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Abstract

Despite the remarkable achievements of BERT-001
style encoder models in NLP research, the high002
computational costs make it challenging to pre-003
train specific BERTs from scratch. This work004
proposes a novel BERT-style encoder model005
called DFT-Trans, addressing the critical ques-006
tion of enhancing performance while reducing007
training costs. The DFT-Trans model is pri-008
marily composed of the trainable Fourier op-009
erator and the attention operator. The novel010
trainable Fourier operator, which consists of011
the unique Blending Token and Mixing Token012
methods, is developed, given that frequency013
domain features are seldom considered in text014
representation extraction. This operator utilizes015
fast Fourier transform(FFT) to capture data fea-016
tures in the frequency domain, integrating fre-017
quency information into the network’s struc-018
ture and computations, enabling more robust019
feature extraction capabilities. The attention op-020
erator is designed by combining FlashAttention021
and Attention with Linear Bias to address the022
quadratic time and memory complexity inher-023
ent to self-attention while efficiently extracting024
features from time-domain data. When pre-025
trained from scratch on large-scale corpora,026
DFT-Trans achieves an average downstream027
GLUE(dev) score of 80.6% using a single RTX028
4090 GPU in one day, with a cost of approx-029
imately $5. Furthermore, we experimented030
on the Long-Range Arena(LRA) benchmark,031
where DFT-Trans achieved an average task032
score of 75.94%, demonstrating its effective-033
ness in long-text scenarios. Code is available at034
this repository: https://anonymous.4open.035
science/r/DFT-Trans-3FDD.036

1 Introduction037

BERT-style encoder models, as bidirectional en-038

coders, are widely utilized in natural language039

processing(NLP). Primarily composed of self-040

attention mechanisms, these models achieve no-041

table performance across downstream tasks such as042

text classification, sequence labeling, and semantic 043

similarity matching(Devlin et al., 2019; Liu et al., 044

2019; Lan et al., 2019; Joshi et al., 2020; He et al., 045

2020; Yang et al., 2019) when pre-trained on the 046

large-scale corpus. In recent years, the release and 047

success of prominent models like T5(Raffel et al., 048

2020), ChatGPT(Achiam et al., 2023), GLM(Zeng 049

et al., 2022), and Llama(Touvron et al., 2023) 050

have led to a surge in the interest and research of 051

large language models (LLMs). However, BERT- 052

style encoder models remain highly relevant even 053

in the LLM era. For example, encoder mod- 054

els are used in tasks such as data vectorization, 055

retrieval-augmented generation, and intent recog- 056

nition(Lewis et al., 2020; Wang et al., 2022; Weld 057

et al., 2022). These tasks often demand shorter 058

training times and improved performance, posing 059

significant challenges for BERT-style encoder mod- 060

els. 061

Many BERT-style encoder models have been 062

designed to enhance performance while reduc- 063

ing training costs(Tay et al., 2022). Recent stud- 064

ies(Izsak et al., 2021; Geiping and Goldstein, 2023; 065

Portes et al., 2023; Belcak and Wattenhofer, 2024) 066

have aimed to achieve high-performance models 067

with minimal training costs, primarily relying on 068

the vanilla self-attention mechanism(Vaswani et al., 069

2017). Due to the quadratic complexity of self- 070

attention mechanisms(Lin et al., 2017), substitut- 071

ing them with multi-layer perceptrons (MLPs) has 072

shown promising results without pretraining(Mai 073

et al., 2023; Tolstikhin et al., 2021a). However, 074

MLPs generally struggle to improve performance 075

on downstream tasks with pretraining. Recently, 076

models such as Mamba(Gu and Dao, 2024) have 077

been based on structured state spaces for efficient 078

sequence modeling. At the same time, TNN has 079

utilized Toeplitz matrices with relative position en- 080

coding to model sequences, leveraging the loga- 081

rithmic complexity of Toeplitz matrix computa- 082

tions(Qin et al., 2023). Compared to vanilla self- 083
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attention-based BERT-style encoder models, these084

studies(Gu and Dao, 2024; Qin et al., 2023) have085

relatively reduced computational complexity but086

did not fully explore performance after pretrain-087

ing. In the domain of computer vision, modeling088

frequency domain features via Fourier transforms089

is both common and effective. Models such as090

(Rao et al., 2023; Patro and Agneeswaran, 2023;091

Guibas et al., 2021) have applied filtering in the092

frequency domain to extract richer representations093

from images. In NLP, some studies have replaced094

self-attention mechanisms with Fourier transforms095

to reduce computational costs and enhance perfor-096

mance after pretraining, including FNet(Lee-Thorp097

et al., 2022), Fourier Transformer(He et al., 2023),098

FAN(Dong et al., 2024), and FSRU(Lao et al.,099

2024). However, the integration and distinction of100

text features in the frequency domain remain under-101

explored. Dependencies between features in the fre-102

quency domain vary (e.g., low-frequency vs high-103

frequency features), and blending similar features104

can capture more comprehensive representations105

and vice versa. For instance, declarative sentences106

(low-frequency) and turnaround sentences (high-107

frequency) exhibit distinct features in the frequency108

domain. As shown in Figure 1(A), the orange109

square represents declarative sentences, and the110

purple diamond represents turnaround sentences.111

The figure indicates that compared to declarative112

sentences, turnaround sentences are more symmet-113

rical, with lower and more stable magnitudes.114

In this work, we propose a novel BERT-style en-115

coder model called DFT-Transforms (DFT-Trans),116

designed to dynamically learn text features in the117

frequency domain while preserving those in the118

time domain. DFT-Trans is composed primarily of119

optimized trainable Fourier operators and attention120

operators. Given the limited use of frequency do-121

main features in text representation, we designed122

the trainable Fourier operator to process data trans-123

formed via fast Fourier transform (FFT)(Cooley124

and Tukey, 1965), integrating frequency informa-125

tion into the network’s structure and training pro-126

cess. The trainable Fourier operator comprises 1-D127

discrete Fourier transform (DFT), unique Blend-128

ing Token and Mixing Token methods, and 1-D129

inverse Fourier transform (iDFT). The 1-D DFT130

converts the input text features from the time do-131

main to the frequency domain. The Blending To-132

ken performs Einstein multiplication(Patro and Ag-133

neeswaran, 2023) between frequency domain fea-134

tures and dynamic mixing matrices to extract local135

features. The Mixing Token performs matrix multi- 136

plication between frequency domain features and 137

trainable matrices to extract global features. The 1- 138

D iDFT maps the features back to the time domain. 139

By learning global and local frequency domain fea- 140

tures, the trainable Fourier operator enables DFT- 141

Trans to capture both long-range and short-range 142

dependencies across texts in the frequency domain. 143

Previous studies have demonstrated the importance 144

of time-domain text features(Lipton, 2015; Shi 145

et al., 2015; Vaswani et al., 2017). To this end, we 146

constructed the attention operator to process time- 147

domain features. The attention operator, built by 148

combining FlashAttention(Dao et al., 2022) and At- 149

tention with Linear Bias(ALiBi)(Press et al., 2022), 150

reduces computational complexity while extend- 151

ing input length, thereby enhancing the inference 152

ability to text longer. 153

We conducted diverse experiments on the 154

GLUE(Wang et al., 2019) and Long Range 155

Arena(LRA)(Tay et al., 2021b) benchmarks to eval- 156

uate the effectiveness and efficiency of DFT-Trans. 157

To verify the impact of pretraining on the perfor- 158

mance of DFT-Trans, we pretrained the model on 159

large-scale corpora and tested its downstream task 160

performance. Experimental results demonstrate 161

that DFT-Trans outperforms other models, such as 162

Mamba(Gu and Dao, 2024), MosaicBERT(Portes 163

et al., 2023), and Cramming BERT(Geiping and 164

Goldstein, 2023), on the GLUE benchmark. Sim- 165

ilarly, without pretraining, DFT-Trans surpasses 166

MLP-based models(Tolstikhin et al., 2021a; Mai 167

et al., 2023) on the GLUE benchmark. Further- 168

more, to validate the model’s capability in long-text 169

scenarios, we conducted evaluations on the LRA 170

benchmark. Results show that DFT-Trans achieves 171

state-of-the-art performance among Transformer- 172

based efficient models while maintaining a short 173

runtime. These findings indicate that DFT-Trans re- 174

duces training costs while enhancing performance 175

across both general and long-text scenarios. 176

In summary, our contributions can be enumer- 177

ated as follows: 178

• Based on FFT, we propose a novel BERT- 179

style encoder model that effectively integrates time 180

and frequency domain information. 181

• We introduce the trainable Fourier operator, 182

including Blending Token and Mixing Token meth- 183

ods, which extract global and local features. 184

• We combine FlashAttention and ALiBi to 185

construct the attention operator, improving both 186

training speed and accuracy. 187
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• We analyze the performance of DFT-Trans188

against other BERT-style encoder models and ad-189

vanced alternatives on the GLUE and LRA bench-190

marks.191

Finally, the goal of this work is to show relative192

improvements in performance and training costs in193

comparison with Bert-style encoder models. We194

do not compare our model with the current optimal195

LLMs on GLUE benchmark(Wang et al., 2019).196

Because LLMs are trained for much longer, which197

is far superior to the models we explore in this198

work.199

2 Related work200

Many researchers are exploring improvements to201

the BERT-style model with the aim of reducing202

the cost of the model. The directions for improve-203

ment fall into (1) Exploration of model structure204

and pretraining methods under the reserved At-205

tention.(Exploration of model and pretraining) (2)206

Dropping Attention and using simpler feature ex-207

traction methods.(Replacing Attention with MLPs)208

2.1 Exploration of model and pretraining209

Most of the BERT-style models have mostly re-210

tained Attention(Vaswani et al., 2017), and its train-211

ing processes are: (1)Self-supervised pretraining212

allows the model to learn the general feature rep-213

resentation of the sentence. (2)Supervised fine-214

tuning allows the model to learn the representation215

of features in a specific domain.216

The process of self-supervised pretraining is217

time and GPUs-consuming; for example, in the218

study by BERT(Devlin et al., 2019), the authors219

trained their model on 16 TPUs for about four220

days to complete. Due to the large parame-221

ters of the BERT model, researchers have pro-222

posed Albert(Lan et al., 2019), which uses pa-223

rameter sharing to reduce the model parameters.224

Roberta(Liu et al., 2019) and SpanBERT(Joshi225

et al., 2020) have removed the NSP task and im-226

proved MLM to speed up training while improving227

performance. XLNet(Yang et al., 2019) has im-228

proved the model’s ability to learn bidirectional229

context and achieved good results on many tasks.230

Recently study(Izsak et al., 2021) have improved231

on pretraining, reducing the training time of BERT232

to 24 hours. MosaicBERT(Portes et al., 2023),233

Cramming BERT(Geiping and Goldstein, 2023)234

have adapted the Attention structure in BERT to235

reduce significantly the pretraining time and match236

BERT in performance. NarrowBert(Li et al., 2023) 237

has sparsified the encoder so that it can focus on the 238

Masked Token. SpikingBERT(Bal and Sengupta, 239

2024) has introduced a spiking attention mecha- 240

nism, which reduces the computational cost of the 241

model. The model we designed is based on the 242

above model approach is considered. 243

2.2 Replacing Attention with MLPs 244

Recently studies have found attention to have 245

a great deal of complexity (Choromanski et al., 246

2021; Zhai et al., 2021; Tay et al., 2021a). Star- 247

Transformer(Guo et al., 2019) has proposed a star 248

topology instead of fully connected attention, sig- 249

nificantly reducing the complexity. In addition, 250

considering that FFT has low time complexity, FFT 251

has been introduced into long text classification (He 252

et al., 2023) aiming to make the attention mecha- 253

nism scale better via sparsity patterns(Child et al., 254

2019; Qiu et al., 2020; Parmar et al., 2018; Belt- 255

agy et al., 2020; Ainslie et al., 2020; Zaheer et al., 256

2020; Wang et al., 2020) or linearization of the 257

attention matrix(Katharopoulos et al., 2020; Choro- 258

manski et al., 2021; Peng et al., 2021). In the field 259

of computer vision and multimodality, there are 260

many approaches that have proposed to use the 261

MLP-Like model instead of Attention (Chen et al., 262

2022; Tolstikhin et al., 2021b; Hou et al., 2023; 263

Lao et al., 2024), which not only reduced the cost 264

of the model, but also further improved the per- 265

formance. gMLP (Liu et al., 2021), pNLP-Mixer 266

(Fusco et al., 2023) and hyperMixer (Mai et al., 267

2023) have applied standard MLP-like on NLP to 268

simulate the effect of attention and achieved good 269

results on specific tasks. The disadvantage of this 270

type of MLP-Like based model is that it is not pos- 271

sible to improve the performance of the model by 272

pretraining. 273

3 Methods 274

In this section, we introduce DFT-Trans in de- 275

tail, which is implemented based on the Trainable 276

Fourier operator and time domain Attention oper- 277

ator. Our model is the Bert-style encoder model, 278

with the objective of allowing the model to extract 279

frequency information. As shown in Figure 2, the 280

model has M +N layers. 281

3.1 The Overall Structure 282

The input sentence S is encoded into a feature vec- 283

tor X ∈ RL×H by embedding layer, L represents 284

the length of the input sentence, and H represents 285
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Figure 1: (A) study of turnaround(The sun sets in the west, casting a golden glow across the sky.) and declarative(He
was tired; nevertheless, he continued working He was tired; nevertheless, he continued working through the night.)
sentence in the frequency domain.(B) The difference between the DFT-Trans and Bert (Devlin et al., 2019) models
in the frequency domain when dealing with the same sentence.

the size of the hidden state. Then, we input the286

feature vector X into subsequent network layers to287

extract frequency and temporal feature.288
The purpose of the trainable Fourier operator289

is to allow DFT-Trans to handle high and low-290
frequency information. By computing DFT of291

the feature vectors X ∈ RL×H (The calculation292
methodology has already been proposed in (Coo-293
ley and Tukey, 1965), and is known as FFT), we294
get Z = FFFT (X). Since the input data is a295
sequence of real numbers, Z is split into two296

parts: real part Zreal ∈ RL×H , and imaginary297

part Zimag ∈ RL×H . The frequency components298
are defined as:299

Z = Zreal + jZimag (1)300

Zreal and Zimag both contain high and low-301

frequency information, and we need to fuse them302

in the Trainable Fourier operator accordingly.303

3.2 Details of Attention Operator304

To allow the model to be pretrained quickly and to305

be able to handle long text scenarios, referring to306

the model designed by MosaicBERT (Portes et al.,307

2023), we introduce Flash Attention and ALiBi.308

Flash Attention: Flash Attention (Dao et al.,309

2022) was proposed to reduce the number of reads310

and writes between GPU HBM and GPU SRAM.311
Attention with Linear Biases(ALiBi): ALiBi312

eliminates positional embedding and adds posi-313
tional encoding information to the Attention op-314
eration. It does this by adding a negative bias to315
the attention score of the token for each text that316
grows linearly as the relative distance between to-317
kens increases. Following the notation in (Press318
et al., 2022), the Attention block calculates the ith319
query qi ∈ Rd as well as the key K ∈ RL×d, where320

d is the head dimension and L is the length of the 321
sequence, using the following equation: 322

Softmax(qiK
T −m · abs([i− 1, i− 2, ..., i− L])) (2) 323

where m is the slope of each header used to 324

control the growth of the bias. The slopes m follow 325

a geometric sequence such that for n heads, each 326

head has a ratio of 2
−8
n , where d = H/n. 327

3.3 Trainable Fourier Operator 328

Inspired by AFNO-transformers (Guibas et al., 329

2021) in images, we design a novelty trainable 330

Fourier Operator in the frequency domain. Train- 331

able Fourier operators are used to efficiently extract 332

the global and local frequency domain features of 333

the text information after the Fourier transform. 334
In Figure 2, the frequency-domain text features 335

Z0 converted by DFT are iteratively integrated and 336
distinguished through the Blending Token and Mix- 337
ing Token in Spectrum within the trainable Fourier 338
operator. Assuming that the input and output of 339
Blending Token and Mixing Token in Spectrum re- 340

spectively are Zl−1 ∈ CL×Nblock×Hblock and Zl ∈ 341

CL×Nblock×Hblock , where Nblock × Hblock = H . 342
The current output Zl is obtained by fusing the 343

current input Zl−1 with either the dynamic mixing 344

matrix Wl

ψ ∈ CNblock×Hblock×Hblock in Blending 345

Token or the trainable matrix Wl

ϕ ∈ CHblock×Hblock 346

in Mixing Token. The fusion process can be formu- 347
lated as follows: 348

Zl =

{
Φ(Zl−1,Wl

ϕ) when l ≥ 2
Ψ(Zl−1,Wl

ψ) otherwise
(l = 1, 2, ...,L) (3) 349

350
Z0 = FFFT (Xl) Xl ∈ RL×Nblock×Hblock (4) 351
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Figure 2: Overall architecture of DFT-Trans. The model consists of M+N layers, which include trainable Fourier
operators to extract frequency-domain features and attention operators to capture temporal-domain features.

Partition of real and imaginary part

𝓩𝒓𝒆𝒂𝒍
𝕝−𝟏 𝓩𝒊𝒎𝒂𝒈

𝕝−𝟏

⊗ ⊗ ⊗ ⊗

Add&Norm Add&Norm

concatenate

σ

𝓦𝝓,𝒊𝒎𝒂𝒈
𝕝

𝒵𝒃𝒍𝒆𝒏𝒅
𝕝−𝟏

𝓩𝕝

𝓩𝒓𝒆𝒂𝒍
𝕝 𝓩𝒊𝒎𝒂𝒈

𝕝

Mixing Token in Spectrum

𝓦𝝓,𝒓𝒆𝒂𝒍
𝕝 𝓦𝝓,𝒓𝒆𝒂𝒍

𝕝

L

Nblock

Hblock Hblock

Hblock

Nblock⊠ =

Hblock

Nblock

L

𝑹𝑳×𝑵𝒃𝒍𝒐𝒄𝒌×𝑯𝒃𝒍𝒐𝒄𝒌             𝑹𝑵𝒃𝒍𝒐𝒄𝒌×𝑯𝒃𝒍𝒐𝒄𝒌×𝑯𝒃𝒍𝒐𝒄𝒌         𝑹𝑳×𝑵𝒃𝒍𝒐𝒄𝒌×𝑯𝒃𝒍𝒐𝒄𝒌          
 Intuitive View of Einstein multiplication

𝓩𝒋
𝕝−𝟏 ∈ 𝑹𝑳×𝑵𝒃𝒍𝒐𝒄𝒌×𝑯𝒃𝒍𝒐𝒄𝒌

𝓦𝝍,𝒋
𝕝

∈ 𝑹𝑵𝒃𝒍𝒐𝒄𝒌×𝑯𝒃𝒍𝒐𝒄𝒌×𝑯𝒃𝒍𝒐𝒄𝒌

⊠
𝓩𝒋,𝒃𝒍𝒆𝒏𝒅
𝕝

∈ 𝑹𝑳×𝑵𝒉𝒆𝒂𝒅×𝑯

Partition of real and imaginary part

𝓩𝕝−𝟏

Blending Token in Spectrum

𝓩𝒋,𝒃𝒍𝒆𝒏𝒅
𝕝 =𝓩𝒋

𝕝−𝟏 ⊠𝓦𝝍,𝒋
𝕝

concatenate

𝓩𝒃𝒍𝒆𝒏𝒅
𝕝−𝟏

𝓩𝒋
𝕝

𝓩𝒋,𝒃𝒍𝒆𝒏𝒅
𝕝

Einstein multiplication

Figure 3: Implementation of Blending Token in Spec-
trum and Mixing Token in Spectrum in Spectrum.

352

Yl
output = iFFFT (

L∑
l=1

σsoft(Zl) + Z0) (5)353

In equation (3), Φ(Zl−1,Wl

ϕ) is detailed in354

equation (6), (7), (8) and Ψ(Zl−1,Wl

ψ) is detailed355

in equation (9). L denotes the total number of356

layers of the Blending Token and the Mixing To-357

ken in the Spectrum. Xl,Yl
output respectively are358

the inputs and outputs of the Extract feature in the359

Frequency domain on the far right of Figure 2. l de-360

notes the layer of Trainable Fourier Operator; note361

the difference with l. Z0 is obtained by performing362

1D FFT accordingly on the text features X l in the363

time domain along the dimension L and Nblock.364

Since both Zl−1 and Wl

ϕ are vectors represented365

in complex form, the vector multiplication between 366
them requires separate operations for the real and 367
imaginary parts(proof in Appendix A). Figure 3 368
shows in detail the multiplication operation per- 369
formed by Equation 3. For the Mixing Token, we 370
use the matrix multiplication: 371

Zl

real = σ(Zl−1
real ·W

l

ϕ,real−Zl−1
imag ·W

l

ϕ,imag+B
l

real) (6) 372

373
Zl

imag = σ(Zl−1
real · W

l

ϕ,imag + Zl−1
imag · W

l

ϕ,real +B
l

imag)
(7) 374

375
Zl = Zl

real + jZl

imag (8) 376

We use the Einstein Blending Method(Patro and 377
Agneeswaran, 2023)(EBM) for the Blending Token. 378

We perform EBM between Zl−1 and Wl

ψ along the 379

last two dimensions: 380

Zl

j = Zl−1 ⊠Wl

ψ +B
l

j , j means real or imag

Zl

j ∈ RL×Nblock×Hblock Zl−1 ∈ RL×Nblock×Hblock

Wl

ψ ∈ RNblock×Hblock×Hblock

(9) 381

The dynamic mixing matrix Wψ in the Blending 382

Token introduces additional parameters to cover 383

all frequency domain features, which is used to 384

extract local features in the frequency domain. The 385

trainable matrix Wϕ in the Mixing Token uses 386

straightforward matrix multiplication to directly 387

fuse frequency domain features, which is used to 388

extract global features in the frequency domain. 389

Through the efficient combination of them, the 390

trainable Fourier operator is capable of extracting 391

both global and local features in the frequency do- 392

main. We will further discuss the advantages of our 393

models in the following subsection. 394
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3.4 Advantages of DFT-Trans395

To explore the advantages of DFT-Trans in integrat-396

ing and distinguishing frequency-domain informa-397

tion, we have respectively plotted the frequency-398

domain text feature maps for declarative and399

turnaround sentences(shown in Figure 1(A)), as400

well as comparative diagrams of DFT-Trans and401

BERT in the frequency domain when processing402

the same sentence(shown in Figure 1(B)).403

In Figure 1(A), we utilize a general text em-404

bedding model(Xiao et al., 2023) to extract the405

semantic features of declarative and turnaround406

sentences separately. Subsequently, these features407

are converted into the frequency domain using FFT,408

and the modulus is obtained. It can be observed409

that its low-frequency components carry greater410

weight for declarative sentences because of the-411

matic monotony. In contrast, the turnaround sen-412

tences exhibit a more balanced distribution between413

low- and high-frequency components, reflecting414

its thematic diversity. Additionally, the modu-415

lus values of the turnaround sentence are smaller,416

demonstrating stability. The key to enhancing the417

model’s effectiveness lies in dynamically extract-418

ing frequency domain features of different types of419

sentences.420

In Figure 1(B), we utilized DFT-Trans and421

BERT(Devlin et al., 2019) to extract the seman-422

tic features from the same sentence, followed by423

converting them into the frequency domain using424

FFT, and the modulus is obtained. It can be ob-425

served that the feature distribution extracted by426

DFT-Trans is more uneven, which is attributed to its427

capability to distinguish the importance of different428

frequency-domain features. In contrast, the feature429

distribution extracted by BERT is more uniform,430

indicating its limited effectiveness in processing431

frequency-domain information. When handling dif-432

ferent types of sentences, the trainable Fourier oper-433

ator can dynamically fuse these frequency-domain434

features, thereby extracting features(both global435

and local) more efficiently.436

4 Experiment437

To evaluate DFT-Trans, we design a series of con-438

trolled experiments on the GLUE(Wang et al.,439

2019) and LRA(Tay et al., 2021b) benchmarks,440

comparing it against various BERT-style encoder441

models and other advanced alternatives. The ex-442

periments include: (1) Performance on the GLUE443

benchmark with completed pretraining;(Result on444

GLUE with c-pretraining) (2) Performance on 445

the GLUE benchmark without pretraining;(Result 446

on GLUE w/o pretraining) (3) Performance on 447

the GLUE benchmark with fixed time pretrain- 448

ing;(Result on GLUE with f-pretraining) (4) Per- 449

formance on the LRA benchmark.(Result on LRA) 450

Dataset: (1) Pretraining datasets, including C4 451

(Raffel et al., 2020), Wikipedia, Bookcorpus (Zhu 452

et al., 2015)1. (2)GLUE benchmark, using eight 453

tasks. (3) LRA benchmark, using five tasks with 454

input lengths ranging from 1K to 8K. More dataset 455

details are in Appendix C.1. 456

Baseline: We use different baselines in various 457

experiments for the GLUE and LRA benchmarks 458

due to different applicability conditions of models. 459

Additional details about the hyperparameters and 460

baselines can be found in Appendix C.2 and C.3. 461

4.1 Main Experimental Results 462

4.1.1 Results on GLUE with c-pretraining 463

RTX 4090 is used in experiments with a batch size 464

of 64, and the pretraining tasks are the MLM and 465

NSP tasks proposed in BERT(Devlin et al., 2019). 466

The results are shown in Table 1. DFT-Trans and 467

FNet-Hybrid achieve 80.6% on the GLUE bench- 468

mark, outperforming other models. Compared to 469

FNet and FNet-Hybrid, DFT-Trans performs sig- 470

nificantly worse on the CoLA dataset. This is be- 471

cause CoLA is a few-shot dataset, whereas FNet 472

and FNet-Hybrid utilize larger pretraining corpora, 473

which enhances their performance on few-shot 474

datasets. As the amount of training data for down- 475

stream tasks increases, our model is better able to 476

bridge the gap caused by differences in pretrain- 477

ing. Compared to UltraSparseBERT, DFT-Trans 478

shows inferior performance on the QQP dataset. 479

This is because UltraSparseBERT is capable of 480

distinguishing key information, which allows it to 481

achieve good results in binary classification tasks. 482

However, its performance is not as effective in other 483

tasks. Compared to BERTbase, DFT-Trans per- 484

forms poorly on the MRPC and MNLI datasets 485

due to the larger scale of pretraining corpora used 486

by BERTbase. To substantiate this conclusion, we 487

implement BERTbase using the same pretraining 488

corpus as DFT-Trans, and its performance is infe- 489

rior to our model. 490

1The dataset is available at https://anonymous.4open.
science/r/DFT-Trans-3FDD
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Model Params RTE SST-2 CoLA STS-B MRPC QQP MNLI QNLI Avg
BERTbase(Devlin et al., 2019) 108M 66.4 93.5 52.1 85.8 88.9 71.2 84.6 90.5 79.1
FNet(Lee-Thorp et al., 2022) 83M 63.0 95.0 69.0 79.0 83.0 83.0 72.0 80.0 77.8
FNet-Hybrid(Lee-Thorp et al., 2022) 88M 60.0 94.0 76.0 86.0 79.0 85.0 78.0 88.0 80.6
NarrowBert(Li et al., 2023) 105M 56.0 91.0 42.0 86.0 81.0 87.0 81.0 89.0 76.6
TNN(Qin et al., 2023) 126M - 90.6 49.9 - 83.0 88.3 76.7 85.1 78.9
Mamba(Gu and Dao, 2024) 130M 57.0 91.6 56.7 86.8 75.2 87.8 82.5 87.9 78.7
SpikingBERT(Bal and Sengupta, 2024) - 66.1 88.2 - 81.9 82.2 86.8 78.1 85.2 -
UltraSparseBERT(Belcak and Wattenhofer, 2024) 108M 56.7 92.3 48.4 86.3 88.9 88.0 82.9 92.3 79.9
BERT∗(Devlin et al., 2019) 108M 63.9 90.4 48.9 83.7 84.3 84.9 77.4 84.3 77.2
DFT-Trans(our) 95M 64.6 91.2 58.1 87.1 84.3 88.9 81.3 88.3 80.6
∗ indicates that the pretraining of the model uses the same corpus as DFT-Trans. - indicates that we don’t get the result from this task.

Table 1: Results on GLUE with c-pretraining, where the metrics on the MRPC and QQP tasks are means of accuracy
and F1 scores, CoLA is the Mathews correlation coefficient, Spearman correlations for STS-B, and accuracy scores
for other tasks. MNLI is reported by dev-matched only. Bolded results are the optimal, underlined results are
sub-optimal, and the same applies to the subsequent ones.

Model Params RTE SST-2 CoLA STS-B MRPC QQP MNLI QNLI Avg
BERT(Devlin et al., 2019) 108M 52.71 78.44 0.00 12.24 73.18 68.64 60.79 60.10 50.76
HyperMixing(Mai et al., 2023) 25M 56.31 78.78 0.00 15.79 74.99 72.65 56.38 63.68 52.32
MosaicBERT(Portes et al., 2023) 137M 54.15 82.34 9.86 20.08 74.35 74.26 64.45 61.94 55.19
Mamba(Gu and Dao, 2024) 130M 52.71 80.05 18.22 20.17 74.74 77.71 59.51 60.75 55.48

DFT-Trans(our) 95M 53.43 83.03 11.00 19.95 75.03 82.35 68.62 62.69 57.01

Table 2: Results of the unpretrained model on the GLUE benchmark.

4.1.2 Result on GLUE w/o pretraining491

Considering the massive cost of pretraining, we ex-492

plore the performance of models without pretrain-493

ing. The experimental setup is similar to section494

4.1.1. The results are shown in Table 2. DFT-495

Trans generally outperforms the compared models496

by about 1.5% point to 5% point. Although Hy-497

perMixing is four times smaller than ours, its per-498

formance is worse than our model on most tasks.499

MosaicBERT does not have particularly signifi-500

cant performance on most tasks. Mamba is a new501

architecture to replace transformers; its average502

performance is only second to our model.503

4.1.3 Result on GLUE with f-pretraining504

This experiment explores the performance of mod-505

els at fixed pretraining time. The experimental506

setup is the same as above. The results are shown507

in Table 3. DFT-Trans achieves the best GLUE508

score of 80.6%. MosaicBERT has a shorter train-509

ing time, and it achieves a score of 79.6%, but510

MosaicBERT’s experimental environment is far su-511

perior to ours in terms of both the performance512

and number of GPUs. Cramming BERT achieves a513

good result with consumer GPUs.514

4.1.4 Result on LRA515

We adopt the same experimental configurations516

from the (Xiong et al., 2021). The experimental517

results are shown in Table 4. DFT-Trans outper-518

forms the previous SOTA model, achieving the519

best scores on average score. Compared to TNN, 520

our model performs worse on the Image and Text 521

datasets. This is attributed to TNN’s superior per- 522

formance on image classification tasks. Addition- 523

ally, the Text dataset has a smaller amount of data, 524

and DFT-Trans underperforms relative to TNN on 525

few-shot datasets. 526

After that, we use a byte-level text classification 527

task (Text dataset) to evaluate the time and memory 528

consumption of the models at lengths of 512, 1k, 529

2k, and 4k in the environment with a batch size of 530

8. All models are performed under RTX 4090. The 531

results are shown in Table 9 in the Appendix C.4. 532

DFT-Trans maintains the best performance under 533

better time and memory consumption. FNet has the 534

lowest time and memory consumption, but its per- 535

formance on the LRA benchmark is significantly 536

inferior to that of our model. 537

4.2 Ablation Experiment 538

We further perform ablation experiments on the 539

GLUE benchmark to investigate whether the de- 540

sign of DFT-Trans is optimal. The experiments in 541

this section primarily include: (1) Replacing all 542

Attention operators with trainable Fourier opera- 543

tors.(Replacing Attention with Fourier) (2) Replac- 544

ing all attention operators with MLPs.(Replacing 545

Attention with MLPs) In addition, we conducted 546

an exploration of the model architecture, focusing 547

on two primary aspects: (1) the proportional rela- 548

tionship between the number of layers for trainable 549
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Model Params Training time(hours) Hardware Batch Size GLUE Score
BERT(Devlin et al., 2019) 108M 24 1 RTX A6000 64 52.2
BERT(Izsak et al., 2021) 108M 24 1 RTX A6000 64 72.9
MosaicBERT(Portes et al., 2023) 137M 1.13 8 A100-80 4096 79.6
Cramming BERT(Geiping and Goldstein, 2023) 145M 24 1 RTX A6000 64 78.6
DFT-Trans(our) 95M 24 1 RTX 4090 64 80.6

Table 3: Results on the GLUE benchmark after 24 hours of pretraining.

Model Listops Image Pathfinder Retrieval Text Avg
Transformer(Vaswani et al., 2017) 36.37 42.44 71.40 57.46 64.27 54.39
Linformer(Wang et al., 2020) 35.70 38.56 76.34 52.27 53.94 51.36
BigBird(Zaheer et al., 2020) 36.05 40.83 74.87 59.29 64.02 55.01
Performer(Choromanski et al., 2021) 18.01 42.77 77.50 53.82 65.40 51.41
Nystromformer(Xiong et al., 2021) 37.15 41.58 70.94 79.56 65.52 58.95
FNet(Lee-Thorp et al., 2022) 35.33 38.67 77.80 59.61 65.11 55.30
Fourier Transformers(He et al., 2023) 40.73 53.17 83.43 85.35 75.02 67.54
TNN(Qin et al., 2023) 47.33 77.84 73.89 89.40 86.39 74.97
IceFormer(Mao et al., 2024) 41.53 40.46 74.42 65.41 59.78 56.78
Mamba⋆(Gu and Dao, 2024) 38.02 69.82 69.26 72.14 82.98 66.44
Griffin⋆(De et al., 2024) 32.34 61.15 73.38 66.58 71.75 61.04
DFT-Trans(our) 57.81 68.78 82.61 88.63 81.85 75.94

Table 4: Results on the LRA benchmark. ⋆ indicates the results reported by (Alonso et al., 2024).

Fourier operators and attention operators. The re-550

sults are presented in Appendix C.5. (2) The impact551

of layer numbers of Blending Token and Mixing552

Token in Spectrum within the trainable Fourier op-553

erators. The results are shown in Appendix C.6.554

4.2.1 Replacing Attention with Fourier555

DFT-Trans employs trainable Fourier operators to556

extract frequency-domain features and Attention557

operators to extract time-domain features. Ex-558

periments on the GLUE benchmark demonstrate559

that the combination of time-frequency features560

enhances performance on downstream tasks. The561

results are shown in Table 5. DFT-Trans effec-562

tively leverages both time-frequency features, out-563

performing models that utilize only frequency-564

domain features (DFT-DFT) or time-domain fea-565

tures (BERT).566

4.2.2 Replacing Attention with MLPs567

Considering that many image studies have used568

MLP-like networks (Tolstikhin et al., 2021b; Chen569

et al., 2022; Hou et al., 2023) in place of Attention570

and achieved better results, DFT-Trans is initially571

designed with the use of MLPs. The results are572

shown in Table 5 for DFT-MLP. It performs poorly573

on all the tasks.574

5 Conclusion575

In this work, we propose DFT-Trans, a novel576

BERT-style encoder model for NLP. The core of577

our model consists of trainable Fourier operators578

and Attention operators, which extract frequency-579

domain and time-domain features, respectively. By580

simply combining these features, we can capture581

Model M N Params Avg
DFT-Trans(our) DFT Attention 95M 80.6

DFT-DFT DFT DFT 115M 75.3
DFT-MLP DFT MLPs 37M 72.4

Table 5: Results of Ablation Experiment. Three mod-
els share the same M layers but differ in N . DFT and
Attention denote the trainable Fourier operator and At-
tention operator, respectively, as illustrated in Figure 2,
while MLPs refers to multilayer perceptron networks.

more comprehensive information, including the 582

theme of the text, long-range and short-range de- 583

pendencies within sentences, and semantic fea- 584

tures. Experiments on the GLUE and LRA bench- 585

marks demonstrate that DFT-Trans outperforms 586

other BERT-style encoder models and other state- 587

of-the-art models. In future work, we will fur- 588

ther consider the efficient integration of time- 589

frequency domain features (e.g., how frequency 590

domain information changes over time (wavelet 591

transform)). We hope that by making BERT-style 592

encoder models train faster, an amount of research 593

in specific domains such as biomedicine(Lee et al., 594

2020; Gu et al., 2021), math(Shen et al., 2021), 595

chemistry(Horawalavithana et al., 2022), and fi- 596

nance(Shah et al., 2022) will convert from fine- 597

tuning general models to pretraining private models 598

on specific data. 599

6 Limitations 600

Although our model has the advantage of being 601

more lightweight as well as performing well, the 602

time complexity for each trainable Fourier operator 603

layer is still quadratic complexity. Although the 604

fast Fourier transform can reduce the time com- 605
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plexity to O(L · logL), the combination of Fourier606

transform with multi-head attention rolls the time607

complexity back to O(L2). Additionally, the ma-608

trix Wl

ψ using in equation 3 in Blending Token in609

Spectrum increase the number of parameters and610

also the computational cost(GFLOPs).These are611

very unfavourable in long text scenarios. How to612

further improve the time complexity of the pro-613

posed model is still under study.614
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A Complex Multiplication 998

For two complex values Z1 = r1 + u1j and 999

Z2 = r2 + u2j, ri is the real part of the com- 1000

plex numbers and ui is the imaginary part of the 1001

complex numbers. We multiply the two complex 1002

numbers as follows: 1003

Z1 ×Z2 = (r1 + u1j)(r2 + u2j)

= r1r2 + r1u2j + u1r2j − u1u2

= (r1r2 − u1u2) + (r1u2 + u1r2)j

(10)

1004

note that j2 = −1. 1005

B Proof of the Convolution Theorem 1006

The convolution theorem states that the Fourier 1007

transform of the convolution of the function is 1008

equal to the product of the Fourier transform of 1009

the function. Suppose we have two functions f1(t) 1010

and f2(t) in the time domain whose corresponding 1011

frequency domain representations after the Fourier 1012

transformer are F1(w) and F2(w), F(·) denotes 1013

the Fourier transform, and the formula is expressed 1014

as follows: 1015

F(f1(t) ∗ f2(t)) = F1(w)×F2(w) (11) 1016

The proof is as follows: 1017

According to the definition of convolution there 1018

is: 1019

f1(t) ∗ f2(t) =
∫ +∞

−∞
f1(τ)f2(t− τ)dτ (12) 1020

Expand the left-hand side of equation (11) ac- 1021

cording to the definition of the Fourier transform 1022

and the definition of convolution: 1023

F(f1(t) ∗ f2(t))

=

∫ +∞

−∞
(

∫ +∞

−∞
f1(τ)f2(t− τ)dτ)e−j2πwtdt

=

∫ +∞

−∞
f1(τ)(

∫ +∞

−∞
f2(t− τ)e−j2πwtdt)dτ

(13)

1024
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We suppose u = t− τ , du = dt, t = u+ τ , and1025

get:1026 ∫ +∞

−∞
f1(τ)(

∫ +∞

−∞
f2(u)e

−j2πw(u+τ)du)dτ

=

∫ +∞

−∞
f1(τ)e

−j2πwτdτ

∫ +∞

−∞
f2(u)e

−j2πwudu

= F1(w)×F2(w)

(14)

1027

Certification completed. It can be seen that all1028

our operations in the frequency domain can be1029

equated to a global convolution in the time domain,1030

allowing us to have a global view to extract input1031

features.1032

C Experimental details1033

C.1 Datasets1034

C4: It is a dataset created based on Common Crawl,1035

which grabs about 156 billion tokens from 365 mil-1036

lion domains, making it one of the largest avail-1037

able corpora. We can get this dataset at https:1038

//huggingface.co/datasets/allenai/c4.1039

Wikipedia and Bookcorpus: Its earliest use for1040

Bert’s pretraining, Wikipedia has collected informa-1041

tion on Wikipedia to organize into a large-scale cor-1042

pus, and the dataset can be accessed at https://1043

huggingface.co/datasets/wikipedia. Book-1044

corpus is a collection of 11,000 unpublished books1045

organized on the Internet, containing about 9851046

million words, including a wide range of book1047

types, and the dataset can be accessed at https:1048

//huggingface.co/datasets/bookcorpus.1049

C4BookC: Approximately 110 million sentences.1050

Consists of part of the C4 dataset and the Book-1051

Corpus dataset used to pretrain DFT-Trans. This1052

dataset is available at https://anonymous.4open.1053

science/r/DFT-Trans-3FDD/.1054

SQuAD: This is a reading comprehension dataset.1055

The dataset contains 100,000 (question, original1056

text, answer) triples, with the original text from1057

536 Wikipedia articles.1058

We used eight datasets from the GLUE(Wang1059

et al., 2019) benchmark on natural language infer-1060

ence, textual entailment, sentiment analysis, and se-1061

mantic similarity, which is designed to measure the1062

ability of models in natural language understand-1063

ing. GLUE benchmark can be accessed at https:1064

//gluebenchmark.com/. We utilized five datasets1065

from the LRA benchmark, encompassing mathe-1066

matical computation, text classification, document1067

retrieval, image classification, and long-range spa- 1068

tial dependency. These datasets are specifically 1069

designed to evaluate a model’s capability in han- 1070

dling long-text modeling. The LRA benchmark can 1071

be accessed at https://paperswithcode.com/ 1072

dataset/lra. 1073

CoLA: This is a single-sentence binary classifi- 1074

cation task, derived from books and journals in 1075

linguistics, where each sentence needs to be judged 1076

as grammatical or not. Number of samples: 8551 1077

in the training set and 1043 in the development set. 1078

SST-2: This is a single sentence binary classifica- 1079

tion task. The sentiment of a given sentence needs 1080

to be recognized and categorized into positive and 1081

negative. Number of samples: training set 67350, 1082

development set 873. 1083

MRPC: This is a multiple sentence binary classifi- 1084

cation task. A corpus of sentence pairs is automati- 1085

cally extracted from online news sources, and we 1086

need to determine whether these sentence pairs are 1087

semantically equivalent. Number of samples: 3668 1088

in the training set and 408 in the development set. 1089

STS-B: This is a multiple sentence regression task. 1090

Sentence pairs are extracted from news headlines, 1091

video captions, image captions, and natural lan- 1092

guage inference data, and the model is needed to 1093

predict the similarity of these sentences. The simi- 1094

larity score is 0-5. number of samples: 5749 in the 1095

training set and 1379 in the development set. 1096

QQP: This is a multi-sentence binary classifica- 1097

tion task. Derived from a collection of question 1098

pairs in the community Q &A website Quora, it 1099

is necessary to determine whether a pair of ques- 1100

tions is semantically equivalent or not. This dataset 1101

has an uneven distribution of positive and negative 1102

samples, with 63% negative samples and 37% pos- 1103

itive samples. Number of samples: 363,870 in the 1104

training set and 40,431 in the development set. 1105

MNLI: This is a multi-sentence multi- 1106

categorization task. Given premise and hypothesis 1107

statements, we needs to predict whether the 1108

premise statement contains the hypothesis, or 1109

contradicts the hypothesis, or is neutral to the 1110

hypothesis. Number of samples: 392,702 for the 1111

training set, and the development set is divided 1112

into dev-matched 9815 and dev-mismatched 9832. 1113

matched means that the data sources of the training 1114

set and the development set are the same, and 1115

mismatched means that the sources of the training 1116

set and the development set are not the same. 1117

QNLI: This is a multi-sentence binary classifica- 1118

tion task. It is derived from the SQuAD(Rajpurkar 1119
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et al., 2016) dataset, where given a question and1120

paragraph text, it is necessary to determine whether1121

the answer to the question is embedded in the para-1122

graph text. Number of samples: 104743 in the1123

training set and 5463 in the development set.1124

RTE: This is a multi-sentence binary classification1125

task. Given a sentence pair, determine whether sen-1126

tence 1 and sentence 2 entail each other. Number1127

of samples: 2491 in the training set and 277 in the1128

development set.1129

ListOps: Adataset of math expressions that asks1130

the model to calculate the output value of a math1131

expression with sequence lengths up to 2K.1132

Text: Abyte-level text classification task, with a1133

fixed sequence length 4K which requires the model1134

to deal with compositionality.1135

Retrieval: A byte-level document retrieval task1136

with a maximum length of 8K which test the1137

model’s ability to compress long sequences.1138

Image: Animageclassification task of which re-1139

quires the model to learn the 2D spatial relations1140

between input pixels by sequentially reading the1141

pixels. The sequence length is fixed to 1K.1142

Pathfinder: An synthetic image classification task1143

with a fixed input length of 1K which requires the1144

model to capture long range spatial dependencies.1145

C.2 Finetuning Hyperparameters and1146

Pretrain Detail1147

The hyperparameters we used in the fine-tuning1148

process are displayed in Table 6. The maximum1149

sequence length of 256 is used for all the datasets.1150

We found that these can help the model to reach1151

convergence very quickly. For large datasets, a1152

small learning rate is needed, while for small1153

datasets, a large learning rate is needed. This is1154

the principle by which we choose the learning rate.1155

Large datasets with large amounts of data need a1156

small learning rate to converge slowly, while small1157

datasets with small amounts of data using a large1158

learning rate can help the model to learn better. The1159

parameters of models in the pretraining phase are1160

given in the Table 8. Since the pretraining period is1161

relatively long, we set the warmup step to improve1162

the effectiveness of the pretraining. Different train-1163

ing corpus is used for different models to ensure1164

the performance of the models.1165

On the SQuAD(Rajpurkar et al., 2016) dataset,1166

we compare only DFT-Trans and BERT(Devlin1167

et al., 2019), and the results are displayed in Table1168

7. It can be seen that our model is superior to Bert1169

in both metrics.1170

Task lr beta epsilon wd epoch
RTE 4e-5 [0.9, 0.98] 1e-12 0.01 30

CoLA 4e-5 [0.9, 0.98] 1e-12 0.01 30
SST-2 3e-5 [0.9, 0.98] 1e-12 0.01 10
STS-B 4e-5 [0.9, 0.98] 1e-12 0.01 30
MRPC 4e-5 [0.9, 0.98] 1e-12 0.01 30
QQP 3e-5 [0.9, 0.98] 1e-12 0.01 5

MNLI 3e-5 [0.9, 0.98] 1e-12 0.01 5
QNLI 3e-5 [0.9, 0.98] 1e-12 0.01 10

Table 6: Hyperparameters used for finetuning. lr repre-
sents learning rate and wd represents weight decay.

Model Params lr EM F1
BERT(Devlin et al., 2019) 108M 3e-5 65.87 74.88

DFT-Trans(our) 95M 3e-5 66.91 77.51

Table 7: The performance of DFT-Trans and Bert on
SQuAD(Rajpurkar et al., 2016) dataset and training
details. lr represents learning rate.

C.3 Baseline 1171

BERT(Devlin et al., 2019): a traditional Bert-style 1172

model that has referenced the design of the encoder 1173

in transformers and works well in most NLP tasks 1174

after pretraining. 1175

BERT(Izsak et al., 2021): a proposal by Microsoft 1176

to implement a functionally similar model to Bert 1177

on a low budget, making Bert less expensive to 1178

train. 1179

FNet(Lee-Thorp et al., 2022): aims to explore 1180

whether Attention can be replaced by implement- 1181

ing the model using the Fourier transform without 1182

parameterization, but this way leads to performance 1183

loss during the Fourier transform. 1184

NarrowBert(Li et al., 2023): aims to speed up 1185

training and allow the model to focus more on 1186

masked Token. 1187

HyperMixing(Mai et al., 2023): uses MLP-like 1188

architecture instead of Attention and simulates the 1189

effect of Attention to achieve good results without 1190

pretraining. The disadvantage is that the model 1191

performance cannot be improved by pretraining. 1192

MosaicBERT(Portes et al., 2023): applying cur- 1193

rent techniques to Bert to shorten model training. 1194

Cramming BERT(Geiping and Goldstein, 2023): 1195

aims to further reduce the training cost of Bert-style 1196

models and explore the performance of Bert-style 1197

models that can approximate the original Bert as 1198

much as possible with one day of pretraining. 1199

TNN(Qin et al., 2023): utilizing Toeplitz matrices 1200

to capture the relationships between each token 1201

pair, thereby replacing relative position encoding. 1202

Due to the O(n log n) complexity of Toeplitz ma- 1203

trices, it can reduce the computational complexity 1204

of the model and achieve commendable results in 1205

14



Model Params Learning rate Corpus warmup step
FNet(Lee-Thorp et al., 2022) 83M 1e-4 C4 5000

BERT(Devlin et al., 2019) 108M 1e-4 C4BookC1 5000
BERT(Izsak et al., 2021) 108M 1e-4 Wiki+BookCorpus 5000

NarrowBert(Li et al., 2023) 105M 1e-4 Wikipedia 5000
MosaicBERT(Portes et al., 2023) 137M 1e-4 C4 5000

Cramming BERT(Geiping and Goldstein, 2023) 145M 1e-4 Wiki+BookCorpus 5000
DFT-Trans(our) 95M 1e-4 C4BookC1 10000

Table 8: Pretrain detail for different models

long-sequence modeling tasks.1206

Mamba(Gu and Dao, 2024): selective processing1207

of information, coupled with hardware-aware accel-1208

eration algorithms at the hardware level, combined1209

with a simpler SSM architecture, forms Mamba. It1210

addresses the quadratic complexity issue of Trans-1211

former.1212

C.4 Analysis of model training speed and1213

memory usage1214

To investigate the training speed of DFT-Trans com-1215

pared to other state-of-the-art (SOTA) models on1216

long-text tasks, we select the byte-level text classifi-1217

cation task(Text dataset) from the LRA benchmark1218

for evaluation. This is because the input text length1219

in the Text datasets task is 4k, which aligns with1220

the maximum length we aim to test. All models1221

are trained under 512, 1k, 2k, and 4k input lengths.1222

The results are presented in Table 9. For fairness,1223

we maintain the same configuration settings in Nys-1224

trömformer. The basic Transformer model exhibits1225

the poorest performance in this test. Other im-1226

proved models, such as Linformer, Performer, and1227

Nyströmformer, demonstrate relatively better per-1228

formance. FNet, due to its abandonment of the1229

attention mechanism, significantly improves train-1230

ing speed but shows inferior task accuracy com-1231

pared to other models. DFT-Trans demonstrates1232

commendable performance across all tasks while1233

maintaining a competitive training speed.1234

C.5 The proportion of Layers1235

We conduct experiments without pre-training to1236

investigate the layer allocation between trainable1237

Fourier operators and Attention operators. The1238

results are shown in Figure 4. The layer allocation1239

of (2, 6) achieves the highest average performance1240

on the GLUE benchmark and performs well on all1241

tasks except MRPC. However, the layer allocation1242

of (3, 6) performs the worst, showing poor results1243

on nearly all tasks. The layer allocations of (1, 4)1244

and (3, 4) show strong performance on few-shot1245

datasets.1246

C.6 Exploring the Layers of Mixing Token in 1247

Spectrum 1248

In equation 5, we propose a hyperparameter L to 1249

denote the number of layers of the Mixing Token 1250

Operator in the Spectrum, as illustrated in Figure 1251

2. A series of experiments without pretraining are 1252

conducted to explore the reasonableness of the L 1253

selection. The results are presented in Figure 5. 1254

It can be seen from Figure 5(A) that the average 1255

performance of the model is best for L = 3. The 1256

difference in performance for other value of L is not 1257

particularly large. In Figure 5(B), the best results 1258

are achieved at L = 3 on both the SST-2 and QNLI 1259

tasks. Other values except L = 1 achieve good 1260

results on specific tasks. 1261
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Steps per second↑ Peak Memory Usage↓
Model 512 1K 2K 4K 521 1K 2K 4K

Transformer(Vaswani et al., 2017) 13 10 3 1 0.8 1.3 3.3 11.4
Linformer(Wang et al., 2020) 15 15 13 10 1.5 2.5 4.5 8.4

Performer(Choromanski et al., 2021) 16 16 12 6 1.7 3.0 5.9 10.4
Nystromformer(Xiong et al., 2021) 10 8 7 6 1.2 1.6 2.3 3.8

FNet(Lee-Thorp et al., 2022) 27 24 14 8 0.5 0.7 0.9 1.3
Fourier Transformers(He et al., 2023) 10 11 9 5 0.9 1.9 5.9 21.2

DFT-Trans(ours) 16 15 12 7 0.8 1.1 1.6 2.8

Table 9: The speed and memory consumption on LRA benchmark over Text task
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Figure 4: (A) represents the average performance of the model on GLUE with a different number of layers; here, we
just used four tasks, namely SST-2, STS-B, MRPC, and QNLI. (B) is the performance of the models on a single
task.
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Figure 5: (A) represents the average performance of the model on GLUE with different number of Mixing Token
Operator in Spectrum, here we just uesd four tasks, namely SST-2, STS-B, MRPC, QNLI. (B) is the performance of
the models on single task.
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