
On The Planning Abilities of OpenAI’s o1 Models:
Feasibility, Optimality, and Generalizability

Kevin Wang∇, Junbo Li∇, Neel P. Bhatt∇, Yihan Xi,
Qiang Liu, Ufuk Topcu, and Zhangyang Wang† ∗

Abstract

Recent advancements in Large Language Models (LLMs) have showcased their
ability to perform complex reasoning tasks, but their effectiveness in planning re-
mains underexplored. In this study, we evaluate the planning capabilities of Ope-
nAI’s o1 models across a variety of benchmark tasks, focusing on three key as-
pects: feasibility, optimality, and generalizability. Through empirical evaluations
on constraint-heavy tasks and spatially complex environments, we highlight o1-
preview’s strengths in self-evaluation and constraint-following, while also iden-
tifying bottlenecks in decision-making and memory management, particularly in
tasks requiring robust spatial reasoning. Our results reveal that while o1-preview
outperforms GPT-4, the model often generates suboptimal solutions with redun-
dant actions and struggles to generalize effectively in spatially complex tasks. This
pilot study provides foundational insights into the planning limitations of LLMs,
offering key directions for future research on improving memory management,
decision-making, and generalization in LLM-based planning.

1 Introduction
Feasible

 Plan

Feasible
 steps

Optimality

Generalization

0.2
0.4

0.6
0.8

1.0

Problem
 understanding

GPT-4
O1-mini
O1-preview

Figure 1: Overall comparison of GPT-4, o1-
mini,and o1-preview, on key planning perspec-
tives defined by us.

Large Language Models (LLMs) have signifi-
cantly changed the landscape of artificial intel-
ligence, achieving impressive results in various
language-related tasks, such as chatbots, math,
and coding, etc. One of the areas, that remains
yet to be fully claimed by LLMs, is the use of
language agents for planning in the interactive
physical world [Huang et al., 2022a,b, Singh
et al., 2023, Lin et al., 2023]. Previous scrutiny
[Liu et al., 2023, Valmeekam et al., 2024a,
2023, 2024b] pointed out that despite advanced
inference reasoning techniques like Chain-of-
Thought (CoT) [Wei et al., 2022] and Tree-of-
Thought (ToT) [Yao et al., 2024], LLMs still
struggle in making success plans without rely-
ing on external tools, such as a PDDL planner
[Liu et al., 2023, Lyu et al., 2023].

The recent release of OpenAI’s o1 models [OpenAI, 2024], trained with reinforcement learning
to naturally employ CoT reasoning, have reached new heights in problem-solving, particularly in
mathematics and code generation. This suggests potential for planning, a seemingly related area.
A recent work [Valmeekam et al., 2024a] evaluated the success rates of o1 and other LLMs on

∗All authors are with the University of Texas at Austin, Austin, TX, USA. ∇Equal contribution and co-first
authors; †Corresponding author; email: atlaswang@utexas.edu.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Blocksworld and its variants from PlanBench [Valmeekam et al., 2024b], demonstrating enhanced
capabilities, extending the boundaries of what LLMs can accomplish in planning tasks. Despite
these improvements, o1 is still far from perfect, raising our curious question: where does the o1
model still fall short, and how can one systematically identify its limitations?

Our work takes a deeper dive into the planning process to perform a more detailed analysis across
a broader range of planning tasks building on [Valmeekam et al., 2024a]. Rather than merely mea-
suring the plan success rate as previous studies did [Valmeekam et al., 2024a, Liu et al., 2023], we
classify the different types of errors LLMs make during their planning. Through extensive empirical
evaluations, we analyze o1’s performance across various domains from three key perspectives: plan
feasibility, plan optimality, and plan generalizability. We aim to offer a clearer understanding of the
limitations of LLMs in the entire planning pipeline, and to facilitate future finer-grained diagnostics.

2 Planning Ability Evaluation: Three Perspectives

We propose evaluating the planning abilities of language model agents from three key perspectives:
feasibility, optimality, and generalizability. By dividing planning abilities into these three perspec-
tives, we ensure a comprehensive evaluation, where each aspect plays a significant role in overall
performance. The motivation for this division lies in the varied challenges planning entails, from
basic execution to advanced optimization and adaptation across new contexts.

Feasibility Feasibility assesses whether the agent can produce a viable plan to achieve the goal,
often referred to as success rate in previous works [Liu et al., 2023]. Feasibility can be further
divided into three components:

1. Ability to create feasible steps Each step in a plan must be executable within the sys-
tem, adhering to constraints specific to the problem domain. Constraints might include
physical limitations, action order requirements, or other domain-specific rules. In trajec-
tory planning, certain zones may be inaccessible, while in operational planning, tasks may
have dependencies that must be respected. We term failures related to this issue as “Inabil-
ity to Follow Problem Rules” (IR). Such errors become more frequent as the complexity or
number of rules increases, revealing a need for more sophisticated validation mechanisms.

2. Ability to generate a feasible plan Even if individual steps are valid, the overall plan
may still fail to achieve the intended goal. The agent might not generate a coherent se-
quence of actions, leading to dead ends or random exploration. This issue, termed “Inabil-
ity to Generate a Feasible Plan” (IP), grows more prominent in complex tasks requiring
advanced reasoning. Models like o1, which demonstrate superior reasoning capabilities,
tend to perform better, as they provide more thorough analysis and structured plans.

3. Ability to understand the problem Feasibility also hinges on correctly interpreting the
problem’s initial and goal states. Even with valid steps and an overall plan, misinterpreting
the starting conditions or the desired end state can result in errors. Such failures, termed
“Misinterpretation of Goal State” (MG), are common when plans require deep reasoning
over multiple steps.

Optimality While feasibility ensures that a plan can be successfully executed, optimality pertains
to how efficiently the plan achieves its goal. In many real-world scenarios, a feasible plan is not
enough; the plan must also be resource-efficient, minimizing unnecessary actions, time, and cost.
In this context, optimality refers to whether the language agent can generate the most efficient plan,
avoiding redundant steps or suboptimal decisions. For example, in a robotic task, an optimal plan
would minimize the number of movements or tool changes required to complete the task, whereas a
suboptimal plan might include unnecessary repetitions or idle steps. Failures in optimality, termed
“Lack of Optimality” (LO), arise when a plan, although feasible, includes extraneous or inefficient
actions that prevent it from being considered the best solution.

Our experiments suggest that while advanced models like o1-preview show some improvements in
generating optimal plans compared to previous models, the gap between feasibility and true optimal-
ity remains significant. This highlights the inherent difficulty for language models to reason not only
about what needs to be done but also about how to do it in the most efficient manner. Developing
strategies to incorporate cost-sensitive reasoning or employing more advanced search and pruning
techniques could help mitigate this issue.

2

Generalizability Generalizability examines whether a language model can successfully plan
across a diverse range of scenarios, including those it may not have explicitly encountered dur-
ing training. Generalization becomes especially challenging when the agent must deal with abstract
representations of actions or work in environments where the semantics of actions differ from those
in natural language. This capability is crucial for robust performance in real-world applications,
where the agent may encounter unfamiliar contexts or have to work with symbolic representations
that are not directly tied to the real-world semantics - yet still following consistent logical structures.

Inspired by [Valmeekam et al., 2024b], we test whether the agent can construct valid plans even
when actions are represented by arbitrary symbols, devoid of any inherent natural language mean-
ing. In these cases, the agent’s ability to generalize reflects its deeper understanding of the under-
lying structure and logic of planning tasks, independent of the specific linguistic cues it was trained
on. This aspect is critical in fields like robotics, where planning often involves symbolic reasoning
and manipulation of abstract entities. Our experiments (e.g., Figure 5) indicate that generalization
remains a significant challenge for current models, especially in more complex, spatially dynamic
environments. Models like o1-preview show a clear degradation in performance when transitioning
from familiar tasks to generalized ones, suggesting that their learned representations are often too
closely tied to specific task domains.

We present the evaluation of several interactive planning tasks from both feasibility (IR, IP, MG) and
optimality perspectives in Table 1. The success rate (SR) is defined as the rate of instances where
none of IR, IP, or MG occurred. For detailed results on each task, please refer to Section A.

GPT-4 o1-mini o1-preview

IR IP MG LO SR IR IP MG LO SR IR IP MG LO SR
Barman 10 0 0 0 0 10 0 0 0 0 10 0 0 0 0
Blocksworkd 6 0 0 0 0.4 4 0 0 0 0.6 0 0 0 1 1
Floortile 9 0 1 0 0 9 1 0 0 0 3 7 0 0 0
Grippers 3 0 0 8 0.7 0 1 1 2 0.8 0 0 1 2 0.9
Tyreworld 9 0 0 N/A 0.1 8 0 0 N/A 0.2 0 0 0 N/A 1
Termes 10 0 0 N/A 0 10 0 0 N/A 0 10 0 0 N/A 0

Table 1: The error type count (IR, IP, MG, LO), as defined in Section 2. Note that LO only counts if
the model outputs a feasible plan yet is not optimal. Besides, SR is the success rate, or feasible plan
rate. The highest success rate for each domain is in bold. o1-preview has the highest success rate.

3 Discussion

3.1 Empirical Limitations

The primary limitation of this study stems from the relatively small dataset used in our empirical
evaluations. While the experiments provide a foundational understanding of the o1 model’s planning
capabilities, broader insights into its generalizability and robustness can only be derived with more
extensive testing across larger and more diverse datasets. Larger datasets would help expose poten-
tial weaknesses that remain hidden in smaller, more structured environments, and would allow us
to explore how o1 models handle a wider variety of constraints and complexity levels. Future work
shall evaluate on more data and in more real-world settings involving dynamic and less predictable
elements.

3.2 Model Performance vs. Problem Complexity

Our analysis reveals a strong correlation between the complexity of the problem and the performance
of the o1 model. We empirically examine each problem along two dimensions of complexity: action
complexity and spatial complexity, as illustrated in Figure 2.

Specifically, the Floortile and Termes tasks highlight the challenges o1 faces in environments with
higher spatial and rule-based complexity. In Floortile, the task is set in a two-dimensional world,
where robots must follow strict painting rules while navigating a constrained grid. In contrast, Ter-
mes involves a three-dimensional setting, introducing additional layers of complexity due to vertical
movement constraints and the need for precise block manipulation. Interestingly, the size of the
action space did not appear to significantly affect the model’s ability to capture and use context
efficiently. Instead, the complexity of spatial relationships and state transitions proved to be more
problematic. This suggests that while o1 models can handle tasks with limited actions (e.g., Grip-
pers), they struggle when required to reason about more abstract, multi-dimensional spaces where
maintaining an accurate internal state becomes critical.

3

3.3 Constraint Following and State Management

Figure 2: Empirical evaluation was
conducted based on action com-
plexity and spatial complexity. The
color coding represents the suc-
cess rates of the o1-preview model:
green indicates a high success rate,
yellow moderate success, and red
complete failure.

One key finding of this study is the o1 model’s improved
ability to follow constraints and manage states, especially in
comparison to GPT-4. o1-preview’s self-evaluation mecha-
nism, which allows the model to check and correct its ac-
tions during plan generation, was particularly effective in tasks
like Blocksworld and Tyreworld. In these tasks, o1-preview
demonstrated a higher success rate in adhering to complex
rules, such as the preconditions for using a wrench or jack
in Tyreworld, while avoiding the rule violations that plagued
GPT-4 and o1-mini. However, this ability to follow constraints
deteriorates in more complex environments like Termes, where
the need for precise spatial reasoning and multi-step manipu-
lation often leads to rule violations and misinterpretations of
task goals. This points to a potential limitation in the model’s
state management when dealing with more abstract problem
spaces, and may call for explicit integration of neurosymbolic
methods Yang et al. [2024a].

3.4 Optimality and Redundancy in Planning

Optimality remains a significant challenge for the o1 models, as demonstrated across tasks like
Blocksworld and Floortile. While o1-preview often generated feasible plans, it frequently failed
to produce optimal solutions, leading to redundant actions and inefficiencies. For example, in
Blocksworld, o1-preview added unnecessary steps to the plan, reducing its overall efficiency de-
spite reaching the correct goal state. This suggests that while the model can understand and follow
constraints, it struggles with decision-making related to resource minimization and action optimiza-
tion. The ability to reason about optimality is crucial for real-world applications, where minimizing
steps and resources is often as important as achieving the correct outcome. Enhancing this as-
pect of o1’s reasoning mechanism—perhaps by incorporating more advanced cost-based decision
frameworks—would be a valuable area for future research. Additionally, we observed that all three
models exhibited some hallucination, including the assumption of non-existent rules. For instance,
the o1-preview model in the grippers assumed that it could only move to adjacent numbered rooms,
whereas the actual rule specifies that the move action can proceed to any room. Although model
could still generate feasible plan, but that also hinder its ability to generate optimal plan.

3.5 Generalization and Adaptability

Another promising outcome of this study is o1-preview’s demonstrated ability to generalize across
tasks with consistent rule structures, as seen in Grippers. In these cases, o1-preview outperformed
GPT-4 by effectively adapting its learned strategies to new environments. In these scenarios, o1-
preview consistently outperformed GPT-4 by effectively adapting its learned strategies to new envi-
ronments. The o1 model attempted to imbue meaningless symbols with natural language meaning
to aid problem-solving, as seen in Figure 12. Additionally, o1-preview’s self-evaluation capabilities
enabled it to maintain reasonable adherence to constraints, with only minor deviations, compared
to GPT-4, which often fails to grasp the goal. While o1-preview’s generalizability surpasses GPT4,
particularly in structured, low-dimensional tasks, there is still substantial room for improvement in
enabling these models to adapt to more dynamic, high-dimensional, and abstract problem spaces.

4 Conclusion

We present the detailed analysis about our findings and future directions in Section B. In summary,
while o1-preview represents a notable advancement in LLM-based planning, significant challenges
remain, particularly in terms of optimizing plans, generalizing to more abstract tasks, and managing
state complexity. Future research should aim to build on these insights to create more robust, effi-
cient, and adaptable planning agents capable of handling the diverse range of challenges presented
by real-world planning problems.

4

References
Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan

Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022a.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pages 9118–9147. PMLR, 2022b.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 11523–11530. IEEE, 2023.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. Autonomous Robots, 47(8):1345–1365,
2023.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can lrms? a
preliminary evaluation of openai’s o1 on planbench. arXiv preprint arXiv:2409.13373, 2024a.

Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo, and Subbarao Kamb-
hampati. On the planning abilities of large language models (a critical investigation with a pro-
posed benchmark). arXiv preprint arXiv:2302.06706, 2023.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning. arXiv preprint arXiv:2301.13379,
2023.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/, 2024.

Yunhao Yang, Neel P Bhatt, Tyler Ingebrand, William Ward, Steven Carr, Zhangyang Wang, and
Ufuk Topcu. Fine-tuning language models using formal methods feedback: A use case in au-
tonomous systems. Proceedings of Machine Learning and Systems, 6:339–350, 2024a.

Hongkang Yang, Zehao Lin, Wenjin Wang, Hao Wu, Zhiyu Li, Bo Tang, Wenqiang Wei, Jinbo
Wang, Zeyun Tang, Shichao Song, et al. Memory3: Language modeling with explicit memory.
arXiv preprint arXiv:2407.01178, 2024b.

Wenqing Zheng, SP Sharan, Zhiwen Fan, Kevin Wang, Yihan Xi, and Zhangyang Wang. Symbolic
visual reinforcement learning: A scalable framework with object-level abstraction and differen-
tiable expression search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Lisong C Sun, Neel P Bhatt, Jonathan C Liu, Zhiwen Fan, Zhangyang Wang, Todd E Humphreys,
and Ufuk Topcu. Mm3dgs slam: Multi-modal 3d gaussian splatting for slam using vision, depth,
and inertial measurements. arXiv preprint arXiv:2404.00923, 2024.

5

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

6

A Experiments on Planning Benchmarks

We assess the planning capabilities of GPT-4, o1-mini, and o1-preview as discussed in Section
2. Our code and experimental results are available at https://github.com/VITA-Group/o1-planning,
with all models (GPT-4, o1-mini, and o1-preview) evaluated using their default settings. Here we
manually evaluated the planning results to identify success or error patterns and conducted fine-
grained analysis on each instance. We leave scalable automatic evaluation of planning for future
work. The overall comparison in outlined in Table 1. Next, we will explore each task in detail
to carefully analyze the language agents’ abilities across various planning tasks. The results afor
feasibility, optimality, and generalizability are presented in figures 3, 4, and 5, respectively. For
each task, errors are highlighted in red, while the reasons for these errors are indicated in orange.
The specific action constraints that are violated are discussed in the accompanying captions. Details
about the action domain and additional examples for each problem will be released after acceptance.

GPT-4 o1-mini o1-preview0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

barman

GPT-4 o1-mini o1-preview0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

blocksworld

GPT-4 o1-mini o1-preview0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

floortile

GPT-4 o1-mini o1-preview0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

grippers

GPT-4 o1-mini o1-preview0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

tyreworld

GPT-4 o1-mini o1-preview0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
termes

Success
IR
IP
MG

Feasibility Error and Success Rates Across Tasks and Models

Figure 3: Feasibility error and success rate for 6 tasks and 3 models. Overall, o1 improves the
success rate for certain tasks, but many problematic issues still persist. Examples of different error
types are detailedd in later figures: IR: 6, 7a, 9, 10, 11 ; IP: 9 ; MG: 8a

.

GPT-4 o1-mini o1-preview0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Blocksworld

GPT-4 o1-mini o1-preview0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Grippers
Feasible Optimal

Feasibility and Optimal Rates Across Models

Figure 4: Success rate and optimality rate for Blocksworld and Grippers. Compared to GPT-4, o1
can provide more optimal plans. Example of suboptimal solutions are provided in Figures 7b and
8b.

7

https://github.com/VITA-Group/o1-planning

GPT-4 o1-mini o1-preview0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Grippers

GPT-4 o1-mini o1-preview0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Tyreworld
original randomized

Original vs Randomized Success Rates Across Models

Figure 5: Success rate for generalization setting. GPT-4 fails entirely on challenging generalized
tasks, whereas o1 is able to solve some of them. An example of randomize domain is provided in
Figure 12.

A.1 Barman

Task description In this task, a robot barman is tasked with preparing a series of drinks by ma-
nipulating drink dispensers, shot glasses, and a shaker. The robot, equipped with two hands, must
perform a variety of actions such as grasping containers, filling/refilling shot glasses, pouring ingre-
dients, shaking cocktails, and cleaning or emptying containers. Each action comes with strict pre-
conditions—for example, the robot can only grasp a container when one hand is free, and shaking a
cocktail is only possible when the shaker contains exactly two ingredients. Successfully completing
this task requires precise sequencing of actions, where adhering to these constraints is crucial to
avoid mistakes.

Analysis The results indicate that the language model agent struggles significantly with this task,
consistently failing to generate feasible plans. Nearly all the errors stem from the agent’s inability
to follow the specified rules, categorized as the IR error. For example, the rules demand that certain
actions, like filling a container, require one hand to be free, or that specific actions must be taken in
a strict order, such as holding a container before filling it. However, the LLM agents often overlook
these critical constraints. This issue persists even in more advanced models like o1-preview. Figure
6 illustrates the first error in the solution, where both GPT-4 and o1-mini violate explicit rules,
highlighted in red and orange, respectively. These errors underline a common limitation of language
models: while they can generate plausible sequences of actions in a natural language context, they
frequently overlook key operational constraints critical for real-world execution.

An IR Example for GPT-4 and o1-mini in Barman

Problem: You have 1 shaker with 3 levels, 4 shot glasses, 3 dispensers
for 3 ingredients.

The shaker and shot glasses are clean, empty, and on the table. Your left
and right hands are empty.

The first ingredient of cocktail1 is ingredient1. The second ingredient of
cocktail1 is ingredient3.
The first ingredient of cocktail2 is ingredient2. The second ingredient of
cocktail2 is ingredient3.
The first ingredient of cocktail3 is ingredient1. The second ingredient of
cocktail3 is ingredient2.

Your goal is to make 3 cocktails.
shot1 contains cocktail1. shot2 contains cocktail3. shot3 contains
cocktail2.

Can you provide an optimal plan, in the way of a sequence of behaviors,
to solve the problem?

O1-mini Solution:
1. Prepare `cocktail5` in `shot1`
(ingredient1 + ingredient3):
1.1. **L:** Grasp `shot1`.
1.2. **R:** Grasp `ingredient1`
dispenser.
1.3. **L:** Fill `shot1` with `ingredient1`.
1.4. **R:** Release `ingredient1`
dispenser.
1.5. **L:** Leave `shot1` on the table.
1.6. **R:** Grasp `shot1`.
1.7. **L:** Grasp `ingredient3`
dispenser.
1.8. **R:** Fill `shot1` with
`ingredient3`. (Fill a non-empty shot
glass)
1.9. **L:** Release `ingredient3`
dispenser.
......

GPT-4 Solution:
1. Grasp shaker with left hand.
2. Grasp shot1 with right hand.
3. Clean shot1.
4. Fill shot1 with ingredient1 from
dispenser1. (Left hand is not empty)
5. Pour from shot1 to shaker.
6. Leave shot1 on the table.
7. Grasp shot1 with right hand.
8. Refill shot1 with ingredient3 from
dispenser3.
9. Pour from shot1 to shaker.
10. Shake a cocktail in shaker.
11. Pour from shaker to shot1.
12. Leave shot1 on the table.
13. Empty the shaker.
14. Clean the shaker.
......

Figure 6: A failure example for Barman. The left side contains the problem statement, while the
right side shows the first lines of the solutions provided by GPT-4 and o1-mini. The GPT-4 solution
fails because the rules require that one hand must be empty for “filling”, while the o1-mini solution
fails because the rules specify that “filling” applies only to an empty shot glass.

8

A.2 Blocksworld

A Failure Example of o1-mini in Blocksworld

Problem: You have 7 blocks.
b6 is on top of b3. b2 is on top of b5.
b4 is on top of b7. b7 is on top of b1.
b3 is on the table. b1 is on the table.
b5 is on the table. b6 is clear.
b2 is clear. b4 is clear.
Your arm is empty.
Your goal is to move the blocks.
b1 should be on top of b7. b2 should be on
top of b5. b3 should be on top of b2. b4
should be on top of b1. b5 should be on top
of b6. b7 should be on top of b3.
Can you provide an optimal plan?

Initial State Goal State

o1-preview:
Certainly! Below is an optimal plan to
achieve the desired goal.
Action Sequence:
1. Unstack b4 from b7
2. Putdown b4 on the table
3. Unstack b7 from b1
4. Putdown b7 on the table
5. Unstack b6 from b3
6. Putdown b6 on the table
7. Stack b5 on b6
.
.

b7

b6 b5

b4

b3 b2

b1 b6

b5

b2

b3

b7

b1

b4

(a)

A Sub-optimal Example of o1-preview in Blocksworld

Problem: You have 7 blocks.
b6 is on top of b3. b2 is on top of b5.
b4 is on top of b7. b7 is on top of b1.
b3 is on the table. b1 is on the table.
b5 is on the table. b6 is clear.
b2 is clear. b4 is clear.
Your arm is empty.
Your goal is to move the blocks.
b1 should be on top of b7. b2 should be on
top of b5. b3 should be on top of b2. b4
should be on top of b1. b5 should be on top
of b6. b7 should be on top of b3.
Can you provide an optimal plan?

Initial State Goal State

o1-preview:
Here's the optimal plan:
1. Unstack b5 from b2
2. Put down b5 on the table
3. Unstack b2 from b3
4. Stack b2 onto b6
5. Unstack b3 from b1
6. Stack b3 onto b5
7. Pick up b4 from the table
.
.
.
.

b6

b5

b4

b3

b2

b1 b6b5 b2

b3

b1

b4

(b)

Figure 7: Example failure and sub-optimal cases in the Blocksworld planning problem. (a) An
illustration of a plan generated by o1-mini showcasing IR error in step 7. (b) An illustration of a
sub-optimal plan generated by o1-preview showcasing LO error in step 4.

Task description This planning task involves multiple blocks arranged on a table, where the goal
is to move from an initial configuration to a pre-specified goal configuration. The robot arm, which
can hold only one block at a time, must execute a series of actions such as picking up, putting
down, stacking, and unstacking blocks to achieve the desired arrangement. The challenge lies in
determining the correct sequence of these actions, while adhering to constraints that dictate how
blocks can be manipulated. The action space is limited to fundamental operations like pickup,
putdown, and stack.

Analysis In this task, GPT-4 demonstrated a relatively low success rate of 40%, while o1-mini per-
formed slightly better at 60%. However, o1-preview achieved a perfect 100% success rate, reflecting
its stronger reasoning capabilities. The success rates decreased as the number of blocks increased,
highlighting the challenge of managing larger object sets. Both GPT-4 and o1-mini frequently failed
to follow problem constraints, an issue categorized as the IR error. Figure 7a provides an example
where o1-mini fails to comply with these constraints.

Although o1-preview successfully completed all tasks, it was not entirely optimal. In one instance,
the model added an unnecessary step, leading to a suboptimal solution despite reaching the correct
goal state. This issue, characterized as LO, is illustrated in Figure 7b. The occurrence of suboptimal
steps even in successful models emphasizes the ongoing challenge of optimizing planning tasks,
where generating feasible solutions is not always sufficient.

A.3 Grippers

Task description This task involves a team of robots equipped with two grippers, capable of
moving between rooms and manipulating objects. The robots have three primary actions: moving
from one room to another, picking up objects, and dropping them. Each action is constrained by
the robot’s current location and the status of its grippers, meaning that a robot can only pick up
an object if its gripper is free and can only drop an object in a specific location once it is carrying
one. Effective planning requires coordinating these actions while adhering to these constraints to
accomplish the goal of manipulating objects across different rooms.

Analysis In this domain, both o1-mini and o1-preview significantly outperformed GPT-4, particu-
larly in success and optimality rates. GPT-4 managed a 70% success rate but only a 20% optimality
rate, indicating frequent suboptimal action sequences. In contrast, o1-mini achieved both higher
success and optimality rates, at 80% for each. o1-preview performed even better with a 90% success
rate, though its optimality rate dropped slightly to 70%. Figure 8b showcases an example where

9

GPT-4 generates a suboptimal solution by including an unnecessary relocation of the robot, which
adds redundant steps to the plan. Conversely, o1-mini, through additional reasoning, eliminated
unnecessary movements, leading to an optimal solution.

However, o1-preview exhibited a shortcoming related to the MG error. In one instance, depicted
in Figure 8a, the robot’s initial state already coincided with the goal state—both balls were already
in the correct room (room1), meaning no action was required. While both GPT-4 and o1-mini
correctly recognized that no further steps were necessary, o1-preview mistakenly identified room2
as the goal, leading to unnecessary actions aimed at relocating the balls. This misinterpretation
demonstrates that even advanced models like o1-preview can struggle with maintaining accurate
goal-state representations, especially in tasks requiring minimal or no action.

(a) (b)

Figure 8: Failure examples in Grippers. (a) showcases o1-preview MG error: o1-preview assumes
the goal state is both balls in room2 instead of room1; (b) highlights GPT4’s suboptimality: it took
an extra step to complete the goal, while o1-mini can return the optimal plan.

A.4 Floortile

Task description In this task, a team of robots is responsible for painting a grid of floor tiles in
black and white. Each robot can move in four directions, switch the color of its spray gun, and
paint tiles directly in front of or behind them. The main challenge is that robots can only paint
tiles that are currently unpainted and cannot move onto tiles that have already been painted. This
creates a complex constraint, requiring careful planning of movements and actions to achieve the
desired tile pattern without the robots trapping themselves or each other. The task demands strategic
coordination between movement and painting actions, ensuring the robots follow the rules while
efficiently completing the grid pattern.

Analysis In this domain, all models—GPT-4, o1-mini, and o1-preview—failed to solve the test
cases, but the reasons for their failures varied. For GPT-4 and o1-mini, 90% of their failures stemmed
from the IR error. Specifically, both models frequently violated the rule that robots can only paint
tiles directly in front or behind them, instead attempting to paint the tile on which they were standing.
This rule violation was a common source of errors as the models struggled to keep track of the task
constraints while moving and painting simultaneously.

On the other hand, o1-preview showed a notable improvement in this regard, with only 30% of its
failures caused by IR. o1-preview’s internal self-evaluation mechanism allowed it to better track
the rules and adjust its actions accordingly. For instance, when it initially attempted to paint the
wrong tile, it was able to reevaluate the action and correct itself by following the task constraints.
However, despite these improvements in rule adherence, o1-preview encountered other errors, such
as rule confusion. In some cases, it misinterpreted which tiles could be painted or made invalid
assumptions about the sequence of movements. While its chain-of-thought reasoning helped it self-
correct in some cases, it was ultimately unable to solve the task entirely, as seen in Figure 9.

10

Figure 9: We illustrate the IR error of o1-mini (top right) and the IP error of o1-preview (bottom left).
o1-mini incorrectly assumed that “paint down” would paint the grid beneath the robot. Meanwhile,
o1-preview adhered to the constraints throughout the plan but ultimately failed to complete it.

A.5 Termes

Task description The Termes task requires controlling a robot to construct structures by moving
between different positions and manipulating blocks. The robot can move horizontally, vertically
(up and down), and is tasked with placing or removing blocks at neighboring positions that match in
height. Additionally, the robot can create new blocks at a depot or destroy blocks when needed. To
achieve the specified construction goals, the robot must efficiently plan its movements and strategi-
cally use blocks, adhering to height and positional constraints throughout the task. The challenge
lies in coordinating these actions while respecting the rules that govern both movement and block
placement.

Analysis All models—GPT-4, o1-mini, and o1-preview—failed to successfully complete the tasks
in the Termes domain, largely due to shortcomings in detailed planning. A common source of error
across all models was the failure to account for the task’s height constraints when moving hori-
zontally, upward, or downward. These constraints, which ensure that the robot can only move to
positions of matching or specific relative heights, were frequently ignored by the models. Addi-

11

tionally, the language models often made the mistake of placing blocks at their current position, a
violation of the task’s rule that blocks can only be placed at neighboring positions.

These errors highlight the models’ difficulty in managing complex spatial relationships and adhering
to the intricate rules of the task. Although the actions generated by the models may seem plausible
in a natural language context, they frequently overlook key operational details required for real-
world robot planning. This inability to follow task-specific constraints leads to failures in execution,
as illustrated in Figure 10, where the model skips necessary steps and misinterprets the correct
sequence of actions.

An IR Example for GPT-4 and o1-mini in Termes

Problem: The robot is on a grid with 4 rows and 3 columns.

pos-0-0 pos-0-1 pos-0-2
pos-1-0 pos-1-1 pos-1-2
pos-2-0 pos-2-1 pos-2-2
pos-3-0 pos-3-1 pos-3-2

The robot is at pos-2-0.
The depot for new blocks is at pos-2-0.
The maximum height of blocks is 5.
Your goal is to build blocks so that the height at pos-2-1 is 5.
You cannot have an unplaced block at the end.

Can you provide an optimal plan, in the way of a sequence of
behaviors, to solve the problem?

O1-mini Solution:
1. Create a Block at Depot (`pos-2-0`)
2. Place Block at `pos-2-1`
3. Create a Block at Depot (`pos-2-0`)
4. Place Block at `pos-2-1` (Place a
block 1 unit higher than the current
position)
5. Create a Block at Depot (`pos-2-0`)
6. Place Block at `pos-2-1`
7. Create a Block at Depot (`pos-2-0`)
8. Place Block at `pos-2-1`
9. Create a Block at Depot (`pos-2-0`)
10. Place Block at `pos-2-1`
......

GPT-4 Solution:
1. Create a block at the depot. (The
robot is now at pos-2-0 with a block)
2. Move right to position pos-2-1. (new
position with block)
3. Place a block at the current position.
(pos-2-1 now has a block and robot has
no block) (Place a block at the current
position)
4. Move left to position pos-2-0. (new
position with no block at depot)
5. Create a block at the depot. (The
robot is now at pos-2-0 with a block)
6. Move right to position pos-2-1. (new
position with block)
......

Figure 10: A failure example for Termes. GPT-4 solution fails because the block can only be placed
in a neighboring position, while o1-mini solution fails since the block must be placed at the same
height.

A.6 Tyreworld

Task description This task involves replacing flat tyres on vehicle hubs with intact, inflated tyres.
The process requires the use of tools such as a wrench, jack, and pump, and the agent must follow
specific actions to manipulate the tyres, nuts, and tools. There are 11 predefined actions, including
opening and closing the boot, fetching and storing tools, loosening and tightening nuts, jacking
up and down hubs, removing and installing wheels, inflating tyres, and securing or undoing nuts.
Success in this task depends on executing these actions in the correct sequence while satisfying
specific preconditions, such as using the wrench to loosen the nuts before removing the wheel or
tightening the nuts only after lowering the jack.

Analysis o1-preview generated correct plans for all test problems, significantly outperforming
both GPT-4 and o1-mini, which failed to complete all but the simplest cases. The primary issue for
GPT-4 and o1-mini was their frequent failure to follow the required action sequences. For instance,
common errors included “loosening the nuts after jacking up” or “tightening the nuts before jacking
down”—critical mistakes that would prevent successful tyre replacement. Figure 11 provides an
example where failing to follow these mechanical constraints leads to incorrect plans.

We also evaluated the models’ generalization capabilities within this domain, revealing that while
o1-preview performed well on structured tasks, its success rate dropped from 100% to 20% when
the actions and tools were replaced with random symbols. Despite the symbols being abstract, the
underlying action constraints and logic remained unchanged. This sharp decrease in performance, as
illustrated in Figure 12, suggests that while o1-preview excels in rule-based planning with familiar
symbols, it struggles to generalize when the problem context becomes more abstract.

B Findings and Future Directions

Our study offers a pilot evaluation of the planning capabilities of OpenAI’s o1 models, providing
new insights into their strengths and limitations. By systematically evaluating their feasibility, op-
timality, and generalizability across diverse planning tasks, we have uncovered key areas where

12

An IR Example for GPT-4 and o1-mini in Tyreworld

Problem: You have a jack, a pump, a wrench, a boot, 9 hubs, 9 nuts,
9 flat tyres, and 9 intact tyres.

The jack, pump, wrench, and intact tyres are in the boot.
The boot is unlocked but is closed.
The intact tyres are not inflated.
The flat tyres are on the hubs.
The hubs are on the ground.
The nuts are tight on the hubs.
The hubs are fastened.

Your goal is to replace flat tyres with intact tyres on the hubs. Intact
tyres should be inflated. The nuts should be tight on the hubs. The
flat tyres, wrench, jack, and pump should be in the boot. The boot
should be closed.

Can you provide an optimal plan, in the way of a sequence of
behaviors, to solve the problem?

O1-mini Solution:
1. Open the Boot.
2. Fetch Necessary Tools and Intact
Tyres.
3. For Each of the 9 Hubs, Perform the
Following Sequence:
 a. Loosen the Nut on the Hub.
 b. Jack Up the Hub.
 c. Remove the Flat Tyre from the Hub.
 d. Place the Intact Tyre onto the Hub.
 e. Inflate the Intact Tyre.
 f. Tighten the Nut on the Hub.
("Tighten" before "jack-down")
 g. Lower the Hub Back to the Ground.
4. Return All Tools and Flat Tyres to the
Boot.
5. Close the Boot.

GPT-4 Solution:
1. "open" the boot.
2. "fetch" the jack.
3. "fetch" the wrench.
4. "fetch" the pump.
5. "fetch" an intact tyre.
6. "inflate" the intact tyre.
7. Repeat steps 5 and 6 with the
remaining intact tyres.
8. For each of the 9 hubs:
 1. "jack-up" the hub using the jack.
 2. "loosen" the nut on the hub using
the wrench. ("Loosen" after "jack-up")
 3. "undo" the nut using the wrench.
4. "remove-wheel" the flat tyre from the
hub.
 5. "put-away" the flat tyre in the boot.
......

Figure 11: A failure example for Tyreworld. GPT-4 fails since “loosen” must occur before “jack-
up”, and o1-mini fails since “tighten” must happen after “jack-down”.

Figure 12: An example from the Randomized Tyre World: The center panel displays O-1’s original
solution, while the right panel translates the random symbols back to their original terms. Here, O-1
failed to adhere to the constraint that the nut must be loosened before it can be undone.

o1-preview demonstrates promising advancements as well as significant challenges that remain to
be addressed.

B.1 Summary of Findings

The findings of our experiments can be summarized from four key perspectives:

1. Understanding the Problem: o1-preview demonstrated an improved ability to grasp the
task requirements and constraints, particularly in well-defined, rule-based environments
like Barman and Tyreworld. This was largely due to its self-evaluation mechanism, which
allowed for more accurate state tracking and constraint adherence. However, more evidence
is needed to establish whether these improvements translate to better reasoning capabilities
in more abstract settings.

2. Following Constraints: Across most tasks, o1-preview showed a superior capacity to fol-
low task-specific constraints compared to GPT-4. However, this ability weakened as the
complexity of spatial reasoning and state transitions increased, as seen in Termes. This
suggests that while constraint following is a relative strength of the o1 model, more work
is needed to handle environments with higher-dimensional state spaces.

13

3. State and Memory Management: One of o1-preview’s key advantages over previous
models is its ability to remember and manage multiple states effectively within a plan,
which contributed to its higher success rate in certain tasks. However, as problem com-
plexity increased, the model’s state management became less reliable, particularly in tasks
involving spatial reasoning across multiple dimensions. This implies a potential bottleneck
in the model’s memory and decision-making processes.

4. Reasoning and Generalization: While o1-preview showed some promise in its gener-
alization ability, particularly in structured environments like Grippers, its performance in
more abstract tasks like Termes revealed substantial limitations. The model struggled with
reasoning under conditions where actions and outcomes were less directly tied to the natu-
ral language representation of the task, highlighting an area for future improvements.

B.2 Opportunities for Improvement

We posit several key areas where future iterations of LLM-based planners can be improved:

• Optimality and Resource Utilization: Developing more sophisticated decision-making
mechanisms that minimize redundant actions and optimize resource usage will be crucial
for making o1 models more applicable to real-world planning tasks. This could involve
incorporating cost-based reasoning or learning from expert demonstrations to achieve more
optimal plans.
Additionally, Retrieval-Augmented Generation (RAG) methods could offer a potential so-
lution by providing real-time, low-cost external memory updates, especially when tasks
rely on large knowledge bases encoded in natural language text. However, RAG’s effective-
ness hinges on the accuracy and efficiency of its retrieval algorithms, which may introduce
further challenges.

• Generalization in Abstract Spaces: While o1-preview shows promise in generalizing
across structured environments, its performance in tasks with more abstract and complex
rule sets remains suboptimal. Future work should focus on enhancing the model’s ability
to generalize in high-dimensional and spatially dynamic environments, potentially through
improved memory management Yang et al. [2024b] and abstraction mechanisms Zheng
et al. [2024].
Enhancing the model’s decision-making and memory management capabilities, particu-
larly for spatially complex tasks, will be essential for improving both optimality and gen-
eralizability in future iterations of LLM-based planning models.

• Handling Dynamic and Unpredictable Environments: Many real-world planning prob-
lems involve dynamic environments with unpredictable elements. Testing the o1 models in
such settings would provide valuable insights into their robustness and adaptability, espe-
cially when rules or constraints change during execution.

• Improving Constraint Adherence through Self-Evaluation: One recurring issue across
multiple domains is the models’ inability to follow task-specific constraints accurately. In-
troducing more robust self-evaluation mechanisms could help LLMs better verify their own
outputs before finalizing decisions, potentially catching mistakes like rule violations. Tech-
niques such as multi-stage validation or symbolic verification Yang et al. [2024a], where
models cross-check their proposed actions against the task constraints, could significantly
reduce the incidence of constraint-related errors.

• Leveraging Multimodal Inputs: To enhance the model’s understanding of spatial and
physical reasoning tasks, future LLM-based planners could benefit from integrating multi-
modal inputs such as visual data, 3D environments, or sensor information Sun et al. [2024].
By incorporating non-textual data, planners would be better equipped to handle complex
tasks, such as robotic manipulation or navigation, where purely text-based reasoning might
miss critical spatial relationships or physical constraints.

• Scalability to Complex Multi-Agent Planning: Many planning tasks, particularly in
robotics and logistics, require coordination between multiple agents Wu et al. [2023]. Ex-
tending LLM-based planners to effectively handle multi-agent systems would be an im-
portant step forward. This could involve developing strategies for decentralized planning,

14

where each agent generates its own plan based on local knowledge, while still cooperating
to achieve a shared goal.

• Incorporating Human Feedback for Continuous Learning: One way to improve both
optimality and generalization is by incorporating continuous learning through human feed-
back. Interactive feedback loops, where human users provide corrective signals or sug-
gestions during plan execution, could help models refine their decision-making and better
adapt to new situations or tasks that deviate from their training data.

• Broader Impacts: Our systematic analysis of LLM planning capabilities has implications
for both research and real-world applications. The primary impact lies in understanding the
limitations of LLM-based planning systems, particularly in spatial reasoning and state man-
agement, which is crucial for responsible deployment in critical applications like robotics
and healthcare. While our evaluation itself poses minimal risks, over-reliance on LLM
planners despite their identified limitations could lead to safety risks or operational fail-
ures in critical scenarios. We recommend implementing robust testing protocols before
deploying these systems in high-stakes applications.

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clearly stated the contributions and scope in the Abstract and Intro-
duction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We describe the limitations in the Section 3.1.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have presented the information in Section A.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have the code and result released https://github.com/VITA-Group/o1-
planning as stated in section A.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The evluation details are specified in Section A.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We released all the results and provided a detailed analysis of the results.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments rely on the ChatGPT API service, and a standard computer
should be capable of running them without issues.

16

https://github.com/VITA-Group/o1-planning
https://github.com/VITA-Group/o1-planning

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discusses the broader impact in Section B.2.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The released codes does not have a high risk for misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite corresponding papers for the asserts we use in Section 1.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: This paper utilizes existing problems for evaluation. We documented the
changes we made to the assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.

17

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Planning Ability Evaluation: Three Perspectives
	Discussion
	Empirical Limitations
	Model Performance vs. Problem Complexity
	Constraint Following and State Management
	Optimality and Redundancy in Planning
	Generalization and Adaptability

	Conclusion
	Experiments on Planning Benchmarks
	Barman
	Blocksworld
	Grippers
	Floortile
	Termes
	Tyreworld

	Findings and Future Directions
	Summary of Findings
	Opportunities for Improvement

