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Abstract
Existing knowledge graph embedding methods001
that adopt powerful graph neural networks try002
to aggregate well-preserved neighborhood in-003
formation into the entity representation. How-004
ever, they represent each entity solely with a005
relation-irrespective representation which con-006
tains the entire miscellaneous neighborhood007
information, regardless of the variance of em-008
phatic semantics required by different relations009
in predicting the missing entities. To tackle010
this problem, we propose ReadE, a method to011
learn relation-dependent entity representation,012
of which the neighborhood information is se-013
lectively aggregated and emphasized by varied014
relations types. First, we propose a relation-015
controlled gating mechanism targeting on utiliz-016
ing the relation to control the information flow017
from neighbors in the aggregation step of the018
graph neural network. Second, we propose a019
well-designed contrastive learning method with020
mixing both relation-level and entity-level nega-021
tive samples to enhance semantics preserved in022
our relation-dependent GNN-based representa-023
tions. Experiments on three benchmarks show024
that our proposed model outperforms all strong025
baselines. The code will be made open-sourced026
on Github.027

1 Introduction028

Knowledge graph (KG) is a semantic network and029

can be used to represent the relations of different030

entities in the real world. Due to the existence of a031

huge amount of potential facts, existing KGs, like032

NELL (Carlson et al., 2010) and YAGO3 (Mahdis-033

oltani et al., 2015), mostly face the problem of034

completing the missing relations, which is known035

as the knowledge graph completion (KGC) task.036

In this work, we mainly focus on the task of how037

to predict the missing entity in incomplete triplets038

like < entity, relation, ? >.039

To complete the KG, a fundamental task is to040

learn informative and meaningful representations041

for the entities and relations in KG, based on which042

Entity Relation

Neighbor Entity Missing Entity

Figure 1: A simple illustration of different kinds of KGE
methods. From top to bottom are conventional meth-
ods, existing GNN-based approaches to learn relation-
irrespective representations, and our model to learn
relation-dependent representations.

the missing links can be predicted. Given a triplet 043

< e1, r, e2 >, TransE (Bordes et al., 2013) pro- 044

posed to learn the representations that satisfy the 045

property of translation invariance e1 + r ≈ e2. 046

To increase the model’s representational ability, 047

in ConvE (Dettmers et al., 2018), a multi-layer 048

convolution network is used to predict missing en- 049

tities. However, all these methods process each 050

triplet independently, ignoring the neighborhood 051

information inherent in the graph structure. To ad- 052

dress this, many methods adopt various kinds of 053

graph neural networks (GNNs) to aggregate the 054

neighbor’s information into the entity representa- 055

tion (Nathani et al., 2019; Shang et al., 2019). For 056

example, GAATs (Wang et al., 2020) introduce a 057

graph attenuated attention mechanism to consider 058

n-hop neighbors and assign different weights for 059

different relation paths to well-preserve the neigh- 060

borhood information. KE-GCN (Yu et al., 2021a) 061

adopts the graph convolutional network (GCN) to 062

model the homogeneous topology information that 063

exists in a KG. Similarly, HRAN (Li et al., 2021) 064

introduces a heterogeneous GCN to model hetero- 065

geneous relation feature. 066

1



Intuitively, as pointed out in TransR (Lin et al.,067

2015), an entity could play different roles. Hence,068

the representation of an entity that is learned069

by GNN-based approaches may contain miscel-070

laneous neighborhood information of many as-071

pects derived from its neighbor entity nodes. For072

example, when MichaelJordan is working for073

ChicagoBulls, he has a teammate ScottiePippen074

(i.e., a neighbor), who was born in Hamburg.075

Therefore, the representation of MichaelJordan076

learned by existing graph neural networks in-077

tends to contain information about ScottiePip-078

pen’s birthplace and employment information079

simultaneously. When an incomplete triplet080

< MichaelJordan,EmploymentCompany, ? > is081

given, if the information of ScottiePippen that is082

related to the relation EmploymentCompany can be083

emphasized and aggregated into the representation084

of MichaelJordan, it would be easier to predict the085

ground-truth missing entity ChicagoBulls. There-086

fore, it is important for every entity to have a rep-087

resentation that is dependent on its corresponding088

concrete relation. That is, when interacting with089

different relations to predict the miss one, an entity090

needs to show selective neighborhood information091

according to the relation it connects with. However,092

existing methods only learn a relation-irrespective093

representation for an entity, irrespective of the ex-094

act relations they interact with. For these relation-095

irrespective entity representations, obviously, dif-096

ferent aspects of neighborhood information cannot097

be shown when interacting with different relations098

in predicting missing entities.099

In this paper, we propose ReadE, a method to100

learn Relation-dependent Entity representations.101

Fig 1 visually illustrates the difference between our102

proposed model and previous methods. In our pro-103

posed method, the representation of an entity can104

vary according to the relation that is interacted with.105

To this end, we first propose a relation-controlled106

gating mechanism that is used to control which and107

how much information from neighbors can flow108

into the interested entity’s representation during109

the aggregation step. Since a good relation repre-110

sentation can make the relation-controlled gating111

mechanism work better, in contrast to previous112

methods, a similarity-preserving relation represen-113

tation is learned for every relation through GCN,114

hoping that similar relations (e.g., PlaceOfBorn and115

PlaceOfResidence) in the graph can share similar116

representations, capturing the correlation among117

different relations. Moreover, we further propose 118

to use contrastive learning to enhance the semantic 119

information in our relation-dependent entity rep- 120

resentation, in which a novel two-level generation 121

process of negative samples is proposed. Extensive 122

experiments are conducted on three benchmarks for 123

the knowledge graph completion task. The experi- 124

ments show that our ReadE outperforms all strong 125

baselines and further analyses verify the validity of 126

each proposed component. 127

2 Related Work 128

Nowadays, knowledge graph embedding (KGE) 129

methods play an important role in KGC. Given a 130

triplet < e1, r, e2 >, TransE (Bordes et al., 2013) 131

learns the representation of the entity and relation 132

according to the translation-based constraint of 133

e1 + r ≈ e2. Later, TransH (Wang et al., 2014), 134

TransR (Lin et al., 2015), and TransD (Ji et al., 135

2015) extend the translation-based constraint to 136

model more complex features. To further learn 137

more expressive representation, ConvE (Dettmers 138

et al., 2018) adopts multi-layer CNN architecture 139

to capture the deeper correlation between e1 and 140

r. Then, ConvKB (Nguyen et al., 2018) further 141

extends ConvE to consider correlation between 142

the entire triplet (e1, r, e2). InteractE (Vashishth 143

et al., 2020) introduces more types of interactions 144

between entity and relation in ConvE. For more 145

details, we refer interested readers to some sur- 146

veys (Wang et al., 2017; Nguyen, 2020). 147

However, these methods process each triplet in- 148

dependently, ignoring the neighborhood informa- 149

tion inherent in the graph structure of a given en- 150

tity. To address this, Nathani et al. (2019) adopt 151

the graph attention network to aggregate the in- 152

formation from neighbors to obtain a meaning- 153

ful entity representation. Similarly, KE-GCN (Yu 154

et al., 2021a) adopts the GCNs to simultaneously 155

model the entities and relations and then capture 156

heterogeneous relations in the knowledge graph. 157

SACN (Shang et al., 2019) adopts the weighted 158

GCN, which assigns each relation a trainable 159

weight and then aggregates information from neigh- 160

bors according to the connected relation. Further, 161

COMPGCN (Vashishth et al., 2019) targets at the 162

directed multi-relational KG, and proposes to sys- 163

tematically leverage entity-relation composition op- 164

erations via GCN-based approach. GAATs (Wang 165

et al., 2020) argues that different relation paths 166

in KG should be assigned with different weights 167
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and integrate an attenuated attention mechanism168

to better preserve the neighborhood information.169

Later, HRAN (Li et al., 2021) divides the KG into170

sub-graph levels, where each sub-graph contains171

all the entities but only 1 relation, to capture the172

heterogeneous relation features.173

Another approach to KGE is to adopt the Trans-174

former architecture (Vaswani et al., 2017), e.g., KG-175

BERT (Yao et al., 2019), StAR (Wang et al., 2021),176

and HittER (Chen et al., 2021). These models177

adopt the deep Transformer architecture to learn a178

more meaningful representation and then advance179

the KGC, but they are usually urgent for huge com-180

puting resources.181

Our paper belongs to the category that considers182

neighborhood information. It can be concluded that183

the existing methods represent each entity solely184

with a relation-irrespective representation which185

contains the entire miscellaneous neighborhood186

information. Different from them, given incom-187

plete triplets like < entity, relation, ? >, we use188

the relation as the guidance to selectively aggre-189

gate the neighborhood information into the entity190

representation. From this perspective, the exist-191

ing GNN-based representations are regarded as192

relation-irrespective, while our representation is193

relation-dependent.194

3 Preliminary195

Due to the strong ability to learn commonalities196

among adjacent nodes for graph-structured data,197

graph neural networks (GNN) have been widely198

used to learn the entity representations of knowl-199

edge graphs in recent years (Nathani et al., 2019;200

Shang et al., 2019; Li et al., 2021). The GNN-based201

models generally share the common architecture202

of using a GNN to learn the entity representation203

and then applying a score function to evaluate the204

matching degree of a triplet <head entity, relation,205

tail entity>. Because of the similarity among these206

methods, here we take the SACN (Shang et al.,207

2019) as an example to illustrate the basic princi-208

ples behind the GNN-based entity representation209

learning methods.210

By viewing the KG as a entity graph Ge, in211

which each node and edge represents an entity212

and relation, respectively, SACN applies a L-layer213

weighted graph convolutional network onto graph214

Ge to obtain entity representations 215

zl
i=σ

 ∑
j∈Ne(i)

αi,jz
l−1
j W l−1 +zl−1

i W l−1

 , (1) 216

where ℓ = 1, 2, · · ·L denotes the ℓ-th layer of 217

GNN; Ne(i) represents the neighbors of entity i 218

in graph Ge; zℓ
i denotes the embedding of i-th en- 219

tity ei obtained at the ℓ-th layer, with the initial 220

embeding z0
i ∈ Rde initialized from random Gaus- 221

sian noise; W l ∈ Rde×de is the network parameter 222

at (ℓ − 1)-th layer; the coefficient αi,j is used to 223

control the interaction strength between node i and 224

j; and σ(·) is the sigmoid activation function. zL
i 225

from the L-th layer is then used to represent the 226

final embedding of the i-th entity ei, that is, 227

zi = zL
i . (2) 228

Besides the embedding zi, SACN also learns an 229

embedding for every relation r. For the k-th rela- 230

tion rk, its embedding hk ∈ Rde is directly initial- 231

ized from a random Gaussian noise. 232

Using the entity embeddings zi and relation 233

embeddings h obtained above, for a given triplet 234

< ei, rk, ej >, the SACN evaluates a matching 235

score for it with a scoring function of the form 236

φ(zi,hk, zj) = CNN ([zi;hk])W
czT

j , (3) 237

where CNN(·) denotes a convolutional network 238

applied to a 2 × de matrix [zi;hk]. The model 239

will compute the probability that the given triplet 240

< ei, rk, ej > is true as 241

p(ei, rk, ej) = σ(φ(zi,hk, zj)). (4) 242

Given a training dataset containing both of true 243

and false triplets, the model parameters and initial 244

embeddings can be optimized by minimizing the 245

following cross-entropy loss 246

Lc=
−1

N

N∑
n=1

(yn log pn+(1−yn) log(1−pn)) (5) 247

where pn denotes the probability of truth for the 248

n-th triplet computed according to (4); and yn is 249

the ground-truth label, which is 1 for true triplet 250

and 0 otherwise. 251

4 Methodologies 252

In this section, we propose our ReadE. First, we 253

present how to learn relation-dependent represen- 254

tations through a relation-controlled gating mech- 255

anism, then introduce a novel contrastive learning 256
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Figure 2: The overall framework of our de-
signed relation-dependent entity representation learning
method.

method with mixing both relation-level and entity-257

level negative samples to enhance the entities’ se-258

mantic information.259

4.1 Relation-Dependent Entity260

Representation Learning261

Existing methods mainly focus on how to learn262

good representations for the entities and relations263

so that the relevance among the entities and rela-264

tions in true triplets can be retained as much as265

possible. However, in all of these existing meth-266

ods, the learned representation of an entity is never267

dependent on the relations, that is, the represen-268

tation maintains one appearance under different269

relations. However, no matter the problem is to pre-270

dict the tail entity given the head entity and relation271

< ei, rk, ? >, or to predict the head entity given272

the tail entity and relation <?, rk, ej >, the rela-273

tion is always available. Thus, if we learn for every274

entity a collection of representations, with each275

corresponding to a relation, when facing the entity276

prediction task < ei, rk, ? > or <?, rk, ej >, we277

can always choose to use the entity representation278

under the specific relation rk. To the convenience279

of presentation, in the following, we denote the280

representation of i-th entity ei under relation r as281

zi(r).282

The relation-dependent entity representation un-283

der relation r can be learned with a GNN as284

zl
i(r) =

1

|Ne(i)|
∑

j∈Ne(i)

f(hr, z
l−1
j (r))W l−1285

+ f(hr, z
l−1
i (r))W l−1. (6)286

Here, f(·, ·) is the interaction function between the287

entity and relation and is designed as288

f(hr, z
l−1
i (r))=σ

(
W fhr + gf

)
⊙ zl−1

i (r),

(7)289

where W f ∈ Rde×dr , gf ∈ Rde are parameters290

to be learned, ⊙ is the feature-wise product. The291
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Figure 3: The illustration of our graph construction
methods of Gr and Ge.

final entity representation zi(r) is obtained by ap- 292

plying the sigmoid function σ to the output at the 293

last layer, i.e., zi(r) = σ(zL
i (r)). The function 294

f(·, ·) plays a role of relation-controlled gate that 295

can determine which dimension’s information in 296

the entity representation zℓ−1
i can be flowed into 297

neighboring nodes. If the relevance between the 298

relation and an entity is weak, the σ(·) function 299

will output a value close to zero, cutting off the 300

information flowing into to the entity’s neighbors. 301

The reason why we design this relation- 302

controlled gate function is that KGs are usually 303

densely connected (Lovelace et al., 2021), making 304

a GCN-based encoder prone to aggregate from its 305

neighbors the irrelevant information w.r.t. the con- 306

sidered relation. Thus, as illustrated in Fig 2, as 307

aggregating the information from neighbors, we 308

first let the relation control which and how much 309

information can flow into the interested entity’s 310

representation, making the entity have different 311

representations under different relations. 312

Similarity-preserving Relation Representation 313

Learning The relation dependence in the pro- 314

posed entity representations is achieved by incor- 315

porating the relation representations hk into the 316

entities’ representation updating process through 317

a gating mechanism. In practice, different rela- 318

tions are related, rather than isolated, to each other. 319

For example, in KG, the relation PlaceOfBorn and 320

PlaceOfResidence are both related to the city entity, 321

suggesting they should share some common seman- 322

tic information in their representations. However, 323

we cannot directly model such kind of similarities 324

on the existing entity graph Ge, resulting in that the 325

relation representations used in the gating function 326

(7) fails to contain sufficient relevant information 327

between different relations. To have the relation 328

representations to reflect this kind of similarities, 329

we propose to construct a relational graph Gr from 330

the KG by representing every relation as a node 331
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and adding an edge between two relations if they332

connect to a common entity, as illustrated in Fig 3.333

With the relation graph Gr, we can now apply the334

graph neural networks (e.g., GCN) on the graph to335

obtain relation representations336

hl
r =σ

 ∑
j∈Nr(r)

hl−1
j W l−1

r + hl−1
r W l−1

r

 , (8)337

where ℓ = 1, 2, · · · , L′ denotes the ℓ-th layer of338

GCN; the initial embedding h0
r is initialized by ran-339

dom Gaussian noise; Nr(·) denotes the set of the340

neighbors of relation r in Gr; and W l
r ∈ Rdr×dr341

is the GCN parameter. We set the output hL′
r from342

the last layer as the final relation representation,343

that is,344

hr = hL′
r . (9)345

Thanks to the message-passing process during the346

learning, the representation of a relation is not iso-347

lated anymore, but is related to other relations that348

share common entities. In this way, the common349

information of different relations or their similarity350

information can be manifested in the learned repre-351

sentations. By substituting the similarity-preserved352

relation representation (9) into entity representation353

updating equation (6), the final relation-dependent354

entity representation updating method is obtained.355

4.2 Enhancing Semantics of Entity356

Representation with Contrastive Learning357

The link prediction task is to predict the missing358

head or tail entity given the other two components.359

Thus, similar to the classification tasks in images360

and texts, if more semantic information of entities361

are preserved in their representations, better pre-362

diction performance can be expected. Technically,363

contrastive learning can be understood as finding364

pairs of positive and negative instances and then365

trying to reduce the distance between positive pairs366

while enlarging that between negative ones under367

different contrast losses. Among them, the NT-368

Xent (Chen et al., 2020) contrast loss below is used369

most widely370

L=− log
D(u

(1)
i ,u

(2)
i )

D(u
(1)
i ,u

(2)
i ) +

∑
j ̸=i,m=1,2

D(u
(1)
i ,u

(m)
j )

,371

where u
(m)
i represents the m-th view of the i-th372

instance. Different views from the same instances373

are generally treated as positive pairs, while views374

from different instances are considered as negative 375

pairs. The key of using contrastive learning lies at 376

how to find effective positive and negative pairs, 377

which can determine whether semantic information 378

can be well preserved in the representations. For 379

images, both of the positive and negative pairs can 380

be easily obtained by applying transformations to 381

the same or different images. However, for graphs, 382

especially for knowledge graphs that contain the 383

additional information of relation, generating effec- 384

tive positive and negative pairs is not that straight- 385

forward at all. 386

To generate positive pairs, inspired by the works 387

that apply self-supervised learning on general 388

graphs (Velickovic et al., 2019; Xia et al., 2021; 389

Yu et al., 2021b), we perturb the knowledge graph 390

by randomly dropping some nodes and edges and 391

then apply the aforementioned methods on the per- 392

turbed graph to obtain the entities’ representations 393

z′
i. Then, the representations zi and z′

i can be 394

viewed as a positive pair. For convenience of pre- 395

sentation, the two representations zi and z′
i are 396

deemed as two views of entity i, and are denoted 397

as z(1)
i and z

(2)
i . The concrete steps to perturb the 398

KG are described in the Appendix C. 399

As for the generation of negative pairs, a com- 400

mon method is to treat views of other entities as 401

negative samples. However, in order to learn more 402

meaningful semantic information in KG, we sug- 403

gest to collect negative samples in two different 404

levels, i.e., the relation level and the entity level. 405

Relation-Level Negative Samples For a relation- 406

dependent entity representation zi(r), we hope it 407

can retain discriminative semantic information of 408

entity i under the specific relation of r. To strength 409

the objective that the semantic information con- 410

tained in zi(r) is exclusive to the relation r, we 411

propose to generate negative samples under the 412

same entity by using different relations r′ with 413

r′ ̸= r. Specifically, for the representation of entity 414

ei under the relation r, i.e., zi(r), its relation-level 415

negative samples is defined to be from the follow- 416

ing set 417

Zneg
i (r) =

{
z
(1)
i (r′), z

(2)
i (r′)

∣∣∣ r′ ̸= r
}
. (10) 418

Entity-Level Negative Samples For an entity 419

representation zi(r), in addition to include ex- 420

clusive semantic information comparing to entity 421

representations under other relations zi(r
′) with 422

r′ ̸= r, it should also contain exclusive semantic 423
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information when comparing with other entities.424

Therefore, we define the entity-level negative sam-425

ples of zi(r) as426

Z̃neg
i (r) =

{
z
(1)
j (r), z

(2)
j (r)

∣∣∣ j ̸= i
}
, (11)427

where we require the relation in other entities to428

be the same as the considered entity. In the imple-429

mentation, the entity j can just be the other entities430

from the same mini-batch.431

With the two negative sample sets, we can define432

the final contrastive learning loss as433

ℓ
(1)
i =− log

Dpos

Dpos +
∑

u∈Zi(r)

D(z
(1)
i (r),u)

, (12)434

where Zi(r) ≜ Zneg
i (r) ∪ Z̃neg

i (r); and Dpos ≜435

D(z
(1)
i (r), z

(2)
i (r)). Here, D(z

(1)
i (k), z

(2)
i (k)) is436

calculated as437

D(z
(1)
i (k), z

(2)
i (k)) = esim(z

(1)
i (k),z

(2)
i (k))/τ ,

(13)438

where sim(·, ·) denotes the cosine similarity be-439

tween vectors, and τ is a temperature parameter440

controlling the concentration level of the distribu-441

tion (Hinton et al., 2015). By averaging over a442

mini-batch of size N , the final contrastive loss Lcl443

is444

Lcl =
1

2N

N∑
i=1

(ℓ
(1)
i + ℓ

(2)
i ). (14)445

By minimizing Lcl with both the relation-level and446

entity-level negative samples, our ReadE can learn447

a entity representation preserving more meaningful448

semantics. Finally, we unify the objective of the449

KGC task and the contrastive learning as:450

L = Lc + λLcl, (15)451

where λ is a hyper-parameter used to control the452

trade-off between the loss function.453

5 Experiments454

5.1 Datasets, Evaluation and Baselines455

Datasets We evaluate the proposed ReadE model456

on three benchmark datasets, including FB15k-457

237 (Toutanova and Chen, 2015), WN18RR (Bor-458

des et al., 2013) and UMLS (Kok and Domingos,459

2007). Details of the three datasets can be found in460

Appendix.461

Evaluation Metrics We evaluate the perfor- 462

mance of our ReadE model on the link prediction 463

task, i.e., predicting the missing entity. In the infer- 464

ence phase, given an incomplete triplet, our model 465

takes all the entities as the candidates and outputs 466

the probabilities over all the candidates. Then each 467

candidate is re-ranked according to their proba- 468

bilities to calculate the Mean rank (MR), Mean 469

reciprocal rank (MRR), and Hits@N. MR is the av- 470

erage of the rankings of entities predicted correctly 471

over all triplets while MRR targets at the average 472

of reciprocal rankings. Hits@N denotes the ratio of 473

those predicted correctly entities which are ranked 474

in top-N. Also, We follow Shang et al. (2019) to 475

use the filtered setting Bordes et al. (2013), which 476

will filter out all valid triplets before ranking. 477

In addition, we follow Sun et al. (2020) to adopt 478

the “RANDOM” protocol to handle the situation 479

that the ground-truth triplets have the same scores 480

as the negative triplets, which is caused by the float 481

precision problem. Namely, the rankings of triplets 482

with the same scores will be randomly determined. 483

Baselines We compare our model with follow- 484

ing strong baselines: TransE (Bordes et al., 2013), 485

DistMult (Yang et al., 2015), ComplEx (Trouillon 486

et al., 2016), ConvE (Dettmers et al., 2018), Con- 487

vKB (Nguyen et al., 2018), R-GCN (Schlichtkrull 488

et al., 2018), RotatE (Sun et al., 2019), 489

SACN (Shang et al., 2019), COMPGCN (Vashishth 490

et al., 2019), ATTH (Chami et al., 2020), In- 491

teractE (Vashishth et al., 2020), TorusE (Ebisu 492

and Ichise, 2020), PairRE (Chao et al., 2021), 493

HRAN (Li et al., 2021). 494

5.2 Experimental Results 495

The experimental results of our ReadE and the 496

strong baselines on FB15k-237, WN18RR, and 497

UMLS are shown in Table 1. From the table, the 498

proposed ReadE outperforms the strongest base- 499

line HRAN significantly, with relative MRR im- 500

provement of 4.5% and 2.3% on FB15K-237 and 501

WN18RR, respectively. Among all the baselines, 502

SACN is the most similar one to our model. SACN 503

and our ReadE both utilize the Conv-TransE model 504

to predict the missing entity, and the main dif- 505

ference is that SACN learns a unique representa- 506

tion for each entity while ReadE learns a relation- 507

dependent entity representation instead. It can be 508

seen that our model outperforms SACN by 5.4% 509

and 4.3% in MRR on FB15K-237 and WN18RR re- 510

spectively, showing the effectiveness of the relation- 511
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FB15k-237 WN18RR UMLS
Hits Hits Hits

Model @10 @1 MRR @10 @1 MRR @10 MR
TransE 0.441 0.198 0.279 0.532 0.043 0.243 0.989 1.84

DistMult 0.446 0.199 0.281 0.504 0.412 0.444 0.846 5.52
ComplEx 0.450 0.194 0.278 0.530 0.409 0.449 0.967 2.59

ConvE 0.497 0.225 0.312 0.531 0.419 0.456 0.990∗ 1.00∗

ConvKB 0.421 0.155 0.243 0.520 0.400 0.430 — —
R-GCN 0.300 0.100 0.164 0.207 0.080 0.123 — —
RotatE 0.533 0.241 0.338 0.571 0.428 0.476 — —
SACN 0.536 0.261 0.352 0.535 0.427 0.470 — —

COMPGCN 0.535 0.264 0.355 0.546 0.443 0.479 — —
ATTH 0.501 0.236 0.324 0.551 0.419 0.466 — —

InteractE 0.535 0.263 0.354 0.528 — 0.463 — —
TorusE 0.484 0.217 0.316 0.512 0.422 0.452 — —
PairRE 0.544 0.256 0.351 — — — — —
HRAN 0.541 0.263 0.355 0.542 0.450 0.479 — —
ReadE 0.562 0.275 0.371 0.555 0.460 0.490 0.993 1.43

Improvements 3.3% 4.2% 4.5% 2.4% 2.2% 2.3% — —

Table 1: Performances on FB15k-237, WN18RR, and UMLS datasets. The performances of ConvE on UMLS are
taken from the author’s Github and are marked with *.

dependent entity representation.512

On UMLS, ReadE shows comparable perfor-513

mance with baselines. However, it is undeniable514

that ConvE outperforms our model on UMLS un-515

der the MR criterion. This may be due to the small516

size of UMLS, which leads to the over-fitting issue517

when injecting the graph structure information into518

the entity representation. However, On FB15k-237519

and WN18RR with the more complex graph struc-520

ture, our ReadE outperforms ConvE by 18.9% and521

7.5% under the MRR criterion.522

5.3 Impacts of Different Components523

In this section, we give a deep insight into how524

much improvement different components con-525

tribute to the model performance. To do this, we526

evaluate the performance of variants of ReadE that527

exclude one or more components that have a large528

impact on the performance.529

Specifically, three components included in530

ReadE are considered, and we follow our model’s531

pipeline to describe the three components in turn:532

(1) Component C . It uses the relation to Control533

the neighborhood information aggregation during534

the GCN-based encoding stage to generate the535

relation-dependent entity representation. Without536

it, every entity will be assigned a unique represen-537

tation instead. (2) Component R. It means the538

similarity-preserving Relation representation learn-539

ing component which obtains the relation repre-540

sentation by applying GCN on Gr. Without it, the541

relation representation degenerates the one ignor-542

ing its similarity information. (3) Component D.543

The contrastive learning component with Double544

levels of negative samples is designed to enhance 545

the semantics of the relation-dependent entity rep- 546

resentation. Dropping this component means that 547

we remove the contrastive loss Lcl. Please note that 548

the D component is based on the C component, if 549

we drop the C component, the D component will 550

be dropped simultaneously. Based on the above- 551

defined components, we propose four variants of 552

ReadE: ReadE w/o R, ReadE w/o D, ReadE w/o 553

C, ReadE w/o RC. The four variants are com- 554

pared with the original ReadE on FB15k-237 and 555

WN18RR and results are shown in Fig 4. 556

From the result, we can have the following ob- 557

servations. First, ReadE w/o C which removes the 558

most basic component C will induce a significant 559

performance drop when compared with the com- 560

plete ReadE, suggesting the importance of taking 561

the relation into account when learning the entity 562

representation. Second, without using the proposed 563

CL component (i.e., ReadE w/o D), an immedi- 564

ate performance drop is observed on FB15k-237 565

and WN18RR, which demonstrates the necessity 566

of utilizing the designed CL method to further im- 567

prove our relation-dependent entity representation. 568

Third, ReadE w/o C is better than ReadE w/o RC, 569

demonstrating that even if we solely learn a unique 570

relation-irrespective entity representation as pre- 571

vious methods do, improving the quality of the 572

relation representation can still improve the per- 573

formance. Also, ReadE w/o R works worse than 574

ReadE, which indicates that similarity-preserving 575

relation representations can better control the infor- 576

mation aggregation from the neighborhood. Last 577

but not least, if we remove all three components 578
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Figure 4: Performances of variants of ReadE that exclude one or more components on FB15k-237 and WN18RR.

FB15-237 WN18RR
w/o Entire Lcl 0.364 0.484

+ Relation-Level 0.369 0.488
+ Entity-Level 0.366 0.486
+ Entire Lcl 0.371 0.490

Table 2: MRR when using one of the relation-level
and entity-level negative samples on FB15-237 and
WN18RR.

(i.e., ReadE w/o RC), the performance is poorest,579

confirming the validity of the proposed ReadE.580

5.4 Impacts of Different Levels of Negative581

Samples582

In this section, we evaluate the influence of relation-583

level and entity-level negative samples in the584

denominator of (14). MRR on FB15-237 and585

WN18RR datasets when using one of these two586

kinds of negative samples are shown in Table 2.587

Note that no matter which negative samples we use,588

the positive samples are unchanged and always be589

considered when calculating the contrastive loss.590

We can see that the performances brought by591

CL with solely relation-level negative samples are592

more excellent than the ones brought by CL with593

solely entity-level negative samples on both FB15k-594

237 and WN18RR. In this paper, given an entity,595

CL with relation-level negative samples aims to596

increase the distances between different relation-597

dependent entity representations of it among differ-598

ent relations, which is consistent with our motiva-599

tion of learning an entity representation of which se-600

mantics will vary depending on its relation. There-601

fore, it may explain why CL with relation-level neg-602

ative samples achieves a greater result. Also, the603

model performs best if two levels of negative sam-604

ples are considered together at the same time, indi-605

cating the credibility of the proposed CL method606

to enhance the entity’s semantics.607

5.5 Impacts of Parameter λ608

In ReadE, we introduce the hyper-parameter λ ,609

which controls the trade-off between the cross-610
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Figure 5: MRR and Hits@1 of ReadE under different
values of λ on FB15k-237 and WN18RR.

entropy loss and the contrastive loss. In this section, 611

we investigate the sensitivity of λ. We manually 612

select the values of λ from {0.01, 0.05, 0.1, 0.2, 613

0.5}. MRR and Hits@1 w.r.t λ on FB15k-237 and 614

WN18RR datasets are illustrated in Fig 5. 615

It is shown that as λ grows up, the performance 616

of ReadE first increases and reaches the peak when 617

λ = 0.05 and 0.1 on FB15k-237 and WN18RR re- 618

spectively. Afterwards, if λ is larger, the improve- 619

ment is neutralized and lost. This phenomenon 620

shows that the performance is sensitive to the hyper- 621

parameter λ. And in practice, we suggest that the 622

loss weight for the contrastive loss can be set to 623

[0.01, 0.1] for exploiting the potentialities of the 624

model. 625

6 Conclusion 626

In this paper, we proposed a novel knowledge graph 627

embedding method, namely ReadE. In ReadE, we 628

managed to introduce the relation-controlled gate 629

mechanism to control the information flow in the 630

aggregation step of the graph neural network, and 631

thus obtained relation-dependent entity representa- 632

tions. Further, we proposed a contrastive learning 633

method with both relation-level and entity-level 634

negative samples for the particular purpose of en- 635

hancing the meaningful semantic information of 636

entities’ representations. Extensive experiments 637

have shown that ReadE significantly outperformed 638

existing baselines. 639
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A More Details about Datasets 814

We evaluate the proposed ReadE model on 815

three benchmark datasets, including FB15k- 816

237 (Toutanova and Chen, 2015), WN18RR (Bor- 817

des et al., 2013) and UMLS (Kok and Domingos, 818

2007). Below shows the detailed descriptions of 819

the three datasets, with their statistics summaries 820

listed in Table 3. 821

1) FB15k-237 (Toutanova and Chen, 2015) con- 822

tains the knowledge base relation triplets including 823

real-world named entities and the relation. The 824

FB15k-237 is the subset of the FB15K (Bordes 825

et al., 2013), which is originally collected from 826

Freebase. Different from the FB15K, the inverse 827

relations are removed from FB15k-237. 828

2) WN18RR consists of English phrases and the 829

corresponding semantic relations, which is derived 830

from the WN18 (Bordes et al., 2013). Similar to 831

FB15k-237, the inverse relations and the leaky data 832

are removed from the WN18RR. 833

3) UMLS (Kok and Domingos, 2007), named 834

Unified Medical Language System, is a medical 835

KG dataset. It contains 135 medical entities and 46 836

semantic relations. 837

B Training Details 838

According to the performance observed on the val- 839

idation set, we select the number of layers from 840

{1, 2, 3, 4, 5}, the batch size from {4, 32, 128, 841

256, 1024}, the embedding size from {100, 200, 842

300}, the learning rate from {1e-3, 5e-4, 5e-5, 1e- 843

5, 5e-6}, the dropout rate from {0.1, 0.3, 0.5}, the 844

temperature τ from {0.1, 0.5, 1, 2, 10}, and the λ 845

from {0.01, 0.05, 0.1, 0.2, 0.5}, with the best used 846

for evaluation on the test set. All experiments are 847

conducted on a single 11G NVIDIA 2080Ti GPU. 848

Each experiment is repeated 10 times, and the av- 849

erage results are reported. The total number of 850
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Dataset FB15k-237 WN18RR UMLS

Entities 14541 40943 135
Relations 237 11 46
Train Edges 272115 86835 5216
Dev Edges 17535 3034 652
Test Edges 20466 652 661

Table 3: The statistics of the three benchmark datasets.

parameters of ReadE is 11.1M. It takes about 8 and851

4 hours to get the best result running on FB15k-237852

and WN18RR datasets, respectively.853

C KG Data Augmentations for Creating854

Positive Pairs855

In CL, a popular way to construct the positive pair856

on graph-structure data is to corrupt the graph struc-857

ture to change the adjacency information of each858

entity, therefore defining the different views of859

the same node as the positive pair. Inspired by860

GraphCL (You et al., 2020), we design two types861

of knowledge-graph-level data augmentations to862

realize the corruption.863

Entity Dropping. Given the knowledge graph Ge,864

edge dropping will randomly discard certain por-865

tion of entities (i.e., nodes) and all the edges asso-866

ciated with them. Specifically, the probability of867

an entity to be chosen is defined as:868

pc(ei) ∝
1

d(i)
3
4

, (16)869

where d(i) is the degree of the entity ei. The reason870

for using the reciprocal is that removing nodes871

with higher degree will impact more on the graph872

structure.873

Relation Dropping. Relation dropping will first874

randomly choose a certain ratio of non-repetitive875

relations and remove all the edges that are included876

in these chosen relations. The definition of prob-877

ability that a relation r to be chosen is similar to878

(16) with replacing the degree with the number of879

the edges that associated with r.880

For each iteration, the random augmentations are881

operated twice and two different views of an entity882

ei will be generated. Also,we repeatedly random883

sample entities and relations without replacement884

to make sure that a certain ratio (named ad β) of885

entities and relations are dropped.886
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