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Abstract

One area of research in Multi-Agent Path Finding (MAPF) is
to determine how re-planning can be efficiently achieved in
the case of agents being delayed during execution. One op-
tion is to determine a new wait order, i.e., an ordering for
multiple agents that are planned to visit the same location, to
find the most optimal new solution that can be produced by
re-ordering the wait order. We propose to use a Switchable
Temporal Plan Graph and a heuristic search algorithm to ap-
proach finding a new optimal wait order. We prove the admis-
sibility of our algorithm and experiment with its efficiency in
a variety of conditions by measuring re-planning speed in dif-
ferent maps, with varying numbers of agents and randomized
scenarios for agents’ start and goal locations. Our algorithm
shows a fast runtime in all experimental setups.

Introduction
Multi-Agent Path Finding (MAPF) is the problem of finding
a collision-free plan that navigates a team of agents from
their start locations to their goal locations. The problem
is the core difficulty of numerous practical and industrial
applications, such as automated fulfillment and sortation
centers (Wurman, D’Andrea, and Mountz 2008; Kou et al.
2019), computer games (Silver 2005; Li et al. 2020), drone
swarms (Hönig et al. 2018), and so on. The field of MAPF
has garnered considerable interest in recent years. Solving
MAPF problems optimally is known to be NP-hard on both
graphs and grids (Yu and LaValle 2013; Banfi, Basilico, and
Amigoni 2017), and numerous algorithms have been devel-
oped to address this challenge.

Classic MAPF models assume flawless execution. How-
ever, in real-world scenarios, agents may encounter unex-
pected delays due to mechanical differences, unforeseen
events, localization errors, and so on. To accommodate such
delays, existing research suggests the use of a Temporal Plan
Graph (TPG) (Hönig et al. 2016). The TPG captures the
precedence relationships within a MAPF solution and main-
tains these relationships during execution. In this model, an
agent only advances to the next vertex in its plan if the cor-
responding precedence conditions are met. Consequently, if
an agent experiences a delay, all other agents whose actions
depend on the delayed agent will pause. Despite its advan-
tages, the use of TPG can introduce a significant number of
waits into the execution results due to the knock-on effect in

the precedence relationship.
In this paper, we introduce a variant of the Temporal Plan

Graph, named as the Switchable TPG. This model allows
for the modification of precedence relationships through two
operations on switchable edges, resulting in a new standard
TPG. With a Switchable TPG, in the event of a delay, we
can generate a new standard TPG that minimizes the cost
for all agents to reach their goal locations by executing the
new TPG. Subsequently, we propose an optimal heuristic
search algorithm to find the new TPG based on a Switch-
able TPG. We provide proof of the algorithm’s optimality
and evaluate its efficiency under a variety of experiments.
Experimental results show that our approach always finds
the optimal TPG with an average runtime faster than 1 sec-
ond for various numbers of agents on the random-32-32-10
and the warehouse map. On more complicated maps (Paris
and Lak303d), our algorithm also runs about 4 times faster
than the existing replanning algorithm.

Problem Definition
We first introduce the formal definition of MAPF.

Definition 1 (MAPF). Multi-Agent Path Finding (MAPF) is
an optimization problem of finding collision-free paths for a
team of agents A on a given graph. Each agent has a unique
start location and a unique goal location. Time is discretized
into unit-size steps. In each timestep, agents can move to
an adjacent location or wait at the current location. A path
specifies the actions of an agent at each timestep from its
start location to its goal location. We say two agents i, j ∈ A
collide if either of the following happens:

1. i and j are at the same location at the same timestep.
2. i leaves a location l at a timestep t and j enters the same

location l at the timestep t.
A MAPF solution is a set of collision-free paths, one for

each agent in A.

Remark 1. The above definition of collision coincides with
that in the setting of k-robust plan (Atzmon et al. 2018) with
k set to 1. The motivation for disallowing the second type
of collision above is that if agents follow each other and the
front agent suddenly stops, the following agent may collide
with the front agent. Thus this restriction guarantees better
robustness when agents are subject to delays.



For our discussion, we will stick to the following format
for a MAPF solution, though our algorithm is not dependent
on the specific format of the MAPF solution.

Assumption 1. A MAPF solution takes the form of a set
of paths P = {pi : i ∈ A}. Each path pi is an ordered
sequence of location-timestep tuples (li0, t

i
0) → (li1, t

i
1) →

· · · → (lizi, t
i
zi) with the following properties:

• ti0 = 0. li0 is the start location of agent i, and lizi is its goal
location.

• Each tuple (lik, t
i
k) in pi for k > 0 indicates that agent i

is planned to perform a move action into the location lik at
timestep tik. So tizi records the time when agent i reaches
its goal, i.e. the travel time of i.

• We require a temporal ordering of the sequence: tik < tis
for all 0 ≤ k < s ≤ zi.

These properties force all consecutive pairs of locations
lik and lik+1 to be adjacent on the graph. A wait action is
implicitly defined between two consecutive tuples (lik, t

i
k)

and (lik+1, t
i
k+1): if tik+1 − tik = ∆, then agent i is planned

to wait at lik for ∆− 1 timesteps before moving to lik+1.
We also formalize some phrases related to MAPF: A

MAPF solution is optimal if it minimizes the sum of travel
time for all agents, i.e.,

∑
i∈A tizi. Agents are said to be ex-

ecuting a MAPF solution if they act as specified in their
paths.

In this paper, we consider the replanning problem when
agents are subject to a delay during execution. We model
this as Problem 1, parameterized by a delay probability p.

Problem 1. Given a MAPF solution, at any timestep t dur-
ing the execution a delay may happen, in which: at least one
agent (that hasn’t reached its goal) is forced to wait at its
current location from timestep t to t + ∆, for some delay
length ∆ that may be drawn from some distribution.

When such a delay happens, the delayed agent might
block the paths of other undelayed agents and thus hinder
their execution. One naı̈ve fix is that once a delay happens,
we re-run a MAPF solver with this delay constraint to pro-
duce a new solution. However, this approach is usually ex-
pensive. Instead, we propose a fast replanning algorithm that
lets agents stick to their original location-wise paths but with
different move-or-wait sequences.

Related Works
The field of MAPF has attracted significant attention in re-
cent years. In relation to this, numerous recent studies have
explored strategies for managing unexpected delays during
execution. A simple strategy to manage unexpected delays
is to replan from the beginning. However, this approach is
computationally intensive, leading to prolonged agent wait-
ing time. To avoid the need for replanning, Atzmon et al.
(2018) suggested the creation of a k-robust plan. The ap-
proach built robustness into the plan., allowing agents to
adhere to their planned paths even if each agent is delayed
by up to k timesteps. However, if an agent’s delay exceeds

k timesteps, replanning or alternative strategies are still re-
quired. Atzmon et al. (2020) then proposed a different ap-
proach, computing p-robust plans that ensure execution suc-
cess with a probability of at least p, given an agent de-
lay probability model. Nevertheless, planning a k-robust or
p-robust plan is considerably more resource-intensive than
computing a standard MAPF plan.

Another strategy for managing delays involves the use of
an execution policy to execute a plain MAPF solution, where
dependencies or precedence relationships are preserved dur-
ing execution (Hönig et al. 2016; Ma, Kumar, and Koenig
2017; Hönig et al. 2019). This approach is quick and elim-
inates the need for replanning. However, the execution re-
sults often leave room for improvement, as many unnec-
essary waits are introduced, and the solution lacks quality
guarantees.

Temporal Plan Graph
Roughly, our algorithm optimizes the orderings for multiple
agents that are planned to visit the same location. This is
achieved using a graph-based abstraction called Temporal
Plan Graph.
Definition 2 (TPG, (Hönig et al. 2016)). A Temporal Plan
Graph (TPG) is a directed graph G = (V, E) that represents
the precedence relationships of a MAPF solution. Given a
MAPF solution P , the corresponding TPG is defined as fol-
lows:

Each vertex represents a move action of an agent. The set
of vertices is V = {vik : i ∈ A, k ∈ [0, zi]}, where each
vertex vik corresponds to the kth tuple in the path pi. Each
edge encodes a precedence relationship between a pair of
move actions. An edge (u, v) encodes that the movement
u is planned to happen before the movement v. The set of
edges E represents the is partitioned into two types of edges
E1 and E2.

• Type 1 edges connect two vertices corresponding to con-
secutive tuples for the same agent. The set of Type 1 edges
is E1 = {(vik, vik+1) : ∀i ∈ A, k ∈ [0, zi)}.

• Type 2 edges connect two vertices of distinct agents, as
long as they correspond to tuples containing the same lo-
cation. The set of Type 2 edges is

E2 = {(vjs+1, v
i
k) : ∀i ̸= j ∈ A, s ∈ [0, zj), k ∈ [0, zi]

satisfying ljs = lik and tjs < tik}

Remark 2. Note that in the above description, we define
Type 2 edge as (vjs+1, v

i
k) instead of (vjs, v

i
k) in order to

avoid the second type of collision in Definition 1.
Example 1. Figure Figure 1 shows an example of convert-
ing a MAPF solution into a TPG. Both agents are planned
to visit the same location D and the red agent is planned to
visit D earlier than the blue agent. Therefore we have a Type
2 edge from vred

3 to vblue
2 .

Executing a TPG
A TPG contains sufficient information for agents’ execution.
Procedure 1 describes how to execute a TPG in detail, which



Figure 1: An example of converting a MAPF solution to a
TPG. The solid arrows in the TPG represent Type 1 edges,
and the dashed arrow represents a Type 2 edge.

includes two helper functions INITEXEC and STEPEXEC and a
main function EXEC, along with two marks “satisfied” and
“unsatisfied” for vertices.

Intuitively, marking a vertex as satisfied corresponds to
moving an agent to the corresponding location, and we do
so if and only if all in-neighbors of this vertex have already
been satisfied. The execution terminates when all vertices
are satisfied, i.e. all agents have reached their goals. We now
formally state some properties of a TPG. All missing proofs
are delayed to the appendix due to the space limit.

Definition 3 (Deadlock). When executing a TPG as Proce-
dure 1, we say a deadlock is encountered iff in an iteration
of the while-loop [line 17], the set S contains only NULL
on line 21 yet there exists unsatisfied vertex in V .

Lemma 1. Executing G encounters a deadlock if and only
if there exists a cycle in G.

Lemma 1 shows a correspondence between a cycle and
a deadlock that holds for all TPG. Next, we focus on prop-
erties that are specific to a TPG that is constructed from a
MAPF solution.

Proposition 2 (Collision-Free). Let G be a TPG constructed
from a MAPF solution as in Definition 2. Assuming G is ex-
ecuted as in Procedure 1 and an agent i is moved to its kth
location lik at timestep t iff vertex vik is satisfied in the tth

iteration of the while-loop on line 17, any two agents i, j
never collide.

One can also derive the following interesting corollary
from the proof of Proposition 2, which is going to be use-
ful later for our algorithm.

Corollary 3. Let G be a collision-free TPG. If we replace
an arbitrary Type 2 edge (vjs+1, v

i
k) in it with (vik+1, v

j
s), the

TPG remains to be collision-free.

Next, we relate the cost of a TPG with the sum of travel
timesteps of a MAPF solution.

Proposition 4. Let G be a TPG constructed from a MAPF
solution P , the cost of G is no greater than the sum of travel
time for agents following P .

Proposition 4 gives an immediate corollary that G is
deadlock-free.

Corollary 5 (Deadlock-Free). If a TPG G is constructed
from a MAPF solution P , then it is deadlock-free.

Procedure 1: Execute (G = (V, E))
Lines highlighted in blue are activated to compute
the cost of a TPG, and can be omitted for the mere
purpose of execution.

1 Define a counter cost;
2 Function INITEXEC(G)
3 cost← 0;
4 Mark all vertices in V0 = {vi0 : i ∈ A} as

satisfied;
5 Mark all remaining v ∈ (V \ V0) as unsatisfied;

6 Function STEPEXEC(G, i)
7 if ∀k : vik satisfied then
8 return NULL;
9 cost← cost+ 1;

10 v ← vik : vik unsatisfied and ∀k′ < k, vik′

satisfied;
11 forall (u, v) ∈ E do
12 if u unsatisfied then
13 return NULL

14 return v

15 Function EXEC(G)
16 INITEXEC(G);
17 while there exists unsatisfied vertex in V do
18 Define a set S ← ∅;
19 forall agent i ∈ A do
20 Add STEPEXEC(G, i) into S;
21 forall v ∈ S do
22 if v ̸= NULL then
23 Mark v as satisfied;

24 return cost;

Switchable TPG
TPG is a handy representation for precedence relationships.
However, a standard TPG constructed as in Definition 2 is
fixed and bound to a given set of paths. In contrast, our op-
timization algorithm will use the following extended notion
of TPG, which enables flexible modifications of precedence
relationships.

Definition 4 (Switchable TPG). Given a TPG G0, let E1 de-
note its set of Type 1 edges and E2 denote its set of Type
2 edges, such that G0 = (V, E1, E2). A switchable variant
of G0 is G = (V, E1, (SE2,NE2)), which partitions E2 into
two disjoint subsets SE2 (switchable Type 2 edges) andNE2
(non-switchable Type 2 edges), and allows two operations
with respect to any switchable edge (vjs+1, v

i
k) ∈ SE2:

• fix(vjs+1, v
i
k) removes this edge from SE2 and add the

same edge into NE2. i.e., this operation fixes a switchable
edge to be non-switchable.

• reverse(vjs+1, v
i
k) removes this edge from SE2 and add

(vik+1, v
j
s) into NE2. i.e., this operation switches the



precedence relation and then fixes it to be non-switchable.

Figure 2 shows a visualization for the reverse operation.

Figure 2: An example of reversing an edge in TPG. After
the reverse operation, edge (vred

1 , vblue
2 ) in the left TPG is

replaced with edge (vblue
3 , vred

0 ) in the right TPG

Definition 4 defines a strict superclass of Definition 2. For
clarity, we may refer to a TPG satisfying Definition 2 as a
non-switchable or a standard TPG. A switchable TPG de-
generates into a standard TPG if SE2 is empty, in which
case its cost can be determined using Procedure 1. We say a
switchable TPG G produces a standard TPG G′ if G′ can be
generated through a sequence of fix or reverse operations
on G. Note that by Corollary 3, all G′ producible from G are
simultaneously deadlock-free or not.

Then the roadmap of our replanning algorithm is:
(1) when a delay happens, construct a switchable TPG G

corresponding to the current states of agents, and then
(2) produces a standard TPG G′ from G with the minimum

possible cost (among all G-producible G′), such that it
represents an optimal ordering of precedence relation-
ships, upon sticking to the original location-wise paths.

We end this section by specifying the construction of a
switchable TPG corresponding to a delay situation.

Construction 1. Given a MAPF solution P , we execute it
by running Procedure 1 on its corresponding standard TPG
G0 as constructed in Definition 2. Assume that at timestep t
during the execution, agent i is delayed for ∆ timesteps. We
construct a switchable TPG G for this situation as follows:

1. Let G = (V, E1, E2) be a copy of the standard TPG G0.
2. Convert it to a switchable TPG(V, E1, (SE2,NE2)) by

defining NE2 = {(u, v) : either u or v is marked as
satisfied in the execution of G0} and SE2 = (E2 \ NE2).

3. Let vik be the next unsatisfied vertex of i, i.e. vik ←
STEPEXEC(G0, i) from Procedure 1. Create ∆-many new
dummy vertices: Vnew = {v1, v2, · · · , v∆} and (∆ + 1)-
many new edges:

Enew = {(vik−1, v1), (v1, v2), · · · , (v∆−1, v∆), (v∆, v
i
k)}.

Modify G such that V ← V∪Vnew and E1 ← (E1∪Enew)\
{(vik−1, v

i
k)}.

When executing this TPG, we interpret satisfying a
dummy vertex as agent i waiting at location lik−1 that corre-
sponds to vertex vik−1.

Construction 1 satisfies the following intuitive yet crucial
theorem. The proof is again delayed to the appendix.

Theorem 6. Let G be a switchable TPG constructed as in
Construction 1, there always exists a finite-cost, collision-
free standard TPG that can be produced from G.

Algorithm
We now describe our algorithm in a top-down modular man-
ner, starting with a high-level heuristic search framework in
Algorithm 2. We abuse the operators fix and reverse to
take a switchable TPG along with a switchable edge as in-
puts and return a new TPG after the operation.

Algorithm 2: Replanning
HEURISTIC, TERMINATE, CYCLEDETECTION, and
BRANCH are modules that will be specified later. X
denotes some auxiliary information accompanying a
TPG, whose format is defined by the set of modules.

Input: TPG Groot = (V, E1, (SE2,NE2))
Output: TPG Gresult

1 Initialize an empty priority queue Q;
2 hroot ← HEURISTIC(Groot,Xinit);
3 Q.push((Groot,Xinit), 0, hroot);

4 while Q is not empty do
5 ((G,X ), g, h)← Q.pop();
6 (g′,X ′, (vik, v

j
s))← BRANCH(G,X );

7 if TERMINATE(G,X ′) then
8 fix all edges in SE2 of G;
9 return G;

10 Gf ← fix(G′, (vik, vjs));
11 if not CYCLEDETECTION(Gf, (vik, v

j
s)) then

12 hf ← HEURISTIC(Gf,X ′);
13 Q.push((Gf,X ′), g + g′, hf );

14 Gr ← reverse(G′, (vik, vjs));
15 if not CYCLEDETECTION(Gr, (v

j
s+1, v

i
k)) then

16 hf ← HEURISTIC(Gf,X ′);
17 Q.push(Gr,X ′), g + g′, hr);

18 throw exception “No solution found”;

Before analyzing Algorithm 2, we recall the notion of cost
of a standard TPG and define a similar notion of partial cost
for a switchable TPG as the cost of its reduced standard
TPG, which contains only its non-switchable edges.

Lemma 7. Let Gswitch be a switchable TPG and G be an
arbitrary standard TPG produced from Gswitch. The partial
cost of Gswitch is no greater than the cost of G.

We prove Lemma 7 in the appendix.
We now state and prove the correctness of our Algorithm

2, under some reasonable assumptions on the modules.

Assumption 2. Let Groot be a switchable TPG constructed
as in Construction 1. We assume the modules in Algorithm
2 satisfy the following conditions:
• CYCLEDETECTION(G, (u, v)) returns true iff G′ contains

a cycle involving edge (u, v), where G′ is the reduced stan-
dard TPG of G containing only its non-switchable edges.



• Given a TPG G:
– HEURISTIC(G,X ) computes a value h.
– BRANCH(G,X ) outputs a value g′, an updated auxiliary

information X ′, and an edge in SE2 if it is non-empty
or NULL otherwise.

Whenever we push ((G,X ), g, h) intoQ, g+ h is guaran-
teed to be the partial cost of G.

• On line 7 of Algorithm 2, TERMINATE returns true iff the
partial cost of G equals the cost of G′, where G′ is pro-
duced from G by fixing all switchable edges.

We make the following observations from Assumption 2:

1. Under the assumption on TERMINATE, when Algorithm
2 reaches line 10, G must contain switchable edges so
(vik, v

j
s) returned by BRANCH is not NULL. This ensures

that fix and reverse on line 10 and 14 are well-defined.
2. As long as Groot is acyclic, it holds inductively that CY-

CLEDETECTION(G, (u, v)) on line 11 and 15 returns true
iff the reduced standard TPG G′ contains any cycle. This
is because in each iteration, we introduce one new edge
into G′, and any new cycle formed in this iteration has to
contain this new edge.

Theorem 8. Under Assumption 2, taking Groot as an input,
Algorithm 2 outputs a collision-free standard TPG Gresult
with the minimum cost among all possible Groot-producible
standard TPG.

Proof. Theorem 6 shows the existence of a solution (in
particular, it is collision-free so by Corollary 3, any Groot-
producible standard TPG is collision-free.) We now prove
the completeness and then admissibility of Algorithm 2.

Algorithm 2 always terminates because by assumption
TERMINATE(G) returns true once G contains no switchable
edge. There are only finitely many possible operation se-
quences from Groot to any standard TPG, each corresponds
to an element that can possibly be added to Q. Thus the al-
gorithm must return a solution or report an exception when
all possibilities are exhausted after a finite number of steps.
We show the completeness using the following claim:

Claim 9. Let G′ be an arbitrary deadlock-free solution that
can be produced from Groot. At the beginning of each itera-
tion of the while-loop on line 4, there exists some G ∈ Q
such that G′ can be produced from G.

Proof (of Claim 9). This holds inductively: at the beginning
of the first iteration, Groot ∈ Q. During any iteration, if some
G ∈ Q such that G can produce G′ is popped on line 5, then
one of the following must hold:

• G = G′: G contains no switchable edge, thus the algo-
rithm terminates in this iteration and the inductive step
holds vacuously.

• Gf produces G′: since G′ is acyclic, so is the reduced
TPG of Gf . Thus Gf won’t be pruned by CYCLEDETEC-
TION and is added into Q.

• Gr produces G′: this is symmetric to the previous case.

In any case, the claim remains true after this iteration.

Claim 9 shows that Algorithm 2 is guaranteed to find a
solution if one exists, otherwise the priority queue would
remain to be non-empty and the algorithm cannot exit the
loop to throw an exception.

Finally, if Gresult is outputted, it must have the minimum
cost. Assume towards contradiction that when Gresult is re-
turned, there exists another G0 in Q that can produce a stan-
dard Gbetter with cost smaller than Gresult. Yet this is impossi-
ble since Lemma 7 implies that such G0 must have a smaller
g+h value and thus would be popped fromQ before Gresult.
On the other hand, Claim 9 shows that the existence of such
a G0 is the necessary condition for the existence of Gbetter.
Therefore Gresult has the minimum cost.

Execution-based Modules
In this and the subsequent section, we describe two sets of
modules and prove that they satisfy Assumption 2. We start
with describing a set of “execution-based” modules in Mod-
ules 3, which largely ensembles Procedure 1.

Proposition 10. Module 3 satisfies Assumption 2.

Proof. By the property of DFS, CYCLEDETECTION returns
true iff there exists a cycle involving edge (u, v). We show
by induction that whenever we push ((G,X ), g, h) intoQ in
Algorithm 2, g + h equals the partial cost of G.

• In the base case, HEURISTIC computes hroot by running
exactly Procedure 1 on the reduced standard TPG of Groot,
so 0 + hroot is the partial cost of Groot.

• Let ((G,X ), g, h) be popped fromQ. Observe inductively
that X records a state of execution of G, and g records the
execution cost up to that timestep. On line 6 of Algorithm
2, BRANCH continues execution from that stateX until we
reach the next switchable edge (as indicated by the mod-
ifications on line 13 of Modules 3). BRANCH outputs the
execution cost g′ from X to a current state X ′.
Then line 10 or 14 of Algorithm 2 fix or reverse this
edge to get Gf or Gr, and HEURISTIC on line 12 or 16 of
Algorithm 2 continues executing the reduced TPG of Gf
or Gr from X ′ till termination to get h. Thus g + g′ + h
together sums to the total partial cost of Gf or Gr.

Finally, if on line 7 of Algorithm 2, TERMINATE returns
true, then the last BRANCH outputs a goal state for all agents,
i.e. the modified execution on line 13 of Modules 3 does
not encounter any switchable edge. So it must have been
executed on a standard TPG, whose partial cost is exactly its
cost after vacuously fixing all its switchable edges.

Graph-based Modules
In this section, we introduce an alternative set of modules,
which departs from the execution-based ideology of Mod-
ules 3 and focus on the graph properties of a TPG. We will
see later in our experiment that this shift of focus signif-
icantly improves the efficiency of our algorithm. We start
by presenting the following crucial theorem that provides a
graph-based approach to compute the cost of a TPG.



Module 3: Execution-based Modules
1 Function CYCLEDETECTION(G, (u, v))
2 Run DFS on G starting from vertex v;
3 if DFS encounters a cycle then
4 return true;
5 return false;

6 Auxillary information X is a map X : A → [0 : zi],
which records the index of the most recently
satisfied vertex for each agent;

7 Define Xinit[i] = 0 for all i ∈ A;

8 Function BRANCH(G,X )
9 Run Procedure 1 on G with the following

modifications:
• Change line 4 of INITEXEC to:

Mark all vertices in V0 = {vik : i ∈ A, k ≤ X [i]} as
satisfied;

• Change line 20 of EXEC to:
if v ← STEPEXEC(G, i) ̸= NULL and
(∃e ∈ SE2 : e := (v, u) or (u, v)) then
return (cost, X ′ := {i 7→ STEPEXEC(G, i)}, e);
else Add v into S;

• Change line 24 of EXEC to:
return NULL;

return the output of modified Procedure 1;

10 Function TERMINATE(G,X )
11 if ∀i ∈ A,X [i] = zi then
12 return true;
13 return false;

14 Function HEURISTIC(G,X )
15 Define G′ to be a reduced standard TPG

containing only non-switchable edges of G;
16 Run Procedure 1 on G′ with the following

modification:

• Change line 4 of INITEXEC to:
Mark all vertices in V0 = {vik : i ∈ A, k ≤ X [i]} as
satisfied;
return NULL;

return the output of modified Procedure 1;

Theorem 11. Given a TPG, compute the longest path from
vertex vi0 to vertex vizi for each i ∈ A. The sum of lengths of
all such longest paths equals the cost of this TPG.

We again delay the proof for Theorem 11 to the appendix.
We adopt the following well-known algorithm to compute

the longest paths:

• Compute a topological sort of all vertices in the TPG.
• Given a source vertex v0, assign distance dist(v0) = 0

and dist(v) = −∞ for all v ̸= v0.
• For each vertex v in the topological order:

For each vertex u such that (v, u) ∈ E : if (dist(u) <
dist(v) + 1), assign dist(u) = dist(v) + 1.

Using this idea, we specify the following set of graph-
based modules.

Module 4: Graph-based Modules
1 Function CYCLEDETECTION(G, (u, v))
2 return CYCLEDETECTION(G, (u, v)) from

Modules 3;

3 Auxillary information X is a map X : V → [0, |V|),
which records a topological sort of all vertices;

4 Define Xinit[v] = NULL for all v ∈ V;

5 Function BRANCH(G = (V, E1, (SE2,NE2))
6 Compute X ′ to be a topological sort of all

vertices V in the reduced standard TPG of G
(i.e. the sorting consider only the
non-switchable edges E1 ∪NE2 in G);

7 forall (u, v) ∈ SE2 do
8 if X ′[u] > X ′[v] then
9 return (0,X ′, (u, v));

10 return (0,X ′, NULL);

11 Function TERMINATE(G = (V, E1, (SE2,NE2)),X )
12 forall (u, v) ∈ SE2 do
13 if X [u] > X [v] then
14 return false;

15 return true;

16 Function HEURISTIC(G,X )
17 Define G′ to be a reduced standard TPG

containing only non-switchable edges of G;
18 h← 0;
19 forall agent i ∈ A do
20 Using the topological sort X to compute the

longest path distance dist from vi0 to vizi;
21 h← h+ dist ;
22 return h;

We note that BRANCH and TERMINATE can be easily
combined as a single function in the actual implementation.
We define them as separate modules for the simplicity of de-
scription. We also remark that this set of modules does not
use any g values – it completely depends on HEURISTIC to
compute the partial cost of the TPG to determine the priority
of node exploration.

Proposition 12. Module 4 satisfies Assumption 2.

Proof. By the property of DFS, CYCLEDETECTION returns
true iff there exists a cycle involving edge (u, v). It always
holds that whenever we push ((G,X ), g, h) into Q in Algo-
rithm 2, g + h = 0 + h equals the partial cost of G, because
HEURISTIC computes the sum of longest paths for all agents,
which by Theorem 11 equals the partial cost.



Finally, if TERMINATE(G,X ) returns true, then it must be
the case that all switchable edges in G obey the topological
sort specified by X . Therefore after fixing all these edges,
the cost of the resulting TPG can be computed as the same
sum of longest path distance using X , which exactly equals
the partial cost of G

Experiment
Proposition 10 and 12 justify using execution-based mod-
ules and graph-based modules to implement our algo-
rithm framework. We refer to these two implementations
as Execution-based Switchable-Edge Search (ESES) and
Graph-based Switchable-Edge Search (GSES). We design a
series of experiments to evaluate the efficiency of our algo-
rithms and the quality of their solutions. Our algorithms are
implemented in C++ and experiments were performed on a
server with a 64-core AMD Ryzen Threadripper 3990X, 192
GB of RAM, and an Nvidia RTX 3090Ti GPU.

We consider the performance of the algorithms on 4
different maps from the MAPF benchmark suite (Stern
et al. 2019), with 6 agent group sizes per map. The four
maps are random-32-32-20, warehouse-10-20-10-2-1, Paris-
1-256, and Lak303d. An visual illustration of them can be
found in Figure 4. Regarding each map and group size con-
figuration, we run the algorithms on 25 different scenarios
(start/goal locations) with 6 trials per scenario. We set a run-
time limit of 90 seconds for each trial. In the experiments,
we execute an optimal MAPF solution initially planned by
a K-Robust MAPF solver K-Robust CBS (Chen et al. 2021)
with k set to 1. At each timestep of the execution, each agent
that hasn’t reached its goal is subject to a constant probabil-
ity p of delay. When a delay happens, we draw a delay length
∆ uniformly random from a range [10, 20] and construct a
corresponding delay TPG as in Construction 1, and run both
replan algorithm ESES and GSES on the TPG. We note that
more than one agent may get delayed, in which case Con-
struction 1 naturally generalizes.

Efficiency
We compare the runtime of our replanning algorithms with
replanning using K-Robust CBS. For each map, scenario,
number of agents, and delay probability combination, we
model 6 random trials for the delay situation and run all three
algorithms (ESES, GSES, and K-Robust CBS) on the same
situation. Figure 4 plots the resulting runtime. For trials that
exceed the 90-second time limit, we count it as 90 seconds
in our mean computation. We see that on all maps and de-
lay configurations, GSES runs significantly faster than K-
Robust CBS. Most remarkably, on random-32-32-10 and
warehouse maps, the runtime of GSES is consistent below 1
second and does not increase significantly when the number
of agents increases. This indicates that our algorithm may be
of great practical use for real-time replanning applications.

Comparing ESES and GSES
We observe from Figure 4 that although our two imple-
mentations ESES and GSES adopt the same framework,
the graph-based approach (GSES) runs significantly faster

Figure 3: The number of nodes that are explored and pruned
by ESES and GSES on the warehouse map. The dashed lines
represent the mean value of search nodes. The shaded area
between two lines for the same algorithm represents the por-
tion of nodes that are pruned by CYCLEDETECTION.

than the execution-based approach (ESES). This is be-
cause the topological sort used in GSES defines a sim-
ple but extremely powerful early termination condition (see
TERMINATE in Modules 4), which enables GSES to find an
optimal solution after a very small number of explorations of
the search nodes. We compare the number of search nodes
of ESES and GSES on the Paris map with delay probability
p = 0.2% in Figure 3, where explored node means the num-
ber of TPG that are popped from the priority queue when
running our search algorithm, and pruned node is the num-
ber of TPG that are discarded because CYCLEDETECTION
returns true on it.

Improvement of Solution Cost
We also measure the improvement of our replanned solution,
in comparison to the original non-replanned MAPF solution
and the replanned solution produced by K-Robust CBS. We
stress that our solution is guaranteed to be optimal, as proven
in previous sections, upon sticking to the original location-
wise paths, while K-Robust CBS finds an optimal solution
that is independent of the original paths in the non-replanned
solution. Therefore the two algorithms are solving intrinsi-
cally different problems, and the results in this section serve
primarily for a quantitative understanding of how much im-
provement we can get by changing only wait orders. Figure
5 plots the mean cost (from the locations where the delay
happened to the goal locations) of the replanned-by-GSES,
replanned-by-K-CBS, and non-replanned MAPF solutions
on four maps with three different delay probabilities. The
means are taken across all trials for all different numbers of
agents.

We see that the improvements of the solution depend
heavily on the map that we operate on. For example, on the
random-32-32-10 map, our solutions (which only change the
wait orders) have similar costs as the globally optimal solu-
tion, while the difference is larger on the Lak303d map.

Conclusion
This paper proposed a new algorithm framework to find the
optimal wait orders for agents that are planned to visit the



Figure 4: Runtime on random32-32-10, warehouse, Paris, and Lak303d maps measured in second. The dashed lines represent
the mean of runtime, and the shaded areas denote the 0.4 to 0.6 quantile range.

Figure 5: The mean costs of the non-replanned MAPF solution, the ESES-replanned solution, and the K-Robust CBS-replanned
solution.

same location. We developed two implementations based on
either execution (ESES) or graph presentation (GESE). On
the random-32-32-10 and the warehouse maps, the average
runtime of GSES is faster than 1 second for various num-

bers of agents. On harder maps (Paris and Lak303d maps),
GSES also runs significantly faster than replanning with a
K-Robust CBS algorithm.
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