Wavcaps (Mei et al., 2024) dataset for 80 epochs with the
AdamW (Loshchilov & Hutter, 2019), β1 = 0.9, β2 = 0.95, a max learning rate of 5 × 10−4.
We used a linear learning rate scheduler for 2000 steps. We used five A40 GPUs with a batch size
of 16 on each device, resulting in an overall batch size of 80. After pretraining, TANGOFLUX was
finetuned on the AudioCaps training set for 65 additional epochs. Several works find that sampling
timesteps t from the middle of its range [0, 1] leads to superior results (Hang et al., 2024; Kim
et al., 2024b; Karras et al., 2022), thus, we sampled t from a logit-normal distribution with a mean
of 0 and variance of 1, following the approach in (Esser et al., 2024). We name this version as
TANGOFLUX-base.

During the alignment phase, we used the same optimizer, but an overall batch size of 48, a maximum
learning rate of 10−5, and a linear warmup of 100 steps. For each iteration of CRPO, we train for 8
epochs and select the last epoch checkpoint to perform batched online data generation. We performed
5 iterations of CRPO due to the manifestation of performance saturation.

A.6 EFFECT OF CFG SCALE

We conduct an ablation of the effect of CFG scale for TANGOFLUX and show the result in Table 6.
It reveals a trade-off: higher CFG values improve FDopenl3 score (lower FDopenl3) but slightly reduce
semantic alignment (CLAP score), which peaks at CFG=3.5. The results emphasize CFG=3.5 as the
optimal balance between fidelity and semantic relevance.

A.7 HEUN VS EULER SOLVER

Unlike straightforward Euler solver, Heun solver uses second order look-ahead to better estimate
trajectory. However, we get slightly worse results as shown in Table 7. We speculate that it could be
due to overoptimization, analogous to greedy decoding for token generation.

Table 7: Comparison between Heun and Euler solver for integration over velocity.

Heun Euler

NFE 100 100
CLAP 0.474 0.480
KL 1.21 1.16
FD 75.3 75.1
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(a) (b)

Figure 5: Comparison of (a) CLAPscore and (b) FDopenl3 vs Inference Time for each model. Results
are plotted for step counts of 10, 25, 50, 100, 150, and 200.

A.8 INFERENCE TIME VS PERFORMANCE COMPARISON

Across models, we compare the trajectory of CLAPscore and FDopenl3 score with increasing inference
time for steps 10, 25, 50, 100, 150, and 200, as shown in Figure 5. TANGOFLUX demonstrates a
remarkable balance between efficiency and performance, consistently achieving higher CLAPscore
and lower FDopenl3 scores while requiring significantly less inference time compared to other models.
For example, at 50 steps, TANGOFLUX achieves a CLAPscore of 0.480 and an FDopenl3 score of 75.1
in just 3.7 seconds. In comparison, Stable Audio Open requires 4.5 seconds for the same step
count but only achieves a CLAPscore of 0.284 (41% lower than TANGOFLUX) and an FDopenl3 score
of 87.8 (17% worse than TANGOFLUX). This demonstrates that TANGOFLUX achieves superior
performance metrics in less time. Additionally, at a lower step count of 10, TANGOFLUX maintains
strong performance with a CLAPscore of 0.465 and an FDopenl3 score of 77.2 in just 1.1 seconds.
In contrast, Audioldm2 at the same step count achieves a lower CLAPscore of 0.357 (23% lower)
and a significantly worse FDopenl3 score of 131.7 (70% higher), while requiring 1.5 seconds (36%
more time). We also observe that reducing the step count from 200 to 10 has a minimal impact on
TANGOFLUX’s performance, highlighting its robustness. Specifically, TANGOFLUX’s CLAPscore
decreases by only 3.2% (from 0.480 to 0.465), and its FDopenl3 score increases by only 4.5% (from
73.9 to 77.2). In contrast, Tango 2 shows a larger degradation, with its CLAPscore decreasing by
16.0% (from 0.443 to 0.372) and its FDopenl3 score increasing by 37.8% (from 108.4 to 158.6).

These results highlight TANGOFLUX’s effectiveness in delivering high-quality outputs with lower
computational requirements, making it a highly efficient choice for scenarios where inference time is
critical.

A.9 OBJECTIVE EVALUATION METRICS

KAD and FDopenl3 both evaluates the similarity between the statistics of a generated audio set and
another reference audio set in the feature space. A low KAD, FDopenl3 indicates a realistic audio that
closely resembles the reference audio. KLpasst computes the KL divergence over the probabilities of
the labels between the generated and the reference audio given the state-of-the-art audio tagger PaSST.
A low KLpasst signifies the generated and reference audio share similar semantics tags. CLAPscore is
a reference-free metric that measures the cosine similarity between the audio and the text prompt.
High CLAPscore score denotes the generated audio aligns with the textual prompt. IS measures the
specificity and coverage of a set of samples. A high IS score represents the diversity in the generated
audio. We use stable-audio-metrics (Evans et al., 2024a) to compute FDopenl3, KLpasst, CLAPscore
and AudioLDM evaluation toolkit (Liu et al., 2023) to compute IS. For KAD evaluation, we use the
kadtk toolkit with the PANNs-WGLM (WaveGram-LogMel) embedding model, which has shown the
highest correlation with human judgment. Note that we use different CLAP checkpoints to create
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our preference dataset (630k-audioset-best) and to perform evaluation (630k-audioset-fusion-best)4.
These results are indicated in Table 1 as CLAPscore.

A.10 CRPO VS GRPO

We have considered GRPO in our alignment objective. However, GRPO is a fully online algorithm
which is computationally expensive. Hence, we conducted an experiment of optimizing GRPO loss
on a static dataset that was constructed with TANGOFLUX-base (20k samples of 5 generations each,
group size of 5). Our results show that the performance is slightly worse than running CRPO for 1
iteration.

Table 8: Comparison between CRPO and GRPO.

CRPO GRPO

CLAP 0.453 0.448
KL 1.18 1.26
FD 79.1 79.6

A.11 HUMAN EVALUATION

The human evaluation was performed using a web-based Gradio5 app. Each annotator was presented
with 20 prompts, each having four audio samples generated by four distinct text-to-audio models,
shuffled randomly, as shown in Fig. 6. Before the annotation process, the annotators were instructed
with the following directive:

Welcome username

# Instructions for evaluating audio clips
Please carefully read the instructions below.

## Task
You are to evaluate four 10-second-long audio outputs to each of the 20 prompts below. These
four outputs are from four different models. You are to judge each output with respect to two
qualities:

• Overall Quality (OVL): The overall quality of the audio is to be judged on a scale from
0 to 100: 0 being absolute noise with no discernible feature. Whereas, 100 is perfect.
Overall fidelity, clarity, and noisiness of the audio are important here.

• Relevance (REL): The extent of audio alignment with the prompt is to be judged
on a scale from 0 to 100: with 0 being absolute irrelevance to the input description.
Whereas, 100 is a perfect representation of the input description. You are to judge if
the concepts from the input prompt appear in the audio in the described temporal
order.

You may want to compare the audios of the same prompt with each other during the
evaluation.

## Listening guide

1. Please use a head/earphone to listen to minimize exposure to the external noise.
2. Please move to a quiet place as well, if possible.

## UI guide

4https://huggingface.co/lukewys/laion_clap/blob/main/
630k-audioset-fusion-best

5https://www.gradio.app
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1. Each audio clip has two attributes OVL and REL below. You may select the appropriate
option from the dropdown list.

2. To save your judgments, please click on any of the save buttons. All the save buttons
function identically. They are placed everywhere to avoid the need to scroll to save.

Hope the instructions were clear. Please feel free to reach out to us for any queries.

Figure 6: The Gradio-based human evaluation form created for the annotators to score the model
generated audios with respect to the input prompts.

A.11.1 EVALUATION DATASET

To evaluate the instruction-following capabilities and robustness of TTA models, we created 50
out-of-distribution complex captions, such as “A pile of coins spills onto a wooden table with a
metallic clatter, followed by the hushed murmur of a tavern crowd and the creak of a swinging door”.
These captions describe 3–6 events and aim to go beyond conventional or overused sounds in the
evaluation sets, such as simple animal noises, footsteps, or city ambiance. Events were identified
using GPT4o to evaluate the captions generated. Each of the generated prompts contains multiple
events including several where the temporal order of the events must be maintained. Details of our
caption generation template and samples of generated captions can be found in the Appendix A.11.

A.11.2 HUMAN EVALUATION METRICS

We report three key metrics for subjective evaluation:

z-score: The average of the scores assigned by individual annotators. Due to the subjective nature of
these scores and the significant variance observed in the annotator scoring patterns, the ratings were
normalized to z-scores at the annotator level: zij = (sij − µi)/σi. zij : The z-score for annotator
i’s score of model Mj . This is the score after applying z-score normalization. sij : The raw score
assigned by annotator i to model j. This is the original score before normalization. µi: The mean
score assigned by annotator i across all models. It represents the central tendency of the annotator’s
scoring pattern. σi: The standard deviation of annotator i’s scores across all models. This measures
the variability or spread in the annotator’s ratings.

This normalization procedure adjusts the raw scores, centering them around the annotator’s mean
score and scaling by the annotator’s score spread (standard deviation). This ensures that scores from
different annotators are comparable, helping to mitigate individual scoring biases.
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Ranking: Despite z-score normalization, the variability in annotator scoring can still introduce noise
into the evaluation process. To address this, models are also ranked based on their absolute scores.
We utilize the mean (average rank of a model), and mode (the most common rank of a model) as
metrics for evaluating these rankings.

Elo: Elo-based evaluation, a widely adopted method in language model assessment, involves pairwise
model comparisons. We first normalized the absolute scores of the models using z-score normalization
and then derived Elo scores from these pairwise comparisons. Elo score mitigates the noise and
inconsistencies observed in scoring and ranking techniques. Specifically, Elo considers the relative
performance between models rather than relying solely on absolute or averaged scores, providing a
more robust measure of model quality under subjective evaluation. While ranking-based evaluation
provides an ordinal comparison of models, determining the order of performance (e.g., Model A
ranks first, Model B ranks second), it does not capture the magnitude of differences between ranks.
For instance, if the difference between the first and second rankers is minimal, this is not evident
from ranks alone. Elo scoring addresses this limitation by integrating both ranking and pairwise
performance data. In ranking-based systems, the rank Ri of a model Mi is determined purely by its
position relative to others:

Ri = position of Mi in the sorted list of models based on performance.

However, this approach fails to quantify: 1) The gap in performance between consecutive ranks. 2)
The consistency of relative performance across different pairwise comparisons. Elo scoring provides a
probabilistic measure of model performance based on pairwise comparisons. By leveraging annotator
scores, Elo assigns a continuous score Ei to each model Mi, capturing its relative strength.

A.11.3 PROMPTS USED IN THE EVALUATION

Table 9: Prompts used in human evaluation and their characteristics.

Prompts Multiple Events Temporal Events

A robotic arm whirs frantically while an electric
plasma arc crackles and a metallic voice counts down
ominously, interspersed with glass vials clinking to the
floor.

✓ ✓

Unfamiliar chirps overlap with a low, throbbing hum
as bioluminescent plants audibly crackle and squelch
with movement.

✓ ✗

Dripping water echoes sharply, a distant growl rever-
berates through the cavern, and soft scraping metal
suggests something lurking unseen.

✓ ✗

Alarms blare with rising urgency as fragments clatter
against a metallic hull, interrupted by a faint hiss of
escaping air.

✓ ✓

Hundreds of tiny wings buzz with a chaotic pitch shift,
joined by the faint clattering of mandibles and an or-
ganic squish as they collide.

✓ ✗

Jagged rocks crumble underfoot while distant ocean
waves crash below, punctuated by the sudden snap of
a rope.

✓ ✓

Digital beeps and chirps meld with overlapping chatter
in multiple languages, as automated drones whiz past,
scanning barcodes audibly.

✓ ✗
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Rusted swings creak in rhythmic disarray, a faint me-
chanical laugh stutters from a distant speaker, and the
sound of gravel crunches under unseen footsteps.

✓ ✗

Bubbling lava gurgles ominously, instruments beep
irregularly, and faint crackling signals static from a
failing radio.

✓ ✓

Tiny pops and hisses of chemical reactions intermingle
with the rhythmic pumping of a centrifuge and the soft
whirr of air filtration.

✓ ✗

The faint hiss of a gas leak grows louder as metal
chains rattle and a single marble rolls across the floor.

✓ ✓

A hand slaps a table sharply, followed by the shuffle
of playing cards and the hum of an overhead fan.

✓ ✓

A train horn blares in the distance as a bicycle bell
chimes and a soda can pops open with a fizzy hiss.

✓ ✗

A drawer creaks open, papers rustle wildly, and the
sharp click of a lock snapping shut echoes.

✓ ✗

A burst of static interrupts soft typing sounds, followed
by the distant chirp of a pager and a cough.

✓ ✓

A heavy book thuds onto a desk, accompanied by the
faint buzz of a fluorescent light and a muffled sneeze.

✓ ✗

The sharp squeak of sneakers on a gym floor blends
with the rhythmic bounce of a basketball and the
screech of a metal door.

✓ ✗

An elevator dings, its doors sliding open, as muffled
voices overlap with the shuffle of heavy bags.

✓ ✗

A clock ticks steadily, a light switch clicks on, and the
crackle of a fire igniting briefly fills the silence.

✓ ✓

A fork scrapes a plate, water drips slowly into a sink,
and the faint hum of a refrigerator lingers in the back-
ground.

✓ ✗

A cat hisses sharply as glass shatters nearby, followed
by hurried footsteps and the slam of a closing door.

✓ ✓

A parade marches through a town square, with drum-
beats pounding, children clapping, and a horse neigh-
ing amidst the commotion.

✓ ✓

A basketball bounces rhythmically on a court, shoes
squeak against the floor, and a referee’s whistle cuts
through the air.

✓ ✗

A baby giggles uncontrollably, a stack of blocks
crashes to the ground, and the faint hum of a lullaby
toy plays in the background.

✓ ✗

The rumble of a subway train grows louder, followed
by the screech of brakes and muffled announcements
over a crackling speaker.

✓ ✓

A beekeeper moves carefully as bees buzz intensely,
a smoker puffs softly, and wooden frames creak as
they’re lifted.

✓ ✗
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A dog shakes off water with a noisy splatter, a bicycle
bell rings, and a distant lawnmower hums faintly in
the background.

✓ ✗

Books fall off a shelf with a heavy thud, a chair scrapes
loudly across a wooden floor, and a surprised gasp
echoes.

✓ ✗

A soccer ball hits a goalpost with a metallic clang,
followed by cheers, clapping, and the distant hum of a
commentator’s voice.

✓ ✓

A hiker’s pole taps against rocks, a mountain goat
bleats sharply, and loose gravel tumbles noisily down
a steep slope.

✓ ✓

A rooster crows loudly at dawn, joined by the rustle of
feathers and the crunch of chicken feed scattered on
the ground.

✓ ✗

A carpenter saws through wood with steady strokes,
a hammer strikes nails rhythmically, and a measuring
tape snaps back with a metallic zing.

✓ ✗

A frog splashes into a pond as dragonflies buzz nearby,
accompanied by the distant croak of toads echoing
through the marsh.

✓ ✗

The crack of a whip startles a herd of cattle, their
hooves clatter against a dirt path as a rancher shouts
commands.

✓ ✗

A paper shredder whirs noisily, the rustle of documents
being fed in grows louder, and a stapler clicks shut in
rapid succession.

✓ ✗

An elephant trumpets in the savanna as a herd stomps
through dry grass, accompanied by the buzz of flies
and the distant roar of a lion.

✓ ✗

A mime claps silently as a juggling act clinks glass
balls together, and a crowd bursts into laughter at the
clatter of a dropped prop.

✓ ✗

A train conductor blows a sharp whistle, metal wheels
screech on the rails, and passengers murmur while
settling into their seats.

✓ ✓

A squirrel chitters nervously as acorns drop from a
tree, landing with dull thuds, while leaves rustle above
in quick bursts of movement.

✓ ✗

A blacksmith hammers molten iron with rhythmic
clangs, a bellows pumps air with a whoosh, and sparks
sizzle on a stone floor.

✓ ✗

A skateboard grinds loudly against a metal rail, fol-
lowed by the sharp slap of wheels hitting pavement
and a triumphant cheer from the rider.

✓ ✗

An old typewriter clacks rapidly as paper rustles with
each keystroke, interrupted by the sharp ding of the
carriage return.

✓ ✗
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A pack of wolves howls in unison as dry leaves crunch
underfoot, and the faint trickle of a nearby stream
echoes through the forest.

✓ ✗

A.12 BATON AS A PREFERENCE DATASET

BATON contains human-annotated data where annotators assign a binary label of 0 or 1 to each
audio sample based on its alignment with a given prompt: 1 indicates alignment, while 0 indicates
misalignment. We construct a preference dataset by pairing audio samples labeled 1 (winners) with
those labeled 0 (losers) for same prompt, creating a set of winner-loser pairs.
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