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ABSTRACT

We investigate the problem of fixed-budget best arm identification (BAI) for
minimizing expected simple regret. In an adaptive experiment, a decision-maker
draws one of multiple arms based on past observations and observes the outcome
of the drawn arm. At the end of the experiment, the decision-maker recommends
an arm with the highest expected outcome. We evaluate the decision based on the
expected simple regret, which is the difference between the expected outcomes of
the best arm and the recommended arm. Due to inherent uncertainty, we consider
the worst-case analysis for the expected simple regret. First, we derive asymptotic
lower bounds for the worst-case expected simple regret, which are characterized by
the variances of potential outcomes (leading factor). Based on the lower bounds,
we propose the Adaptive-Sampling (AS)-Augmented Inverse Probability Weighting
(AIPW) strategy, which utilizes the AIPW estimator in recommending the best
arm. Our theoretical analysis shows that the AS-AIPW strategy is asymptotically
minimax optimal, meaning that the leading factor of its worst-case expected simple
regret matches our derived worst-case lower bound. Finally, we validate the
proposed method’s effectiveness through simulation studies. To improve efficiency,
we also discuss the use of contextual information as a generalization of the standard
BAI, though our result holds novelty even without contextual information.

1 INTRODUCTION

We consider adaptive experiments with multiple arms, such as slot machine arms, different therapies,
and distinct unemployment assistance programs. Rather than performing hypothesis testing or
estimating the expected outcomes, our focus is on identifying the best arm, which is an arm with the
highest expected outcome. This task is known as the best arm identification (BAI) and is a variant of
the stochastic multi-armed bandit (MAB) problem (Thompson, 1933; Lai & Robbins, 1985). In this
study, we investigate fixed-budget BAI, where we aim to minimize the expected simple regret after an
adaptive experiment with a fixed number of rounds, known as a budget (Bubeck et al., 2009; 2011).

In each round of our experiment, a decision-maker sequentially draws one of the arms based on past
observations and immediately observes a corresponding outcome of the drawn arm generated from a
bandit model. At the end of the experiment, the decision-maker recommends an estimated best arm
at the end of the experiment. The decision-maker decides its action following a strategy. We measure
the performance of the strategy using the expected simple regret, which is the difference between the
maximum expected outcome that could be achieved with complete knowledge of the distributions
and the expected outcome of the arm recommended by the strategy. Due to the inherent uncertainty,
we evaluate the performance under the worst-case criterion among a given class of bandit models.

For bandit models with finite variances, we derive worst-case lower bounds for the expected simple
regret. The lower bounds’ leading factors are characterized by the variances of potential outcomes.
We then propose the Adaptive-Sampling (AS)-Augmented Inverse Probability Weighting (AIPW)
strategy and show that it is asymptotically minimax optimal, meaning that the leading factor of its
worst-case expected simple regret matches that of the lower bound.

Bubeck et al. (2011) derives worst-case lower bounds for the expected simple regret under bandit
models with bounded supports. Their lower bounds only rely on the boundedness of the bandit
models and do not depend on any other distributional information. This study derives lower bounds
that depend on the variances of the bandit models, which means that we use more distributional
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information. Our lower bounds are based on change-of-measure arguments with the Kullback-Leibler
(KL) divergence, which has been used to derive tight lower bounds in existing studies (Lai & Robbins,
1985; Kaufmann et al., 2016). Note that the variance appears as the second-order expansion of the
KL divergence where the gaps between the expected outcomes of best and suboptimal arms are zero.

In BAI, the proportion of times each arm is drawn plays a critical role, referred to as a target allocation
ratio. In many settings, target allocation ratios do not have closed-form solutions. However, in our
case, we derive analytical solutions for several specific cases characterized by the standard deviations
or variances of the outcomes. When there are only two arms, the target allocation ratio is the ratio
of the standard deviation of outcomes. When there are three or more arms without contextual
information, the target allocation ratio is the ratio of the variance of outcomes.

This result contrasts with the findings of Bubeck et al. (2011), which reports that a strategy drawing
each arm with an equal ratio and recommending an arm with the highest sample average of observed
outcomes is minimax optimal for bandit models with bounded outcome supports. In contrast, our
results suggest drawing arms based on the ratio of the standard deviations or variances of outcomes.
This difference stems from the use of distributional information (variances) in experimental design.

Furthermore, to improve efficiency, we additionally consider a scenario where a decision-maker
can observe contextual information before drawing an arm. Unlike in the conventional contextual
bandits, our goal still lies in the identification of the arm with the highest unconditional expected
outcome rather than the conditional expected outcome. This setting is motivated by the goals of
average treatment effect (ATE) estimation (van der Laan, 2008; Hahn et al., 2011) and BAI with
fixed confidence and contextual information (Russac et al., 2021; Kato & Ariu, 2021). Our findings
indicate that utilizing contextual information can reduce the expected simple regret, even if our focus
is on the unconditional best arm. Note that this setting is a generalization of fixed-budget BAI without
contextual information, and our result holds novelty even in the absence of contextual information.

In summary, our contributions include (i) lower bounds for the worst-case expected simple regret; (ii)
analytical solutions for the target allocation ratios, characterized by the variances of the outcomes;
(iii) the AS-AIPW strategy; (iv) asymptotic minimax optimality of the AS-AIPW strategy; These
findings contribute to a variety of subjects, including statistical decision theory, in addition to BAI.

Organization. Section 2 formulates our problem. Section 3 establishes lower bounds for the worst-
case expected simple regret and a target allocation ratio. In Section 4, we introduce the AS-AIPW
strategy. Then, Section 5 presents the upper bounds with its asymptotic minimax optimality. Finally,
we introduce related work in Section 6 and Appendix A. Open problems are discussed in Appendix J.

2 PROBLEM SETTING

We investigate the following setup. Given a fixed number of rounds T , referred to as a budget, in
each round t = 1, 2, . . . , T , a decision-maker observes a contextual information (covariate) Xt ∈ X
and draws arm At ∈ [K] = {1, 2, . . . ,K}. Here, X ⊂ RD is a space of contextual information1.
The decision-maker then immediately observes an outcome (or reward) Yt linked to the drawn arm
At. This setting is referred to as the bandit feedback or Neyman-Rubin causal model (Neyman,
1923; Rubin, 1974), in which the outcome in round t is Yt =

∑
a∈[K] 1[At = a]Y a

t , where Y a
t ∈ R

is a potential independent (random) outcome, and Y 1
t , Y

2
t , . . . , Y

K
a are conditionally independent

given Xt. We assume that Xt and Y a
t are independent and identically distributed (i.i.d.) over

t ∈ [T ] = {1, 2, . . . , T}. Our goal is to find an arm with the highest expected outcome marginalized
over the contextual distribution of Xt with a minimal expected simple regret after the round T .

We define our goal formally. Let P be a joint distribution of (Y 1, Y 2, . . . , Y K , X), and
(Y 1

t , Y
2
t , . . . , Y

K
t , Xt) be an i.i.d. copy of (Y 1, Y 2, . . . , Y K , X) in round t. We refer to the distri-

bution of the potential outcome (Y 1, Y 2, . . . , Y K , X) a full-data bandit model (Tsiatis, 2007). For
a given full-data bandit model P , let PP and EP denote the probability law and expectation with
respect to P , respectively. Besides, let µa(P ) = EP [Y

a
t ] denote the expected outcome marginalized

over X . Let P denote the set of all P . An algorithm in BAI is referred to as a strategy. With the
sigma-algebras Ft = σ(X1, A1, Y1, . . . , Xt, At, Yt), we define a strategy as a pair ((At)t∈[T ], âT ),
where (At)t∈[T ] is a sampling rule and âT ∈ [K] is a recommendation rule. Following the sampling

1BAI without contextual information corresponds to a case where X is a singleton.
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rule, the decision-maker draws armAt ∈ [K] in each round t based on the past observations Ft−1 and
observed context Xt. Following the recommendation rule, the decision-maker returns an estimator
âT of the best arm a∗(P ) := argmaxa∈[K] µ

a(P ) based on observations up to round T . Here, At is
Ft-measurable, and âT is FT -measurable. For a bandit model P ∈ P and a strategy π ∈ Π, let us
define the simple regret as rT (P )(π) := maxa∈[K] µ

a(P )− µâT (P ). Our goal is to find a strategy
that minimizes the expected simple regret, defined as

EP [rT (P )(π)] = EP

[
max
a∈[K]

µa(P )− µâT (P )

]
=
∑
b∈[K]

∆b(P )︸ ︷︷ ︸
gap

PP (âT = b)︸ ︷︷ ︸
probability of misidentification

, (1)

where ∆a(P ) is a gap maxb∈[K] µ
b(P )−µa(P ) = µa∗(P )(P )−µa(P ), and the expectation is taken

over the randomness of âT ∈ [K] and P̃ ⊆ P is a specific class of bandit models.

With this objective, we first derive the worst-case lower bounds for the expected simple regret in
Section 3. Then, we propose an algorithm in Section 4 and show the minimax optimality in Section 5.

Notation. Let µa(P )(x) := EP [Y
a|X = x] be the conditional expected outcome given x ∈ X for

a ∈ [K]. Similarly, we define νa(P )(x) := EP [(Y
a)2|X = x] and νa(P ) := EP [ν

a(P )(X)].
Let (σa(P )(x))2 and (σa(P ))2 be the conditional and unconditional variances of Y a

t ; that is,
(σa(P )(x))2 = νa(P )(x)− (µa(P )(x))2 and (σa(P ))2 = νa(P )− (µa(P ))2. For all P ∈ P∗ and
a ∈ [K], let P a be the joint distributions of (Y a, X).

3 LOWER BOUNDS FOR THE WORST-CASE EXPECTED SIMPLE REGRET

This section presents lower bounds for the worst-case expected simple regret. In Eq. (1), for each
fixed P ∈ P̃ , the probability of misidentification PP

(
âT /∈ argmaxa∈[K] µ

a(P )
)

converges to

zero with an exponential rate, while ∆âT (P ) is the constant. Therefore, we disregard ∆âT (P ),
and the convergence rate of PP

(
âT /∈ argmaxa∈[K] µ

a(P )
)

dominates the expected simple regret.

In this case, to evaluate the convergence rate of PP

(
âT /∈ argmaxa∈[K] µ

a(P )
)

, we utilize large

deviation upper bounds. In contrast, if we examine the worst case among P̃ , which includes a bandit
model such that the gaps between the expected outcomes converge to zero with a certain order of
the sample size T , a bandit model P whose gaps converge to zero at a rate of O(1/

√
T ) dominates

the expected simple regret. For the gap ∆b(P ), the worst-case simple regret is approximately given
by supP∈P̃ EP [rT (P )(π)] ≈ supP∈P̃

∑
b∈[K] ∆

b(P ) exp
(
− T

(
∆b(P )

)2
/Cb

)
, where (Cb)b∈[b]

are constants. Then, the maximum is obtained when ∆a(P ) =
√

Cb

T for a constant Cb > 0, which
balances the regret caused by the gap ∆b(P ) and probability of misidentification PP (âT = b).

3.1 RECAP: LOWER BOUNDS FOR BANDIT MODELS WITH BOUNDED SUPPORTS

Bubeck et al. (2011) shows a (non-asymptotic) lower bound for bandit models with a bounded support,
where a strategy with the uniform sampling rule is optimal. Let us denote bandit models with bounded
outcomes by P [0,1], where each potential outcome Y a

t is in [0, 1]. Then, the authors show that for all

T ≥ K ≥ 2, any strategy π ∈ Π satisfies supP∈P [0,1] EP [rT (P )(π)] ≥ 1
20

√
K
T . For this worst-case

lower bound, the authors show that a strategy with the uniform sampling rule and empirical best arm
(EBA) recommendation rule is optimal, where we draw At = a with probability 1/K for all a ∈ [K]
and t ∈ [T ] and recommend an arm with the highest sample average of the observed outcomes,
which is referred to as the uniform-EBA strategy. Under the uniform-EBA strategy πUniform-EBM,

the expected simple regret is bounded as supP∈P[0,1] EP

[
rT
(
πUniform-EBM

)
(P )
]
≤ 2

√
K logK
T+K .

Thus, the upper bound matches the lower bound if we ignore the logK and constant terms.

Although the uniform-EBA strategy is nearly optimal, a question remains whether, by using more
distributional information, we can show tighter lower bounds or develop more efficient strategies. As
the lower bound in Bubeck et al. (2011) is referred to as a distribution-free lower bound, the lower
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bound does not utilize distributional information, such as variance. In this study, although we still
consider the worst-case expected simple regret, we develop lower and upper bounds depending on
distributional information.

Specifically, we characterize the bounds by the variances of outcomes. Recall that the worst-case
expected simple regret is dominated by an instance of a bandit model with ∆a(P ) = O(1/

√
T ).

Here, also recall that tight lower bounds are derived from the KL divergence (Lai & Robbins,
1985; Kaufmann et al., 2016), whose second-order Taylor expansion with respect to the gap ∆a(P )
corresponds to the variance (inverse of the Fisher information). Therefore, the tight lower bounds
employing distributional information in the worst-case expected simple regret should be characterized
by the variances (the second-order Taylor expansion of the KL divergence). In the following sections,
we consider worst-case lower bounds characterized by the variances of bandit models.

3.2 LOCAL LOCATION-SHIFT BANDIT MODELS

In this section, we derive asymptotic lower bounds for the worst-case expected simple regret. To
derive lower bounds, we often utilize an alternative hypothesis. We consider a bandit model whose
expected outcomes are the same among the K arms. We refer to it as the null bandit model.
Definition 3.1 (Null bandit models). A bandit model P ∈ P is called a null bandit model if the
expected outcomes are equal: µ1(P ) = µ2(P ) = · · · = µK(P ).

Then, we consider a class of bandit models with a unique fixed variance for null bandit models, called
local location-shift bandit models. Furthermore, we assume that potential outcomes are conditionally
sub-Gaussian, and their parameters are bounded. We define our bandit models as follows.
Definition 3.2 (Local location-shift bandit models). A class of bandit models P∗ are called local
location-shift bandit models if it contains all bandit models that satisfy the following conditions:

(i) Absolute continuity. For all P,Q ∈ P∗ and a ∈ [K], P a and Qa are mutually absolutely
continuous and have density functions with respect to some reference measure.

(ii) Invariant contextual information. For all P ∈ P∗, the distributions of contextual information
X are the same. Let EX be an expectation operator over X and ζ(x) be the density of X .

(iii) Unique conditional variance. All null bandit models P ♯ ∈ P∗ (µ1(P ♯) = µ2(P ♯) = · · · =
µK(P ♯)) have the unique conditional variance; that is, for all P ♯ ∈ P∗, there exists an universal
constant σa(x) > C such that for all P ♯ ∈ P∗,

(
σa(P ♯)(x)

)2
= (σa(x))

2 holds.

(iv) Bounded moments. There exist known universal constants 0 < C < C <∞ such that for all
P ∈ P∗, a ∈ [K], and x ∈ X , |µa(P )(x)| < C and C < σa(P )(x) < C hold.

(v) Parallel shift. There exists an universal constant C > 0, independent from P , such that for all
P ∈ P∗, x ∈ X , and a, b ∈ [K],

∣∣(µa(P )(x)− µb(P )(x)
)∣∣ ≤ C

∣∣µa(P )− µb(P )
∣∣.

(vi) Continuity. For all a ∈ [K], x ∈ X , and a null bandit model P ♯ ∈ P∗, limn→∞ (σa(Pn)(x))
2

= (σa(x))
2 holds for a sequence of bandit models {Pn} such that limn→∞ µa(Pn)(x) = µa(P ♯)(x).

Our lower bounds are characterized by σa(x), a conditional variance of null bandit models.

Local location-shift models are a common assumption in statistical inference (Lehmann & Casella,
1998). A key example are Gaussian and Bernoulli distributions. Under Gaussian distributions with
fixed variances, for all P , the variances are fixed, and only mean parameters shift. Such models are
generally called location-shift models. Additionally, we can consider Bernoulli distributions if P∗

includes one instance of µ1(P ) = · · · = µK(P ) to specify one fixed variance σa(x). Furthermore,
our bandit models are nonparametric within the class and include a wider range of bandit models,
similar to the approach of Hahn et al. (2011) and Barrier et al. (2022).

In (iv), we assume that there are known constants 0 < C < C < ∞. They are introduced for
technical purposes in theoretical analysis. In application, we set a sufficiently large value for C
and a sufficiently small value for C. Note that the lower boundedness of σa(P )(x) is assumed for
sampling each arm with a positive probability and the constant C plays a role similar to the forced
sampling (Garivier & Kaufmann, 2016) and the parameter β in top-two sampling (Russo, 2020) for
fixed-confidence BAI. Thus, in BAI, we usually assume the existence of such constants.
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When contextual information is unavailable, condition (v) can be omitted. Although condition (v)
may seem restrictive, its inclusion is not essential for achieving efficiency gains through the utilization
of contextual information; that is, the upper bound can be smaller even when this condition is not met.
However, it is required in order to derive a matching upper bound for the following lower bounds.

3.3 ASYMPTOTIC LOWER BOUNDS UNDER LOCAL LOCATION-SHIFT BANDIT MODELS

We consider a restricted class of strategies such that under null bandit models, any strategy in this
class recommends one of the arms with an equal probability (1/K).
Definition 3.3 (Null consistent strategy). Under any null bandit models P ∈ P (µ1(P ) = µ2(P ) =

· · · = µK(P )), any null consistent strategy satisfies that for any a, b ∈ [K],
∣∣∣PP (âT = a) −

PP (âT = b)
∣∣∣→ 0 holds as T → ∞. This implies that

∣∣PP (âT = a)− 1/K
∣∣ = o(1).

This restriction is introduced to characterize the lower bounds by using the variances of the worst-case
where the gap µa(P )− µb(P ) between two arms a, b ∈ [K] is small.

For each x ∈ X , we refer to 1
T

∑T
t=1 1[At = a] as an allocation ratio under a strategy.

Let us also define an average allocation ratio under P ∈ P and a strategy as κT,P (a|x) =

EP

[
1
T

∑T
t=1 1[At = a]|Xt = x

]
, which plays an important role in the proof of our lower bound. Let

W be a set of all measurable functions κT,P : [K]× X → (0, 1) such that
∑

a∈[K] κT,P (a|x) = 1

for each x ∈ X . Then, we show the following lower bound. The proof is shown in Appendix D.
Theorem 3.4. For K ≥ 2, any null consistent strategy satisfies

sup
P∈P∗

√
TEP [rT (P )(π)] ≥

1

12
inf

w∈W
max
a∈[K]

√
EX

[
(σa(X))

2
/w(a|X)

]
+ o(1) as T → ∞.

We refer to w∗ = argminw∈W maxa∈[K]

√
EX

[
(σa(X))2

w(a|X)

]
as the target allocation ratio, which

corresponds to an allocation ratio that an optimal strategy aims to achieve and is used to define a
sampling rule in our proposed strategy. When there is no contextual information, we can obtain an
analytical solution for w∗.
Remark 3.5 (Asymptotic lower bounds under allocation constraints). When we restrict the target
allocation ratio, we can restrict the class W . For example, when we need to draw specific arms at
a predetermined ratio, we consider a class W† such that for all w ∈ W†,

∑
a∈[K] w(a|x) = 1 and

w(b|x) = C for all x ∈ X , some b ∈ [K], and a constant C ∈ (0, 1).

3.4 LOWER BOUNDS WITHOUT CONTEXTUAL INFORMATION

Our result generalizes BAI without contextual information, where X is a singleton. For simplicity,
we denote w(a|x) by w(a). When there is no contextual information, we can obtain the following
lower bound with an analytical solution of the target allocation ratio w∗ ∈ W2.
Corollary 3.6. Any null consistent strategy satisfies supP∈P∗

√
TEP [rT (P )(π)] ≥

1
12

√∑
a∈[K] (σ

a)
2
+ o(1) as T → ∞, where the target allocation ratio is w∗(a) = (σa)2∑

b∈[K](σ
b)2

.

Remark 3.7 (Efficiency gain by using the contextual information). When contextual informa-
tion is available, if we substitute suboptimal allocation ratio w(a|x) = (σa(x))2∑

b∈[K](σ
b(x))2

into

maxa∈[K]

√
EX

[
(σa(X))2

w(a|X)

]
, a lower bound is 1

12

√∑
a∈[K] EX

[
(σa(X))

2
]
+ o(1), which can be

tightened by optimizing with respect to w. It is worth noting that by using the law of total variance,
(σa)2 ≥ EX

[
(σa(X))

2
]
. Therefore, by utilizing contextual information, we can tighten the lower

bounds as
√∑

a∈[K] (σ
a)

2 ≥
√∑

a∈[K] EX
[
(σa(X))

2
]
≥ minw∈W maxa∈[K]

√
EX

[
(σa(X))2

w(a|X)

]
.

This improvement implies efficiency gain by using contextual information Xt.
2Because X is a singleton, we consider W := {(w(a))a∈[K]|w(a) ∈ [0, 1],

∑
a∈[K] w(a) = 1}.
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3.5 REFINED LOWER BOUNDS FOR TWO-ARMED BANDITS

For two-armed bandits (K = 2), we can refine the lower bound as follows. In this case, we can also
obtain an analytical solution of the target allocation ratio even when there is contextual information.

Theorem 3.8. When K = 2, any null consistent strategy satisfies

sup
P∈P∗

√
TEP [rT (P )(π)] ≥

1

12

√
EX

[
(σ1(X) + σ2(X))

2
]
+ o (1)

as T → ∞, where the target allocation ratio is w∗(a|x) = σa(x)/(σ1(x) + σ2(x)) for all x ∈ X .

This lower bound is derived as a solution of supP∈P∗

√
TEP [rT (P )(π)] ≥ 1

12 infw∈W√
EX

[
(σ1(X))2

w(1|Xt)
+ (σ2(Xt))

2

w(2|Xt)

]
+ o(1). Here, note that infw∈W EX

[
(σ1(X))

2

w(1|Xt)
+

(σ2(Xt))
2

w(2|Xt)

]
≥

infw∈W maxa∈[2]

√
EX

[
(σa(X))2

w(a|X)

]
. Therefore, this lower bound is tighter than that in Theorem 3.4.

This target allocation ratio is the same as that in Kaufmann et al. (2016) for the probability of
misidentification minimization. The proofs are shown in Appendix F.

Note that for K ≥ 3, we have an analytical solution of the target allocation ratio only when there is
no contextual information, and the target allocation ratio is the ratio of the variances. In contrast, for
K = 2, we can obtain analytical solutions of the target sample allocation ratio even when there is
contextual information, and it is the ratio of the (conditional) standard deviation.

4 THE AS-AIPW STRATEGY

This section introduces our strategy, which comprises the following sampling and recommendation
rules. In each round, we adaptively estimate the variances (σa(P )(x))2 and draw arms following a
probability using the estimates of the variances. At the end, we recommend the best arm using the
AIPW estimator. We call this strategy the AS-AIPW strategy. We show a pseudo-code in Algorithm 1.

4.1 TARGET ALLOCATION RATIO

First, we define target allocation ratios, which are used to determine our sampling rule. From the
results in Section 3, the target allocation ratios are given as follows:

w∗(1|x) = σa(x)/σ1(x) + σ2(x) and w∗(2|x) = 1− w∗(1|x) for x ∈ X if K ≥ 3,

w∗ = argmin
w∈W

max
a∈[K]

√
EX

[
(σa(X))

2
/w(a|X)

]
if K ≥ 3.

As discussed in Section 3, when K ≥ 3, there is no closed form for w∗ except for a case without
contextual information, where the target allocation ratio is w∗(a) = (σa)2∑

b∈[K](σ
b)2

for all a ∈ [K].

The target allocation ratios depend on the variances. Therefore, when the variances are unknown,
this target allocation ratio is also unknown. In our strategy, we estimate them during an adaptive
experiment and use the estimator to obtain the probability of drawing arms.

4.2 SAMPLING RULE WITH ADAPTIVE VARIANCE ESTIMATION

Let ŵt be an estimator of w∗ at round t ∈ [T ] such that for all a ∈ [K] and x ∈ X , ŵt(a|x) > 0
and

∑
a∈[K] ŵt(a|x) = 1 hold. In each round t, we obtain γt from Uniform[0, 1], the uniform

distribution on [0, 1], and draw arm At = 1 if γt ≤ ŵt(1|Xt) and At = a for a ≥ 2 if γt ∈(∑a−1
b=1 ŵt(b|Xt),

∑a
b=1 ŵt(b|Xt)

]
; that is, we draw arm a with probability ŵt(a|Xt).

In round t ≤ K, we draw arm At = t as an initialization and set ŵt(a|Xt) = 1/K for all a ∈ [K].
In round t > K, we estimate the target allocation ratio w∗ using the past observations Ft−1.
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In the sampling rule and the following recommendation rule, we use Ft−1-measurable estimators
of µa(P )(Xt), νa(P )(Xt), and w∗(a|Xt) at each round t ∈ [T ]. We denote Ft−1-measurable
estimators of µa(P )(Xt), νa(P )(Xt) and (σa(Xt))

2 as µ̂a
t (Xt), ν̂at (Xt), and (σ̂a

t (Xt))
2. For

t ≤ K, we set µ̂a
t (Xt) = ν̂at = (σ̂a

t (x))
2 = 0. For t > K, we use estimators constructed as

follows. For t > K, we estimate µa(P )(x) and νa(P )(x) using only past samples Ft−1. The
requirement for the estimators is convergence to the true parameter almost surely. We use a bounded
estimator for µ̂a

t such that |µ̂a
t | < C. Let (σ̂†a

t (x))2 = ν̂at (x) − (µ̂a
t (x))

2 for all a ∈ [K] and
x ∈ X . Then, we estimate the variance (σa(x))

2 for all a ∈ [K] and x ∈ X in a round t as
(σ̂a

t (x))
2
= max{min{((σ̂†a

t (x))2, C}, 1/C} and define ŵt by replacing the variances in w∗ with
corresponding estimators; that is, when K = 2, for each a ∈ {1, 2}, ŵ(a|Xt) =

σ̂1
t (Xt)

σ̂1
t (Xt)+σ̂2

t (Xt)
;

when K ≥ 3, for each a ∈ [K], ŵ(a|Xt) = argminw∈W maxa∈[K]

√∑
a∈[K]

(σ̂a
t (Xt))2

w(a|Xt)
. If there is

no contextual information, we obtain a closed-form ŵ(a|Xt) =
(σ̂a

t (Xt))
2∑

b∈[K](σ̂
b
t (Xt))2

when K ≥ 3.

When there is no contextual information (X is a singleton), we estimate µa(P )(x) = µa(P ) and w∗

by using the sample averages. When there is contextual information, we can employ nonparametric
estimators, such as the nearest neighbor regression estimator and kernel regression estimator, to
estimate µa(P ) and w∗. These estimators have been proven to converge to the true function almost
surely under a bounded sampling probability ŵt by Yang & Zhu (2002) and Qian & Yang (2016).
Provided that these conditions are satisfied, any estimator can be used. It should be noted that we do
not assume specific convergence rates for estimators µa(P )(x) and w∗ as the asymptotic optimality
of the AIPW estimator can be shown without them (van der Laan, 2008; Kato et al., 2020; 2021).

4.3 RECOMMENDATION RULE USING THE AIPW ESTIMATOR

Finally, we present our recommendation rule. After the final round T , for each a ∈ [K], we estimate
µa(P ) for each a ∈ [K] and recommend the maximum as an estimate of the best arm. To estimate
µa(P ), the AIPW estimator is defined as

µ̂AIPW,a
T =

1

T

T∑
t=1

φa
t

(
Yt, At, Xt

)
, φa

t (Yt, At, Xt) =
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
+ µ̂a

t (Xt).

Then, we recommend âAIPW
T ∈ [K], defined as âAIPW

T = argmaxa∈[K] µ̂
AIPW,a
T .

The AIPW estimator debiases the sample selection bias resulting from arm draws depending on past
observations and contextual information. Additionally, the AIPW estimator possesses the following
properties: (i) its components φa

t (Yt, At, Xt)
T
t=1 are a martingale difference sequence, allowing us to

employ the martingale limit theorems in the derivation of the upper bound; (ii) it has the minimal
asymptotic variance among the possible estimators. For example, other estimators with a martingale
property, such as the inverse probability weighting estimator, may be employed, yet their asymptotic
variance would be larger than that of the AIPW estimator. The variance-reduction effect has also
been employed in the studies for adversarial bandits by Ito et al. (2022), independently of this study.
The t-th element of the sum in the AIPW estimator utilizes nuisance parameters (µa(P )(x) and w∗)
estimated from past observations up to round t− 1 for constructing a martingale difference sequence
(van der Laan, 2008; Hadad et al., 2021; Kato et al., 2020; 2021; Ito et al., 2022).

The AS-AIPW strategy constitutes a generalization of the Neyman allocation (Neyman, 1934), which
has been utilized for the efficient estimation of the ATE with two treatment arms (van der Laan,
2008; Hahn et al., 2011; Tabord-Meehan, 2022; Kato et al., 2020)3 and two-armed fixed-budget BAI
without contextual information (Glynn & Juneja, 2004; Kaufmann et al., 2016).

5 ASYMPTOTIC MINIMAX OPTIMALITY OF THE AS-AIPW STRATEGY

In this section, we derive upper bounds for the worst-case expected simple regret under local location-
shift models with our proposed AS-AIPW strategy.

3The AS-AIPW strategy is also similar to those proposed for efficient estimation of the ATE with two armed
bandits (van der Laan, 2008; Kato et al., 2020).
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Algorithm 1 AS-AIPW strategy.

Parameter: Positive constants Cµ and C.
Initialization:
for t = 1 to K do

Draw At = t. For each a ∈ [K], set ŵt(a|x) = 1/K for all a ∈ [K].
end for
for t = K + 1 to T do

Observe Xt.
Construct ŵt by using the estimators of the variances.
Draw γt from the uniform distribution on [0, 1].
At = 1 if γt ≤ ŵt(1|Xt) and At = a for a ≥ 2 if γt ∈

(∑a−1
b=1 ŵt(b|Xt),

∑a
b=1 ŵt(b|Xt)

]
.

end for
Construct the AIPW estimator µ̂AIPW,a

T for each a ∈ [K] and recommend âAIPW
T .

First, we make the following assumption, which holds for a wide class of estimators (Yang & Zhu,
2002; Qian & Yang, 2016).
Assumption 5.1. For all P ∈ P∗, a ∈ [K], x ∈ X , the followings hold:∣∣µ̂a

t (x)− µa(P )(x)
∣∣ a.s.−−→ 0, and

∣∣ν̂at (x)− νa(P )(x)
∣∣ a.s.−−→ 0 as t→ ∞.

Then, we show the worst-case upper bound for the expected simple regret as follows. The proof is
shown in Appendix G, where we employ the martingale CLT and Chernoff bound as in Appendix B.
Theorem 5.2 (Worst-case upper bound). Under Assumption 5.1 and the AS-AIPW strategy πAS-AIPW,

sup
P∈P∗

√
TEP

[
rT (P )

(
πAS-AIPW

)]
≤ max

a,b∈[K]: a̸=b

√√√√log(K)EX

[
(σa(X))

2

w∗(a|X)
+

(σb(X))
2

w∗(b|X)

]
+ o(1)

holds as T → ∞.

By substituting specific values into w∗ in the upper bound, we can confirm that the leading factors of
the upper bounds match our derived lower bounds in Section 3; that is,

sup
P∈P∗

√
TEP

[
rT (P )

(
πAS-AIPW

)]

≤


1
2

√
EX

[
(σ1(X) + σ2(X))

2
]
+ o(1) whenK = 2

2minw∈W maxa∈[K]

√
log(K)EX

[
(σa(X))2

w∗(a|X)

]
+ o(1) whenK ≥ 3

,

as T → ∞. Thus, we proved the asymptotic minimax optimality of our proposed strategy.

There is a log(K) factor in the upper bound, which appears in existing studies, such as Bubeck
et al. (2011) and Komiyama et al. (2023). As existing studies discussed, we consider that further
restrictions are required for a class of strategies or bandit models to fulfill the discrepancy.

We also provide non-asymptotic upper bounds in Appendix H. Note that the non-asymptotic upper
bounds are dominated by the convergence rate of the second moment of φa

t to a round-independent
constant (Hall et al., 1980). The convergence rate is significantly influenced by the estimation error
of the variances, which are used to estimate the target allocation ratio (sampling rule).

6 DISCUSSION AND RELATED WORK

This section briefly introduces related work. A more detailed survey is presented in Appendix A.
Bubeck et al. (2011) shows that the uniform-EBA strategy is minimax optimal for the worst-case
expected simple regret under bandit models with bounded supports. While Bubeck et al. (2011)
provides an optimal strategy whose order of the expected simple regret aligns with their proposed

8
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Figure 1: Experimental results. The y-axis and x-axis denote the expected simple regret
EP [rT (P )(π)] under each strategy and T , respectively.

worst-case lower bound, their lower bounds only depend on the assumption of the bounded support
and do not use the other distributional information (distribution-free analysis). In contrast, there
is a longstanding open issue on the existence of asymptotic optimal strategies whose upper bound
aligns with distribution-dependent lower bounds suggested by Kaufmann et al. (2016) (distribution-
dependent analysis). For details, see related work, such as Kaufmann (2020), Ariu et al. (2021), and
Degenne (2023). Our optimality criterion is an intermediate between the distribution-free (Bubeck
et al., 2011) and distribution-dependent (Kaufmann et al., 2016) because our lower and upper bounds
are derived under the worst-case but depend on the variances (distributional information).

Variance-dependent BAI strategies have been discussed by existing work, mainly for minimizing the
probability of misidentification, such as Chen et al. (2000), Glynn & Juneja (2004), and Kaufmann
et al. (2016). Glynn & Juneja (2004) discusses optimal strategy for Gaussian bandits under the
large deviation principles. Kaufmann et al. (2016) develops a lower bound for two-armed Gaussian
bandits and finds that when the variances are known, drawing each arm with a ratio of the standard
deviation is asymptotically optimal. Independently of us, Lalitha et al. (2023) also proposes variance-
dependent strategies by extending the sequential halving strategy (Karnin et al., 2013). However, the
optimality is unclear since they do not provide lower bounds. In fact, their strategy’s probability of
misidentification is larger than that of Kaufmann et al. (2016) when K = 2.

7 EXPERIMENTS

In this section, we compare our AS-AIPW strategy with the Uniform-EBA (Uniform, Bubeck
et al., 2011), Successive Rejection (SR, Audibert et al., 2010), UGapEb (Gabillon et al., 2012),
and SHAdaVar (Lalitha et al., 2023). We investigate two setups with K = 2, 3 without contextual
information for these strategies. The best arm is arm 1 and µ1(P ) = 1.00. The expected outcomes of
suboptimal arms are µ2(P ) = 0.95 and µ3(P ) ∼ Uniform[0.95, 1.00]. Variances are generated from
Uniform[1.00, 5.00]. We continue the experiments until T = 50, 000 and conduct 150 independent
trials. At each round t ∈ {1, 000, 2, 000, 3, 000, · · · , 49, 000, 50, 000}, we compute the simple
regrets and plot the empirical average of the simple regrets in Figure 1. For the SR and SHAdaVar,
we restart the experiments after reaching each T . Additional results with other settings, including
contextual information, are presented in Appendix I.

From Figure 1 and Appendix I, we can confirm the soundness of our proposed strategy. When
contextual information exists, our methods show better performances than the others. Although our
strategies show preferable performances in many settings, other strategies also perform well. We
conjecture that our strategies exhibit superiority against other methods when K is small (mismatching
term in the upper bound), the gap between the best and suboptimal arms is small, and the variances
significantly vary across arms. As the superiority depends on the situation, we recommend a
practitioner use several strategies in a hybrid way.

8 CONCLUSION

We conducted an asymptotic worst-case analysis of the simple regret in fixed-budget BAI with
contextual information. Initially, we obtained lower bounds for local location-shift bandit models,
where the variances of potential outcomes characterize the asymptotic lower bounds as a second-order
approximation of the KL divergence. Based on these lower bounds, we derived target allocation
ratios, which were used to define a sampling rule in the AS-AIPW strategy. Finally, we demonstrated
that the AS-AIPW strategy achieves minimax optimality for the expected simple regret.
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A RELATED WORK

In this section, we introduce related work, in addition to the work in Section 6.

A.1 LITERATURE OF BAI

The MAB problem is an abstraction of the sequential decision-making process (Thompson, 1933;
Robbins, 1952; Lai & Robbins, 1985). BAI is a paradigm of this problem (Even-Dar et al., 2006;
Audibert et al., 2010; Bubeck et al., 2011), with its variants dating back to the 1950s in the context of
sequential testing, ranking, and selection problems (Bechhofer et al., 1968). Additionally, ordinal op-
timization has been extensively studied in the field of operations research, with a modern formulation
established in the early 2000s (Chen et al., 2000; Glynn & Juneja, 2004). Most of these studies have
focused on determining optimal strategies under the assumption of known target allocation ratios.
Within the machine learning community, the problem has been reframed as the BAI problem, with
a particular emphasis on performance evaluation under unknown target allocation ratios. (Bubeck
et al., 2009; 2011; Audibert et al., 2010).

In fixed-budget BAI, Bubeck et al. (2009) demonstrates minimax optimal strategies for the expected
simple regret, and Audibert et al. (2010) proposes the UCB-E and Successive Rejects (SR) strategies.
Kock et al. (2023) generalizes the results of Bubeck et al. (2011) to cases where parameters of interest
are functionals of the distribution and find that target allocation ratios are not uniform, in contrast to
the results of Bubeck et al. (2011).

Kaufmann et al. (2016) contributes to this field by deriving distribution-dependent lower bounds
for BAI with fixed confidence and a fixed budget, using the change-of-measure arguments as well
as (Lai & Robbins, 1985). In the setting of fixed-confidence BAI, Garivier & Kaufmann (2016)
proposes an optimal strategy for the lower bounds derived by Kaufmann et al. (2016); however, in
the fixed-budget setting, there is currently a lack of strategies whose upper bound matches the lower
bound established by Kaufmann et al. (2016). Kaufmann (2020) points out this issue, and Ariu et al.
(2021) finds a bandit model whose lower bound for the probability of misidentification is larger than
those by Kaufmann (2020). Qin (2022) summarizes this problem. Degenne (2023) discusses the
existence of optimal strategies.

Carpentier & Locatelli (2016) examines the lower bound for the probability of misidentification under
the minimax framework and shows the optimality of the method proposed by Audibert et al. (2010) in
terms of leading factors in the exponent. The lower bound of Carpentier & Locatelli (2016) is based
on a minimax evaluation of the probability of misidentification under a large gap. Yang & Tan (2022)
proposes minimax optimal linear BAI with a fixed budget by extending the result of Carpentier &
Locatelli (2016).

In addition to minimax evaluation, Komiyama et al. (2023) develops an optimal strategy whose upper
bound for a simple Bayesian regret lower bound matches their derived lower bound. Atsidakou et al.
(2023) proposes a Bayes optimal strategy for minimizing the probability of misidentification, which
shows a surprising result that 1/

√
T -factor dominates the evaluation.

In Russo (2020), Qin et al. (2017), and Shang et al. (2020), respectively, the authors propose Bayesian
BAI strategies that are optimal in terms of posterior convergence rate. However, it has been shown by
Kasy & Sautmann (2021) and Ariu et al. (2021) that such optimality does not extend to asymptotic
optimality for the probability of misidentification in fixed-budget BAI.

Adusumilli (2022; 2021) present an alternative minimax evaluation of bandit strategies for both regret
minimization and BAI, which is based on a formulation utilizing a diffusion process proposed by
Wager & Xu (2023). Furthermore, Armstrong (2022) extends the results of Hirano & Porter (2009)
to a setting of adaptive experiments. The results of Adusumilli (2022; 2021) and Armstrong (2022)
employ arguments on local asymptotic normality (Le Cam, 1960; 1972; 1986; van der Vaart, 1991;
1998), where the class of alternative hypotheses comprises of “local models,” in which parameters of
interest converge to true parameters at a rate of 1/

√
T .

There are several studies in variance-dependent BAI. Chen et al. (2000), Glynn & Juneja (2004),
and Kaufmann et al. (2016) propose variance-dependent strategies for fixed-budget BAI under their
optimal criterion. However, when K ≥ 3, the lower bounds and asymptotic optimality are unknown.
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Therefore, it is unclear whether their use of variances leads to optimal strategies. Sauro (2020),
Lu et al. (2021), and Lalitha et al. (2023) also provide variance-dependent BAI strategies, but their
optimality is unclear.

Only when variances are known and the number of arms is equal to two, is it known that the target
allocation ratio is the ratio of the standard deviation. However, Lalitha et al. (2023) proposes using
the ratio of variances with successive halving, which gives a larger probability of misidentification
compared to the strategy shown by Kaufmann et al. (2016).

In fixed-confidence BAI, Jourdan et al. (2023) Sauro (2020), Lu et al. (2021), and Lalitha et al. (2023)
also provide variance-dependent BAI strategies.

Tekin & van der Schaar (2015), Guan & Jiang (2018), and Deshmukh et al. (2018) consider BAI with
contextual information, but their analysis and setting are different from those employed in this study.

Barrier et al. (2022) also considers non-parametric models in BAI. While we consider the expected
simple regret minimization, that work minimizes the probability of misidentification. These two
settings are related but require different analyses for lower bounds. See (Komiyama et al., 2023). Ad-
ditionally, there are the following critical differences between our study and theirs in non-parametric
analysis using the KL divergence of Kaufmann et al. (2016). In the lower bound, our study approxi-
mates the KL divergence by the Fisher information (semiparametric influence function) around the
gaps between the best and suboptimal arms are zero ∆a(P ) → 0. We do not assume the boundedness
of Y a

t . In the upper bound, we utilize the central limit theorem for deriving tight results. In contrast,
Barrier et al. (2022) assumes the boundedness of Y a

t . Then, bounding the KL divergences using the
boundedness without using the small gap (fixed ∆a(P )). Because we employ the worst-case analysis,
which implies ∆a(P ) ≈ 1/

√
T (see Section 3), we could naturally develop non-parametric results.

However, we cannot employ such an approximation in Barrier et al. (2022) because it considers lower
and upper bounds under a fixed P or fixed ∆a(P ).

A.2 EFFICIENT AVERAGE TREATMENT EFFECT ESTIMATION

Efficient estimation of ATE via adaptive experiments constitutes another area of related literature.
van der Laan (2008) and Hahn et al. (2011) propose experimental design methods for more efficient
estimation of ATE by utilizing covariate information in treatment assignment. Despite the marginal-
ization of covariates, their methods are able to reduce the asymptotic variance of estimators. Karlan
& Wood (2014) applies the method of Hahn et al. (2011) to examine the response of donors to new
information regarding the effectiveness of a charity. Subsequently, Tabord-Meehan (2022) and Kato
et al. (2020) have sought to improve upon these studies, and more recently, Gupta et al. (2021) have
proposed the use of instrumental variables in this context.

For two armed bandits, Adusumilli (2022) demonstrates the minimax optimality for the expected
simple regret under the limit-of-experiment framework, utilizing a diffusion process framework. Arm-
strong (2022) also analyzes the minimax optimal strategy under the limit-of-experiment framework
and establishes that the Neyman allocation is minimax optimal.

A.3 OTHER RELATED WORK

Our arguments are inspired by limit-of-experiments framework (Le Cam, 1986; van der Vaart, 1998;
Hirano & Porter, 2009). Within this framework, we can approximate the statistical experiment by
a Gaussian distribution using the CLT. Hirano & Porter (2009) relates the asymptotic optimality of
statistical decision rules (Manski, 2000; 2002; 2004; Dehejia, 2005) to the framework.

The AIPW estimator has been extensively used in the fields of causal inference and semiparametric
inference (Tsiatis, 2007; Bang & Robins, 2005; Chernozhukov et al., 2018). More recently, the
estimator has also been utilized in other MAB problems, as seen in Kim et al. (2021) and Ito et al.
(2022).

Our problem is also closely related to theories of statistical decision-making (Wald, 1949; Manski,
2000; 2002; 2004), limits of experiments (Le Cam, 1972; van der Vaart, 1998), and semiparametric
theory (Hahn, 1998), not only to BAI. Among them, semiparametric theory plays an essential role
because it allows us to characterize the lower bounds with the semiparametric analog of the Fisher
information (van der Vaart, 1998).
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B PRELIMINARIES

Let Wi be a random variable with probability measure P . Let Fn = σ(W1,W2, . . . ,Wn).

Definition B.1. [Uniform integrability, Hamilton (1994), p. 191] Let Wt ∈ R be a random variable
with a probability measure P . A sequence {Wt} is said to be uniformly integrable if for every ϵ > 0
there exists a number c > 0 such that

EP [|Wt| · 1[|Wt| ≥ c]] < ϵ

for all t.

Proposition B.2 (Sufficient conditions for uniform integrability; Proposition 7.7, p. 191. Hamilton
(1994)). Let Wt, Zt ∈ R be random variables. Let P be a probability measure of Zt. (a) Suppose
there exist r > 1 and M < ∞ such that EP [|Wt|r] < M for all t. Then {Wt} is uniformly
integrable. (b) Suppose there exist r > 1 and M < ∞ such that EP [|Zt|r] < M for all t. If
Wt =

∑∞
j=−∞ hjZt−j with

∑∞
j=−∞ |hj | <∞, then {Wt} is uniformly integrable.

Proposition B.3 (Lr convergence theorem, p 165, Loeve (1977)). Let Wt be a random variable with
probability measure P and w be a constant. Let 0 < r <∞, suppose that EP

[
|Wt|r

]
<∞ for all t

and that Wt
p−→ z as n→ ∞. The following are equivalent:

(i) Wt → w in Lr as t→ ∞;

(ii) EP

[
|Wt|r

]
→ EP

[
|w|r

]
<∞ as t→ ∞;

(iii)
{
|Wt|r, t ≥ 1

}
is uniformly integrable.

Definition B.4. For Ft equal to the σ-field generated by ξ1, . . . , ξt, {Wt,Ft, t ≥ 1}∞t=1 is a martin-
gale if for all t ≥ 1, we have

E[Wt+1|Ft] =Wt.

If E[Wt+1|Ft] = 0, {Wt,Ft, t ≥ 1}∞t=1 is a martingale difference sequence.

Proposition B.5 (Weak Law of Large Numbers for Martingale, Hall et al. (1980)). Let {St =∑t
s=1Ws,Ft, t ≥ 1} be a martingale and {bt} a sequence of positive constants with bt → ∞ as

t→ ∞. Then, writing Wts =Ws1[|Ws| ≤ bt], 1 ≤ s ≤ t, we have that b−1
t St

p−→ 0 as t→ ∞ if

(i)
∑t

s=1 P (|Ws| > bt) → 0;

(ii) b−1
t

∑t
s=1 E[Wts|Fs−1]

p−→ 0, and;

(iii) b−2
t

∑t
s=1

{
E[W 2

ts]− E
[
E
[
Wts|Fs−1

]]2}→ 0.

Proposition B.6 (Central Limit Theorem for a Martingale Difference Sequence; from Proposition 7.9,
p. 194, Hamilton (1994); also see White (1984)). Let {(St =

∑t
s=1Wt,Ft)}∞t=1 be a martingale

with Ft equal to the σ-field generated by W1, . . . ,Wt. Suppose that

(a) E[W 2
t ] = σ2

t , a positive value with (1/T )
∑T

t=1 σ
2
t → σ2, a positive value;

(b) E[|Wt|r] <∞ for some r > 2;

(c) (1/T )
∑T

t=1W
2
t

p−→ σ2.

Then ST
d−→ N (0, σ2).

Proposition B.7 (Rate of convergence in the CLT; from Theorem 3.8, p 88, Hall et al. (1980)). Let
{(St =

∑t
s=1Wt,Ft)}∞t=1 be a martingale with Ft equal to the σ-field generated by W1, . . . ,Wt.

Let

V 2
t =

t∑
s=1

E[W 2
s |Ft−1] 1 ≤ t ≤ T.
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Suppose that for some α > 0 and constants M , C and D,

max
t≤T

EP [exp(|
√
tWt|α)] < M,

and

PP

(
|V 2

t − 1| > D/
√
t(log t)2+2/α

)
≤ Ct−1/4(log t)1+1/α.

Then, for T ≥ 2,

sup
−∞<x<∞

∣∣PP (ST ≤ x)− Φ(x)
∣∣ ≤ AT−1/4(log T )1+1/α,

where the constant A depends only on α, M , C, and D.

The Chernoff bound yields the following inequality.

Proposition B.8. Let {St =
∑t

s=1Ws,Ft, t ≥ 1}∞t=1 be a martingale difference sequence with Ft

equal to the σ-field generated by W1, . . . ,Wt and suppose that there exist CW such that for all t ∈ N
and all λ ∈ R,

EP [exp (λWt) |Ft−1] ≤ exp

(
λ2CW

2

)
;

that is, conditionally sub-Gaussian. Then, it holds that
∑T

t=1 Zt is sub-Gaussian, and for ε ∈ R,

PP

(
T∑

t=1

Wt ≥ ε

)
≤ exp

(
− ε2

2TCW

)
.

C NON-ASYMPTOTIC LOWER BOUNDS FOR BANDIT MODELS WITH
BOUNDED SUPPORTS

First, we introduce an existing lower bound for bounded bandit models. Let us denote the class of
bandit models with bounded outcomes by P [0,1], where each potential outcome Y a

t is in [0, 1]. Then,
Bubeck et al. (2011) proposes the following lower bound, which holds for P [0,1].
Proposition C.1. For all T ≥ K ≥ 2, any strategy π ∈ Π satisfies supP∈P [0,1] EP [rT (P )(π)] ≥
1
20

√
K
T .

This lower bound only requires that the support of the bandit models in P [0,1] is bounded.

For this non-asymptotic lower bound, Bubeck et al. (2011) shows that a strategy with the uniform
sampling rule and empirical best arm (EBA) recommendation rule is optimal, where we draw At = a
with probability 1/K for all a ∈ [K] and t ∈ [T ] and recommend an arm with the highest sample
average of the observed outcomes. We call this strategy the uniform-EBA strategy.
Proposition C.2 (Non-asymptotic optimality of the uniform-EBA strategy). Under the uniform-EBA

strategy πUniform-EBM, for T = K⌊T/K⌋, supP∈P[0,1] EP

[
rT
(
πUniform-EBM

)]
≤ 2
√

K logK
T+K .

Thus, the upper bound matches the distribution-free lower bound if we ignore the logK and constant
terms.

Although the uniform-EBA strategy is nearly optimal, a question remains whether more knowledge
about the class of bandit models could be used to derive a tight lower bound and propose another
optimal strategy consistent with the novel lower bound. To answer this question, we consider the
asymptotic evaluation and derive a tight lower bound for bandit models with a fixed variance.

D PROOF OF THE ASYMPTOTIC LOWER BOUND FOR MULTI-ARMED BANDITS
(THEOREM 3.4)

In this section, we provide the proof of Theorems 3.4. Our lower bound derivation is based on
arguments of a change-of-measure and semiparametric efficiency. The change-of-measure arguments
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have been extensively used in the bandit literature (Lai & Robbins, 1985). The semiparametric
efficiency is employed for deriving the lower bound of the KL divergence with a two-order Taylor
expansion. Our proof is inspired by van der Vaart (1998), and Murphy & van der Vaart (1997).

We prove the asymptotic lower bound through the following steps. We first introduce lower bounds
for the probability of misidentification, shown by Kaufmann et al. (2016). In Appendix D.1, we
define observed-data bandit models, which are distributions of observations that differ from full-
data bandit models P ∈ P∗. In Appendix D.2, we define submodels of the observed-data bandit
models, which parametrize nonparametric bandit models by using parameters of gaps of the expected
outcomes of the best and suboptimal arms. These parameters serve as technical devices for the
proof. In Appendix D.3, we then decompose the expected simple regret into the gap parameters
and the probability of misidentification, and apply the lower bound of Kaufmann et al. (2016) for
the probability of misidentification. The lower bound is characterized by the KL divergence of the
observed-data bandit models, which we expand around the gap parameters in Appendix D.4. We
then derive the semiparametric efficient influence function, which bounds the second term of the
Taylor expansion of the KL divergence in Appendix D.5, and compute the worst-case bandit model
in Appendix D.6. Finally, we derive the target allocation from the lower bound in Appendix D.7.

Let faP (y
a|x) and ζP (x) be a density function of Y a

t and Xt under a model P . Kaufmann et al.
(2016) derives the following result based on the change-of-measure argument, which is the principal
tool in our lower bound. Let us define a density of (Y 1, Y 2, . . . , Y K , X) under a bandit model
P ∈ P∗ as

p(y1, y2, . . . , yK , x) =
∏

a∈[K]

faP (y
a|x)ζP (x)

Proposition D.1 (Lemma 1 and Remark 2 in Kaufmann et al. (2016)). For any two bandit model
P,Q ∈ P∗ with K arms such that for all a ∈ [K], the distributions P a and Qa are mutually
absolutely continuous. Then,

sup
E∈FT

∣∣PP (E)− PQ(E)
∣∣ ≤√EP [LT (P,Q)]

2

Recall that d(p, q) indicates the KL divergence between two Bernoulli distributions with parameters
p, q ∈ (0, 1).

This “transportation” lemma provides the distribution-dependent characterization of events under a
given bandit model P and corresponding perturbed bandit model P ′.

Between two bandit models P,Q ∈ P∗, following the proof of Lemma 1 in Kaufmann et al. (2016),
we define the log-likelihood ratio as

LT (P,Q) =

T∑
t=1

∑
a∈[K]

1[At = a] log

(
faP (Y

a
t |Xt)ζP (Xt)

faQ(Y
a
t |Xt)ζQ(Xt)

)
.

We consider an approximation of EQ[LT ] under an appropriate alternative hypothesis Q ∈ P∗ when
the gaps between the expected outcomes of the best arm and suboptimal arms are small.

D.1 OBSERVED-DATA BANDIT MODELS

For each x ∈ X , let us define an average allocation ratio under a bandit model P,Q ∈ P∗ as

1

T

T∑
t=1

EP [1[At = a]|Xt = x] = κT,P (a|x)

This quantity represents an average sample allocation to each arm a under a strategy.
Lemma D.2. For P,Q ∈ P∗,

EP [LT (P,Q)] = T
∑

a∈[K]

EP

[
EP

[
log

faP (Y
a|X)ζP (X)

faQ(Y
a|X)ζQ(X)

|X

]
κT,P (a|X)

]
.
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Here, recall that At is only based on the past observations Ft−1 and observed context Xt and
independent from (Y 1

t , . . . , Y
K
t ). According to this proposition, we can consider hypothetical

observed data generated as

(Ỹt, Ãt, Xt)
i.i.d∼

∏
a∈[K]

{faP (ya|x)κT,P (a|X)}1[d=a]
ζP (x).

We present the proof in Appendix E. Then, the expectation of LT (P,Q) =
∑T

t=1

∑
a∈[K] 1[At =

a] log
(

fa
P (Y a

t |Xt)ζP (Xt)
fa
Q(Y a

t |Xt)ζQ(Xt)

)
is the same as that under the original observation P . Also see Eq. (2).

Note that this observed data is induced by the bandit model P ∈ P∗. For simplicity, we also denote
(Ỹt, Ãt, Xt) by (Yt, At, Xt) without loss of generality.

For a bandit model P ∈ P∗, we consider observed-data distribution RP with the density function
given as

rκP (y, d, x) =
∏

a∈[K]

{faP (y|x)κT,P (a|x)}1[d=a]
ζP (x),

Let RP∗ =
{
RP : P ∈ P∗} be a set of all observed-data bandit models RP . Then, we have

EP [LT (P,Q)] = ERP∗ [LT (P,Q)] (2)

D.2 PARAMETRIC SUBMODELS FOR THE OBSERVED-DATA DISTRIBUTION AND TANGENT SET

The purpose of this section is to introduce parametric submodels for observed-data distribution, which
is indexed by a real-valued parameter and a set of distributions contained in the larger set R, and
define the derivative of a parametric submodel as a preparation for the Taylor expansion of the log-
likelihood; that is, we consider the approximation of the log-likelihood LT =

∑T
t=1

∑
a∈[K] 1[At =

a] log
(

fa
P (Y a

t |Xt)ζP (Xt)
fa
Q(Y a

t |Xt)ζQ(Xt)

)
using µa(P ).

This section consists of the following three parts. In the first part, we define parametric submodels
as Eq. (3). Then, in the following part, we confirm the differentiability Eq. (5) and define score
functions. Finally, we define a set of score functions, called a tangent set in the final paragraph.

By using the parametric submodels and tangent set, in Section D.4, we demonstrate the Taylor
expansion of the log-likelihood (Lemma D.5). In this section and Section D.4, we abstractly provide
definitions and conditions for the parametric submodels and do not specify them. However, in
Section D.5, we show a concrete form of the parametric submodel by finding score functions
satisfying the conditions imposed in this section.

Definition of parametric submodels for the observed-data distribution First, we define para-
metric submodels for the observed-data distribution RP with the density function rP (y, d, x) by
introducing a parameter ∆ = (∆a)a∈[K] ∆

a ∈ Θ with some compact space Θ. We denote a set
of parametric submodels by

{
RP,∆ : ∆ ∈ ΘK

}
⊂ RP∗ , which is defined as follows: for some

g : R × [K] × X → RK satisfying EP [g
a(Yt, At, Xt)] = 0 and EP [(g

a(Yt, At, Xt))
2] < ∞, a

parametric submodel RP,∆ has a density such that

rκ∆(y, d, x) := 2c(y, d, x;∆)
(
1 + exp

(
−2∆⊤g(y, d, x)

))−1
raP (y, d, x), (3)

ERP,∆
[Y d

t ] =

∫ ∫
yrκ∆(y, d, x)dydx = µa(P ) + ∆a +O((∆a)2). (4)

where c(y, d, x;∆) is some function such that c((y, d, x;0) = 1 and ∂
∂∆a

∣∣∣
∆=0

log c((y, d, x;∆) =

0 for all (y, d, x) ∈ R× [K]×X .4 Note that the parametric submodels are usually not unique. For

4In Eq. (3), rκ∆(y, d, x) satisfies the definition of the probability density as discussed in Example 25.15 of
van der Vaart (1998).
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a ∈ [K], the parametric submodel is equivalent to rP (y, a, x) if ∆a = 0. Let fa∆a(y|x) and ζ∆(x)

be the conditional density of Ỹ a
t given Xt and the density of Xt, satisfying Eq. (3), as

rκ∆(y, d, x) =
∏

a∈[K]

{fa∆a(y|x)κ(a|x)}1[d=a]
ζ∆(x).

Differentiablity and score functions of the parametric submodels for the observed-data distri-
bution. Next, we confirm the differentiablity of rκ∆(y, d, x). From the definition of the parametric
submodel Eq. (3), because

√
rκ∆(y, d, x) is continuously differentiable for every y, x given d ∈ [K],

and
∫ ( ṙ

κ
∆(y,d,x)

rκ∆(y,d,x)

)2
rκ∆(y, d, x)dm are well defined and continuous in ∆, wherem is some reference

measure on (y, d, x), from Lemma 7.6 of van der Vaart (1998), we see that the parametric submodel
has the score function g in the L2 sense; that is, the density rκ∆(y, d, x) is differentiable in quadratic
mean:∫ [

r
κ,1/2
∆ (y, d, x)− r

κ,1/2
P (y, d, x)− 1

2
∆⊤g(y, d, x)r

κ,1/2
P (y, d, x)

]2
dm = o

(
∥∆∥2

)
. (5)

In other words, the parametric submodel rκ,1/2Q is differentiable in quadratic mean at ∆ = 0 with the
score function g.

In the following section, we specify a measurable function g satisfying the conditions Eq. (3). For
each ∆a a ∈ [K], we define the score as

S(y, d, x) =
∂

∂∆

∣∣∣
∆=0

log rκ∆(y, d, x) =


1[d = 1]S1

f (y|x) + S1
ζ (x)

1[d = 2]S2
f (y|x) + S2

ζ (x)
...

1[d = K]SK
f (y|x) + SK

ζ (x)


where for each a ∈ [K], let Sa(y, d, x) = 1[d = a]Sa

f (y|x) + Sζ(x),

Sa
f (y|x) =

∂

∂∆a

∣∣∣
∆=0

log fa∆a(y|x), Sa
ζ (x) =

∂

∂∆a

∣∣∣
∆=0

log ζ∆(x).

Note that ∂
∂∆a log κT,P (a|x) = 0. Here, we specify g in Eq. (3) as the score function of the parametric

submodel as S(y, d, x) = g(y, d, x), where Sa(y, d, x) = ga(y, d, x). This relationship is derived
from

∂

∂∆

∣∣∣
∆=0

log
1

1 + exp (−2∆⊤g(y, d, x))
=


2g1(y,d,x)

exp(2∆⊤g(y,d,x))+1
2g2(y,d,x)

exp(2∆⊤g(y,d,x))+1

...
2gK(y,d,x)

exp(2∆⊤g(y,d,x))+1


∣∣∣∣∣
∆=0

=


g1(y, d, x)
g2(y, d, x)

...
gK(y, d, x)

 .

Definition of the tangent set. Recall that parametric submodels and corresponding score functions
are not unique. Here, we consider a set of score functions. For a set of the parametric submodels{
RP,∆ : ∆ ∈ ΘK

}
, we obtain a corresponding set of score functions in the Hilbert space L2(RP ),

which we call a tangent set of R at RP and denote it by Ṙ. Because ERP
[g2] is automatically finite,

the tangent set can be identified with a subset of the Hilbert space L2(RP ), up to equivalence classes.
For our parametric submodels, the tangent set at RP in L2(RP ) is given as

Ṙ =




1[d = 1]S1
f (y|x) + S1

ζ (x)
1[d = 2]S2

f (y|x) + S2
ζ (x)

...
1[d = K]SK

f (y|x) + SK
ζ (x)


 .

A linear space of the tangent set is called a tangent space. We also define Ṙa =
{(
1[d = a]Sa

f (y|x)+

Sa
ζ (x)

)}
.
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D.3 CHANGE-OF-MEASURE

We consider a set of bandit models P† ⊂ P∗ such that P ∈ P†, a ∈ [K], and x ∈ X , µa(P )(x) =
µa(P ). Before a bandit process begins, we fix P ♯ ∈ P† such that µ1(P ♯) = · · · = µK(P ♯) = µ(P ♯).
We choose one arm d ∈ [K] as the best arm following a multinomial distribution with parameters
(e1, e2, . . . , eK), where ea ∈ [0, 1] for all a ∈ [K] and

∑
a∈[K] e

a = 1; that is, the expected
outcome of the chosen arm d is the highest among the arms. Let ∆ be a set of parameters such
that ∆ = (∆c)c∈[K], where ∆c ∈ (0,∞). Let ∆(d) be a set of parameters such that ∆(d) =

(0, . . . ,∆d, . . . , 0). Then, for each chosen d ∈ [K], letQ∆(d) ∈ P† be another bandit model such that
d = argmaxa∈[K] µ

a(Q∆(d)), µb(Q∆(d)) = µ(P ♯) for b ∈ [K]\{d}, and µd(Q∆(d)) − µ(P ♯) =

∆d +O
(
(∆d)2

)
. For each d ∈ [K], we consider RP ♯,∆(d) ∈ RP† ⊂ RP∗ such that the following

equation holds:

LT (P
♯, Q∆(d)) =

T∑
t=1

∑
a∈[K]

{
1[At = a] log

(
faP ♯(Y

a
t |Xt)

faQ
∆(d)

(Y a
t |Xt)

)
+ log

(
ζP ♯(Xt)

ζQ
∆(d)

(Xt)

)}

=

T∑
t=1

{
1[At = d] log

(
fdP ♯(Y

d
t |Xt)

fdQ
∆(d)

(Y d
t |Xt)

)
+ log

(
ζP ♯(Xt)

ζQ
∆(d)

(Xt)

)}

=

T∑
t=1

{
1[At = d] log

(
fdP ♯(Y

d
t |Xt)

fd
∆(d)(Y

d
t |Xt)

)
+ log

(
ζP (Xt)

ζ∆(d)(Xt)

)}
.

Then, let La
T (P

♯, Q∆(d)) be
∑T

t=1

{
1[At = d] log

(
fd

P♯ (Y
d
t |Xt)

fd

∆(d)
(Y d

t |Xt)

)
+ log

(
ζP (Xt)

ζ
∆(d) (Xt)

)}
. Under

the class of bandit models, we show the following lemma.
Lemma D.3. Any null consistent BAI strategy satisfies

sup
P∈P∗

EP [rT (P )(π)] ≥ sup
∆∈(0,∞)K

∑
d∈[K]

ed∆d

1− PP ♯ (âT = d)−

√
EP ♯

[
Ld
T (P

♯, Q∆(d))
]

2
+O

(
∆d
) .

Proof of Lemma D.3. First, we decompose the expected simple regret by using the definition of P†

as

sup
P∈P∗

EP [rT (P )(π)]

= sup
P∈P∗

∑
b∈[K]

{
max
a∈[K]

µa(P )− µb(P )

}
PP (âT = b)

≥ sup
∆∈(0,∞)K

∑
d∈[K]

ed
∑

b∈[K]\{d}

(
µd(Q∆(d))− µb(Q∆(d))

)
PQ

∆(d)
(âT = b)

≥ sup
∆∈(0,∞)K

∑
d∈[K]

ed
∑

b∈[K]\{d}

(
µd(Q∆(d))− µ(P ♯)

)
PQ

∆(d)
(âT = b)

= sup
∆∈(0,∞)K

∑
d∈[K]

ed

 ∑
b∈[K]\{d}

∆dPQ
∆(d)

(âT = b) +O
(
(∆d)2

)
= sup

∆∈(0,∞)K

∑
d∈[K]

ed
{
∆dPQ

∆(d)
(âT ̸= d) +O

(
(∆d)2

)}
= sup

∆∈(0,∞)K

∑
d∈[K]

ed
{
∆d
(
1− PQ

∆(d)
(âT = d)

)
+O

(
(∆d)2

)}
.

From Propositions D.5 and D.1. and the definition of null consistent strategies,

sup
∆∈(0,∞)K

∑
d∈[K]

ed
{
∆d
(
1− PQ

∆(d)
(âT = d)

)
+O

(
(∆d)2

)}
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= sup
∆∈(0,∞)K

∑
d∈[K]

ed
{
∆d
(
1− PP ♯ (âT = d) + PP ♯ (âT = d)− PQ

∆(d)
(âT = d)

)
+O

(
(∆d)2

)}

≥ sup
∆∈(0,∞)K

∑
d∈[K]

ed

∆d

1− PP ♯ (âT = d)−

√
EP ♯

[
Ld
T (P

♯, Q∆(d))
]

2

+O
(
(∆d)2

) .

The proof is complete.

D.4 SEMIPARAMETRIC LIKELIHOOD RATIO

In this section and the next section (Appendix D.5), our goal is to prove the following lemma.
Lemma D.4.

EP ♯

[
Ld
T (P

♯, Q∆(d))
]
≤ T (∆a)

2

2EP

[
(σd(X))2

w(d|X)

] +O
(
T (∆a)

3
)
.

We consider Taylor expansion of the log-likelihood ratio LT defined between P,Q ∈ P†. We
consider an approximation of LT around a parametric submodel. Because there can be several
score functions for our parametric submodel due to directions of the derivative, we find a parametric
submodel that has a score function with the largest variance, called a least-favorable parametric
submodel (van der Vaart, 1998). Our Taylor expansion is upper-bounded by the variance of the score
function, which corresponds to the lower bound for the probability of misidentification.

Inspired by the arguments in Murphy & van der Vaart (1997), we define the semiparametric likelihood
ratio expansion to characterize the lower bound for the probability of misidentification with the
semiparametric efficiency bound. Note again that the details are different from them owing to the
difference in the parameters submodels.

As a preparation, we define a parameter ER
P,∆(a)

[Y a
t ] as a function ψa : R 7→ R such that

ψa(RP,∆(a)) = ER
P,∆(a)

[Y a
t ]. The information bound for ψa(RP,∆(a)) of interest is called semi-

parametric efficiency bound. Let linṘ be the closure of the tangent set. Then, ψa(RP,∆(a)) is
pathwise differentiable relative to the tangent set Ṙa if and only if there exists a function ψ̃ ∈ linṘ
such that

∂

∂∆a

∣∣∣
∆a=0

ψa(RP,∆(a)) = ER
P,∆(a)

[
ψ̃a
P (Yt, At, Xt)S

a(Yt, At, Xt)
]
. (6)

This function ψ̃ is called the semiparametric influence function. Note that the RHS of Eq. (6) is
calculated as follows:

ER
P,∆(a)

[
ψ̃a
P (Yt, At, Xt)S

a(Yt, At, Xt)
]
=

∫ ∫
ySa

f (y|x)fa∆a(y|x)ζ∆(a)(x)dydx+

∫
µa(x)Sζ(x)ζ∆(a)(x)dx.

(7)

Then, we prove the following lemma:
Lemma D.5. For P ∈ P†,

EP [L
a
T (P,Q)] ≤ 1

2

T (∆a)
2

EP

[(
ψ̃a
P (Yt, At, Xt)

)2] +O
(
T (∆a)

3
)
.

To prove this lemma, we define

ℓa∆(y, d, x) = 1[d = a]
{
log fa∆a(ya|x)

}
+ log ζ∆(x).

Then, by using the parametric submodel defined in the previous section,

La
T (P,Q) =

T∑
t=1

1[At = a] log

(
faP (Y

a
t |Xt)ζP (Xt)

faQ(Y
a
t |Xt)ζQ(Xt)

)

22



Under review as a conference paper at ICLR 2024

=

T∑
t=1

1[At = a] log

(
faP (Y

a
t |Xt)ζP (Xt)

fa∆a(Y a
t |Xt)ζ∆(Xt)

)

=

T∑
t=1

(
− ∂

∂∆a

∣∣∣
∆a=0

ℓa∆(a)(Yt, At, Xt)∆
a − ∂2

∂(∆a)2

∣∣∣
∆a=0

ℓa∆(a)(Yt, At, Xt)
(∆a)2

2
+O

(
(∆a)

3
))

.

Here, note that

∂

∂∆a

∣∣∣
∆a=0

ℓa∆(a)(Yt, At, Xt) = Sa(Yt, At, Xt) = ga(Yt, At, Xt)

∂

∂(∆a)2

∣∣∣
∆a=0

ℓa∆(a)(Yt, At, Xt) = − (Sa(Yt, At, Xt))
2
.

By using the expansion, we evaluate EP [La
T ]. Here, by definition, EP [Sa(Yt, At, Xt)] = 0. There-

fore, we consider an upper bound of 1

EP [(Sa(Yt,At,Xt))
2]

for S ∈ Ṙ.

Then, we prove the following lemma on the upper bound for 1

EP [(Sa(Yt,At,Xt))
2]

:

Lemma D.6. For P ∈ P†,

sup
S∈Ṙ

1

EP

[
(Sa(Yt, At, Xt))

2
] ≤ EP

[(
ψ̃a
P (Yt, At, Xt)

)2]

Proof. From the Cauchy-Schwarz inequality, we have

1 = EP

[
ψ̃a
P (Yt, At, Xt)S

a(Yt, At, Xt)
]
≤

√
EP

[(
ψ̃a
P (Yt, At, Xt)

)2]√
EP

[
(Sa(Yt, At, Xt))

2
]
.

Therefore,

sup
S∈Ṙ

1

EP

[
(Sa(Yt, At, Xt))

2
] ≤ EP

[(
ψ̃a
P (Yt, At, Xt)

)2]
.

According to this lemma, to derive the upper bound for 1

EP [(Sa(Yt,At,Xt))
2]

, let us define the semi-

parametric efficient score Sa
eff(Yt, At, Xt) ∈ linṘa as

Sa
eff(Yt, At, Xt) =

ψ̃a
P (Yt, At, Xt)

EP

[(
ψ̃a
P (Yt, At, Xt)

)2] .
Then, by using the semiparametric efficient score Sa

eff(Yt, At, Xt), we approximate the likelihood
ratio as follows:

Proof of Lemma D.5.

EP ′ [La
T (P,Q)] = TEP

[
1

2
(Sa(Yt, At, Xt))

2
(∆a)

2
+O((∆a)3)

]
≤ TEP

[
1

2
(Sa

eff(Yt, At, Xt))
2
(∆a)

2
+O((∆a)3)

]
=

1

2

T (∆a)
2

EP

[(
ψ̃a
P (Yt, At, Xt)

)2] +O
(
T (∆a)

3
)
.
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D.5 OBSERVED-DATA SEMIPARAMETRIC EFFICIENT INFLUENCE FUNCTION

Our remaining is task is to find ψ̃a
P ∈ linṘ in Eq. (6). Our derivation mainly follows Hahn (1998).

We guess that ψ̃a
P (Yt, At, Xt) has the following form:

ψ̃a
P (y, d, x) =

1[d = a](y − µa(P )(x))

κT,P (a|X)
+ µa(P )(x)− µa(P ). (8)

Then, as shown by Hahn (1998), the condition ∂
∂∆a

∣∣∣
∆(a)=0

ψa(RP,∆(a)) =

ERQ

[
ψ̃a
P (Yt, At, Xt)S

a(Yt, At, Xt)
]

holds under Eq. (8) when the score functions are given as

Sa
f (y|x) =

(y − µa(P )(x))

κT,P (a|x)
/Ṽ a(κT,P ), Sa

ζ (x) =
(
µa(P )(x)− µa(P )

)
/Ṽ a(κT,P ) for a ∈ [K],

where

Ṽ a(κT,P ) :=EP

[(
1[d = a](y − µa(P )(x))

κT,P (a|X)
+ µa(P )(x)− µa(P )

)2
]
= EP

[
(σa(Xt))

2

κT,P (a|Xt)
+ (µa(P )(Xt)− µa(P ))

2

]
.

Therefore,

Sa(y, d, x) =

(
1[d = a](y − µa(P )(x))

κT,P (a|X)
+ µa(P )(x)− µa(P )

)
/Ṽ a(κT,P ).

Our specified score function satisfies Eq. (4) because we can confirm that

ψa(RP,0) = µa(P ),

and

∂

∂∆a

∣∣∣
∆a=0

ψa(RP,∆(a)) = ERQ

[
ψ̃a
P (Yt, At, Xt)S

a(Yt, At, Xt)
]

= ERQ

[(
1[d = a](y − µa(P )(x))

κT,P (a|X)
+ µa(P )(x)− µa(P )

)2

/Ṽ a(κT,P )

]
= 1.

Then, from the first-order Taylor expansion of ψa(RP,∆(a)) around ∆a = 0, we obtain

ψa(RP,∆(a)) = ψa(RP,0) + ∆a ∂

∂∆a

∣∣∣
∆a=0

ψa(RP,∆(a)) +O((∆a)2) = µa(P ) + ∆a +O((∆a)2).

Summarizing the above arguments, we obtain the following lemma.

Lemma D.7. For P ∈ P†, the semiparametric efficient influence function is

ψ̃a
P (y, d, x) = Ṽ a(κT,P )

(
1[d = a]Sa

f (y|x) + Sζ(x)
)

=
1[d = a](y − µa(P )(x))

κT,P (a|x)
+ µa(P )(x)− µa(P ).

Thus, under g with our specified score functions, we can confirm that the semiparametric influ-
ence function ψ̃a

P (y, d, x) = Ṽ a(κT,P )
(
1[At = a]Sa

f (y|x) + Sζ(x)
)

belongs to linṘ. Note that
ERQ

[Sa
eff(Yt, At, Xt)] = 0 and

ERQ

[(
Sa
eff(Yt, At, Xt)

)2]
=

(
ERQ

[(
ψ̃a
P (Yt, At, Xt)

)2])−1

.

In summary, from Lemmas D.5, D.6, and D.7, we obtain Lemma D.4. Note that because µa(P )(x) =

µa for P ∈ P†, Ṽ a(κT,P ) := EP

[
(σa(Xt))

2

κT,P (a|Xt)

]
.
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D.6 THE WORST CASE BANDIT MODEL

We show the final step of the proof.

Proof. Then, from Lemmas D.3 and D.7, for all d ∈ [K], and definition of the null consistent strategy,
for any ϵ > 0, there exists T0 > 0 such that for all T > T0,

sup
P∈P∗

EP [rT (P )(π)] ≥ sup
∆∈(0,∞)K

∑
d∈[K]

ed∆d

1− PP ♯ (âT = d)−

√
EP ♯

[
Ld
T (P

♯, Q∆(d))
]

2
+O

(
∆d
)

≥ inf
w∈W

sup
∆∈(0,∞)K

∑
d∈[K]

ed∆d

1− 1

K
−

√√√√ T (∆d)2

2EP ♯

[
(σd(Xt))

2

w(d|Xt)

] +O
(
T ((∆d)

3
) +O

(
∆d
)− ϵ

≥ inf
w∈W

sup
∆∈(0,∞)K

∑
d∈[K]

ed∆d

1

2
−

√√√√ T (∆d)
2

2EP ♯

[
(σd(Xt))

2

w(d|Xt)

] +O
(
T ((∆d)

3
) +O

(
∆d
)− ϵ.

The maximizer of sup∆∈(0,∞)K
∑

d∈[K] e
d∆d

 1
2 −

√
T (∆d)2

2E
P♯

[
(σd(Xt))

2

w(d|Xt)

]
 is given as ∆a =

1
4

√
2E

P♯

[
(σa(Xt))

2

w(a|Xt)

]
T . Therefore,

sup
P∈P∗

EP [rT (P )(π)] ≥ inf
w∈W

sup
∆∈(0,∞)K

∑
d∈[K]

ed∆d

1

2
−

√√√√ T (∆d)
2

2EP ♯

[
(σd(Xt))

2

w(d|Xt)

] +O
(
T (∆d)

3
) +O

(
∆d
)− ϵ

≥ 1

12
inf

w∈W

∑
d∈[K]

ed


√√√√EP ♯

[
(σd(Xt))

2

w(d|Xt)

]
T

+O

2EP ♯

[
(σd(Xt))

2

w(d|Xt)

]
T


− ϵ.

As T → ∞, letting ϵ→ 0,

sup
P∈P∗

√
TEP [rT (P )(π)] ≥

1

12
inf

w∈W

∑
d∈[K]

ed

√√√√EP ♯

[
(σd(Xt))

2

w(d|Xt)

]
+ o (1) .

D.7 CHARACTERIZATION OF THE TARGET ALLOCATION RATIO

Proof of Theorem 3.4. We showed that any null consistent BAI strategy satisfies

sup
P∈P∗

EP [rT (P )(π)] ≥
1

12
inf

w∈W

∑
d∈[K]

ed

√
(σd)

2

w(d)
+ o (1) .

In the tight lower bound, ed̃ = 1 for d̃ = argmaxd∈[K]
1
12

√
(σd)2

w(d) + o(1)5. Therefore, we consider
solving

inf
w∈W

max
d∈[K]

√
(σd)

2

w(d)
.

5If there are multiple candidates of the best arm, we choose one of the multiple arms as the best arm with
probability 1.

25



Under review as a conference paper at ICLR 2024

If there exists a solution, we can replace the inf with the min. We consider the following constrained
optimization:

inf
R∈R,w∈W

R (9)

s.t. R ≥
(
σd
)2

w(d)
∀d ∈ [K]∑

a∈[K]

w(a) = 1.

For this problem, we derive the first-order condition, which is sufficient for the global optimality
of such a convex programming problem. For Lagrangian multipliers λd ∈ (−∞, 0] and γ ∈ R, we
consider the following Lagrangian function:

L(λ, γ;R,w) = R+
∑
d∈[K]

λd

{(
σd
)2

w(d)
−R

}
+ γ

∑
d∈[K]

w(d)− 1

 .

Then, the optimal solutions w∗, λ∗d, γ∗, and R∗ of the original problem satisfies

1−
∑
d∈[K]

λd∗ = 0 ∀x ∈ X (10)

− λd∗
(
σd
)2

(w∗(d))2
= γ∗ ∀d ∈ [K], (11)

λd∗

{(
σd
)2

w(d)
−R∗

}
= 0 (12)

γ∗(x)

 ∑
a∈[K]

w∗(a)− 1

 = 0 ∀a ∈ [K].

Here, the solutions are given as

w∗(d) =

(
σd
)2∑

b∈[K] (σ
b)

2 ,

λd∗ = w∗(d),

γ∗(x) = −
∑
b∈[K]

(
σb
)2
.

Therefore,

inf
w∈W

∑
a∈[K]

ea
1

12

√√√√EP ♯

[
(σa(X))

2

w(a|X)

]
+ o(1) =

1

12

√√√√√EP ♯

 ∑
a∈[K]

(σa(X))
2

 ∑
a∈[K]

ea + o(1).

Since
∑

a∈[K] e
a = 1 and ζP (x) = ζ(x), the proof is complete.

Here, w̃(a|x) = (σa(x))2∑
b∈[K](σ

b(x))2
works as a target allocation ratio in implementation of our BAI

strategy because it represents the sample average of 1[At = a]; that is, we design our sampling rule
(At)t∈[T ] for the average to be the target allocation ratio.

Although this lower bound is applicable to a case with K = 2, we can tighten the lower bound by
changing the definition of the parametric submodel.
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E PROOF OF LEMMA D.2

Proof. Let us define Ωa,b
t (P ) =

∑t
s=1 E

[(
ξa,bs (P )

)2 |Fs−1

]
. We can also derive a non-asymptotic

upper bound for the expected simple regret if we assume a certain convergence rate on Ωa,b(P ),
which dominates the rate of the martingale limit theorems. We show the result in Appendix H.

We have

EQ[LT ] =

T∑
t=1

EQ

 ∑
a∈[K]

1{At = a} log
faQ(Y

a
t |Xt)ζQ(Xt)

faP0
(Y a

t |Xt)ζP0
(Xt)


=

T∑
t=1

EXt,Ft−1

Q

 ∑
a∈[K]

EY a
t ,At

Q

[
1[At = a] log

faQ(Y
a
t |Xt)ζQ(Xt)

faP0
(Y a

t |Xt)ζP0
(Xt)

|Xt,Ft−1

]
=

T∑
t=1

EXt,Ft−1

Q

 ∑
a∈[K]

EQ [1[At = a]|Xt,Ft−1]E
Y a
t

Q

[
log

faQ(Y
a
t |Xt)ζQ(Xt)

faP0
(Y a

t |Xt)ζP0
(Xt)

|Xt,Ft−1

]
=

T∑
t=1

EXt

Q

EFt

Q

 ∑
a∈[K]

EQ [1[At = a]|Xt,Ft−1]E
Y a
t

Q

[
log

faQ(Y
a
t |Xt)ζQ(Xt)

faP0
(Y a

t |Xt)ζP0
(Xt)

|Xt

]
=

T∑
t=1

∫  ∑
a∈[K]

EFt

Q [EQ [1[At = a]|Xt = x,Ft−1]]E
Y a
t

Q

[
log

faQ(Y
a
t |Xt)ζQ(Xt)

faP0
(Y a

t |Xt)ζP0
(Xt)

|Xt = x

] ζQ(x)dx

=

∫ ∑
a∈[K]

(
EY a

Q

[
log

faQ(Y
a|X)ζQ(X)

faP0
(Y a|X)ζP0

(X)
|X = x

] T∑
t=1

EFt

Q [EQ [1[At = a]|Xt = x,Ft−1]]

)
ζQ(x)dx

= EX
Q

 ∑
a∈[K]

EY a

Q

[
log

faQ(Y
a|X)ζQ(X)

faP0
(Y a|X)ζP0

(X)
|X
] T∑

t=1

EFt−1

Q [EQ [1[At = a]|X,Ft−1]]

 ,
where EZ

Q denotes an expectation of random variable Z over the distribution Q. We used that the
observations (Y 1

t , . . . , Y
K
t , Xt) are i.i.d. across t ∈ {1, 2, . . . , T}.

F PROOF OF THE ASYMPTOTIC LOWER BOUND FOR TWO-ARMED BANDITS
(THEOREM 3.8)

When K = 2, we define different parametric submodels from those in Section D.

Parametric submodels for the observed-data distribution and tangent set. In a case withK = 2,
we consider one-parameter parametric submodels for the observed-data distribution RP with the
density function rP (y, d, x) by introducing a parameter ∆ ∈ Θ with some compact space Θ. We
denote a set of parametric submodels by

{
RP,∆ : ∆ ∈ Θ

}
⊂ RP∗ , which is defined as follows: for

some g : R × [2] × X → R satisfying EP [g(Yt, At, Xt)] = 0 and EP [(g(Yt, At, Xt))
2] < ∞, a

parametric submodel RP,∆ has a density such that

rκ∆(y, d, x) := 2c(y, d, x; ∆) (1 + exp (−2∆g(y, d, x)))
−1
raP (y, d, x),

where c(y, d, x; ∆) is some function such that c((y, d, x; 0) = 1 and ∂
∂∆

∣∣∣
∆=0

log c((y, d, x; ∆) = 0

for all (y, d, x) ∈ R × [2] × X . Note that the parametric submodels are usually not unique. The
parametric submodel is equivalent to rP (y, a, x) if ∆ = 0.

Let fa∆(y|x) and ζ∆(x) be the conditional density of y given x and some density of x, satisfying
Eq. (3) as

rκ∆(y, d, x) =
∏
a∈[2]

{fa∆(y|x)κ(a|x)}
1[d=a]

ζ∆(x).
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For this parametric submodel, we develop the same argument in Section D. Note that we consider
a one-parameter parametric submodel for two-armed bandits, while in Section D, we consider
K-dimensional parametric submodels for K-armed bandits.

Change-of-measure. We consider a set of bandit models P†† ⊂ P∗ such that for all P ∈ P††,
a ∈ [K], and x ∈ X , µa(P )(x) = µa. Before a bandit process begins, we fix P ♯♯ ∈ P†† such that
µ1(P ♯♯) = µ2(P ♯♯) = µ(P ♯♯). We choose one arm d ∈ [2] as the best arm following a Bernoulli
distribution with parameter e ∈ [0, 1]; that is, the expected outcome of the chosen arm d is the highest
among the arms. We choose arm 1 with probability e and arm 2 with probability 1−e. Let ∆ ∈ (0,∞)
be a gap parameter and Q∆ ∈ P†† be another bandit model such that d = argmaxa∈[2] µ

a(Q∆),
µb(Q∆) = µ(P ♯♯) for b ̸= d, and µd(Q∆) − µ(P ♯♯) = ∆ + O(∆2). For the parameter ∆, we
consider RP ♯♯,∆ ∈ RP†† ⊂ RP∗ such that the following equation holds:

LT (P,Q) =

T∑
t=1

{
1[At = 1] log

(
f1P (Y

1
t |Xt)

f1Q(Y
1
t |Xt)

)
+ 1[At = 2] log

(
f2P (Y

2
t |Xt)

f2Q(Y
2
t |Xt)

)
+ log

(
ζP (Xt)

ζQ(Xt)

)}

=

T∑
t=1

{
1[At = 1] log

(
f1P (Y

1
t |Xt)

fa∆(Y
1
t |Xt)

)
+ 1[At = 2] log

(
f2P (Y

2
t |Xt)

f2∆(Y
2
t |Xt)

)
+ log

(
ζP (Xt)

ζ∆(Xt)

)}
.

Proof of Theorem 3.8. First, we decompose the expected simple regret by using the definition of P††

as

sup
P∈P∗

EP [rT (P )(π)]

= sup
P∈P∗

∑
b∈[2]

{
max
a∈[2]

µa(P )− µb(P )

}
PP (âT = b)

≥ sup
∆∈(0,∞)

{
e
(
µ1(Q∆)− µ2(Q∆)

)
PQ∆

(âT = 2) + (1− e)
(
µ2(Q∆)− µ1(Q∆)

)
PQ∆

(âT = 1)
}

= sup
∆∈(0,∞)

{
e
(
µ1(Q∆)− µ(P ♯♯)

)
PQ∆

(âT = 2) + (1− e)
(
µ2(Q∆)− µ(P ♯)

)
PQ∆

(âT = 1)
}

= sup
∆∈(0,∞)

{
e
(
∆+O(∆2)

)
PQ∆

(âT = 2) + (1− e)
(
∆+O(∆2)

)
PQ∆

(âT = 1)
}

= sup
∆∈(0,∞)

{
e∆PQ∆ (âT = 2) + (1− e)∆PQ∆ (âT = 1) +O(∆2)

}
= sup

∆∈(0,∞)

{
e∆(1− PQ∆

(âT = 1)) + (1− e)∆ (1− PQ∆
(âT = 2)) +O(∆2)

}
.

From Propositions D.5 and D.1 and definition of the null consistent strategy,

sup
∆∈(0,∞)

{
e∆(1− PQ∆

(âT = 1)) + (1− e)∆ (1− PQ∆
(âT = 2)) +O(∆2)

}
= sup

∆∈(0,∞)

{
e∆(1− PP ♯♯ (âT = 1) + PP ♯♯ (âT = 1)− PQ∆

(âT = 1))

+ (1− e)∆ (1− PP ♯♯ (âT = 2) + PP ♯♯ (âT = 2)− PQ∆
(âT = 2)) +O(∆2)

}
= sup

∆∈(0,∞)

{
e∆

(
1− PP ♯♯ (âT = 1)−

√
EP ♯♯ [LT (P ♯♯, Q∆)]

2

)

+ (1− e)∆

(
1− PP ♯♯ (âT = 2)−

√
EP ♯♯ [LT (P ♯♯, Q∆)]

2

)
+O(∆2)

}

= sup
∆∈(0,∞)

{
e∆

(
1− 1

2
−
√

EP ♯♯ [LT (P ♯♯, Q∆)]

2

)
+ (1− e)∆

(
1− 1

2
−
√

EP ♯♯ [LT (P ♯♯, Q∆)]

2

)
+O(∆2)

}

= sup
∆∈(0,∞)

{
∆

(
1

2
−
√

EP ♯♯ [LT (P ♯♯, Q∆)]

2

)
+O(∆2)

}
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≥ inf
w∈W

sup
∆∈(0,∞)

∆

1

2
−

√√√√ T∆2

2EP

[
(σ1(Xt))

2

w(1|X) + (σ2(X))2

w(2|Xt)

] +O
(
T∆3)

+O(∆2)

 .

Let ∆ = 1
4

√
2EP

[
(σ1(X))2

w(1|X)
+

(σ2(X))2

w(2|X)

]
T . Then,

inf
w∈W

sup
∆∈(0,∞)

∆

1

2
−

√√√√ T∆2

2EP

[
(σ1(Xt))

2

w(1|X) + (σ2(X))2

w(2|Xt)

] +O
(
T∆3)

+O(∆2)


≥ 1

12
inf

w∈W

√√√√EP

[
(σ1(X))2

w(1|Xt)
+ (σ2(Xt))

2

w(2|Xt)

]
T

+O
(
∆2
)

≥ 1

12

√√√√EP

[
(σ1(X) + σ2(X))

2
]

T
+O

EP

[(
σ1(X) + σ2(X)

)2]
T

 .

Here, the minimizer regarding w is w̃(1|x) = σ1(x)
σ1(x)+σ2(x) (w̃(2|x) = 1 − w̃(1|x)) (van der Laan,

2008; Hahn et al., 2011; Kato et al., 2020). Because ζP (x) = ζ(x), supP ′∈P∗

√
EP ′ [rT (P )(π)] ≥

1
12

√∫
(σ1(X) + σ2(X))

2
ζ(x)dx+ o(1).

G PROOF OF THEOREM 5.2

Let us define ∆a,b(P ) = µa(P )−µb(P ) and ∆a,b(P )(x) = µa(P )(x)−µb(P )(x) for all a, b ∈]K]
and x ∈ X .

For a, b ∈ [K], define6

ξa,bt (P ) =
φa
t

(
Yt, At, Xt

)
− φb

(
Yt, At, Xt

)
−∆b(P )√

TV a,b∗(P )
,

where V a,b∗(P ) = EP

[
(σa(X))

2

w∗(a|X)
+

(
σb(X)

)2
w∗(b|X)

+
(
∆a,b(P )(X)−∆a,b(P )

)2 ]
.

We show that {ξa,bt (P )}Tt=1 is a martingale difference sequence. The proof is shown in Appendix G.1.

Lemma G.1. Under the AS-AIPW strategy, EP [ξ
a,b
t (P )|Ft−1] = 0 holds.

Note that
∑T

t=1 ξ
a,b
t (P ) =

√
T
(
µ̂AIPW,a
T − µ̂AIPW,b

T −∆a,b(P )
)
/
√
V a,b(P ). Theorem 5.2 can

be derived from Proposition B.7 and Chernoff bound. To prove Theorem 5.2, we use the following
lemmas.
Lemma G.2. Fix a, b ∈ [K]2. Suppose that ξa,bt (P ) is conditionally sub-Gaussian; that is, there
exits an absolute constant Cξ > 0 such that for all P ∈ P and all λ ∈ R,

EP

[
exp

(
λξa,bt (P )

)
|Ft−1

]
≤ exp

(
λ2Cξ

2

)
.

Also suppose that

(a)
∑T

t=1 E[(ξ
a,b
t (P ))2] → 1;

(b) E[
√
T |ξa,bt (P )|r] <∞ for some r > 2 and all t ∈ N;

6More rigorously, ξa,bt (P ) and Ωa,b
t (P ) should be denoted as double arrays such as ξa,bTt (P ) and Ωa,b

Tt (P )
because they dependent on T . However, we omit the subscript T for simplicity.
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(c)
∑T

t=1(ξ
a,b
t (P ))2

p−→ 1.

Then, the following inequalities hold:
P
(
µ̂AIPW,a
T − µ̂AIPW,b

T ≤ 0
)
− exp

(
−T(∆a,b(P ))

2

V a,b∗(P )

)
≤ o(1) as T → ∞, if E0 <

√
T∆a,b(P ) ≤ E ∀T ∈ N;

P
(
µ̂AIPW,a
T − µ̂AIPW,b

T ≤ 0
)
− exp

(
−T(∆a,b(P ))

2

2C2
ξ

)
≤ 0 ∀T ∈ N if E0 <

√
T∆a,b(P ),

(13)

where E0 > E > 0 are some constants independent from T and ∆a,b(P ).
Lemma G.3. Under Assumption 5.1, there exists constants M,Cξ > 0 independent from P ∈ P∗

such that for all t ∈ N,

EP

[
exp

((√
Tξa,bt (P )

)2)]
< M ;

and

EP

[
exp

(
λ
√
Tξa,bt (P )

)
|Ft−1

]
≤ exp

(
λ2Cξ

2

)
.

Lemma G.4. Under Assumption 5.1 and the AS-AIPW strategy, the following properties hold:

(a)
∑T

t=1 EP [(ξ
a,b
t (P ))2] → 1, a positive value;

(b) EP [|
√
Tξa,bt (P )|r] <∞ for some r > 2 and for all t ∈ N;

(c)
∑T

t=1(ξ
a,b
t (P ))2

p−→ 1.

Proofs of these lemmas are shown in Appendixes G.2–G.4.

Then, we prove Theorem 5.2 as follows.

Proof of Theorem 5.2. From Lemma G.2, for some constants 0 < E0 < E, if E0 <
√
T∆a,c(P ) ≤

E, for any ϵ > 0, there exists T0 > 0 such that for all T > T0, the expected simple regret is bounded
as

PP

(
µ̂AIPW,a
T ≥ µ̂AIPW,b

T

)
≤ exp

(
−
T
(
∆a,b(P )

)2
V a,b(P )

)
+ ϵ.

As well as the proof of Corollary 3 of Bubeck et al. (2011), we consider two cases where a given ∆a

is more or less than a threshold ℓ1, ℓ2, . . . , ℓK > 0. We have

EP

[
rT (P )

(
πAS-AIPW

)]
=
∑

a∈[K]

∆aPP

(
µ̂
AIPW,a∗(P )
T ≤ µ̂AIPW,a

T

)
≤
∑

a∈[K]

{
ℓaPP

(
µ̂
AIPW,a∗(P )
T ≤ µ̂AIPW,a

T

)
+ 1[∆a ≥ ℓa]∆aPP

(
µ̂
AIPW,a∗(P )
T ≤ µ̂AIPW,a

T

)}
≤ max

a∈[K]
ℓa +

∑
a∈[K]

{
1[∆a ≥ ℓa]∆aPP

(
µ̂
AIPW,a∗(P )
T ≤ µ̂AIPW,a

T

)}
Because x ∈ [0, C∆] 7→ z exp(−Cz2) is decreasing on [1/

√
2C,C∆], for any C > 0 and C∆, where

∆a < C∆ for all a ∈ [K]. Therefore, taking C = ⌊ T
2V a(P )⌋, for ℓa ≥ 1/

√
2
⌊

T
2V a(P )

⌋
,

EP

[
rT (P )

(
πAS-AIPW

)]
≤ max

a∈[K]

ℓa + ∑
a∈[K]

ℓa
{
exp

(
− T (ℓa)2

2V a(P )

)
+ ε

}
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≤ max
a∈[K]

{
ℓa + (K − 1) max

a∈[K]
ℓa
{
exp

(
− T (ℓa)2

2V a(P )

)
+ ε

}}
≤ max

a∈[K]

{
ℓa + (K − 1)ℓa

{
exp

(
− T (ℓa)2

2V a(P )

)
+ ε

}}
.

Substituting ℓa =
√
logK/⌊ T

2V a(P )⌋, we have

EP

[
rT
(
πHIR

)
(P )
]
≤ max

a∈[K]

{√
logK/

⌊
T

2V a(P )

⌋

+ (K − 1)

√
logK/

⌊
T

2V a(P )

⌋
exp

−
T logK/

⌊
T

2V a(P )

⌋
2V a(P )


× exp


√
T logK/⌊ T

2V a(P )√
V a(P )

+
T logK/⌊ T

2V a(P )

2V a(P )

 ε

}.
Letting T → ∞ and ε→ 0, we conclude the proof.

If E0 <
√
T∆a,b(P ), for all T ∈ N, we obtain

PP

(
µ̂AIPW,b
T ≥ µ̂AIPW,a

T

)
≤ exp

(
−
T
(
∆a,b(P )

)2
2C2

ξ

)
.

Similarly, for the second inequality with E0 <
√
T∆a,b(P ), we obtain the maximizer as ∆a,b∗ =√

Cξ(P )
2T .

As an upper bound, we can use both ∆a,b∗ =
√

V a,b∗(P )
2T and ∆a,b∗ =

√
Cξ(P )
2T . In our analysis, we

use ∆a,b∗ =
√

V a,b∗(P )
2T to show the minimax optimality. Therefore, we use ∆a,b∗ =

√
V a,b(P )

2T .

G.1 PROOF OF LEMMA G.1

We have

EP

[
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
+ µ̂a

t (Xt)|Xt,Ft−1

]

=
EP

[
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)
|Xt,Ft−1

]
ŵt(a|Xt)

+ µ̂a
t (Xt)

=
ŵt(a|Xt)

(
µa(Xt)(P )− µ̂a

t (Xt)
)

ŵt(a|Xt)
+ µ̂a

t (Xt) = µa(Xt)(P ),

EP [ξ
a,b
t (P )|Ft−1] = EX

[
µa(x)(P )− µb(x)(P )−∆b(P )√

TV a,b∗(P )

]
ζ(x)dx = 0.

G.2 PROOF OF LEMMA G.2

We prove Lemma G.2. Lemma G.2 can be derived from Proposition B.6 and Chernoff bound.

Proof. The second statement directly holds from and large deviation bound. Therefore, we focus

on the proof of the first statement, P
(
µ̂AIPW,a
T − µ̂AIPW,c

T ≤ 0
)
− exp

(
−T(∆a,b(P ))

2

V a,b∗(P )

)
≤ o(1).
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This inequality follows from the martingale CLT of White (1984) (Proposition B.6) on
∑T

t=1 ξ
a,b
t (P )

because
P
(
µ̂AIPW,a
T − µ̂AIPW,b

T ≤ 0
)
= P

(√
T
(
µ̂AIPW,a
T − µ̂AIPW,b

T

)
−

√
T∆a,b(P ) ≤ −

√
T∆a,b(P )

)
= P

(√
T

V a,b∗(P )

(
µ̂AIPW,a
T − µ̂AIPW,b

T −∆a,b(P )
)
≤ −

√
T

V a,b∗(P )
∆a,b(P )

)

= P

(
T∑

t=1

ξa,bt (P ) ≤ −

√
T

V a,b∗(P )
∆a,b(P )

)
.

Thus, we are interested in = P
(∑T

t=1 ξ
a,b
t (P ) ≤ −

√
T

V a,b∗(P )
∆a,b(P )

)
and show the bound by

using the martingale CLT.

Under the following three conditions, we can apply the martingale CLT,

(a)
∑T

t=1 EP [(ξ
a,b
t (P ))2] → 1, a positive value;

(b) EP [|
√
Tξa,bt (P )|r] <∞ for some r > 2 and for all t ∈ N;

(c)
∑T

t=1(ξ
a,b
t (P ))2

p−→ 1.

By using the martingale CLT, as T → ∞,
T∑

t=1

ξa,bt (P )
d−→ N (0, 1) .

This result implies that for each −∞ < x <∞, as T → ∞,∣∣∣∣∣P
(

T∑
t=1

ξa,bt (P ) ≤ x

)
− Φ(x)

∣∣∣∣∣ =
∣∣∣∣∣P
(
√
T
µ̂AIPW,a
T − µ̂AIPW,b

T −∆a,b(P )

V a,b∗(P )
≤ x

)
− Φ(x)

∣∣∣∣∣ = o(1).

From the martingale CLT, if there exists a constant E > 0 such that
√
T∆a,b(P ) < E,

P

(
√
T
µ̂AIPW,a
T − µ̂AIPW,b

T −∆a,b(P )

V a,b∗(P )
≤ −

√
T

V a,b∗(P )

)
− Φ

(
−

√
T

V a,b∗(P )
∆a,b(P )

)
+ o(1).

Let ϕ(·) be the density function of the standard normal distribution. Then,

Φ

(
−

√
T

V a,b∗(P )
∆a,b(P )

)
=

∫ −
√

T

V a,b∗(P )
∆a,b(P )

−∞
ϕ(u)du

≤ ϕ

(
−

√
T

V a,b∗(P )
∆a,b(P )

)
/

√
T

V a,b∗(P )
∆a,b(P )

≤ e

(e− 1)
√
2π

·
exp

(
−T(∆a,b(P ))

2

2V a,b∗(P )

)
√

T
V a,b∗(P )

∆a,b(P )
.

Here, we used e
(e−1)

√
2π

≈ 0.252,
√

T
V a,b∗(P )

∆a,b(P ) > 1 for large T , ϕ(u + 1/u) =
1√
2π

exp(−(u+ 1/u)2/2) = e−1ϕ(u) exp(−1/(2u2)) = e−1ϕ(u) and∫ −x

−∞
ϕ(u)du =

∫ ∞

x

ϕ(u)du ≤
∞∑
k=0

1

x
ϕ(x+ k/x) ≤ ϕ(x)

x

∞∑
k=0

exp(−k) = e

e− 1
· ϕ(x)

x
,

Therefore, if 0 <
√
T∆a,b(P ) ≤ C,

P
(
µ̂AIPW,a
T − µ̂AIPW,b

T ≤ 0
)
− exp

(
−T

(
∆a,b(P )

)2
2V a,b(P,w∗)

)
≤ o(1).

Thus. we proved the first inequality.
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G.3 PROOF OF LEMMA G.3

Proof. We show the following inequality: there exists a constant M > 0 such that for any P ∈ P∗

and Ft−1 = σ(X1, A1, Y1, . . . , Xt, At, Yt),

EP

[
exp

((√
Tξa,bt (P )

)2)
|Ft−1

]
< M. (14)

From Proposition 2.5.2 (iv) of Vershynin (2018), this inequality implies that ξa,bt (P ) is conditionally
sub-Gaussian.

If the above inequality Eq. (14) holds, the first statement EP

[
exp

((√
Tξa,bt (P )

)2)]
< M holds

directly. In addition, because ξa,bt (P ) is conditionally sub-Gaussian and E[ξa,bt (P )|Ft−1] = 0, from
Proposition 2.5.2 (v) of Vershynin (2018), there exists a constant Cξ > 0 such that for any P ∈ P∗

and Ft−1 ∈ R × [K] × X × · · ·R × [K] × X , EP

[
exp

(
λ
√
Tξa,bt (P )

)
|Ft−1

]
≤ exp

(
λ2Cξ

2

)
.

Thus, the two statement hold from Eq. (14). Therefore, we consider showing Eq. (14).

Recall that φa
t

(
Yt, At, Xt

)
is constructed as

φa
t

(
Yt, At, Xt

)
=
1[At = a]

(
Y a
t − µ̂a

t (Xt

)
ŵt(a|Xt)

+ µ̂a
t (Xt).

For all t = 1, 2, . . . ,

EP

[
exp

((√
Tξa,bt (P )

)2)
|Ft−1

]

= EP

exp

(
φa
t

(
Yt, At, Xt

)
− φb

t

(
Yt, At, Xt

)
−∆a,b(P )

)2
V a,b∗(P )

∣∣∣Ft−1

 .
Here, we have(
φa
t

(
Yt, At, Xt

)
− φb

t

(
Yt, At, Xt

)
−∆a,b(P )

)2
=

(
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2

=

(
1[At = a]

(
Y a
t − µa(P )(Xt)

)
ŵt(a|Xt)

−
1[At = b]

(
Y b
t − µb(P )(Xt)

)
ŵt(b|Xt)

+
1[At = a]

(
µa(P )(Xt)− µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
µb(P )(Xt)− µ̂b

t(Xt)
)

ŵt(b|Xt)

+ µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )

)2

=
1[At = a]

(
Y a
t − µa(P )(Xt)

)2
ŵ2

t (a|Xt)
+
1[At = b]

(
Y b
t − µb(P )(Xt)

)2
ŵ2

t (b|Xt)

+
1[At = a]

(
µa(P )(Xt)− µ̂a

t (Xt)
)2

ŵ2
t (a|Xt)

+
1[At = b]

(
µb(P )(Xt)− µ̂b

t(Xt)
)2

ŵ2
t (b|Xt)

+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2

+ 2

(
1[At = a]

(
Y a
t − µa(P )(Xt)

)(
µa(P )(Xt)− µ̂a

t (Xt)
)

ŵ2
t (a|Xt)

−
1[At = b]

(
Y b
t − µb(P )(Xt)

)(
µb(P )(Xt)− µ̂b

t(Xt)
)

ŵ2
t (b|Xt)

)

+ 2

(
1[At = a]

(
µa(P )(Xt)− µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
µb(P )(Xt)− µ̂b

t(Xt)
)

ŵt(b|Xt)

)(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)
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+ 2
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)(1[At = a]

(
Y a
t − µa(P )(Xt)

)
ŵt(a|Xt)

−
1[At = b]

(
Y b
t − µb(P )(Xt)

)
ŵt(b|Xt)

)
.

where we used 1[A = a]1[A = b] = 0.

We can show Eq. (14) by using the properties of sub-Gaussian random variables and boundedness of
parameters and estimators. Since Y a

t is a sub-Gaussian random variable, there exists some universal
constant CY , C

′
Y > 0 such that for all P ∈ P , c ∈ {a, b}, x ∈ X , and λ ∈ R, E[exp(λ(Y c

t −
µc(P )(x)))] ≤ exp(C2

Y λ
2/2) and EP [exp

(
(Y c

t − µc(P )(x))2
)
] ≤ exp(C

′2
Y ) (Proposition 2.7.1,

Vershynin, 2018). In addition, from Definition 3.2 and Assumption 5.1, there exist constants C,
Cµ̂ and Cν̂ such that for all x ∈ X , and c ∈ {a, b}, |µc(P )(x)| ≤ Cµ, |µ̂c

t(x)| ≤ Cµ̂, and
|ν̂ct (x)| ≤ Cν̂ . Furthermore, because ŵt(a|Xt) is constructed by µ̂c

t(x) and ν̂ct (x), there exists a
constant Cŵ such that for all P ∈ P , x ∈ X , |1/ŵt(a|x), ŵt(a|x)| ≥ Cŵ. Therefore, there exists
a constant M > 0 such that for any P ∈ P∗ and Ft−1 ∈ R × [K] × X × · · ·R × [K] × X ,

EP

[
exp

((√
Tξa,bt (P )

)2)
|Ft−1

]
< M . This proof is complete.

G.4 PROOF OF LEMMA G.4

We prove Lemma G.4. Our proof is inspired by Kato et al. (2020).

Proof. Recall that

φa
t (Yt, At, Xt) =

1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
+ µ̂a

t (Xt)

ξa,bt (P ) =
φa
t

(
Yt, At, Xt

)
− φa,b

(
Yt, At, Xt

)
−∆b(P )√

TV a,b∗(P )
,

Ωa,b
t (P ) =

t∑
s=1

E
[(
ξa,bs (P )

)2 |Fs−1

]
.

Step 1: check of condition (a). Because
√
TV a,b∗(P ) is non-random variable, we consider the

conditional expectation of φa
t

(
Yt, At, Xt

)
− φa,b

(
Yt, At, Xt

)
−∆a,b(P ).

Instead of
∑T

t=1 EP [(ξ
a,b
t (P ))2], we first consider the convergence of

∑T
t=1 EP [(ξ

a,b
t (P ))2|Ft−1] =

Ωa,b
t (P ); that is, we show Ωa,b

t (P )− 1
p−→ 0. Then, by using the Lr-convergence theorem (Proposi-

tion B.3), we show
∑T

t=1 EP [(ξ
a,b
t (P ))2]− 1 → 0.

The conditional expectation is computed as follows:

EP

[(
φa
t

(
Yt, At, Xt

)
− φb

t

(
Yt, At, Xt

)
−∆a,b(P )

)2 ∣∣∣Ft−1

]

= EP

(1[At = a]
(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2 ∣∣∣Ft−1


= EP

[(
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)

)2

+ 2

(
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)

)(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)

+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2 |Ft−1

]

= EP

[
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
+
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
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+ 2

(
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Y b
t − µ̂b

t(Xt)
)

ŵt(b|Xt)

)(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)

+
(
µ̂a
t (Xt)− µ̂b

t(Xt)−∆a,b(P )
)2 |Ft−1

]

= EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
|Ft−1

]
+ EP

[(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
|Ft−1

]
− EP

[(
µ̂a
t (Xt) + µ̂b

t(Xt)−∆a,b(P )
)2 |Ft−1

]
. (15)

Here, we used

EP

[
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)2

(ŵt(a|Xt))2
|Ft−1

]
= EP

[
EP

[
ŵt(a|Xt)

(
Y a
t − µ̂a

t (Xt)
)2

(ŵt(a|Xt))2
|XtFt−1

]]

= EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
|Ft−1

]
and

EP

[
1[At = a]

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)

(
µ̂a
t (Xt)− µ̂b

t(Xt)− (µa(P )− µb(P ))
)
|Ft−1

]

= EP

[(
µ̂a
t (Xt)− µ̂b

t(Xt)− (µa(P )− µb(P ))
)
EP

[
ŵt(a|Xt)

(
Y a
t − µ̂a

t (Xt)
)

ŵt(a|Xt)
|Xt,Ft−1

]
Ft−1

]
.

We also have

EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
|Xt,Ft−1

]
=

EP [(Y
a
t )

2|Xt]− 2µa(P )(Xt)µ̂
a
t (Xt) + (µ̂a

t (Xt))
2

ŵt(a|Xt)

=
EP [(Y

a
t )

2|Xt]− (µa(P )(Xt))
2 + (µa(P )(Xt)− µ̂a

t (Xt))
2

ŵt(a|Xt)
.

Then,

EP

[(
Y a
t − µ̂a

t (Xt)
)2

ŵt(a|Xt)
|Ft−1

]
+ EP

[(
Y b
t − µ̂b

t(Xt)
)2

ŵt(b|Xt)
|Ft−1

]
− EP

[(
µ̂a
t (Xt) + µ̂b

t(Xt)− (µa(P )− µb(P ))
)2 |Ft−1

]
= EP

[
EP [(Y

a
t )

2|Xt]− (µa(P )(Xt))
2 + (µa(P )(Xt)− µ̂a

t (Xt))
2

ŵt(a|Xt)

]
+ EP

[
EP [(Y

b
t )

2|Xt]− (µb
0(Xt))

2 + (µb
0(Xt)− µ̂b

t(Xt))
2

ŵt(b|Xt)

]
− EP

[(
µ̂a
t (Xt) + µ̂b

t(Xt)−∆a,b(P )
)2]

.

From µ̂a
t (x)

p−→ µa(P )(x) and ŵt(a|x)
p−→ w∗(a|x), for each P ∈ P , a ∈ [K], and x ∈ X ,∣∣∣∣(EP [(Y

a
t )

2|x]− (µa(P )(x))2 + (µa(P )(x)− µ̂a
t (x))

2

ŵt(a|x)

)
+

(
EP [(Y

b
t )

2|x]− (µb(P )(x))2 + (µb(P )(x)− µ̂b
t(x))

2

ŵt(b|x)

)
−
(
µ̂a
t (x) + µ̂b

t(x)− (µa(P )− µb(P ))
)2

−

(
(σa(x))

2

w∗(a|X)
+

(
σb(X)

)2
w∗(b|X)

+
(
µa(P )(x)− µb(P )(x)− (µa(P )− µb(P ))

)2)∣∣∣∣∣
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≤

∣∣∣∣∣EP [(Y
a
t )

2|x]− (µa(P )(x))2

ŵt(a|x)
− (σa(x))

2

w∗(a|x)

∣∣∣∣∣+
∣∣∣∣∣EP [(Y

a
t )

2|x]− (µa(P )(x))2

ŵt(a|x)
−
(
σb(X)

)2
w∗(b|x)

∣∣∣∣∣
+

(µa(P )(x)− µ̂b
t(x))

2

ŵt(a|Xt)
+

(µb
0(x)− µ̂b

t(x))
2

ŵt(b|Xt)

+
∣∣∣(µ̂a

t (x)− µ̂b
t(x)−∆a,b(P )

)2 − (µa(P )(x)− µb(P )(x)−∆a,b(P )
)2∣∣∣

p−→ 0.

Note that EP [(Y
a
t )

2|x]− (µa(P )(x))2 = (σa(x))
2. This directly implies that

1

T

T∑
t=1

EP

[(
φa
t

(
Yt, At, Xt

)
− φb

t

(
Yt, At, Xt

)
− (µa(P )− µb(P ))

)2 ∣∣∣Ft−1

]
− V a,b∗(P )

p−→ 0,

⇔ 1

TV a,b∗(P )

T∑
t=1

EP

[(
φa
t

(
Yt, At, Xt

)
− φb

t

(
Yt, At, Xt

)
− (µa(P )− µb(P ))

)2 ∣∣∣Ft−1

]
− 1

p−→ 0.

Thus, we showed Ωa,b
t (P )− 1

p−→ 0.

To apply Lr-convergence theorem (Proposition B.3), we check that Ωa,b
t (P ) − 1 is uniformly in-

tegrable. Here, recall that ξa,bt is conditionally sub-Gaussian as shown in Lemma G.3. From
Lemma 2.7.6 of Vershynin (2018), the squared value (ξa,bt )2 is conditionally sub-exponential. There-
fore, Ωa,b

t (P ) is a sum of the sub-exponential random variable. This implies that Ωa,b
t (P )− 1 is uni-

formly integrable. As a result, from Lr-convergence theorem (Proposition B.3), EP [Ω
a,b
t (P )]− 1 =∑T

t=1 EP [(ξ
a,b
t (P ))2]− 1 → 0 holds.

Step 2: check of condition (b). We showed that ξa,bt is sub-Gaussian in Lemma G.3. When ξa,bt is
sub-Gaussian, the condition holds from Proposition 2.5.2 (ii) of Vershynin (2018).

Step 3: check of condition (c). Let ut be an MDS such that

ut = (ξa,bt (P ))2 − E
[
(ξa,bt (P ))2 | Ft−1

]
=

(
1[At = a]

(
Yt − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Yt − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2

− E

(1[At = a]
(
Yt − µ̂a

t (Xt)
)

ŵt(a|Xt)
−
1[At = b]

(
Yt − µ̂b

t(Xt)
)

ŵt(b|Xt)
+ µ̂a

t (Xt)− µ̂b
t(Xt)−∆a,b(P )

)2 ∣∣∣Ft−1

 .
From the boundedness of each variable in zt, we can apply weak law of large numbers for an MDS
(Proposition B.5 in Appendix B), and obtain

T∑
t=1

ut =

T∑
t=1

(
(ξa,bt (P ))2 − E

[
(ξa,bt (P ))2|Ft−1

]) p−→ 0.

In Step 1, we showed
T∑

t=1

E
[
(ξa,bt (P ))2|Ft−1

]
− 1

p−→ 0.

As a conclusion, we obtain
T∑

t=1

(ξa,bt (P ))2 − 1 =

T∑
t=1

(
z2t − E

[
(ξa,bt (P ))2|Ft−1

]
+ E

[
(ξa,bt (P ))2|Ft−1

]
− 1
)

p−→ 0.
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H NON-ASYMPTOTIC UPPER BOUND

The order of the expected simple regret is determined by the convergence rate of Ωa,b
t (P )− 1. When

a specific convergence rate is assumed, a non-asymptotic upper bound is given as follows.
Corollary H.1 (Worst-case upper bound). Suppose that for some α > 0 and constants C and D,

PP

(
|Ωa,b

t (P )− 1| > D/
√
t(log t)2+2/α

)
≤ Ct−1/4(log t)1+1/α.

Then, under the AS-AIPW strategy, when K ≥ 3,

sup
P∈P∗

EP

[
rT (P )

(
πAS-AIPW

)]

≤ max
b∈[K]\A∗(P )

√√√√√log(K)EX

∑
b∈[K]

(σb(X))
2

 /T +AT−1/4(log T )1+1/α;

when K = 2,

sup
P∈P∗

EP

[
rT (P )

(
πAS-AIPW

)]
≤ maxb∈[K]\A∗(P )

√
log(K)EX

[
(σ1(X) + σ2(X))

2
]
/T +AT−1/4(log T )1+1/α.

The convergence rate of Ωa,b
t (P )− 1 determines the non-asymptotic expected simple regret via the

martingale CLT. It is also known that the rate of the martingale CLT is no better than the convergent

rate of E
[
Ωa,b

t (P )− 1
]1/2

(Hall et al., 1980).

Besides, to show the asymptotic minimax optimality for the lower bound, we do not have to
derive the non-asymptotic tight upper bound using PP

(
|Ωa,b

t (P )− 1| > D/
√
t(log t)2+2/α

)
≤

Ct−1/4(log t)1+1/α.

To prove this corollary, we use the following corollary in which we replace the martingale CLT
in Lemma G.2 with the non-asymptotic representation (the rate of the martingale CLT in Proposi-
tion B.7).

Corollary H.2. For all a, b ∈ [K]2, suppose that ξa,bt (P ) is conditionally sub-Gaussian; that is,
there exits an absolute constant Cξ > 0 such that for all P ∈ P and all λ ∈ R,

EP

[
exp

(
λξa,bt (P )

)
|Ft−1

]
≤ exp

(
λ2Cξ

2

)
.

Also suppose that some α > 0 and constants M , C and D,

max
t∈N

EP

[
exp

(∣∣∣√Tξa,bt (P )
∣∣∣α)] < M,

and

P
(
|Ωa,b

t (P )− 1| > D/
√
t(log t)2+2/α

)
≤ Ct−1/4(log t)1+1/α.

Then, for a, b ∈ [K] and T ≥ 2,

P
(
µ̂AIPW,a
T − µ̂AIPW,b

T ≤ 0
)
≤


exp

(
−T(∆a,b(P ))

2

V a,b∗(P )

)
+AT−1/4(log T )1+1/α if E0 <

√
T∆a,b(P ) ≤ E;

exp

(
−T(∆a,b(P ))

2

2C2
ξ

)
if E0 <

√
T∆a,b(P ),

(16)

where the constant A depends only on α, M , C, and D, and E0 > E > 0 are some constants
independent from T and ∆a,b(P ).
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Then, we prove Corollary H.1 as follows.

Proof of Corollary H.1. From Corollary H.2 with Lemma G.3, the probability of misidentification
PP

(
µ̂AIPW,c
T ≥ µ̂AIPW,a

T

)
is bounded as follows:

PP

(
µ̂AIPW,c
T ≥ µ̂AIPW,a

T

)

≤


exp

(
−T(∆a,b(P ))

2

V a,b∗(P )

)
+AT−1/4(log T )1+1/α if E0 <

√
T∆a,c(P ) ≤ E;

exp

(
−T(∆a,b(P ))

2

2C2
ξ

)
if E0 <

√
T∆a,c(P ).

.

Then, as well as the proof of Theorem 5.2, when K ≥ 3,

sup
P∈P∗

EP

[
rT (P )

(
πAS-AIPW

)]

≤ max
b∈[K]\A∗(P )

√√√√√log(X)EX

∑
b∈[K]

(σb(X))
2

 /T +AT−1/4(log T )1+1/α;

when K = 2,

sup
P∈P∗

EP

[
rT (P )

(
πAS-AIPW

)]
≤ max

b∈[K]\A∗(P )

√
log(K)EX

[
(σ1(X) + σ2(X))

2
]
/T +AT−1/4(log T )1+1/α.

Thus, the proof is complete.

H.1 PROOF OF THEOREM 5.2

Proof. First, we prove the first inequality in Eq. (16), which corresponds to the martingale CLT. From
Proposition B.7,

P
(
µ̂AIPW,a
T − µ̂AIPW,b

T ≤ 0
)
= P

(√
T
(
µ̂AIPW,a
T − µ̂AIPW,b

T

)
−

√
T∆a,b(P ) ≤ −

√
T∆a,b(P )

)
= P

(√
T

V a,b∗(P )

(
µ̂AIPW,a
T − µ̂AIPW,b

T −∆a,b(P )
)
≤ −

√
T

V a,b∗(P )
∆a,b(P )

)

= P

(
T∑

t=1

ξa,bt (P ) ≤ −

√
T

V a,b∗(P )
∆a,b(P )

)

≤ Φ

(
−

√
T

V a,b∗(P )
∆a,b(P )

)
+AT−1/4(log T )1+1/α.

Let ϕ(·) be the density function of the standard normal distribution. Then,

Φ

(
−

√
T

V a,b∗(P )
∆a,b(P )

)
=

∫ −
√

T

V a,b∗(P )
∆a,b(P )

−∞
ϕ(u)du

≤ ϕ

(
−

√
T

V a,b∗(P )
∆a,b(P )

)
/

√
T

V a,b∗(P )
∆a,b(P )

≤ e

(e− 1)
√
2π

·
exp

(
−T(∆a,b(P ))

2

2V a,b∗(P )

)
√

T
V a,b∗(P )

∆a,b(P )
.
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Figure 2: Experimental results. The y-axis and x-axis denote the expected simple regret
EP [rT (P )(π)] under each strategy and T , respectively.

Here, we used e
(e−1)

√
2π

≈ 0.252,
√

T
V a,b∗(P )

∆a,b(P ) > 1 for large T , ϕ(u + 1/u) =
1√
2π

exp(−(u+ 1/u)2/2) = e−1ϕ(u) exp(−1/(2u2)) = e−1ϕ(u) and∫ −x

−∞
ϕ(u)du =

∫ ∞

x

ϕ(u)du ≤
∞∑
k=0

1

x
ϕ(x+ k/x) ≤ ϕ(x)

x

∞∑
k=0

exp(−k) = e

e− 1
· ϕ(x)

x
,

Therefore, if 0 ≤
√
T∆a,c(P ) ≤ C,

P
(
µ̂AIPW,a
T − µ̂AIPW,c

T ≤ 0
)
≤ exp

(
−T

(
∆a,b(P )

)2
2V a,b(P,w∗)

)
+ o(1).

Thus, we proved the first inequality.

Next, we show the second inequality of Eq. (16), which is a large deviation bound.

I ADDITIONAL EXPERIMENTAL RESULTS

We show addition experimental results. In Appendix I.1, we show results with variances different
from those in Section 7. In Appendix I.2, we show the result with continuous contextual information.

I.1 ADDITION EXPERIMENTAL RESULTS WITHOUT CONTEXTUAL INFORMATION

Under the same setting with that in Section 7, we draw the variances from a uniform distribution with
support [10, 100]. We show the result in Figure 2.

I.2 CONTINUOUS CONTEXTUAL INFORMATION

We consider cases with K = 2, 3, 5, 10 and 2-dimensional contextual information (d = 2). We
consider contextual information; therefore, we only investigate the AS-AIPW strategy. Because we
cannot obtain a closed-form solution for K ≥ 3, for simplicity, we fix w∗(a|x) = (σa(x))2∑

b∈[K](σ
b(x))2

for K ≥ 3, which still reduces the expected simple regret better than w∗(a) = (σa)2∑
b∈[K](σ

b)2
. In this

section, we do not use SHAdaVar because it is unknown how to incorpolate contextual information
to the strategy.

In each set up, the best arm is arm 1. The expected outcomes of suboptimal arms are equivalent and
denoted by µ̃ = µ2(P ) = µK(P ). We use µ̃ = 0.80, 0.90. We generate the variance from a uniform
distribution with a support [0.1, 5] and contextual information Xt = (Xt1, Xt2) from a multinomial

distribution with mean (1, 1) and variance
(

1 0.1
0.1 1

)
. Let (θ1, θ2) be random variables generated

from a uniform distribution with a support [0, 1]. We then generate µa(P )(Xt) = θ1X
2
t1+ θ2X

2
t2/c

a
µ

and (σa(Xt))
2 = (θ1X

2
t1 + θ2X

2
t2)/c

a
σ, where caµ, c

a
σ are values that adjust the expectation to

align with µa(P ) and (σa)2. We continue the experiments until T = 5, 000 when µ̃ = 0.80 and

39



Under review as a conference paper at ICLR 2024

T = 10, 000 when µ̃ = 0.90. We conduct 100 independent trials for each setting. At each t ∈ [T ],
we plot the empirical simple regret in Figure 1. Additional results are presented in Appendix I.

From Figure 1 and Appendix I, we can observe that the AS-AIPW performs well when K = 2.
When K ≥ 3, although the AS-AIPW tends to outperform the Uniform, other strategies also perform
well. We conjecture that the AS-AIPW exhibits superiority against other methods when K is small
(mismatching term in the upper bound), the gap between the best and suboptimal arms is small,
and the variances significantly vary across arms. As the superiority depends on the situation, we
recommend a practitioner to use the AS-AIPW with several strategies in a hybrid way.

We show experimental results with K = 2, 3, 5, 10 in Figures 4–6, respectively.

J OPEN PROBLEMS

This section introduces several related open issues.

J.1 OPEN PROBLEM (1): NON-ASYMPTOTIC LOWER BOUNDS

We showed the non-asymptotic upper bound in Appendix H. We are also intrested in deriving
non-asympttic lower bound. However, there are the following issues.

• Although the estimation error of the variances can be ignored in the worst-case asymptotic
analysis, it affects the lower bound in the non-asymptotic analysis. However, the analysis of
variance estimation might be too complicated to analyze.

• Our technique is based on the information-theoretic lower bound provided by Kaufmann
et al. (2016) and semiparametric efficiency bounds. Both techniques are used for asymptotic
analysis. Therefore, we need to develop completely different approaches for non-asymptotic
analysis.

• We deal with general distribution by approximating the KL divergences. If we focus on the
non-asymptotic analysis, we need to restrict the class of distributions to specific distributions,
such as the Gaussian distribution, even if possible.

One of the promising approaches for lower bounds is to employ lower bounds provided by Carpentier
& Locatelli (2016). However, this lower bound is based on the boundedness of Y a

t . Without the
boundedness, non-asymptotic analysis would be more difficult. Additionally, the definitions of
optimality might be changed to deal with the uncertainty of variance estimation. Thus, although
the non-asymptotic upper bound has been derived, deriving non-asymptotic lower bounds requires
different techniques and is not straightforward, even if possible.

J.2 OPEN PROBLEM (2): GENERALIZATION OF THEOREM3.8 FOR K ≥ 3

We conjecture that there exist more tighter lower bounds for K ≥ 3 than Theorem 3.4, as well
as Theorem 3.8 for K = 2. This conjecture is also based on an intuition that while Theorem 3.8
connects to existing tight lower bounds in two-armed Gaussian bandits (Kaufmann et al., 2016),
Theorem 3.4 does not.

For example, Kato (2023) shows that different target allocation ratios should be used for minimization
of the probability of misidentification PP (âT ̸= a∗(P )). That work considers Gaussian bandits
without contextual information, defined as

P :={
P =

(
N
(
µa, (σa)

2
)
))

a∈[K]
| (µa)a∈[K] ∈ RK , (σa)

2
a∈[K] ∈ [C,C]K , ∃a∗ ∈ [K] s.t. µa∗

> max
a∈[K]\{a∗}

µa

}
,
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where C,C are universal constants such that 0 < C < C <∞. Then, that work shows that the lower
bound is given as

sup
P∈P

lim sup
T→∞

− 1

T
logPP (â

π
T ̸= a∗(P0)) ≤ max

w∈W
min

b∈[K],a∈[K]\{b}

∆
2

2Ωb,a(w)
+ o

(
∆

2
)
,

as ∆ → 0, where ∆ = maxP∈P maxa∈[K]\{a∗(P )} ∆
a(P ), and Ωb,a(w) =

(
σb
)2

w(b) +

(
σa
)2

w(a) . Here,
the target allocation ratio is given as

w∗ = argmax
w∈W

min
b∈[K],a∈[K]\{b}

1

2Ωb,a(w)
,

which is different from ours.

As well as Kato (2023) makes several additional assumptions for the strategy class and bandit models,
we believe that our current assumptions are insufficient to extend Theorem3.8 for K ≥ 3. Such
a necessity of additional assumptions also has been discussed in Komiyama et al. (2023), but an
effective solution has not been proposed.

One of the promising candidates for solutions is to employ the framework of the limit of experiments
van der Vaart (1998) is one of the promising directions. This framework is expected to allow us to
derive tight lower and upper bounds by using the asymptotic normality. To apply the results, we need
to restrict strategy class and underlying bandit models such that under which mean estimators in the
recommendation phase follow a normal distribution asymptotically.

In summary, tightening Theorem 3.4 or extending Theorem 3.8 to cases with K ≥ 3 are a crucial
important issue. To address this open issue, we believe that further assumptions are required.

J.3 OPEN PROBLEM (3): RELATIONSHIP WITH THE AIPW ESTIMATOR AND THE SAMPLE
AVERAGE

We defined the AIPW estimator µ̂AIPW,a
T in the recommendation phase. However, we also conjecture

that we can employ the sample average µ̂a
T when there is no contextual information.

In fact, Hahn et al. (2011) shows that when using the CLT, the AIPW and sample average have the
same asymptotic distribution in the literature of efficient average treatment effect estimation, a setting
related to BAI.

However, proving the regret upper bound for µ̂ requires a more complicated proof procedure compared
to µ̂ or requires some additional assumptions. For example, we cannot employ the martingale theory
for the proof.

Note that even if we use the sample average µ̂a
T instead of the AIPW estimator µ̂AIPW,a

T , the AIPW
estimator µ̂AIPW,a

T still plays an important role in theoretical analysis of the sample average estimator
µ̂a
T . This is because Hahn et al. (2011) shows the asymptotic distributions of the sample average

by going through that of the (theoretically constructed) AIPW estimator as a result of the empirical
process theory.

Thus, deriving a variance-dependent tight upper bound of a strategy using µ̂a
T in the recommendation

phase is an open issue.

J.4 OPEN PROBLEM (4): TRACKING-BASED SAMPLING RULE

We proposed randomly sampling arms following wt. However, there are other sampling strategies
used in BAI. For example, Garivier & Kaufmann (2016) proposes using a tracking-type sampling
rule. Here, we discuss the possibility of using such a sampling rule.

For simplicity, let us omit Xt. If we apply a tracking-type sampling rule, for example, we can draw
arms as At = argmina

∑t−1
s=1 1[As = a]− tŵt(a).

This sampling rule might outperform our proposed random sampling because it has less randomness
in the choice of At and stabilizes the behavior of strategies, as pointed out by Fiez et al. (2019).
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Although we can expect performance improvement, the derivation of the upper bound requires
additional theoretical techniques. In our study, the derivation of the upper bound is based on the
martingale property, depending on E[1[At = a]|Ft−1] = wt(a).

If we apply the tracking-based algorithm, we need to reconsider the definition of the AIPW estimator.
Depending on the definition, there are some technical issues. For example, consider using the same
definition of the AIPW estimator in the main text. Then, wt is an estimator of the optimal allocation,
and At is an actual arm draw. Then, E[1[At = a]|Ft−1] = wt(a) does not hold. Therefore, we
cannot employ the martingale property.

However, we consider that there is a possibility that we can show the same property between the AIPW
estimator with random sampling in our manuscript and tracking-based sampling in your proposition,
as discussed in Hahn et al. (2011) and Kato (2021). However, to conduct the proof in Hahn et al.
(2011) and Kato (2021), we need to focus on more restricted strategies or make stronger assumptions.
For example, Hahn et al. (2011) only considers a two-stage adaptive experiment, where we draw each
arm with the equal ratio in the first stage and draw each arm to track the empirical optimal allocation
ratio. Here, we cannot update wt in the second stage; that is, we can update the sampling rule At

only once between the first and second experiments. Kato (2021) makes complicated assumptions
that are not easily verified. Showing the upper bound under the tracking-based algorithm without
restricting the sampling rules or making additional assumptions is an open issue.

Furthermore, we point out that there is a trade-off between the fast convergence of At and the bias of
an estimator of µa

t (P ). That is, although a tracking-based algorithm may stabilize the behavior of At,
it loses the unbiasedness of an estimator of µa(P ).

In summary, a tracking-based strategy might outperform random-sampling-based strategies. However,
under such a strategy, we cannot employ the martingale property, which makes the theoretical analysis
difficult. Revealing the theoretical properties of such an estimator is an open issue.

J.5 OPEN PROBLEM (5): CONTEXT-SPECIFIC RECOMMENDATION

Although we defined BAI with contextual information as the problem of recommending an arm with
the highest expected reward marginalized over a contextual distribution, we believe that conduct-
ing context-specific arm recommendation is possible when there is not much discrete contextual
information (that is, X = {S1, S2, . . . , SM} with a discrete context Sm and a small M > 0).

We are now extending the result for policy learning with BAI; that is, given a set Π of policies
π : [K] × X → (0, 1) such that

∑
a∈[K] π(a|x) = 1 (and potentially continuous contextual

information), we train a policy π ∈ Π to minimize the regret. Consider we restrict a policy class Π
to the one such that we discretize the contextual information and recommend an arm within each
discretized contextual information. Then, such a strategy aligns with the strategy that the reviewer
suggested.

The remaining open issue is how we bound the regret for general Π. Because samples are non-i.i.d.,
we cannot directly apply the standard complexity measure such as the Rademacher complexity.
For example, we might employ the martingale-version of the Rademacher complexity proposed by
Rakhlin et al. (2015).

This open problem has garnered attention in this literature Zhan et al. (2021) and Zhan et al. (2022).
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Figure 3: Results when K = 2.
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Figure 4: Results when K = 3.
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Figure 5: Results when K = 5.
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Figure 6: Results when K = 10.
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