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Modelling complex multivariate distributions often re-
quires trade-offs between expressivity, tractability, and con-
trol over marginal behavior. Copula models offer a princi-
pled way to decouple marginals from dependencies, but ex-
isting approaches rely on restrictive parametric families or
forgo strict marginal constraints. We show that diffusion
models can be adapted to learn copula representations that
preserve uniform marginals through explicit regularisation.
We augment the training objective with: (i) a Monte Carlo
penalty that encourages the learned score to match the de-
sired marginal constraint over the diffusion path (ii) recent
advances in online diffusion schedule optimisation. Experi-
ments on synthetic bivariate data show that our method im-
proves sample quality and reliably enforces marginal uni-
formity, supporting its effectiveness for copula estimation.

1 INTRODUCTION

Modelling multivariate distributions lies at the heart of
probabilistic reasoning. A central challenge is balancing
tractability, expressivity, and interpretability, objectives
that often involve some trade-offs. Modelling the full joint
distribution offers maximal flexibility but can be computa-
tionally expensive and obscure structural insights, whereas
conditional factorisations enable more efficient inference at
the cost of direct access to marginals.

Copulas provide an alternative parameterisation by decou-
pling the marginal distributions from the dependency struc-
ture [Sklar, 1959]. This separation is particularly useful
when marginals are subject to external constraints, such as
those informed by expert elicitation, regulatory standards,
or physical laws, while the dependencies remain complex
and data-driven. Such scenarios are common in finance, cli-
mate modelling, and causal inference [Zhang and Singh,
2019, Úbeda Flores et al., 2017, Evans and Didelez, 2024].

Parametric copula models often struggle to represent com-
plex or multimodal dependencies due to restrictive as-
sumptions. Nonparametric methods offer greater flexibil-

ity, but may lack scalability or tractable sampling [Chen
and Huang, 2007]. Recent copula deep generative mod-
els [Kamthe et al., 2021] typically relax strict marginal
constraints, relying instead on empirically uniform inputs.
Moreover, they are notoriously difficult to train, requiring
extensive hyperparameter tuning, a challenge compounded
by the non-smooth boundary conditions of copulas that
make the underlying densities hard to model.

In this paper, we develop a principled approach for training
diffusion models to learn copula representations under ex-
plicit marginal constraints. We introduce a Monte Carlo reg-
ularisation term that encourages the learned score to match
the boundary behaviour of uniform marginals throughout
the diffusion process. This is done by discretising the in-
put domain and time into bins and penalising the squared
difference between the average predicted score in each bin
and a reference score from the theoretical marginal. The re-
sulting loss augments standard denoising score matching,
guiding the model to approximate the correct distributional
score, including its divergence at the boundaries.

We make use of recent advances in online schedule op-
timisation [Williams et al., 2024], which is applied dur-
ing training both to condition the score model and to de-
termine the reference time points used in the marginal
penalty. The method iteratively refines a time reparametri-
sation by minimising Stein divergence along the diffusion
path, yielding a schedule that better captures the target dis-
tribution’s geometry, especially near boundaries with sin-
gular marginal behaviour. This improves stability and fi-
delity, with schedule-aware regularisation alone producing
samples that closely match the target marginals.

The resulting models support tractable sampling and infer-
ence over marginals and joint distributions, making them
well-suited for applications where preserving distributional
properties is essential. This includes fields like finance, cli-
mate modelling, and causal inference, where marginals are
often externally constrained while joint dependencies re-
main complex and data-driven.
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2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models Song et al. [2021] are a form of gener-
ative model, whose aim is to produce samples from a tar-
get distribution µdata, given only a finite number of samples
from it. First samples X0 ∼ µdata are passed through the
forward stochastic differential equation (SDE),

dXt = −
1

2
βt Xtdt+

√
βt dBt, X0 ∼ µdata, (1)

for positive β ∈ C1(R+,R+). The time reversal Xt obeys

dXt =
1

2
βt Xt − 2βt∇ log pt(Xt)dt+

√
βt dB̃t, (2)

where XT ∼ pT ≈ N (0, 1) for T sufficiently large and
throughout pt denotes the law of the forward samples Xt.
Therefore, the task of generating new samples from µdata
can be solved by simulating paths of (2). To that end, we
approximate the unknown drift ∇ log pt in (2) by minimis-
ing the score matching loss:

ℓdsm(s) =

∫ T

0

v(t)E
[
‖s(t,Xt)−∇ log pt|0(Xt|X0)‖2

]
dt,

where the common choice v(t) = 1 − e−ωt , with ωt :=∫ t

0
βs ds, is used. Notably, the schedule β also influences

training by defining the distribution over time points at
which the cost function is evaluated, specifically through
sampling ωt ∼ β(dt). Upon temporal discretisation, the
loss ℓdsm(s) becomes dependent on both the time spacing
ω and the number of discretisation points, making it clear
that discretised costs arising from different schedules are
not directly comparable. Consequently, the choice of sched-
ule plays a critical role during training, as it shapes both the
weighting of time steps and the fidelity of the approximate.

2.2 COPULAS

By Sklar’s theorem [Sklar, 1959], any joint distribu-
tion F over D continuous random variables X =
(X(1), . . . , X(D)) with marginals (FX(1) , . . . , FX(D)) can
be expressed in terms of a copula distribution function C:

F (x) = C(FX(1)(x(1)), . . . , FX(D)(x(D))), x ∈ RD.

The copula distribution is associated with a copula density,
c(·) with uniform marginal densities given through,

f(x)=c(FX(1)(x(1)), . . . , FX(D)(x(D))) ·
D∏

d=1

fX(d)(x(d))

where f (d) denotes the marginal density of X(d). See Sec-
tion 2.2 for further background on copulas.

Copula density estimation allows for simultaneous identifi-
cation of the marginal densities of the variables. However,
enforcing strict marginal uniformity during training is cru-
cial. Without this, the learned marginals can drift from the
true univariate distributions, and the resulting joint density
loses interpretability. This is especially problematic when
marginal constraints are not merely modelling assumptions
but domain-informed requirements.

Generative Copula Modelling Several machine learn-
ing approaches have been developed to flexibly learn cop-
ula models, including those targeting specific parametric
families [Wilson and Ghahramani, 2010, Ling et al., 2020].
Kamthe et al. [2021] proposed using normalising flows to
fit copula distributions. However, their architecture does
not enforce marginal constraints, allowing learned outputs
to deviate from the copula property. Manela et al. [2024] ex-
tend this approach by introducing marginal constraints on a
single variable, but generalising this to multiple marginals
requires imposing undesirable restrictions on the model’s
dependency structure. These limitations underscore the
need for more flexible and principled copula models that
preserve fixed marginal constraints by design. Here, we
seek to resolve this by using diffusion models.

3 METHODS AND EXPERIMENTS

Problem Statement Diffusion models require learning
the score function ∇ log pt and specifying a suitable noise
schedule β, which crucially impacts training and sampling
quality [Williams et al., 2024]. For non-smooth densities-
like uniform distributions on [0, 1], common in copula mod-
els, standard diffusion introduces smoothing artefacts. A
carefully chosen schedule can mitigate this.

For copulas, the marginal on dimension d, denoted by
c(d)(FX(d)), is uniform at diffusion time t = 0. That is,
the marginal score, interpreted in distributional form, obeys
∇x(d) log c(d)(FX(d)(x(d))) = ∞ · 1(−∞,0)(x

(d)) − ∞ ·
1(1,∞)(x

(d)), as the score of a uniform density supported
on [0, 1]. Let ct be the pushforward of the copula under
the diffusion process after time t, so if X0 ∼ c, then
for diffused Xt we have ct := Law(Xt). The diffused
marginal score sref

t (x
(d)
t ) = ∇x(d) log c

(d)
t (F

X
(d)
t

(x
(d)
t )) is

the diffusion of the score ∇x(d) log c(FX(d)(x(d))) for all
i ∈ {1, . . . , D}.

We need to ensure that this boundary constraint for our ap-
proximate s(d)t is obeyed for all t in our learned model. Fur-
ther, we need to ensure that our choice of schedule min-
imises numerical artefacts. We develop a Monte Carlo regu-
larisation technique that relies on a well-chosen schedule to
enforce this constraint. A good schedule enables the sharp
boundary cutoff to be accurately learned, making the regu-
larisation effective.



3.1 ONLINE SCHEDULE ESTIMATION

We adopt the approach introduced by Williams et al. [2024]
to optimise the diffusion schedule while simultaneously
learning the score function. Doing so allows us to miti-
gate tuning the scheduling parameter, and further, allows
us to learn intricate densities which naturally arise in
the copula regime without the need for hyper-parameter
search. Given a potentially non-optimal schedule β, time
is reparametrised via the dilation function ωt =

∫ t

0
βs ds.

Defining the dilated densities qωt
:= pt, identifying an op-

timal schedule is equivalent to choosing an optimal time
spacing ω through application of the chain rule. We will use
ω ∈ C1(R+,R+) for the increasing time dilation function
and ω ∈ R+ as a placeholder for its evaluates. Let v(t′) be
from the diffusion loss, Williams et al. [2024] showed that
optimal scheduling minimises:

DStein(qωt′ ||qωt
) = v(t′) E

pt

∥∥∥∥∇ log
pt′

pt

∥∥∥∥2
2

, (3)

across the diffusion path. Let {ωj = ω(tj)}Ndiff
j=0 be a dis-

cretisation of time with ωNdiff = T , the final diffusion time.
The quantity

λ(ω) :=
∑

ωtj
≤ω

√
DStein(qωtj−1

||qωtj
) (4)

converges to the continuous path length in the fine-mesh
limit and is invariant under time reparametrisation. Cru-
cially, λ can be estimated from any discretisation. To obtain
the optimal time dilation ω∗, one uses the inverse of λ:

ω∗
t = λ−1(λ(T ) · t). (5)

Online schedule estimation proceeds by first learning the
score function, estimating ω → λ(ω) using the current
score, computing t → ω∗(t), and updating the sched-
ule using an exponential moving average with strength
α ∈ (0, 1). Unlike prior work which parametrises pt, we
parametrise qωt

so that the neural network can account for
time reparametrisation directly.

Pseudocode: Online Schedule Estimation
1: for each training step do
2: Sample x0 ∼ µdata, t ∼ U({t0, . . . , tN}) on batch
3: Estimate score loss ℓdsm(sθ) and update sθ
4: if schedule update step then
5: Estimate Stein divergences ▷ Equation (3)
6: Estimate ω 7→ λ(ω) ▷ Equation (4)
7: Compute ω∗

t = λ−1(λ(T ) · t) ▷ Equation (5)
8: ωt ← (1− α)ωt + αω∗

t ▷ α ∈ (0, 1)
9: βt ← d

dtω(t) ▷ Finite difference
10: end if
11: end for

3.2 MARGINAL SCORE REGULARISATION

We propose learning a copula with a diffusion model, fo-
cusing on capturing variable dependencies while ensuring
uniform marginals on [0, 1]. To assert µdata has uniform
marginals in our model, we regularise the learned score to
posses this property in generated samples.

To achieve this, we add a regularisation term to the denois-
ing score matching loss, encouraging the marginals s(d)t to
remain approximately uniform during diffusion, granting

L(s;ω,Ndiff,B) = ℓdsm(s;ω,Ndiff) + τ · ℓcop(s;B), (6)

where ℓcop(s;B) estimates our marginal score and com-
pares this to a reference score function sref

t with strength
τ > 0, on a time and spatial discretisation B.

For our approximated score s, we are required to estimate
our marginal score with only access to the joint score and
jointly distributed samples. Using Bayes rule we can derive
the marginal score expression

s(d)ωt
(x

(d)
t ) =

∫
pt(x

(−d)
t |x(d)

t )sωt
(xt)dx

(−d)
t , (7)

where x
(−d)
t is the vector xt without dimension d, that is

xt with x
(d)
t removed. We still cannot evaluate this expres-

sion as it involve drawing conditional samples. By taking
local expectations, we may transform this equation into one
which only requires joint samples. Let x ∈ [xmin, xmax]
and ω ∈ [ωmin,ωmax], with grids {xi}Nx

i=0, {ωj}Nω

j=0.
Define intervals Ix,i := [xi, xi+1), Iω,j := [ωj ,ωj+1),
and bins Bi,j := Ix,i × Iω,j with the total discretisation
B := {Bi,j}Nx,Nω

i,j=1 . Let x̄i = xi+xi+1

2 , ω̄j =
ωj+ωj+1

2
denote the bin centres. Taking expectations over Bi,j ,

E
(x

(d)
t , ωt)∈Bi,j

s(d)ωt
(x

(d)
t ) = E

xt∼pt

1Bi,j (x
(d)
t , ωt) sωt(xt),

which can be estimated via Monte Carlo sampling over
batches, using only access to the joint score. As the
bins Bi,j are refined, the expectations ŝ(d)(Bi,j) :=
E
(x

(d)
t ,ωt)∈Bi,j

sωt
(xt) converge to the score evaluated at

the bin centres (x̄i, ω̄j). Thus, define the regularisation

ℓcop(s;B) :=
D∑

d=1

∑
i,j

(
ŝ(d)(Bi,j)− sref

ω̄j
(x̄

(d)
i )

)2

. (8)

Importantly, the construction of bins requires a time and
spatial discretisation. For the spatial discretisation, we
know that the training data lies in the centered unit hyper-
cube and can be gridded in this way. To ensure accurate
Monte Carlo estimates, the temporal discretisation must be
chosen so that the local expectations accurately capture the
marginal quantities of interest along the diffusion path. To
achieve this, we align the choice of bin discretisation with
the diffusion schedule — choosing B based on the current
estimate of ω — making an effective schedule critical for
the accuracy of the approximation in Equation (8).



3.3 EXPERIMENTS

We evaluate the proposed training strategies on four syn-
thetic bivariate datasets; Gaussian and Clayton copulas,
and on transformed-versions of the more complex and
multimodal MOONS and CIRCLES data-generators from
scikit-learn [Pedregosa et al., 2011] which have
been mapped to the copula rank space using empirically
marginal CDFs. Further details are in Appendix B.1.

We evaluate three principal variants of score-based genera-
tive models within the DDPM framework using a variance-
preserving SDE. The first model class, FIXED, employs
standard training with the commonly used linear, quadratic,
or cosine βt schedules. The second, SCHED, uses a learned
diffusion schedule optimised during training (see Sec-
tion 3.1). Finally, REG applies marginal score regularisa-
tion to improve the alignment of learned marginals, as in-
troduced in Section 3.2. As a baseline, we also fit para-
metric copulas whose family selections are selected by
MLE [Dissmann et al., 2013, Czado, 2019]. Training set-
tings are discussed in Appendix B.2.

Quantitative Results We evaluate performance using the
energy distance [Székely and Rizzo, 2013], where lower
values indicate better alignment with the true distribution.
Table 1 reports scores between generated and test samples
in copula space. SCHED) achieves the best results on the
Moons and Circles datasets under consistent training set-
tings. As expected, the parametric copula model performs
best on samples generated from the same parametric fami-
lies, serving as a natural baseline in those cases. Nonethe-
less, SCHED remains competitive and outperforms other
learned methods on the Clayton copula.

Impact of Marginal Regularisation Figure 1 illustrates
the effect of marginal regularisation on the learned sched-
uler for a Gaussian fit. Regularised models produce slightly
more consistent uniform marginals and tighter sample con-
centration within the domain. However, Table 1 shows that
performance slightly degrades in multimodal settings. Al-
though REG still outperforms FIXED schedulers on Moons
and Circles, it introduces greater dispersion across modes.
These findings suggest marginal regularisation offers clear
benefits but must be carefully calibrated to avoid constrain-
ing the models flexibility. Future refinements may improve
its applicability across more complex distributions.

4 CONCLUSIONS

We introduced a diffusion-based framework for learning
copula models under explicit marginal constraints. By reg-
ularising the score to match the known behaviour of uni-
form marginals and incorporating adaptive diffusion sched-
ule learning, our method improves the fidelity of generated

(a) Learned Schedule without uniform regularisation

(b) Learned Schedule with uniform regularisation.

Figure 1: Comparison of scheduled diffusion learned
with/without marginal regularisation (samples centered).

Table 1: Distances between generated and test samples in
copula space across all datasets (values scaled by 10−3).
The Linear, Quadratic, and Cosine methods are all part of
the FIXED scheduling protocol.

Model Moons Circles Gaussian Clayton

Parametric 8.2 7.1 7.9 0.7
SCHED 2.1 1.4 9.7 1.1
REG 2.7 2.1 8.7 0.9
Linear 4.3 2.5 8.9 1.2
Quadratic 4.2 2.4 8.4 1.1
Cosine 2.8 2.6 10.1 3.7

samples, particularly near boundary regions where standard
models often struggle. These findings suggest that princi-
pled regularisation of diffusion models offers a scalable ap-
proach to copula learning in domains requiring marginal
control. Future work will extend the framework to higher
dimensions and structured temporal settings.
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A COPULAS

Copulas present a powerful tool to model joint dependencies independent of the univariate margins. This aligns well with
the requirements of the frugal parameterisation, where dependencies need to be varied without altering specified margins
(the most critical being the specified causal effect). Understanding the constraints and limitations of copula models ensures
that causal models remain accurate and consistent with the intended parameterisation.

A.1 SKLAR’S THEOREM

Sklar’s theorem [Sklar, 1959, Czado, 2019] is the fundamental foundation for copula modelling, as it provides a bridge
between multivariate joint distributions and their univariate margins. It allows one to separate the marginal behaviour of
each variable from their joint dependence structure, with the latter being represented by the copula itself.

Theorem A.1. For a d-variate distribution function F ∈ F(FX(1) , . . . , FX(d)) ∈ Rd, with jth univariate margin Fj , the
copula associated with F is a distribution function C : [0, 1]d → [0, 1] with uniform margins on (0, 1) that satisfies

F (x) = C(FX(1)(x1), . . . , FX(d)(xd)), x ∈ Rd.

1. If F is a continuous d-variate distribution function with univariate margins F1, . . . , Fd and rank functions
F−1
1 , . . . , F−1

d then

C(u) = F (F−1
X(1)(u1), . . . , F

−1
X(1)(ud)), u ∈ [0, 1]d.

2. If F is a d-variate distribution function of discrete random variables (more generally, partly continuous and partly
discrete), then the copula is unique only on the set

Range(F1)× · · · × Range(Fd).

The copula distribution is associated with its density c(·)

f(x) = c(FX(1)(x1), . . . , FX(d)(xd)) · f (1)(x1) . . . f
(d)(xd)

where fi(·) is the univariate density function of the ith variable.

Note that Sklar’s theorem explicitly refers to the univariate marginals of the variable set {X1, . . . , Xd} to convert between
the joint of univariate margins C(u) and the original distribution F (x). For absolutely continuous random variables, the
copula function C is unique. This uniqueness no longer holds for discrete variables, but this does not severely limit the
applicability of copulas to simulating from discrete distributions. The non-uniqueness does play a more problematic role
in copula inference, however [Genest and Nelehová, 2007].

An equivalent definition (from an analytical purview) is C : [0, 1]d → [0, 1] is a d-dimensional copula if it has the following
properties:
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1. C(u1, . . . , 0, . . . , ud) = 0;

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui; and further,

3. C is d-non-decreasing.

Definition A.1. A copula C is d-non-decreasing if, for any hyperrectangle H =
∏d

i=1 [ui, yi] ⊆ [0, 1]d, the C-volume of
H is non-negative. ∫

H

C(u) du ≥ 0.

B EXPERIMENTAL DETAILS

B.1 DATASETS AND PARAMETERIZATIONS

Experimental setup. We systematically evaluate our diffusion-based copula modeling approaches on a suite of synthetic
and semi-synthetic datasets, each designed to probe different aspects of dependence structure and marginal complexity.

• Clayton Copula: We sample points from a bivariate Clayton copula [Joe, 2014] using the pyvinecopulib li-
brary [Thomas Nagler and Thibault Vatter, 2021]. This is to test the model performance on an Archimedean copula
with non-linear and non-Gaussian dependence.

• Moons: We construct a challenging non-Gaussian dataset by applying the empirical copula transformation to data
generated by sklearn.datasets.make_moons. A large auxiliary sample (N = 106) is used to fit empirical
marginal CDFs, and a smaller subset (n = 1000) is mapped to copula space for training and evaluation.

• Circles: Similarly to the Moons example, we use sklearn.datasets.make_circles to generate a ring-
shaped distribution, mapping samples into copula space via empirical marginal CDFs estimated from a large auxiliary
sample.

For each dataset, we train and compare three diffusion models: a standard Denoising Diffusion Model (DDM), a DDM
with soft marginal constraints, and a DDM with reweighting to uniform marginals. All models are trained for 2,000 epochs
(unless otherwise specified), with 2,000 samples drawn from each trained model for quantitative and qualitative evaluation.
Hyperparameters such as the number of diffusion steps, marginal constraint strength, and model architecture are kept fixed
across datasets for comparability.

B.2 DIFFUSION TRAINING HYPERPARAMETERS

The experiments were all conducted on a MacBook M1 Pro (2023). For all experiments, we standardized the dataset size
to n = 1000 samples for each method and ensured that the number of training epochs was consistent across all models.
The following summarizes the key hyperparameters used for the diffusion schedulers and data generation processes:

• Score Model: All models used a neural network with dmodel = 20 hidden units, 10 layers, and input dimension
xdim = 2.

• Scheduler: For all methods, we used nsteps = 100, minval = 1e-5, and maxval = 5 for the diffusion process.

• Soft Constraint Penalty: For the soft-constraint DDPM Reg, we set the penalty parameter λpenalty = 0.01.

• 1D Score Learning: The 1D uniform score was learned using Nx,bins = 20, xmin = −3.0, xmax = 3.0, Nt,bins = 20,
t0 = 0.0, and tend = 1.0.

• Batch Size: Training was performed with a batch size of 512.

• Epochs: The number of training epochs was standardized across all methods (e.g., 2000 epochs for 2D models, 600
epochs for 1D models).
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