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Abstract

Despite the remarkable achievements of BERT-
style encoder models in NLP research, the high
computational costs make it challenging to pre-
train specific BERTSs from scratch. This work
proposes a novel BERT-style encoder model
called DFT-Trans, addressing the critical ques-
tion of enhancing performance while reducing
training costs. The DFI-Trans model is pri-
marily composed of the trainable Fourier op-
erator and the attention operator. The novel
trainable Fourier operator, which consists of
the unique Blending Token and Mixing Token
methods, is developed, given that frequency
domain features are seldom considered in text
representation extraction. This operator utilizes
fast Fourier transform(FFT) to capture data fea-
tures in the frequency domain, integrating fre-
quency information into the network’s struc-
ture and computations, enabling more robust
feature extraction capabilities. The attention op-
erator is designed by combining FlashAttention
and Attention with Linear Bias to address the
quadratic time and memory complexity inher-
ent to self-attention while efficiently extracting
features from time-domain data. When pre-
trained from scratch on large-scale corpora,
DFT-Trans achieves an average downstream
GLUE(dev) score of 80.6% using a single RTX
4090 GPU in one day, with a cost of approx-
imately $5. Furthermore, we experimented
on the Long-Range Arena(LRA) benchmark,
where DFT-Trans achieved an average task
score of 75.94%, demonstrating its effective-
ness in long-text scenarios. Code is available at
this repository: https://anonymous.4open.
science/r/DFT-Trans-3FDD.

1 Introduction

BERT-style encoder models, as bidirectional en-
coders, are widely utilized in natural language
processing(NLP). Primarily composed of self-
attention mechanisms, these models achieve no-
table performance across downstream tasks such as

text classification, sequence labeling, and semantic
similarity matching(Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2019; Joshi et al., 2020; He et al.,
2020; Yang et al., 2019) when pre-trained on the
large-scale corpus. In recent years, the release and
success of prominent models like T5(Raffel et al.,
2020), ChatGPT(Achiam et al., 2023), GLM(Zeng
et al., 2022), and Llama(Touvron et al., 2023)
have led to a surge in the interest and research of
large language models (LLMs). However, BERT-
style encoder models remain highly relevant even
in the LLM era. For example, encoder mod-
els are used in tasks such as data vectorization,
retrieval-augmented generation, and intent recog-
nition(Lewis et al., 2020; Wang et al., 2022; Weld
et al., 2022). These tasks often demand shorter
training times and improved performance, posing
significant challenges for BERT-style encoder mod-
els.

Many BERT-style encoder models have been
designed to enhance performance while reduc-
ing training costs(Tay et al., 2022). Recent stud-
ies(Izsak et al., 2021; Geiping and Goldstein, 2023;
Portes et al., 2023; Belcak and Wattenhofer, 2024)
have aimed to achieve high-performance models
with minimal training costs, primarily relying on
the vanilla self-attention mechanism(Vaswani et al.,
2017). Due to the quadratic complexity of self-
attention mechanisms(Lin et al., 2017), substitut-
ing them with multi-layer perceptrons (MLPs) has
shown promising results without pretraining(Mai
et al., 2023; Tolstikhin et al., 2021a). However,
MLPs generally struggle to improve performance
on downstream tasks with pretraining. Recently,
models such as Mamba(Gu and Dao, 2024) have
been based on structured state spaces for efficient
sequence modeling. At the same time, TNN has
utilized Toeplitz matrices with relative position en-
coding to model sequences, leveraging the loga-
rithmic complexity of Toeplitz matrix computa-
tions(Qin et al., 2023). Compared to vanilla self-
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attention-based BERT-style encoder models, these
studies(Gu and Dao, 2024; Qin et al., 2023) have
relatively reduced computational complexity but
did not fully explore performance after pretrain-
ing. In the domain of computer vision, modeling
frequency domain features via Fourier transforms
is both common and effective. Models such as
(Rao et al., 2023; Patro and Agneeswaran, 2023;
Guibas et al., 2021) have applied filtering in the
frequency domain to extract richer representations
from images. In NLP, some studies have replaced
self-attention mechanisms with Fourier transforms
to reduce computational costs and enhance perfor-
mance after pretraining, including FNet(Lee-Thorp
et al., 2022), Fourier Transformer(He et al., 2023),
FAN(Dong et al., 2024), and FSRU(Lao et al.,
2024). However, the integration and distinction of
text features in the frequency domain remain under-
explored. Dependencies between features in the fre-
quency domain vary (e.g., low-frequency vs high-
frequency features), and blending similar features
can capture more comprehensive representations
and vice versa. For instance, declarative sentences
(low-frequency) and turnaround sentences (high-
frequency) exhibit distinct features in the frequency
domain. As shown in Figure 1(A), the orange
square represents declarative sentences, and the
purple diamond represents turnaround sentences.
The figure indicates that compared to declarative
sentences, turnaround sentences are more symmet-
rical, with lower and more stable magnitudes.

In this work, we propose a novel BERT-style en-
coder model called DFT-Transforms (DFT-Trans),
designed to dynamically learn text features in the
frequency domain while preserving those in the
time domain. DFT-Trans is composed primarily of
optimized trainable Fourier operators and attention
operators. Given the limited use of frequency do-
main features in text representation, we designed
the trainable Fourier operator to process data trans-
formed via fast Fourier transform (FFT)(Cooley
and Tukey, 1965), integrating frequency informa-
tion into the network’s structure and training pro-
cess. The trainable Fourier operator comprises 1-D
discrete Fourier transform (DFT), unique Blend-
ing Token and Mixing Token methods, and 1-D
inverse Fourier transform (iDFT). The 1-D DFT
converts the input text features from the time do-
main to the frequency domain. The Blending To-
ken performs Einstein multiplication(Patro and Ag-
neeswaran, 2023) between frequency domain fea-
tures and dynamic mixing matrices to extract local

features. The Mixing Token performs matrix multi-
plication between frequency domain features and
trainable matrices to extract global features. The 1-
D iDFT maps the features back to the time domain.
By learning global and local frequency domain fea-
tures, the trainable Fourier operator enables DFT-
Trans to capture both long-range and short-range
dependencies across texts in the frequency domain.
Previous studies have demonstrated the importance
of time-domain text features(Lipton, 2015; Shi
et al., 2015; Vaswani et al., 2017). To this end, we
constructed the attention operator to process time-
domain features. The attention operator, built by
combining FlashAttention(Dao et al., 2022) and At-
tention with Linear Bias(ALiBi)(Press et al., 2022),
reduces computational complexity while extend-
ing input length, thereby enhancing the inference
ability to text longer.

We conducted diverse experiments on the
GLUE(Wang et al., 2019) and Long Range
Arena(LRA)(Tay et al., 2021b) benchmarks to eval-
uate the effectiveness and efficiency of DFT-Trans.
To verify the impact of pretraining on the perfor-
mance of DFT-Trans, we pretrained the model on
large-scale corpora and tested its downstream task
performance. Experimental results demonstrate
that DFT-Trans outperforms other models, such as
Mamba(Gu and Dao, 2024), MosaicBERT (Portes
et al., 2023), and Cramming BERT(Geiping and
Goldstein, 2023), on the GLUE benchmark. Sim-
ilarly, without pretraining, DFT-Trans surpasses
MLP-based models(Tolstikhin et al., 2021a; Mai
et al., 2023) on the GLUE benchmark. Further-
more, to validate the model’s capability in long-text
scenarios, we conducted evaluations on the LRA
benchmark. Results show that DFT-Trans achieves
state-of-the-art performance among Transformer-
based efficient models while maintaining a short
runtime. These findings indicate that DFT-Trans re-
duces training costs while enhancing performance
across both general and long-text scenarios.

In summary, our contributions can be enumer-
ated as follows:

* Based on FFT, we propose a novel BERT-
style encoder model that effectively integrates time
and frequency domain information.

* We introduce the trainable Fourier operator,
including Blending Token and Mixing Token meth-
ods, which extract global and local features.

*  We combine FlashAttention and ALiBi to
construct the attention operator, improving both
training speed and accuracy.



*  We analyze the performance of DFT-Trans
against other BERT-style encoder models and ad-
vanced alternatives on the GLUE and LRA bench-
marks.

Finally, the goal of this work is to show relative
improvements in performance and training costs in
comparison with Bert-style encoder models. We
do not compare our model with the current optimal
LLMs on GLUE benchmark(Wang et al., 2019).
Because LLMs are trained for much longer, which
is far superior to the models we explore in this
work.

2 Related work

Many researchers are exploring improvements to
the BERT-style model with the aim of reducing
the cost of the model. The directions for improve-
ment fall into (1) Exploration of model structure
and pretraining methods under the reserved At-
tention.(Exploration of model and pretraining) (2)
Dropping Attention and using simpler feature ex-
traction methods.(Replacing Attention with MLPs)

2.1 Exploration of model and pretraining

Most of the BERT-style models have mostly re-
tained Attention(Vaswani et al., 2017), and its train-
ing processes are: (1)Self-supervised pretraining
allows the model to learn the general feature rep-
resentation of the sentence. (2)Supervised fine-
tuning allows the model to learn the representation
of features in a specific domain.

The process of self-supervised pretraining is
time and GPUs-consuming; for example, in the
study by BERT(Devlin et al., 2019), the authors
trained their model on 16 TPUs for about four
days to complete. Due to the large parame-
ters of the BERT model, researchers have pro-
posed Albert(Lan et al., 2019), which uses pa-
rameter sharing to reduce the model parameters.
Roberta(Liu et al., 2019) and SpanBERT(Joshi
et al., 2020) have removed the NSP task and im-
proved MLM to speed up training while improving
performance. XLNet(Yang et al., 2019) has im-
proved the model’s ability to learn bidirectional
context and achieved good results on many tasks.
Recently study(Izsak et al., 2021) have improved
on pretraining, reducing the training time of BERT
to 24 hours. MosaicBERT(Portes et al., 2023),
Cramming BERT(Geiping and Goldstein, 2023)
have adapted the Attention structure in BERT to
reduce significantly the pretraining time and match

BERT in performance. NarrowBert(Li et al., 2023)
has sparsified the encoder so that it can focus on the
Masked Token. SpikingBERT(Bal and Sengupta,
2024) has introduced a spiking attention mecha-
nism, which reduces the computational cost of the
model. The model we designed is based on the
above model approach is considered.

2.2 Replacing Attention with MLPs

Recently studies have found attention to have
a great deal of complexity (Choromanski et al.,
2021; Zhai et al., 2021; Tay et al., 2021a). Star-
Transformer(Guo et al., 2019) has proposed a star
topology instead of fully connected attention, sig-
nificantly reducing the complexity. In addition,
considering that FFT has low time complexity, FFT
has been introduced into long text classification (He
et al., 2023) aiming to make the attention mecha-
nism scale better via sparsity patterns(Child et al.,
2019; Qiu et al., 2020; Parmar et al., 2018; Belt-
agy et al., 2020; Ainslie et al., 2020; Zaheer et al.,
2020; Wang et al., 2020) or linearization of the
attention matrix(Katharopoulos et al., 2020; Choro-
manski et al., 2021; Peng et al., 2021). In the field
of computer vision and multimodality, there are
many approaches that have proposed to use the
MLP-Like model instead of Attention (Chen et al.,
2022; Tolstikhin et al., 2021b; Hou et al., 2023;
Lao et al., 2024), which not only reduced the cost
of the model, but also further improved the per-
formance. gMLP (Liu et al., 2021), pNLP-Mixer
(Fusco et al., 2023) and hyperMixer (Mai et al.,
2023) have applied standard MLP-like on NLP to
simulate the effect of attention and achieved good
results on specific tasks. The disadvantage of this
type of MLP-Like based model is that it is not pos-
sible to improve the performance of the model by
pretraining.

3 Methods

In this section, we introduce DFT-Trans in de-
tail, which is implemented based on the Trainable
Fourier operator and time domain Attention oper-
ator. Our model is the Bert-style encoder model,
with the objective of allowing the model to extract
frequency information. As shown in Figure 2, the
model has M + N layers.

3.1 The Overall Structure

The input sentence S is encoded into a feature vec-
tor X € RY*# by embedding layer, L represents
the length of the input sentence, and H represents
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Figure 1: (A) study of turnaround(The sun sets in the west, casting a golden glow across the sky.) and declarative(He
was tired; nevertheless, he continued working He was tired; nevertheless, he continued working through the night.)
sentence in the frequency domain.(B) The difference between the DFT-Trans and Bert (Devlin et al., 2019) models
in the frequency domain when dealing with the same sentence.

the size of the hidden state. Then, we input the
feature vector X into subsequent network layers to

extract frequency and temporal feature.

The purpose of the trainable Fourier operator
is to allow DFT-Trans to handle high and low-
frequency information. By computing DFT of

the feature vectors X € RL*H (The calculation
methodolol%y has already been proposed in (Coo-
ley and Tukey, 1965), and is known as FFT), we
get Z = Frpr(X). Since the input data is a
sequence of real numbers, Z is split into two
parts: real part Z,..,; € RY*H, and imaginary
part Zipag € RE*H The frequency components
are defined as:

Z = Z’,«eal +jZimag (1)

Zreal and Zjpqg both contain high and low-
frequency information, and we need to fuse them
in the Trainable Fourier operator accordingly.

3.2 Details of Attention Operator

To allow the model to be pretrained quickly and to
be able to handle long text scenarios, referring to
the model designed by MosaicBERT (Portes et al.,
2023), we introduce Flash Attention and ALiBi.
Flash Attention: Flash Attention (Dao et al.,
2022) was proposed to reduce the number of reads

and writes between GPU HBM and GPU SRAM.
Attention with Linear Biases(ALiBi): ALiBi
eliminates positional embedding and adds posi-
tional encoding information to the Attention op-
eration. It does this by adding a negative bias to
the attention score of the token for each text that
grows linearly as the relative distance between to-
kens increases. Following the notation in (Press
et al., 2022), the Attention block calculates the ith

query ¢; € R?% as well as the key K € R1*?, where

d is the head dimension and L is the length of the
sequence, using the following equation:

Softmaac(quT —m-abs([i —1,i—2,....,i — L])) (2)

where m is the slope of each header used to
control the growth of the bias. The slopes m follow
a geometric sequence such that for n heads, each
head has a ratio of 2%8, where d = H/n.

3.3 Trainable Fourier Operator

Inspired by AFNO-transformers (Guibas et al.,
2021) in images, we design a novelty trainable
Fourier Operator in the frequency domain. Train-
able Fourier operators are used to efficiently extract
the global and local frequency domain features of

the text information after the Fourier transform.
In Figure 2, the frequency-domain text features

Z0 converted by DFT are iteratively integrated and
distinguished through the Blending Token and Mix-
ing Token in Spectrum within the trainable Fourier
operator. Assuming that the input and output of
Blending Token and Mixing Token in Spectrum re-

spectively are Z1=1 € CL*Notock X Hytock and Z1 €
@LXNblOCkXHblOCk, where Nyjoer X Hpjoer = H.
The current output Z! is obtained by fusing the
current input Z'~! with either the dynamic mixing
matrix W}p € CNvtoek X Hyloer X Hotock in Blending

Token or the trainable matrix Wq]}) € CHetock X Hetock

in Mixing Token. The fusion process can be formu-
lated as follows:

1 (I)(Z]lfljw]l)
z = {W(zﬂ—l,wﬁ)

when 1> 2

1=1,2,...
otherwise ( 7

;1) (3)

z0 — ]:FFT(XZ) X! € RE*Notock X Hytock )
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Figure 2: Overall architecture of DFT-Trans. The model consists of M+N layers, which include trainable Fourier
operators to extract frequency-domain features and attention operators to capture temporal-domain features.
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In equation (3), ®(Z'~!,Wj) is detailed in
equation (6), (7), (8) and W(Z'~, W) is detailed
in equation (9). IL denotes the total number of
layers of the Blending Token and the Mixing To-
ken in the Spectrum. X' Youtput respectively are
the inputs and outputs of the Extract feature in the
Frequency domain on the far right of Figure 2. [ de-
notes the layer of Trainable Fourier Operator; note
the difference with 1. Z9 is obtained by performing
1D FFT accordingly on the text features X' in the

time domain along the dimension L and Ny -

Since both Z!~! and W), are vectors represented

in complex form, the vector multiplication between
them requires separate operations for the real and
imaginary parts(proof in Appendix A). Figure 3
shows in detail the multiplication operation per-
formed by Equation 3. For the Mixing Token, we
use the matrix multiplication:

1 1-1 1 1-1 1 1
Zreal = O-(Zreal 'W¢>,Teal _Zimag 'W¢>,imag +IB7‘eal) (6)

Z']leag = O—(Zie_all : W<]zlﬁ,imag + Zlnmig W(%J,real + Bgmag)
@)
Z]l = Z']rl‘eal +jZ}mag (8)

We use the Einstein Blending Method(Patro and
Agneeswaran, 2023)(EBM) for the Blending Token.

We perform EBM between Z'~ " and W along the
last two dimensions:

Z; =z"'K W}b + IBg-,j means real or imag
Zl c ]RLXszockXHblock zl-1 c ]RLXszOckXHbLock )
J

Wﬂ%} c R Notock X Hprock X Hylock

The dynamic mixing matrix ¥V, in the Blending
Token introduces additional parameters to cover
all frequency domain features, which is used to
extract local features in the frequency domain. The
trainable matrix W, in the Mixing Token uses
straightforward matrix multiplication to directly
fuse frequency domain features, which is used to
extract global features in the frequency domain.
Through the efficient combination of them, the
trainable Fourier operator is capable of extracting
both global and local features in the frequency do-
main. We will further discuss the advantages of our
models in the following subsection.



3.4 Advantages of DFT-Trans

To explore the advantages of DFT-Trans in integrat-
ing and distinguishing frequency-domain informa-
tion, we have respectively plotted the frequency-
domain text feature maps for declarative and
turnaround sentences(shown in Figure 1(A)), as
well as comparative diagrams of DFT-Trans and
BERT in the frequency domain when processing
the same sentence(shown in Figure 1(B)).

In Figure 1(A), we utilize a general text em-
bedding model(Xiao et al., 2023) to extract the
semantic features of declarative and turnaround
sentences separately. Subsequently, these features
are converted into the frequency domain using FFT,
and the modulus is obtained. It can be observed
that its low-frequency components carry greater
weight for declarative sentences because of the-
matic monotony. In contrast, the turnaround sen-
tences exhibit a more balanced distribution between
low- and high-frequency components, reflecting
its thematic diversity. Additionally, the modu-
lus values of the turnaround sentence are smaller,
demonstrating stability. The key to enhancing the
model’s effectiveness lies in dynamically extract-
ing frequency domain features of different types of
sentences.

In Figure 1(B), we utilized DFT-Trans and
BERT(Devlin et al., 2019) to extract the seman-
tic features from the same sentence, followed by
converting them into the frequency domain using
FFT, and the modulus is obtained. It can be ob-
served that the feature distribution extracted by
DFT-Trans is more uneven, which is attributed to its
capability to distinguish the importance of different
frequency-domain features. In contrast, the feature
distribution extracted by BERT is more uniform,
indicating its limited effectiveness in processing
frequency-domain information. When handling dif-
ferent types of sentences, the trainable Fourier oper-
ator can dynamically fuse these frequency-domain
features, thereby extracting features(both global
and local) more efficiently.

4 Experiment

To evaluate DFT-Trans, we design a series of con-
trolled experiments on the GLUE(Wang et al.,
2019) and LRA(Tay et al., 2021b) benchmarks,
comparing it against various BERT-style encoder
models and other advanced alternatives. The ex-
periments include: (1) Performance on the GLUE
benchmark with completed pretraining;(Result on

GLUE with c-pretraining) (2) Performance on
the GLUE benchmark without pretraining;(Result
on GLUE w/o pretraining) (3) Performance on
the GLUE benchmark with fixed time pretrain-
ing;(Result on GLUE with f-pretraining) (4) Per-
formance on the LRA benchmark.(Result on LRA)

Dataset: (1) Pretraining datasets, including C4
(Raffel et al., 2020), Wikipedia, Bookcorpus (Zhu
et al., 2015)'. (2)GLUE benchmark, using eight
tasks. (3) LRA benchmark, using five tasks with
input lengths ranging from 1K to 8K. More dataset
details are in Appendix C.1.

Baseline: We use different baselines in various
experiments for the GLUE and LRA benchmarks
due to different applicability conditions of models.
Additional details about the hyperparameters and
baselines can be found in Appendix C.2 and C.3.

4.1 Main Experimental Results

4.1.1 Results on GLUE with c-pretraining

RTX 4090 is used in experiments with a batch size
of 64, and the pretraining tasks are the MLM and
NSP tasks proposed in BERT(Devlin et al., 2019).
The results are shown in Table 1. DFT-Trans and
FNet-Hybrid achieve 80.6% on the GLUE bench-
mark, outperforming other models. Compared to
FNet and FNet-Hybrid, DFT-Trans performs sig-
nificantly worse on the CoLA dataset. This is be-
cause CoLA is a few-shot dataset, whereas FNet
and FNet-Hybrid utilize larger pretraining corpora,
which enhances their performance on few-shot
datasets. As the amount of training data for down-
stream tasks increases, our model is better able to
bridge the gap caused by differences in pretrain-
ing. Compared to UltraSparseBERT, DFT-Trans
shows inferior performance on the QQP dataset.
This is because UltraSparseBERT is capable of
distinguishing key information, which allows it to
achieve good results in binary classification tasks.
However, its performance is not as effective in other
tasks. Compared to BERT,s., DFT-Trans per-
forms poorly on the MRPC and MNLI datasets
due to the larger scale of pretraining corpora used
by BERT .. To substantiate this conclusion, we
implement BERT,,. using the same pretraining
corpus as DFT-Trans, and its performance is infe-
rior to our model.

!The dataset is available at https: //anonymous. 4open.
science/r/DFT-Trans-3FDD
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Model Params RTE SST-2 CoLA STS-B MRPC QQP MNLI QNLI Avg
BERT}q s (Devlin et al., 2019) 108M 66.4 93.5 52.1 85.8 88.9 712 84.6 90.5 79.1
FNet(Lee-Thorp et al., 2022) 83M 63.0 95.0 69.0 79.0 83.0 83.0 72.0 80.0 77.8
FNet-Hybrid(Lee-Thorp et al., 2022) 88M 60.0  94.0 76.0 86.0 79.0 85.0 78.0 88.0 80.6
NarrowBert(Li et al., 2023) 105M 56.0 91.0 42.0 86.0 81.0 87.0 81.0 89.0 76.6
TNN(Qin et al., 2023) 126M - 90.6 49.9 - 83.0 88.3 76.7 85.1 789
Mamba(Gu and Dao, 2024) 130M 57.0 91.6 56.7 86.8 752 87.8 82.5 87.9 78.7
SpikingBERT(Bal and Sengupta, 2024) - 66.1 88.2 - 81.9 82.2 86.8 78.1 85.2 -

UltraSparseBERT (Belcak and Wattenhofer, 2024)  108M 56.7 92.3 48.4 86.3 88.9 88.0 829 92.3 79.9
BERT™ (Devlin et al., 2019) 108M 63.9 90.4 48.9 83.7 843 84.9 714 84.3 712
DFT-Trans(our) 95M 64.6 91.2 58.1 87.1 84.3 88.9 81.3 88.3 80.6

* indicates that the pretraining of the model uses the same corpus as DFT-Trans. - indicates that we don’t get the result from this task.

Table 1: Results on GLUE with c-pretraining, where the metrics on the MRPC and QQP tasks are means of accuracy
and F1 scores, CoLA is the Mathews correlation coefficient, Spearman correlations for STS-B, and accuracy scores
for other tasks. MNLI is reported by dev-matched only. Bolded results are the optimal, underlined results are
sub-optimal, and the same applies to the subsequent ones.

Model Params RTE SST-2 CoLA STS-B  MRPC QQr MNLI QNLI Avg

BERT(Devlin et al., 2019) 108M 52.71 78.44 0.00 12.24 73.18 68.64  60.79 60.10 50.76
HyperMixing(Mai et al., 2023) 25M 56.31  78.78 0.00 15.79 74.99 72.65  56.38 63.68 52.32
MosaicBERT(Portes et al., 2023)  137M 5415 8234 9.86 20.08 74.35 7426  64.45 61.94 55.19
Mamba(Gu and Dao, 2024) 130M 5271 80.05 18.22 20.17 74.74 7171 5951 60.75 5548
DFT-Trans(our) 95M 5343 83.03 11.00 19.95 75.03 82.35  68.62 62.69 57.01

Table 2: Results of the unpretrained model on the GLUE benchmark.

4.1.2 Result on GLUE w/o pretraining

Considering the massive cost of pretraining, we ex-
plore the performance of models without pretrain-
ing. The experimental setup is similar to section
4.1.1. The results are shown in Table 2. DFT-
Trans generally outperforms the compared models
by about 1.5% point to 5% point. Although Hy-
perMixing is four times smaller than ours, its per-
formance is worse than our model on most tasks.
MosaicBERT does not have particularly signifi-
cant performance on most tasks. Mamba is a new
architecture to replace transformers; its average
performance is only second to our model.

4.1.3 Result on GLUE with f-pretraining

This experiment explores the performance of mod-
els at fixed pretraining time. The experimental
setup is the same as above. The results are shown
in Table 3. DFT-Trans achieves the best GLUE
score of 80.6%. MosaicBERT has a shorter train-
ing time, and it achieves a score of 79.6%, but
MosaicBERT’s experimental environment is far su-
perior to ours in terms of both the performance
and number of GPUs. Cramming BERT achieves a
good result with consumer GPUs.

4.1.4 Result on LRA

We adopt the same experimental configurations
from the (Xiong et al., 2021). The experimental
results are shown in Table 4. DFT-Trans outper-
forms the previous SOTA model, achieving the

best scores on average score. Compared to TNN,
our model performs worse on the Image and Text
datasets. This is attributed to TNN’s superior per-
formance on image classification tasks. Addition-
ally, the Text dataset has a smaller amount of data,
and DFT-Trans underperforms relative to TNN on
few-shot datasets.

After that, we use a byte-level text classification
task (Text dataset) to evaluate the time and memory
consumption of the models at lengths of 512, 1k,
2k, and 4k in the environment with a batch size of
8. All models are performed under RTX 4090. The
results are shown in Table 9 in the Appendix C.4.
DFT-Trans maintains the best performance under
better time and memory consumption. FNet has the
lowest time and memory consumption, but its per-
formance on the LRA benchmark is significantly
inferior to that of our model.

4.2 Ablation Experiment

We further perform ablation experiments on the
GLUE benchmark to investigate whether the de-
sign of DFT-Trans is optimal. The experiments in
this section primarily include: (1) Replacing all
Attention operators with trainable Fourier opera-
tors.(Replacing Attention with Fourier) (2) Replac-
ing all attention operators with MLPs.(Replacing
Attention with MLPs) In addition, we conducted
an exploration of the model architecture, focusing
on two primary aspects: (1) the proportional rela-
tionship between the number of layers for trainable



Model Params Training time(hours) Hardware Batch Size GLUE Score
BERT(Devlin et al., 2019) 108M 24 I RTX A6000 64 52.2
BERT(Izsak et al., 2021) 108M 24 1 RTX A6000 64 72.9
MosaicBERT (Portes et al., 2023) 137M 1.13 8 A100-80 4096 79.6
Cramming BERT(Geiping and Goldstein, 2023) 145M 24 1 RTX A6000 64 78.6
DFT-Trans(our) 95SM 24 1 RTX 4090 64 80.6

Table 3: Results on the GLUE benchmark after 24 hours of pretraining.

Model Listops  Image  Pathfinder  Retrieval = Text Avg

Transformer(Vaswani et al., 2017) 36.37 42.44 71.40 57.46 64.27 54.39
Linformer(Wang et al., 2020) 35.70 38.56 76.34 52.27 5394  51.36
BigBird(Zaheer et al., 2020) 36.05 40.83 74.87 59.29 64.02  55.01
Performer(Choromanski et al., 2021) 18.01 42.77 77.50 53.82 65.40 51.41
Nystromformer(Xiong et al., 2021) 37.15 41.58 70.94 79.56 65.52 5895
FNet(Lee-Thorp et al., 2022) 35.33 38.67 77.80 59.61 65.11 55.30
Fourier Transformers(He et al., 2023)  40.73 53.17 83.43 85.35 75.02  67.54
TNN(Qin et al., 2023) 47.33 77.84 73.89 89.40 86.39  74.97
IceFormer(Mao et al., 2024) 41.53 40.46 74.42 65.41 59.78  56.78
Mamba* (Gu and Dao, 2024) 38.02 69.82 69.26 72.14 8298  66.44
Griffin* (De et al., 2024) 32.34 61.15 73.38 66.58 71775  61.04
DFT-Trans(our) 57.81 68.78 82.61 88.63 81.85 75.94

Table 4: Results on the LRA benchmark. * indicates the results reported by (Alonso et al., 2024).

Fourier operators and attention operators. The re-
sults are presented in Appendix C.5. (2) The impact
of layer numbers of Blending Token and Mixing
Token in Spectrum within the trainable Fourier op-
erators. The results are shown in Appendix C.6.

4.2.1 Replacing Attention with Fourier

DFT-Trans employs trainable Fourier operators to
extract frequency-domain features and Attention
operators to extract time-domain features. Ex-
periments on the GLUE benchmark demonstrate
that the combination of time-frequency features
enhances performance on downstream tasks. The
results are shown in Table 5. DFT-Trans effec-
tively leverages both time-frequency features, out-
performing models that utilize only frequency-
domain features (DFT-DFT) or time-domain fea-
tures (BERT).

4.2.2 Replacing Attention with MLPs

Considering that many image studies have used
MLP-like networks (Tolstikhin et al., 2021b; Chen
et al., 2022; Hou et al., 2023) in place of Attention
and achieved better results, DFT-Trans is initially
designed with the use of MLPs. The results are
shown in Table 5 for DFT-MLP. It performs poorly
on all the tasks.

5 Conclusion

In this work, we propose DFT-Trans, a novel
BERT-style encoder model for NLP. The core of
our model consists of trainable Fourier operators
and Attention operators, which extract frequency-
domain and time-domain features, respectively. By
simply combining these features, we can capture

Model M N Params Avg
DFT-Trans(our) DFT Attention 95M 80.6
DFT-DFT DFT DFT 115M 753
DFT-MLP DFT MLPs 37M 72.4

Table 5: Results of Ablation Experiment. Three mod-
els share the same M layers but differ in N. DFT and
Attention denote the trainable Fourier operator and At-
tention operator, respectively, as illustrated in Figure 2,
while MLPs refers to multilayer perceptron networks.

more comprehensive information, including the
theme of the text, long-range and short-range de-
pendencies within sentences, and semantic fea-
tures. Experiments on the GLUE and LRA bench-
marks demonstrate that DFT-Trans outperforms
other BERT-style encoder models and other state-
of-the-art models. In future work, we will fur-
ther consider the efficient integration of time-
frequency domain features (e.g., how frequency
domain information changes over time (wavelet
transform)). We hope that by making BERT-style
encoder models train faster, an amount of research
in specific domains such as biomedicine(Lee et al.,
2020; Gu et al., 2021), math(Shen et al., 2021),
chemistry(Horawalavithana et al., 2022), and fi-
nance(Shah et al., 2022) will convert from fine-
tuning general models to pretraining private models
on specific data.

6 Limitations

Although our model has the advantage of being
more lightweight as well as performing well, the
time complexity for each trainable Fourier operator
layer is still quadratic complexity. Although the
fast Fourier transform can reduce the time com-



plexity to O(L - logL), the combination of Fourier
transform with multi-head attention rolls the time
complexity back to O(L?). Additionally, the ma-
trix Wg) using in equation 3 in Blending Token in
Spectrum increase the number of parameters and
also the computational cost(GFLOPs).These are
very unfavourable in long text scenarios. How to
further improve the time complexity of the pro-
posed model is still under study.
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A Complex Multiplication

For two complex values Z; r; + uyj and
Z9 ro + ugj, r; is the real part of the com-
plex numbers and u; is the imaginary part of the
complex numbers. We multiply the two complex
numbers as follows:

Z1 X Z9 = (r1 + uj)(r2 + uzj)
=riry +riuzj + uirej — ujur

= (rirg —ujug) + (rjug + uiry)j
(10)

note that j2 = —1.

B Proof of the Convolution Theorem

The convolution theorem states that the Fourier
transform of the convolution of the function is
equal to the product of the Fourier transform of
the function. Suppose we have two functions f;(¢)
and f2(t) in the time domain whose corresponding
frequency domain representations after the Fourier
transformer are J;(w) and Fa2(w), F(-) denotes
the Fourier transform, and the formula is expressed
as follows:

F(f1(t) x f2(t)) =

The proof is as follows:
According to the definition of convolution there
is:

F1(w) x Fo(w) (11)

—+00

fi(t) * f2(t) = fi(r) f2(t = 7)dr (12)

Expand the left-hand side of equation (11) ac-
cording to the definition of the Fourier transform
and the definition of convolution:

F(f1(t) * fa(t))
+oo +o0 |
/ (/ fl(T)fz(t — T)dq-)efﬂﬂ-wtdt

/Jroo
—00

fo(t — T)e 2™ at) dr

+oo
) /
(13)
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We suppose v =t — 7, du = dt, t = u+ 7, and

get:
[ Taen
[

= Fi1(w) x Fa(w)

fo(w)e 72 T) gy dr

+oo )
f2 (u)e—j27rwudu

= fi (T)e_j%“”dr/

—00

(14)

Certification completed. It can be seen that all
our operations in the frequency domain can be
equated to a global convolution in the time domain,
allowing us to have a global view to extract input
features.

C Experimental details

C.1 Datasets

C4: It is a dataset created based on Common Crawl,
which grabs about 156 billion tokens from 365 mil-
lion domains, making it one of the largest avail-
able corpora. We can get this dataset at https:
//huggingface.co/datasets/allenai/c4.
Wikipedia and Bookcorpus: Its earliest use for
Bert’s pretraining, Wikipedia has collected informa-
tion on Wikipedia to organize into a large-scale cor-
pus, and the dataset can be accessed at https://
huggingface.co/datasets/wikipedia. Book-
corpus is a collection of 11,000 unpublished books
organized on the Internet, containing about 985
million words, including a wide range of book
types, and the dataset can be accessed at https:
//huggingface.co/datasets/bookcorpus.
C4BookC: Approximately 110 million sentences.
Consists of part of the C4 dataset and the Book-
Corpus dataset used to pretrain DFT-Trans. This
dataset is available at https: //anonymous. 4open.
science/r/DFT-Trans-3FDD/.

SQuAD: This is a reading comprehension dataset.
The dataset contains 100,000 (question, original
text, answer) triples, with the original text from
536 Wikipedia articles.

We used eight datasets from the GLUE(Wang
et al., 2019) benchmark on natural language infer-
ence, textual entailment, sentiment analysis, and se-
mantic similarity, which is designed to measure the
ability of models in natural language understand-
ing. GLUE benchmark can be accessed at https:
//gluebenchmark.com/. We utilized five datasets
from the LRA benchmark, encompassing mathe-
matical computation, text classification, document
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retrieval, image classification, and long-range spa-
tial dependency. These datasets are specifically
designed to evaluate a model’s capability in han-
dling long-text modeling. The LRA benchmark can
be accessed at https://paperswithcode.com/
dataset/lra.

CoLA: This is a single-sentence binary classifi-
cation task, derived from books and journals in
linguistics, where each sentence needs to be judged
as grammatical or not. Number of samples: 8551
in the training set and 1043 in the development set.
SST-2: This is a single sentence binary classifica-
tion task. The sentiment of a given sentence needs
to be recognized and categorized into positive and
negative. Number of samples: training set 67350,
development set 873.

MRPC: This is a multiple sentence binary classifi-
cation task. A corpus of sentence pairs is automati-
cally extracted from online news sources, and we
need to determine whether these sentence pairs are
semantically equivalent. Number of samples: 3668
in the training set and 408 in the development set.
STS-B: This is a multiple sentence regression task.
Sentence pairs are extracted from news headlines,
video captions, image captions, and natural lan-
guage inference data, and the model is needed to
predict the similarity of these sentences. The simi-
larity score is 0-5. number of samples: 5749 in the
training set and 1379 in the development set.
QQP: This is a multi-sentence binary classifica-
tion task. Derived from a collection of question
pairs in the community Q &A website Quora, it
is necessary to determine whether a pair of ques-
tions is semantically equivalent or not. This dataset
has an uneven distribution of positive and negative
samples, with 63% negative samples and 37% pos-
itive samples. Number of samples: 363,870 in the
training set and 40,431 in the development set.
MNLI: This is a multi-sentence multi-
categorization task. Given premise and hypothesis
statements, we needs to predict whether the
premise statement contains the hypothesis, or
contradicts the hypothesis, or is neutral to the
hypothesis. Number of samples: 392,702 for the
training set, and the development set is divided
into dev-matched 9815 and dev-mismatched 9832.
matched means that the data sources of the training
set and the development set are the same, and
mismatched means that the sources of the training
set and the development set are not the same.
QNLI: This is a multi-sentence binary classifica-
tion task. It is derived from the SQuAD(Rajpurkar
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et al., 2016) dataset, where given a question and
paragraph text, it is necessary to determine whether
the answer to the question is embedded in the para-
graph text. Number of samples: 104743 in the
training set and 5463 in the development set.
RTE: This is a multi-sentence binary classification
task. Given a sentence pair, determine whether sen-
tence 1 and sentence 2 entail each other. Number
of samples: 2491 in the training set and 277 in the
development set.

ListOps: Adataset of math expressions that asks
the model to calculate the output value of a math
expression with sequence lengths up to 2K.

Text: Abyte-level text classification task, with a
fixed sequence length 4K which requires the model
to deal with compositionality.

Retrieval: A byte-level document retrieval task
with a maximum length of 8K which test the
model’s ability to compress long sequences.
Image: Animageclassification task of which re-
quires the model to learn the 2D spatial relations
between input pixels by sequentially reading the
pixels. The sequence length is fixed to 1K.
Pathfinder: An synthetic image classification task
with a fixed input length of 1K which requires the
model to capture long range spatial dependencies.

C.2 Finetuning Hyperparameters and
Pretrain Detail

The hyperparameters we used in the fine-tuning
process are displayed in Table 6. The maximum
sequence length of 256 is used for all the datasets.
We found that these can help the model to reach
convergence very quickly. For large datasets, a
small learning rate is needed, while for small
datasets, a large learning rate is needed. This is
the principle by which we choose the learning rate.
Large datasets with large amounts of data need a
small learning rate to converge slowly, while small
datasets with small amounts of data using a large
learning rate can help the model to learn better. The
parameters of models in the pretraining phase are
given in the Table 8. Since the pretraining period is
relatively long, we set the warmup step to improve
the effectiveness of the pretraining. Different train-
ing corpus is used for different models to ensure
the performance of the models.

On the SQuAD(Rajpurkar et al., 2016) dataset,
we compare only DFT-Trans and BERT(Devlin
et al., 2019), and the results are displayed in Table
7. It can be seen that our model is superior to Bert
in both metrics.
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Task Ir beta epsilon wd epoch

RTE 4e-5 | [0.9,0.98] le-12 0.01 30
CoLA | 4e-5 | [0.9,0.98] le-12 0.01 30
SST-2 | 3e-5 | [0.9,0.98] le-12 0.01 10
STS-B | 4e-5 | [0.9,0.98] le-12 0.01 30
MRPC | 4e-5 | [0.9,0.98] le-12 0.01 30
QQP 3e-5 | [0.9,0.98] le-12 0.01 5
MNLI | 3e-5 | [0.9,0.98] le-12 0.01 5
QNLI 3e-5 | [0.9,0.98] le-12 0.01 10

Table 6: Hyperparameters used for finetuning. Ir repre-
sents learning rate and wd represents weight decay.

Model Params Ir EM F1
BERT(Devlin et al., 2019) 108M 3e-5 | 65.87 | 74.88
DFT-Trans(our) 95M 3e-5 66.91 77.51

Table 7: The performance of DFT-Trans and Bert on
SQuAD(Rajpurkar et al., 2016) dataset and training
details. Ir represents learning rate.

C.3 Baseline

BERT(Devlin et al., 2019): a traditional Bert-style
model that has referenced the design of the encoder
in transformers and works well in most NLP tasks
after pretraining.

BERT(Izsak et al., 2021): a proposal by Microsoft
to implement a functionally similar model to Bert
on a low budget, making Bert less expensive to
train.

FNet(Lee-Thorp et al., 2022): aims to explore
whether Attention can be replaced by implement-
ing the model using the Fourier transform without
parameterization, but this way leads to performance
loss during the Fourier transform.
NarrowBert(Li et al., 2023): aims to speed up
training and allow the model to focus more on
masked Token.

HyperMixing(Mai et al., 2023): uses MLP-like
architecture instead of Attention and simulates the
effect of Attention to achieve good results without
pretraining. The disadvantage is that the model
performance cannot be improved by pretraining.
MosaicBERT (Portes et al., 2023): applying cur-
rent techniques to Bert to shorten model training.
Cramming BERT(Geiping and Goldstein, 2023):
aims to further reduce the training cost of Bert-style
models and explore the performance of Bert-style
models that can approximate the original Bert as
much as possible with one day of pretraining.
TNN(Qin et al., 2023): utilizing Toeplitz matrices
to capture the relationships between each token
pair, thereby replacing relative position encoding.
Due to the O(n logn) complexity of Toeplitz ma-
trices, it can reduce the computational complexity
of the model and achieve commendable results in



Model Params | Learning rate Corpus warmup step
FNet(Lee-Thorp et al., 2022) 83M le-4 C4 5000
BERT(Devlin et al., 2019) 108M le-4 C4BookC! 5000
BERT(Izsak et al., 2021) 108M le-4 Wiki+BookCorpus 5000
NarrowBert(Li et al., 2023) 105M le-4 Wikipedia 5000
MosaicBERT (Portes et al., 2023) 137M le-4 C4 5000
Cramming BERT(Geiping and Goldstein, 2023) 145M le-4 Wiki+BookCorpus 5000
DFT-Trans(our) 95M le-4 C4BookC! 10000

Table 8: Pretrain detail for different models

long-sequence modeling tasks.

Mamba(Gu and Dao, 2024): selective processing
of information, coupled with hardware-aware accel-
eration algorithms at the hardware level, combined
with a simpler SSM architecture, forms Mamba. It
addresses the quadratic complexity issue of Trans-
former.

C.4 Analysis of model training speed and
memory usage

To investigate the training speed of DFT-Trans com-
pared to other state-of-the-art (SOTA) models on
long-text tasks, we select the byte-level text classifi-
cation task(Text dataset) from the LRA benchmark
for evaluation. This is because the input text length
in the Text datasets task is 4k, which aligns with
the maximum length we aim to test. All models
are trained under 512, 1k, 2k, and 4k input lengths.
The results are presented in Table 9. For fairness,
we maintain the same configuration settings in Nys-
tromformer. The basic Transformer model exhibits
the poorest performance in this test. Other im-
proved models, such as Linformer, Performer, and
Nystromformer, demonstrate relatively better per-
formance. FNet, due to its abandonment of the
attention mechanism, significantly improves train-
ing speed but shows inferior task accuracy com-
pared to other models. DFT-Trans demonstrates
commendable performance across all tasks while
maintaining a competitive training speed.

C.5 The proportion of Layers

We conduct experiments without pre-training to
investigate the layer allocation between trainable
Fourier operators and Attention operators. The
results are shown in Figure 4. The layer allocation
of (2, 6) achieves the highest average performance
on the GLUE benchmark and performs well on all
tasks except MRPC. However, the layer allocation
of (3, 6) performs the worst, showing poor results
on nearly all tasks. The layer allocations of (1, 4)
and (3, 4) show strong performance on few-shot
datasets.
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C.6 Exploring the Layers of Mixing Token in
Spectrum

In equation 5, we propose a hyperparameter L. to
denote the number of layers of the Mixing Token
Operator in the Spectrum, as illustrated in Figure
2. A series of experiments without pretraining are
conducted to explore the reasonableness of the I
selection. The results are presented in Figure 5.
It can be seen from Figure 5(A) that the average
performance of the model is best for I. = 3. The
difference in performance for other value of L is not
particularly large. In Figure 5(B), the best results
are achieved at . = 3 on both the SST-2 and QNLI
tasks. Other values except I. = 1 achieve good
results on specific tasks.



Steps per second? Peak Memory Usage.
Model 512 IK 2K 4K | 521 IK 2K 4K
Transformer(Vaswani et al., 2017) 13 10 3 1 0.8 1.3 33 11.4
Linformer(Wang et al., 2020) 15 15 13 10 1.5 2.5 4.5 8.4
Performer(Choromanski et al., 2021) 16 16 12 6 1.7 3.0 5.9 10.4
Nystromformer(Xiong et al., 2021) 10 8 7 6 1.2 1.6 2.3 3.8
FNet(Lee-Thorp et al., 2022) 27 24 14 8 0.5 0.7 09 1.3
Fourier Transformers(He et al., 2023) 10 11 9 5 0.9 1.9 5.9 21.2
DFT-Trans(ours) 16 15 12 7 0.8 1.1 1.6 2.8

Table 9: The speed and memory consumption on LRA benchmark over Text task
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Figure 4: (A) represents the average performance of the model on GLUE with a different number of layers; here, we
just used four tasks, namely SST-2, STS-B, MRPC, and QNLI. (B) is the performance of the models on a single
task.
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Figure 5: (A) represents the average performance of the model on GLUE with different number of Mixing Token
Operator in Spectrum, here we just uesd four tasks, namely SST-2, STS-B, MRPC, QNLI. (B) is the performance of
the models on single task.
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