
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS EFFICIENT MIXTURE OF EXPERTS: A HOLIS-
TIC STUDY OF COMPRESSION TECHNIQUES

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling large language models has driven remarkable advancements across various
domains, yet the continual increase in model size presents significant challenges
for real-world deployment. The Mixture of Experts (MoE) architecture offers a
promising solution by dynamically selecting and activating only a subset of experts
during inference, thus substantially reducing computational costs while preserving
high performance. Despite these benefits, MoE introduces new inefficiencies, such
as excessive parameters and communication overhead. In this work, we present
a holistic study on compression techniques of Mixture of Experts to enhance
both efficiency and scalability. While recent efforts have focused on reducing the
number of experts, these approaches still suffer from considerable communication
and computational costs. To address this, we propose more aggressive strategies,
such as Layer Drop, which removes entire MoE layers, and Block Drop, which
eliminates transformer blocks. Surprisingly, these aggressive structure pruning
techniques not only preserve model performance but also substantially improve
efficiency. Additionally, beyond Expert Trimming, we also introduce Expert
Slimming, which compresses individual experts to further boost performance and
can be seamlessly integrated with Expert Trimming. Extensive experimental results
demonstrate the effectiveness of our proposed methods — Layer Drop and Block
Drop — along with the comprehensive recipe that integrates Expert Slimming and
Expert Trimming, achieving a 6.05× speedup with 77.1% reduced memory usage
while maintaining over 92% of performance on Mixtral-8×7B. Our code will be
made publicly available upon acceptance.

1 INTRODUCTION

While scaling large language models has shown exceptional performance across various domains
(Ramesh et al., 2021; OpenAI, 2024; Team, 2024a), the increasing model size poses significant
challenges in real-world deployments (Sun et al., 2023; Frantar et al., 2022) due to excessive
computational demands and associated costs. The Mixture of Experts (MoE) (Shazeer et al., 2017),
which selectively activates a subset of parameters during inference, offers a promising solution to
reduce these computational burdens. Additionally, integrating MoE with Large Language Models
(LLMs) has been shown to enhance performance further (Jiang et al., 2024; Dai et al., 2024).

Despite these advances, MoE models still suffer from significant redundancies that increase deploy-
ment costs. tandard MoE implementations replicate feed-forward layers across multiple experts,
resulting in models that are still heavily parameterized. For instance, Mixtral-8×7B (Jiang et al.,
2024) contains 47B parameters, but only 13B parameters are activated per token, leading to the
substantial GPU memory consumption and limited scalability. In addition, replicating experts often
introduces redundant experts. For example, He et al. (2023) observed that expert parameters could
be compressed through parameter sharing. Similarly, Lu et al. (2024) noted that not all experts are
essential, suggesting that some can be safely removed. These findings underscore the potential for
compressing MoE models to improve efficiency without sacrificing effectiveness.

In this paper, we first investigate the Expert Trimming based compression techniques that reduce
the number of experts to enhance the efficiency of MoE (Cheng et al., 2020; Liang et al., 2021).
The most prevalent approach for Expert Trimming is Expert Drop, which scores each expert and
drops the less important ones (Lu et al., 2024; Muzio et al., 2024). While Expert Drop reduces

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

model size, it does not eliminate the costly computations within the MoE layer and the complex
communication among experts, leading to negligible improvements on the inference speed. To this
end, we propose aggressive Expert Trimming methods to enhance MoE efficiency. Specifically,
to mitigate communication and computation costs, we present Layer Drop that removes the entire
MoE layer. Additionally, given the computation-intensive nature of the attention mechanism within
transformer blocks, we further propose Block Drop, which removes the whole transformer blocks.
We use similarity-based metrics to demonstrate the feasibility of Layer Drop and Block Drop.
Surprisingly, these two coarse-grained methods outperform fine-grained Expert Drop by a large
margin in balancing performance and efficiency. Additionally, with small-scale post-finetuning, the
compressed models can be further optimized to achieve near-original performance.

Beyond removing experts, we also explore Expert Slimming, which focuses on compressing individual
experts. Techniques such as network pruning (Han et al., 2016; Zhu & Gupta, 2017) and quantization
(Jacob et al., 2017; Nagel et al., 2021) have proven effective for model compression, with quantization
being particularly well-suited for hardware acceleration. By integrating Expert Slimming with Expert
Trimming, we propose a unified framework for compressing MoE models that maximizes efficiency
gains while maintaining strong performance.

Our experimental results on two widely-used MoE models, Mixtral-8×7B (Jiang et al., 2024) and
DeepSeek-MoE-16B (Dai et al., 2024), demonstrate the effectiveness of our proposed methods.
For Expert Trimming, Expert Drop significantly reduces the memory usage but it provides only
marginal improvements in inference speed. In contrast, Layer Drop and Block Drop significantly
accelerate inference and reduce memory usage while maintaining comparable performance to the
original models. The combined strategy of Expert Trimming and Expert Slimming results in a 6.05×
speedup with only 22.8% memory usage (20.0GB) while maintaining over 92% of the original
performance on Mixtral-8×7B. The findings offer valuable insights for enhancing the efficiency
of MoE models. Additionally, post-finetuning allows compressed models to recover most of their
original performance, resulting in a minimal 0.6% performance gap compared to the uncompressed
DeepSeek-MoE-16Bmodel.

In summary, by conducting a holistic study on compressing Mixture of Experts, our key contributions
are as follows:

• We extend Expert Trimming to a higher architectural level by introducing Layer Drop and
Block Drop, significantly improving the efficiency while maintaining the model perfor-
mance.

• We introduce Expert Slimming, a method that compresses individual experts. By integrat-
ing Expert Slimming with Expert Trimming, we achieve further efficiency gains without
compromising performance.

• Extensive experimental results demonstrate the effectiveness of our proposed methods,
achieving a 6.05× speedup and reducing memory usage to just 20.0 GB, all while maintain-
ing over 92% of performance on Mixtral-8×7B.

2 RELATED WORK

Mixture of Experts The Mixture of Experts (MoE) is a kind of neural network architecture with an
extended set of parameters (referred to as “experts”) controlled by a router, which is first introduced
in the context of conditional computation (Jacobs et al., 1991; Jordan & Jacobs, 1994). The potential
of sparse activation in MoE is subsequently exploited by Shazeer et al. (2017) for efficient training
and inference on pretrained models with special designs, opening the door for MoE in various vision
(Riquelme et al., 2021) and language (Lepikhin et al., 2020; Du et al., 2022; Fedus et al., 2022)
scenarios. Attributed to its exceptional efficiency, MoE has been adopted as a foundational framework
in the designs of large language models (LLMs) (Jiang et al., 2024; Dai et al., 2024; Xue et al., 2024a;
Zhu et al., 2024; Team, 2024b), achieving superior scaling laws at low computational costs (Clark
et al., 2022). Further investigations emerge in developing improved expert structures (Gururangan
et al., 2022; Rajbhandari et al., 2022; Dai et al., 2024), router designs (Lewis et al., 2021; Roller et al.,
2021; Zhou et al., 2022), and training strategies (Shen et al., 2023; Chen et al., 2022), propelling the
continuous evolution on the representation capability and computational efficiency of MoE models.
Despite the success, MoE also suffers from efficiency issues. For instance, MoE replicates the experts,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

significantly increasing the parameter budget (He et al., 2023). On the other hand, adopting multiple
experts to process input tokens introduces communication costs and enhances latency (Song et al.,
2023; Xue et al., 2024b).

Compression Methods The escalating size of large language models presents considerable hurdles
for their practical implementation. Consequently, a range of efficient methods has emerged to
address the implementation issues. Among them, model quantization (Frantar et al., 2022; Lin et al.,
2024) and network pruning (Sun et al., 2023; Frantar & Alistarh, 2023) are widely utilized. Model
quantization reduces the precision of neural network weights to lower bits (Jacob et al., 2017), while
network pruning (Han et al., 2016) removes redundant parameters or architectures. Although these
methods have shown promising results on dense models, they lack consideration for the inductive
bias inherent in MoE. To bridge this gap, Expert Drop, as proposed in studies like (Muzio et al.,
2024; Lu et al., 2024), addresses the unique nature of MoE by removing unimportant experts. By
eliminating redundant experts, the MoE architecture becomes more compact and can be deployed at
a lower cost. However, while Expert Drop leads to a more compact architecture, it may also lead to
non-negligible performance drop and rely on post-training procedures for recovery.

3 PRELIMINARIES

3.1 MIXTURE OF EXPERTS

A Mixture of Experts (MoE) layer consists of a collection of n experts, E1,E2, . . . ,En, each
associated with weights W1,W2, . . . ,Wn, and a router G that dynamically selects the most relevant
experts for a given input x. The router computes selection scores, G(x) ∈ Rn, for all experts and
selects the top k experts, resulting in a sparse activation pattern. The input x is processed by the
selected experts, and their outputs are combined into a weighted sum based on the router’s scores.
This process is mathematically expressed as:

K = TopK(Softmax(G(x)), k), (1)

y =
∑

i∈K
G(x)i ·Ei(x|Wi), (2)

where K denotes the indices of selected experts, G(x)i represents the selection score for the i-th
expert, and Ei(x) is the output from the i-th expert. In transformer models, the MoE layer is often
used as a replacement for the feed-forward network (FFN). In this context, each expert functions as
an independent FFN module, enhancing the model’s capacity without a proportional increase in the
computational cost (Vaswani et al., 2017).

Challenges While MoE models have demonstrated strong performance across various tasks (Jiang
et al., 2024; Dai et al., 2024), they also encounter significant deployment challenges. On one hand,
MoE models replicate multiple expert networks, inflating model size and memory usage. For instance,
Mixtral-8×7B has a total of 47B parameters, requiring 87.7GB of memory for deployment, though
only 13B parameters are activated per token. On the other hand, the communication required to
manage multiple expert networks increases latency and slows down inference speed, especially in
distributed environments (Song et al., 2023; Yu et al., 2024).

3.2 OVERVIEW OF PREVIOUS COMPRESSION METHODS

To address the efficiency challenges, we first review several mainstream and state-of-the-art compres-
sion techniques for MoE models.

Pruning: Pruning reduces the number of active parameters by selectively disabling parts of the
model’s weights. In an MoE layer with n experts Eii = 1n and corresponding weights Wii = 1n,
pruning introduces binary masks Mi

n
i=1 to deactivate certain weights:

Ŵi = Mi ⊙Wi. (3)

Pruning can be unstructured (Lee et al., 2021; Bai et al., 2022), semi-structured, or structured.
Unstructured sparsity tends to yield the best performance, semi-structured sparsity strikes a balance

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

MoE Normalization

MoE Normalization
Multi-Head Attention

MoE Normalization

Multi-Head Attention

Mixture of Experts

MHA Normalization

(a) Transformer Block (b) Mixture of Experts

MHA NormalizationGranularity Scales Up

QuantizationPruning

Expert Drop Layer Drop Block Drop

(d) Expert Trimming

(c) Expert Slimming

Figure 1: The Unified View of MoE Compression. The view integrates two complementary
perspectives: Expert Slimming and Expert Trimming. Expert Slimming compresses individual
experts, while Expert Trimming directly drops structured modules.

between efficiency and performance, and structured sparsity, while hardware-friendly, often results in
lower performance.

Quantization: Unlike pruning, which involves masking out unimportant parameters, quantization
reduces memory usage by converting model weights to lower-bit representations. For MoE layers,
quantization is applied as follows:

Ŵi = Quant(Wi), (4)
where “Quant” denotes the quantization function. Quantization decreases memory consumption
without reducing FLOPs or the total number of parameters, making it particularly advantageous for
hardware acceleration.

Expert Drop: Different from fine-grained pruning and quantization, Expert Drop entails the removal
of expert networks, based on the observation that not all experts are equally important (Lu et al.,
2024; Muzio et al., 2024). Given expert-wise importance scores S (e.g., the routing scores, S(Ei) =
G(x)i), Expert Drop retains only the experts with the highest n′ scores:

T ′ = TopK(S({Ei}ni=1), n
′), (5)

E ← {Ei}i∈T ′ , G← Gi∈T ′ . (6)
Here, T ′ denotes the subset of the original expert indices T = {1, 2, . . . , n}. Expert Drop reduces
FLOPs conditionally: when T ′ contains more than or equal to k indices, MoE still utilizes the top
k experts for each input; otherwise, it uses all remaining experts. While this approach reduces
communication between experts, the resulting speedup is usually insignificant when maintaining
acceptable performance.

Other Compression Techniques: Other methods, such as low-rank decomposition (Li et al., 2024b;a),
aim to compress model weights into smaller matrices, further reducing memory and computational
costs. In this work, we primarily focus on the widely-used methods (pruning, quantization, and
Expert Drop), leaving a more detailed exploration of these additional methods for future research.

4 A HOLISTIC STUDY OF MOE COMPRESSION TECHINIQUES

In this section, we propose a general framework that unifies various compression methods for MoE.
This framework provides a comprehensive understanding of MoE model efficiency issues and helps
identify new design spaces for further performance improvements.

4.1 OVERVIEW

Existing MoE compression methods primarily address two types of inefficiencies: structural re-
dundancies in the overall architecture and internal redundancies within individual experts. To
address both issues, we categorize these methods into two complementary perspectives: Expert

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Summary of Compression Methods. “✓” means effective and “✗” means ineffective, while
“❍” represents conditionally effective, depending on specific settings and environments.

Method Formulation Parameter Memory FLOPs Speedup

Expert T ← T ′ ✓ ✓ ❍ ❍
LayerExpert Trimming
Block T ← ∅ ✓ ✓ ✓ ✓

Pruning M ⊙W ✓ ❍ ✓ ❍Expert Slimming Quantization Quant(W) ✗ ✓ ✗ ✓

Trimming focuses on removing structured components (e.g., experts, layers, or blocks), and Expert
Slimming that compresses individual experts through techniques like pruning or quantization. An
overview of these perspectives is illustrated in Figure 1.

Expert Trimming deals with compressing structured modules by selecting and retaining only a subset
of the experts, denoted as T ′. This is represented by the transformation T ← T ′. Methods like
Expert Drop, which selectively drops unimportant experts, are examples of this approach. On the
other hand, the compression of individual experts (Expert Slimming) focuses on the transformation
and reduction of expert weights, denoted as W . We utilize a transformation function f(W) to
represent this process. The transformation function f(W) can be understood as a general mapping
that applies various compression techniques to the weights of the model. For example, in pruning,
f(W) could be a function that sets a subset of the weights to zeros. In quantization, f(W) might
reduce the precision of the weights from 32-bit floats to 8-bit integers. By integrating these two
perspectives, we can derive a general form for efficient MoE models. The compression within and
across experts can be expressed as follows:

y =
∑

i∈T ′
Gi ·Ei(x|f(Wi)). (7)

In the following sections, we will elaborate on Expert Trimming and Expert Slimming, respectively.

4.2 EXPERT TRIMMING

The core operation of Expert Trimming involves updating the set of remaining experts denoted as
T ← T ′, where T ′ is a subset of the original expert indices T . Specifically, Expert Drop updates the
experts and their corresponding routing weights as follows: E ← {Ei}i∈T ′ and G← Gi∈T ′ .

However, Expert Drop carries the risk of collapsing feature transformation. The absence of certain
experts can lead to incorrect selections for given inputs, thereby degrading model performance
(Chen et al., 2022). Additionally, partially reducing experts can disrupt routing patterns, negatively
impacting the model’s overall efficiency and effectiveness. Despite its benefits, Expert Drop still
retains the costly computation within each expert and the complex communication between experts.
These limitations highlight the need for further optimization of Expert Trimming to promote the
efficiency. By systematically analyzing the redundancies and inefficiencies inherent in MoE models,
we propose extending beyond expert-level optimizations to identify new design spaces for efficiency
improvements.

MoE Normalization

Mixture of Experts

Figure 2: Illustration of Similarity Mea-
surements in Layer Drop. Features for
calculating S(M) and S(NM) are colored
with red and blue, respectively.

We propose two novel techniques: Layer Drop and
Block Drop. Layer Drop focuses on removing entire
MoE layers, which significantly reduces both computa-
tion and communication overhead. Block Drop extends
this concept by eliminating entire blocks, including atten-
tion layers and MoE layers, within transformer models.
These advanced techniques aim to streamline the model
architecture, improve performance, and enhance overall
efficiency. -

Layer Drop Inspired by Raposo et al. (2024); El-
houshi et al. (2024), we consider a special scenario of Ex-
pert Drop where all experts are dropped (T ← T ′ = ∅),
effectively removing entire MoE layers. We refer to this
approach as Layer Drop. To perform Layer Drop, we use a similarity-based metric where high

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

similarity indicates high redundancy in transformation. One straightforward metric is the cosine
similarity between the input x and the output y = MoE(x):

S(M) =
x · y

||x||2 ||y||2
, where y = MoE(x). (8)

However, this metric alone does not adequately capture the impact of the MoE layer within the context
of a transformer block, which includes a layer normalization module ("Norm") (Ba et al., 2016) and
residual connections (He et al., 2015). To address this, we propose concurrently removing both the
MoE and Norm layers. This approach ensures that the similarity metric more accurately reflects the
combined functionality of these layers, allowing for a more precise identification of redundancy and
a streamlined model architecture, as illustrated in Figure 2. By considering the similarity between the
raw residual input and the aggregated output, we can better evaluate the necessity of the MoE layer in
the overall architecture:

S(NM) =
x′ · y′

||x′||2 ||y′||2
, where y′ = x′ + MoE(Norm(x′)). (9)

Block Drop Within a transformer block, Layer Drop removes the MoE layers but retains the
computation-costly attention layers (Ribar et al., 2024; Zhang et al., 2023). To address this issue,
we further utilize the same similarity-based metrics to investigate whether the attention layer can
be dropped without a significant performance drop. If feasible, this allows us to drop the entire
block within MoE models, thus enhancing efficiency. We introduce Block Drop as an extension of
Layer Drop, which also removes the attention layers. Specifically, for the i-th block, we assess its
importance score by evaluating the similarity between its inputs xl and outputs yl. Compared to
Expert Drop, both Layer Drop and Block Drop focus on structures beyond expert level, with the
potential to further enhance the efficiency of MoE models.

4.3 EXPERT SLIMMING

Given that employing multiple experts in MoE significantly escalates parameters and inference costs,
Expert Slimming, stemming from single-model compression techniques, targets the compression
of individual expert weights W exclusively. We denote any efficient transformation function as
f(·), which encompasses pruning M ⊙W and quantization Quant(W). Through the application
of such functions, we reduce the redundancy within each expert and create several light-weighted
slim experts, thus improving their intrinsic efficiency. However, it is important to note that Expert
Slimming primarily focuses on compressing individual experts without addressing the redundancy
across multiple experts. For maximum efficiency gains, Expert Slimmingand Expert Trimming can
be integrated to compress both individual experts and structured components. We summarize the
efficiency contributions of all the discussed Expert Trimming and Expert Slimming methods in Table
1, highlighting the unique advantages of each approach.

5 EXPERIMENTS ON EXPERT TRIMMING

n this section, we evaluate the effectiveness of Expert Trimmingtechniques, starting with Expert Drop,
and comparing it with our proposed methods, Layer Dropand Block Drop. Implementation details
are provided in Appendix A.

Expert Drop: Performance Degradation with Limited Efficiency Gains While experts are
specific structures in MoE, not all experts hold equal significance. Figure 11 visualizes the distribution
of expert-wise importance scores, highlighting this variability. To systematically drop experts at
varying proportions, we conduct experiments using both layer-wise and global dropping approaches
(see Appendix A.3). Given the importance of shared experts (Appendix E), we only dropped normal
experts for DeepSeek-MoE-16B. Under both settings, Expert Drop causes consistent performance
degradation. For example, dropping 25% of experts in Mixtral-8×7B results in a 23% performance
drop on the MMLU task. The efficiency improvement from Expert Drop is also marginal. For instance,
dropping 12.5% of experts results in less than a 1% speedup, despite significant performance losses.
More experimental results are available in Appendix F.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0% 25% 50% 75% 100%
Dropped Percent

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

HellaSwag
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0% 25% 50% 75% 100%
Dropped Percent

20

30

40

50

60

70
MMLU

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0% 25% 50% 75% 100%
Dropped Percent

25

30

35

40

45

OBQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0% 25% 50% 75% 100%
Dropped Percent

45

50

55

60

65

70

75

80
WinoGrande

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

Figure 3: Evaluation of Expert Drop. We consider two strategies: layer-wise (dotted lines) and
global (solid lines).

0 5 10 15 20 25 30
Layer Index

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Layer-wise Similarity

Mixtral-8×7B (Norm + MoE)
Mixtral-8×7B (MoE)
DeepSeek-MoE-16B (Norm + MoE)
DeepSeek-MoE-16B (MoE)

Figure 4: Layer-Wise Similarity. We
consider two scenarios, i.e., for “MoE”
and “Norm + MoE”.

Layer Drop: Comparable Performance with Greater
Efficiency To verify the feasibility of Layer Drop, we vi-
sualize feature similarity across different modules in Figure
4. This visualization shows a high level of similarity for fea-
tures across the the MoE normalization module (Norm) and
the MoE layer. In contrast, the low similarity for features
across the MoE layer indicates the infeasibility of removing
only MoE layers. Results from Figure 5 show that Layer
Drop preserves performance within a wide range of com-
pression ratio, e.g. 1% performance drop on MMLU when
dropping 8 layers for Mixtral-8×7B, revealing significant
redundancy in the MoE layers.

0 5 10 15 20 25 30
Dropped Lyers

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

HellaSwag
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

20

30

40

50

60

70

MMLU
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

25

30

35

40

45

OBQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

50

55

60

65

70

75

WinoGrande
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

Figure 5: Evaluation of Layer Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-
16B (solid lines), along with the baseline and random guess performances (dotted lines).

0 5 10 15 20 25 30
Dropped Blocks

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

HellaSwag
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

20

30

40

50

60

70

MMLU
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

25

30

35

40

45

OBQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

45

50

55

60

65

70

75

80
WinoGrande

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

Figure 6: Evaluation of Block Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-
16B (solid lines), along with the baseline and random guess performances (dotted lines).

Block Drop: Further Optimizing Efficiency by Pruning Entire Transformer Blocks While
Layer Drop maintains the performance of the original models, it still preserves the computation-costly
attention layers. To address this, Block Dropextends Layer Dropby removing whole transformer
blocks, including both MoE and attention layers, further reducing computational and memory
costs. Figure 7 visualizes block-wise similarity, where both Mixtral-8×7B and DeepSeek-MoE-
16B demonstrate high similarity between specific blocks. Based on this observation, we conduct the
empirical study by varying the number of dropped blocks.

Surprisingly, as shown in Figure 6, the Mixtral-8×7B maintains over 90% of the original performance
even after removing 5 blocks (over 7 billion parameters). Similar observations are also found in
DeepSeek-MoE-16B, where 4 blocks can be removed when maintaining 90% performance. Since
Block Drop removes computationally expensive attention layers, it outperforms Layer Drop by a
large margin in terms of both memory and inference cost, as illustrated in Figure 8.

On the other hand, Block Drop prunes attention layers along with their corresponding KV-Cache Pope
et al. (2022). For instance, an input sequence with a batch size of 128 and a sequence length of 2048
results in 32GB of KV-Cache, which can be reduced by 5GB using Block Drop. Overall, by targeting

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Block Index

0

5

10

15

20

25

30

Bl
oc

k
In

de
x

Mixtral-8×7B

0 5 10 15 20 25
Block Index

0

5

10

15

20

25

DeepSeek-MoE-16B

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Normalized Block-Wise Similarity.
We measure the cosine similarity among hidden
features between blocks.

0% 10% 20% 30% 40% 50%
Compression Ratio

14

16

18

20

22

24

D
ec

od
in

g
Sp

ee
d

(T
G

S)

Mixtral-8×7B
Expert Drop
Layer Drop
Block Drop

0% 10% 20% 30% 40% 50%
Compression Ratio

20

25

30

35

40

DeepSeek-MoE-16B
Expert Drop
Layer Drop
Block Drop

Figure 8: Speedup Scaling Curves of Expert
Trimming Methods. where we measure the
averaged decoding speed during generation.

higher-level structures, Layer Drop and Block Drop achieve substantial efficiency improvements
while maintaining acceptable performance levels.

Table 2: Comparison of Layer Drop and Block
Drop on dense and MoE models. “-Ln/m”,
“-Bn/m” represents dropping n out of m corre-
sponding modules with Layer Drop and Block
Drop, respectively.

Mistral-7B (Dense)
Method ARC-C HellaSwag MMLU OBQA Average

Baseline 61.5 83.7 62.5 43.8 62.9

+ L4/32 53.2 77.7 61.7 40.0 58.2 (-4.7)
+ L8/32 36.7 33.6 53.3 30.6 38.6 (-24.3)
+ B4/32 53.1 77.5 61.6 40.0 58.1 (-4.8)
+ B8/32 40.0 63.9 60.0 30.6 48.6 (-14.3)

Mixtral-8×7B (MoE)
Method ARC-C HellaSwag MMLU OBQA Average

Baseline 59.4 84.0 67.9 46.8 64.6

+ L4/32 56.2 81.3 67.6 44.6 62.4 (-2.2)
+ L8/32 47.7 75.2 67.3 40.0 57.6 (-7.0)
+ B4/32 53.8 80.2 67.9 43.0 61.2 (-3.4)
+ B8/32 40.8 55.8 66.3 37.2 50.0 (-14.6)

MoE Layers are More Redundant than Dense
Counterparts Since Layer Drop and Block
Drop can also be applied to dense models, we
take Mistral-7B, the corresponding dense model
of Mixtral-8×7B for comparison. Both models
have the same depth and differ only in the FFN
implementation, so we remove the same number
of layers or blocks from each. When dropping
an equal number of blocks, both MoE and dense
models exhibit performance degradation. How-
ever, the MoE model suffers less performance
drop under the same compression setting. For ex-
ample, when dropping 8 MoE layers, the Mistral-
7B receives a performance drop of 24.3, while
Mixtral-8×7B only receives a drop of 7.0. This
interesting finding highlights the higher redun-
dancy in MoE layers, and further validates the
effectiveness of applying Layer Drop and Block
Drop to MoE models.

6 VISUALIZATION EXAMPLES OF LAYER DROP AND BLOCK DROP

In this section, we visualize the layer-wise similarity and the corresponding dropping order of MoE
layers and blocks to investigate the varying levels of redundancy across different depths.

Since our similarity-based metrics depend on the hidden states of each block, the choice of data
may influence feature similarity across layers. To investigate this, we conducted ablation studies
on Mixtral-8×7B, examining both the number of samples and the types of datasets used for feature
extraction. This analysis helps us understand how data selection affects decisions regarding the
dropping of layers or blocks. The results are presented in Figure 9.

Robustness to Calibration Datasets In Figure 9a, we note that feature similarity remains relatively
stable across different layers as the sample size increases, indicating that Layer Drop and Block
Drop maintain consistency regardless of sample quantity. This confirms that using 128 samples
suffices for computing similarity, which is adopted for all our experiments. Similarly, Figure 9b shows
that varying the datasets, from pretraining with C4 to instruction tuning with Lima and MetaMathQA,
does not significantly alter feature similarity. This demonstrates the resilience of Layer Drop and
Block Drop to variations in data distribution.

Redundant Deeper Layers Figure 10 visualizes the remaining and dropped layers/blocks as the
number of dropped modules increases. Both MoE architectures exhibit similar patterns in Layer
Drop and Block Drop: initially, both models tend to drop the deeper layers, followed by the shallower

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30

Layer Index

8

16

32

64

128

S
am

pl
e

N
um

be
r

Layer Similarity

0 5 10 15 20 25 30

Block Index

8

16

32

64

512

S
am

pl
e

N
um

be
r

Block Similarity

0.7

1.0

0.4

1.0

(a) Similarities under different number of samples.

0 5 10 15 20 25 30

Layer Index

C4

Lima

Meta
Math

D
at

as
et

Layer Similarity

0 5 10 15 20 25 30

Block Index

C4

Lima

Meta
Math

D
at

as
et

Block Similarity

0.7

1.0

0.4

1.0

(b) Similarities under different datasets.

Figure 9: Influence of Data Choices on Feature Similarity. We measure the similarity among layers
and blocks on Mixtral-8×7B. (a) The similarity calculated using different number of samples from
C4 Raffel et al. (2019). (b) The normalized similarity calculated using 1, 024 samples from different
datasets, i.e., C4, Lima Zhou et al. (2023) and MetaMathQA Yu et al. (2023).

0 5 10 15 20 25 30
Layer Index

30

25

20

15

10

5

0

Dr
op

pe
d

Nu
m

be
r

Mixtral-8×7B

1 6 11 16 21 26
Layer Index

25

20

15

10

5

0
DeepSeek-MoE-16B

(a) Layer Drop

0 5 10 15 20 25 30
Block Index

30

25

20

15

10

5

0

Dr
op

pe
d

Nu
m

be
r

Mixtral-8×7B

0 5 10 15 20 25
Block Index

25

20

15

10

5

0
DeepSeek-MoE-16B

(b) Block Drop

Figure 10: Dropping Patterns for Layer Drop and Block Drop. We visualize of the remaining
layers and blocks under different dropped numbers, where yellow areas represent the retained portions
and red areas indicate the dropped layers/blocks.

ones. These findings are consistent with Xu et al. Men et al. (2024), which suggests that deeper
layers tend to be more redundant.

7 INTEGRATION OF EXPERT TRIMMING AND EXPERT SLIMMING

Beyond Expert Trimming, another avenue for MoE compression is Expert Slimming, which targets
the compression of individual experts. Techniques such as quantization and network pruning are
among the most commonly employed methods. We provide a detailed comparison of network pruning
and quantization in Appendix B, where quantization outperforms in both performance and efficiency.

Since Expert Trimmingand Expert Slimmingfocus on different aspects of compression, we further
explore their potential integration. Given the superior average performance and practical efficiency of
quantization, we use it for Expert Slimming. For Expert Trimming, we include all three methods to
offer a comprehensive comparison. The orders of applying these two compression techniques are
discussed in Appendix D.

Quantization Preserves the Performance of Expert Trimming As shown in Table 3, the integra-
tion of Expert Slimming and Expert Trimming significantly enhances overall efficiency. Quantization
can be seamlessly combined with three different levels of dropping, achieving comparable perfor-
mance. For instance, after quantization, the average performance of Layer Drop and Block Drop is
nearly the same, maintaining more than 90% of the performance of the original models.

The Integration Significantly Enhances Efficiency In Table 3, the integration of Expert Trim-
ming and quantization promotes efficiency by a large margin. Different Expert Trimming strategies
showcase different advantages. Specifically, Expert Drop contributes to reducing memory usage
but its speedup is marginal. Layer Drop and Block Drop excel in speedup as illustrated in Figure
8, with Block Drop demonstrating both higher performance and greater speedup. Considering all
settings, the combination of Block Drop and quantization offers the best efficiency with comparable

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Experimental Results of the Integration of Expert Trimming and Expert Slimming.
“-En/m” denotes dropping n out of m experts per MoE layer on average. “-Ln/m”, “-Bn/m”
represents dropping n out of m layers/blocks with Layer Drop and Block Drop, respectively. The
FLOPs are measured using an input with the 2, 048 sequence length.

Mixtral-8×7B
Method SpeedUp FLOPs Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 54.4T 87.7GB 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5
w/AWQ 5.08× 54.4T 24.4GB 58.4 84.2 83.3 66.6 45.8 83.0 69.0 76.3 70.8

+ E2/8 1.06× 54.4T 66.7GB 53.2 77.7 80.5 52.2 46.2 81.7 55.6 76.8 65.5
w/AWQ 5.28× 54.4T 20.1GB 50.7 79.1 78.9 52.4 44.2 81.2 55.6 75.9 64.8

+ L8/32 1.19× 42.9T 66.6GB 47.7 85.3 75.2 67.3 40.0 75.8 69.7 74.6 67.0
w/AWQ 6.05× 42.9T 20.0GB 46.2 84.2 74.2 66.2 39.0 75.5 69.3 74.2 66.1

+ B5/32 1.17× 46.0T 74.1GB 51.3 85.3 78.7 67.9 42.0 79.3 69.7 74.3 68.6
w/AWQ 5.94× 46.0T 21.9GB 50.6 85.1 77.5 66.9 41.4 76.1 71.8 74.5 68.0

DeepSeek-MoE-16B
Method SpeedUp FLOPs Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 11.7T 30.8GB 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8
w/AWQ 3.16× 11.7T 9.8GB 46.8 71.2 76.6 36.4 43.6 80.1 62.1 70.1 60.9

+ E16/64 1.06× 11.7T 23.9GB 45.0 67.1 75.6 31.8 42.2 80.2 59.9 70.0 59.0
w/AWQ 3.34× 11.7T 7.7GB 44.0 66.0 74.5 27.9 42.6 78.5 56.3 67.3 57.1
+ L4/28 1.14× 10.6T 26.6GB 39.5 70.2 67.6 35.2 40.4 75.8 48.4 65.7 55.3
w/AWQ 3.60× 10.6T 8.5GB 42.1 72.0 69.2 33.7 39.8 75.1 47.7 66.5 55.8

+ B4/28 1.16× 10.1T 26.4GB 40.3 71.3 69.0 36.2 37.8 75.8 51.6 68.0 56.3
w/AWQ 3.67× 10.1T 8.4GB 40.1 70.2 68.6 36.1 38.4 76.2 51.6 66.4 56.0

performance: a 6.05× speedup with only 20.0GB memory usage, while maintaining over 92% of the
performance on Mixtral-8×7B, making it available to be deployed on a NVIDIA RTX 3090 GPU.

8 POST-FINETUNING RECOVERS THE PERFORMANCE

While the discussed compression techniques maintains most of the performance of the original
models, we further conduct post-finetuning to recover the degraded performance. Specifically, for
comparison, we full-finetune DeepSeek-MoE-16B and corresponding compressed models on the
Alpaca-GPT4 dataset Peng et al. (2023) for 3 epochs using a learning rate of 8e-6 with 0.03 warmup
ratio and cosine scheduling, where the global batch size is set to 32. As shown in Figure 4, the
post-finetuning process significantly reduces the performance gap between the compressed models
and the original models, e.g. narrowing it from 5.5% to 0.6% for the model following Block Drop.

Table 4: Performance of the DeepSeek-MoE-16B models finetuned after Expert Trimming.

DeepSeek-MoE-16B
Method SpeedUp FLOPs Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 11.7T 30.8GB 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8
+SFT 44.6 75.3 79.0 40.3 44.6 80.3 70.4 71.7 63.3
+ E16/64

1.06× 11.7T 23.9GB 45.0 67.1 75.6 31.8 42.2 80.2 59.9 70.0 59.0
+SFT 44.4 74.0 78.6 38.5 45.8 79.6 65.7 70.1 62.1
+ L4/28

1.14× 10.6T 26.6GB 39.5 70.2 67.6 35.2 40.4 75.8 48.4 65.7 55.3
+SFT 42.1 78.9 75.2 40.8 43.4 77.6 71.1 69.5 62.3
+ B4/28

1.16× 10.1T 26.4GB 40.3 71.3 69.0 36.2 37.8 75.8 51.6 68.0 56.3
+SFT 43.2 78.2 75.0 40.4 43.8 76.8 74.0 70.2 62.7

9 CONCLUSION

In this paper, we conducted a holistic study of MoE compression techniques, facilitating a systematic
understanding of the efficiency issue of MoE and identifying the new design space to improve the
performance further. Based on this study, we propose a comprehensive recipe that integrates Expert
Slimming and Expert Trimming to further enhance efficiency. Our proposed methods and insights
not only address current challenges but also set the stage for future advancements in the field of MoE.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Yue Bai, Huan Wang, ZHIQIANG TAO, Kunpeng Li, and Yun Fu. Dual lottery ticket hypothesis. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=fOsN52jn25l.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019.

Tianlong Chen, Zhenyu Zhang, AJAY KUMAR JAISWAL, Shiwei Liu, and Zhangyang Wang.
Sparse moe as the new dropout: Scaling dense and self-slimmable transformers. In The Eleventh
International Conference on Learning Representations, 2022.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks, 2020.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling laws for
routed language models. In International conference on machine learning, pp. 4057–4086. PMLR,
2022.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–5569.
PMLR, 2022.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed A Aly, Beidi Chen, and
Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative decoding, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
compression for generative pretrained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb
dataset of diverse text for language modeling, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

11

https://openreview.net/forum?id=fOsN52jn25l
https://openreview.net/forum?id=fOsN52jn25l
https://zenodo.org/records/10256836

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A Smith, and Luke Zettlemoyer. Demix layers:
Disentangling domains for modular language modeling. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 5557–5576, 2022.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Shwai He, Liang Ding, Daize Dong, Boan Liu, Fuqiang Yu, and Dacheng Tao. PAD-net: An efficient
framework for dynamic networks. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 14354–14366, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.803. URL https://aclanthology.org/
2023.acl-long.803.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference, 2017.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for
the magnitude-based pruning. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=H6ATjJ0TKdf.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265–6274. PMLR, 2021.

Guangyan Li, Yongqiang Tang, and Wensheng Zhang. Lorap: Transformer sub-layers deserve
differentiated structured compression for large language models, 2024a.

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
Chen. Merge, then compress: Demystify efficient SMoe with hints from its routing policy.
In The Twelfth International Conference on Learning Representations, 2024b. URL https:
//openreview.net/forum?id=eFWG9Cy3WK.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization
for deep neural network acceleration: A survey, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration. In MLSys, 2024.

12

https://aclanthology.org/2023.acl-long.803
https://aclanthology.org/2023.acl-long.803
https://openreview.net/forum?id=H6ATjJ0TKdf
https://openreview.net/forum?id=eFWG9Cy3WK
https://openreview.net/forum?id=eFWG9Cy3WK

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
language models, 2024.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,
2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018.

Alexandre Muzio, Alex Sun, and Churan He. Seer-moe: Sparse expert efficiency through regulariza-
tion for mixture-of-experts, 2024.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
Tijmen Blankevoort. A white paper on neural network quantization, 2021.

OpenAI. Gpt-4 technical report, 2024.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation, 2021.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
models, 2024.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference, 2024.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
Advances in Neural Information Processing Systems, 34:17555–17566, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan, Zhenfang Chen, and Chuang Gan. Mod-
uleformer: Learning modular large language models from uncurated data. arXiv preprint
arXiv:2306.04640, 2023.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. Powerinfer: Fast large language model serving
with a consumer-grade gpu, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
2024a.

Qwen Team. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters",
February 2024b. URL https://qwenlm.github.io/blog/qwen-moe/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. 2019.
In the Proceedings of ICLR.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: An early effort on open mixture-of-experts language models. arXiv preprint
arXiv:2402.01739, 2024a.

Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Mahesh Marina. Moe-infinity: Activation-aware expert
offloading for efficient moe serving, 2024b.

Dianhai Yu, Liang Shen, Hongxiang Hao, Weibao Gong, Huachao Wu, Jiang Bian, Lirong Dai, and
Haoyi Xiong. Moesys: A distributed and efficient mixture-of-experts training and inference system
for internet services, 2024. URL https://arxiv.org/abs/2205.10034.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
Lima: Less is more for alignment, 2023.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression, 2017.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
Llama-moe: Building mixture-of-experts from llama with continual pre-training. arXiv preprint
arXiv:2406.16554, 2024. URL https://arxiv.org/abs/2406.16554.

14

https://github.com/tatsu-lab/stanford_alpaca
https://qwenlm.github.io/blog/qwen-moe/
https://arxiv.org/abs/2205.10034
https://arxiv.org/abs/2406.16554

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

A.1 MODELS AND DATASETS

Models. For our experiments, we employed Mixtral-8×7B Jiang et al. (2024) and DeepSeek-MoE-
16B Dai et al. (2024). Mixtral-8×7B utilizes 8 experts for MoE layers and activates the top two for
each input token. In contrast, DeepSeek-MoE-16B employs an dense FFN in the first block and
utilizes two shared experts with additional 64 experts within MoE layers in other blocks.

Datasets. For compression experiments, we used the C4 dataset Raffel et al. (2019), with 128
samples and an input sequence length of 2,048, following the setup in Sun et al. (2023); Lu et al.
(2024); Lin et al. (2024); Frantar et al. (2022). To evaluate model performance, we report normalized
zero-shot accuracy on the LM-harness benchmark, which includes multiple tasks: ARC-C Clark et al.
(2018), BoolQ Clark et al. (2019), HellaSwag Zellers et al. (2019), MMLU Hendrycks et al. (2021),
OBQA Mihaylov et al. (2018), PIQA Bisk et al. (2019), RTE Wang et al. (2019), and WinoGrande
ai2 (2019). The evaluation code is based on EleutherAI LM Harness Gao et al. (2023).

A.2 IMPLEMENTATION DETAILS OF EXPERT SLIMMING

Both Expert Slimming methods (i.e., pruning and quantization) require calibration data to estimate
input statistics. To control this variable, we use 128 samples from the C4 dataset Raffel et al. (2019)
as the calibration dataset for pruning. For quantization, we follow the default settings of GPTQ 1

and AWQ 2, using 128 random samples from Alpaca Taori et al. (2023) and Pile Gao et al. (2020),
respectively. We use the default group size 128 for Mixtral-8×7B and 64 for DeepSeek-MoE-16B.

A.3 IMPLEMENTATION DETAILS OF EXPERT DROP

The Expert Drop compresses MoE by preserving only important experts {Ei}i∈T ′ while removing
others, where T ′ is determined by the importance scores {S(Ei)}i∈T . Following Muzio et al. Muzio
et al. (2024), we measure the importance scores through the averaged routing scores of a batched
data X , i.e., {S(Ei)} = 1

|X |
∑

x∈X Gi(x), and consider two dropping strategies for Expert Drop:
layer-wise dropping and global dropping.

Layer-Wise dropping removes the same number of experts for each layer. Given the total number of
experts n = |T | and the preserved number of experts n′ = |T ′| < n in layer l, the preserved expert
set T ′(l) is obtained by:

T ′(l) = {E(l)
t }, where S(E

(l)
t) ∈ TopK({S(E(l)

i)}ni=1, n
′). (10)

Global dropping constrains the total number of preserved experts for the entire model. Given the
total number of layers L in the model, the preserved expert set T ′(l) for layer l is obtained by:

T ′(l) = {E(l)
t }, where S(E

(l)
t) ∈ TopK

(m⋃
j=1

{S(E(j)
i)}ni=1, n

′L
)
. (11)

For the integration of Expert Slimming and Expert Trimming, we choose the global dropping as the
strategy of Expert Drop, which shows competitive performance compared to the layer dropping for
Mixtral-8×7B under low dropping ratios, as well as consistent better performance for DeepSeek-
MoE-16B in Figure 13.

1https://github.com/AutoGPTQ/AutoGPTQ
2https://github.com/casper-hansen/AutoAWQ

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B EXPERT SLIMMING

Pruning: Comparable Performance with Deployment Challenges In Table 5, we evaluate
representative pruning algorithms (i.e., Wanda Sun et al. (2023), SparseGPT Frantar & Alistarh
(2023)) on Mixtral-8×7B and DeepSeek-MoE-16B. Since DeepSeek-MoE-16B utilizes both shared
experts and normal experts, we conduct an ablation study on whether to prune shared experts, as
discussed in Appendix E. We find that unstructured pruning preserves more than 95% of performance.
However, it is not compatible with existing hardware. Conversely, the hardware-friendly semi-
structured pruning (i.e., 4:8 and 2:4 patterns) undergoes a significant performance drop. Nevertheless,
according to Lu et al. Lu et al. (2024), semi-structured sparsity is ineffective in speeding up MoE
models.
Table 5: Performance of Pruning on MoE. We consider two mainstream pruning methods (i.e.,
Wanda Sun et al. (2023) and SparseGPT Frantar & Alistarh (2023)) under 50% unstructured sparsity
and 2:4 semi-structured sparsity.

Mixtral-8×7B
Method Sparsity ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 0% 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5

Wanda 56.1 85.8 81.7 64.3 46.4 82.2 65.0 76.0 69.7
SparseGPT 50% 56.4 85.7 81.5 64.6 45.0 82.4 66.8 75.8 69.8
Wanda 51.4 79.4 77.8 60.3 44.0 80.7 65.3 74.1 66.6
SparseGPT 2:4 49.2 81.0 77.6 59.2 44.0 80.6 63.9 74.8 66.3

DeepSeek-MoE-16B
Method Sparsity ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 0% 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8

Wanda 43.6 74.3 72.6 31.1 43.0 79.5 58.1 69.4 59.0
SparseGPT 50% 43.9 73.5 74.0 33.8 41.4 79.0 61.0 68.3 59.4
Wanda 38.2 66.1 67.5 27.6 39.4 77.0 53.8 66.7 54.5
SparseGPT 2:4 43.1 68.9 71.6 27.6 41.6 78.3 57.4 66.6 56.9

Quantization: Better Performance and Greater Efficiency In Table 6, we evaluate the impact
of 4-bit quantization on MoE. Quantization offers two major benefits: it maintains the comparable
performance of the original models and significantly reduces memory costs. Specifically, the
quantized models achieve over 98% of the original performance while using less than 30% of
the memory. Moreover, when quantized with AWQ Lin et al. (2024), Mixtral-8×7B and DeepSeek-
MoE-16B achieve impressive speedups of ×5.08 and ×3.16, respectively. This demonstrates that
4-bit quantization is an effective technique for deploying MoE models in resource-constrained
environments.
Table 6: Performance of Quantization on MoE. We utilize GPTQ Frantar et al. (2022) and AWQ
Lin et al. (2024) as the quantization methods for 4-bit compression.

Mixtral-8×7B
Method Bits Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 16 87.7GB 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5
GPTQ 59.0 84.4 83.4 67.1 45.2 83.1 70.1 75.2 70.9
AWQ 4 24.4GB 58.4 84.2 83.3 66.6 45.8 83.0 69.0 76.3 70.8

DeepSeek-MoE-16B
Method Bits Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 16 30.8GB 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8
GPTQ 46.3 71.8 76.8 36.4 43.4 80.0 63.9 70.2 61.1
AWQ 4 9.8GB 46.8 71.2 76.6 36.4 43.6 80.1 62.1 70.1 60.9

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C ANALYSIS ON THE DROPPING PATTERNS OF EXPERT DROP

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Scores

0

1

2

3

4

De
ns

ity

Mixtral-8×7B

Drop Percent
25%
50%
75%
100%

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Scores

0

1

2

3

4

5

6

7

De
ns

ity

DeepSeek-MoE-16B

Drop Percent
25%
50%
75%
100%

Score Distribution

Figure 11: Distribution of Normalized Impor-
tance Scores S for Expert Drop. We highlight
the density of scores under different drop ratios
with different colors.

Score Distribution Directs Expert Drop.
The distribution of importance scores is infor-
mative to determine the proportion of dropped
experts. In Figure 11, we visualize the
score distribution of Expert Drop for Mixtral-
8×7B and DeepSeek-MoE-16B, respectively.
DeepSeek-MoE-16B, which allocates more ex-
perts, shows a left-skewed distribution where
most experts have low scores. In contrast,
Mixtral-8×7B demonstrates a right-skewed
distribution, with only a few experts being
deemed unimportant. This distribution differ-
ence results in different resistance capability
against Expert Drop, where DeepSeek-MoE-
16B can drop much more experts than Mixtral-
8×7B while maintaining competitive perfor-
mance, as demonstrated in Table 3 and Figure
13.

1 2 3 4 5 6 7 8
Reserved Experts

0

5

10

15

20

25

30

La
ye

r I
nd

ex
Mixtral-8×7B

8 16 24 32 40 48 56 64
Reserved Experts

1

6

11

16

21

26

DeepSeek-MoE-16B

12.5%

25.0%

37.5%

50.0%

62.5%

75.0%

87.5%

100.0%

Dr
op

pe
d

Ex
pe

rt
Pe

rc
en

t (
%

)

Figure 12: Distribution of Dropped Experts for
Expert Drop. We visualize of the dropped experts
under different drop ratios, where the dropped ex-
perts are colored from yellow to blue as the drop
ratio increases.

Global Expert Drop Removes Experts Fine-
Grainedly. We employed two different strate-
gies for Expert Drop, namely layer-wise and
global. Layer-wise dropping treats each layer
equally by dropping the same number of experts,
while global dropping results in different pro-
portions of remaining experts across layers. We
visualize the distribution of remaining experts
after global dropping in Figure 12. We find
the global dropping shows a more fine-grained
pattern on dropping experts, where the bottom
layers are more vulnerable under lower dropping
ratios (yellow part).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D ABLATION STUDY ON COMPRESSION ORDERS

In Section 7, we discussed the combination of Expert Trimming and Expert Slimming. Here we
ablate on the orders of compression when combining these two techniques. Results in Table 7 show
that the order of Expert Trimming and Expert Slimming doesn’t have a significant influence on the
performance, where applying Expert Slimming then Expert Trimming (“S+T”) performs slightly
better for Mixtral-8×7B (e.g. +0.5, +0.4 and +0.1 for Expert Drop, Layer Drop and Block Drop,
respectively). To this end, we choose “S+T” as the final implementation in our experiments.

Table 7: Ablation results on different orders of Expert Slimming and Expert Trimming. “S+T”
denotes first applying Expert Slimming then Expert Trimming, and “T+S” denotes the reversed order.

Mixtral-8×7B

Method ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5

+ E2/8, AWQ (S+T) 50.7 79.1 78.9 52.4 44.2 81.2 55.6 75.9 64.8
+ E2/8, AWQ (T+S) 50.8 79.9 78.7 49.2 44.4 80.9 55.2 75.4 64.3
+ L8/32, AWQ (S+T) 46.2 84.2 74.2 66.2 39.0 75.5 69.3 74.2 66.1
+ L8/32, AWQ (T+S) 46.8 84.4 74.0 65.3 39.8 75.0 66.8 73.2 65.7
+ B5/32, AWQ (S+T) 50.6 85.1 77.5 66.9 41.4 76.1 71.8 74.5 68.0
+ B5/32, AWQ (T+S) 50.3 84.7 77.4 65.8 42.0 78.8 70.4 74.0 67.9

DeepSeek-MoE-16B

Method ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8

+ E16/64, AWQ (S+T) 44.0 66.0 74.5 27.9 42.6 78.5 56.3 67.3 57.1
+ E16/64, AWQ (T+S) 44.7 64.1 74.0 29.0 42.6 79.9 54.2 68.4 57.1
+ L4/28, AWQ (S+T) 42.1 72.0 69.2 33.7 39.8 75.1 47.7 66.5 55.8
+ L4/28, AWQ (T+S) 42.4 71.7 69.1 33.4 40.1 74.8 47.6 66.2 55.7
+ B4/28, AWQ (S+T) 40.1 70.2 68.6 36.1 38.4 76.2 51.6 66.4 56.0
+ B4/28, AWQ (T+S) 41.6 69.4 69.1 35.8 38.6 76.2 50.9 67.0 56.1

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E ABLATION STUDY ON SHARED EXPERTS IN DEEPSEEK-MOE-16B

While most MoE models follow Equation 2 to implement the experts, models like DeepSeek-MoE-
16B adopt a residual Rajbhandari et al. (2022) form of experts, which brings a special scenario to
discuss. In the residual MoE, an extra set of m shared experts

{
Ē1, Ē2, . . . , Ēm

}
are always selected

by the router G and activated for all inputs. Given an input x, the output can be represented as a
degenerated form of Equation 2, where the scores of shared experts are fixed to 1:

y =
∑

i∈K
G(x)i ·Ei(x) +

∑m

j=1
Ēj(x). (12)

This special form of expert routing may bring a difference in the redundancy distribution of MoE.
Here we discuss the influence of shared experts through pruning and present the results in Table 8. We
find that pruning without the shared experts will boost the performance at a considerable scale, i.e.,
+3.6% and +1.5% of the averaged accuracy for unstructured pruning with Wanda and SparseGPT,
respectively. This finding reveals a different pattern of the inner redundancy in that the shared experts
are less compressible compared to the others in residual MoE models, which may inform future work.

Table 8: Ablation Study of Pruning Shared Experts on DeepSeek-MoE-16B. We consider two
scenarios, i.e., pruning both shared experts and normal experts (“w/Pruning Shared Experts”) and
pruning normal experts only (“w/o Pruning Shared Experts”). We use two mainstream pruning
methods (i.e., Wanda Sun et al. (2023) and SparseGPT Frantar & Alistarh (2023)) under both
unstructured sparsity (50%) and semi-structured sparsity (2:4).

DeepSeek-MoE-16B
Method Sparsity ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 0% 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8

w/ Pruning Shared Experts

Wanda 43.6 74.3 72.6 31.1 43.0 79.5 58.1 69.4 59.0
SparseGPT 50% 43.9 73.5 74.0 33.8 41.4 79.0 61.0 68.3 59.4
Wanda 38.2 66.1 67.5 27.6 39.4 77.0 53.8 66.7 54.5
SparseGPT 2:4 43.1 68.9 71.6 27.6 41.6 78.3 57.4 66.6 56.9

w/o Pruning Shared Experts

Wanda 44.0 76.3 73.5 36.2 41.0 79.3 59.9 70.2 60.0
SparseGPT 50% 45.0 75.5 74.4 36.3 41.0 79.4 64.3 69.3 60.7
Wanda 40.1 75.7 69.9 33.5 40.0 77.9 58.8 68.6 58.1
SparseGPT 2:4 40.7 75.7 69.9 33.3 39.0 77.7 61.4 69.4 58.4

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F FULL EXPERIMENTAL RESULTS

We provide the full results of Expert Trimming, including Expert Drop, Layer Drop and Block Drop,
in Figure 13, 14, and 15, respectively.

0 2 4 6 8
Dropped Experts

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

(%
)

ARC-C
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

50

55

60

65

70

75

80

85

BoolQ
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

20

30

40

50

60

70

80

HellaSwag
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

20

30

40

50

60

70

MMLU
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

25

30

35

40

45

OBQA
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

50

55

60

65

70

75

80

85

PIQA
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

45

50

55

60

65

70

RTE
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

50

55

60

65

70

75

80
WinoGrande

Layer-wise
Global
Random Guess

Mixtral-8×7B

0 16 32 48 64
Dropped Experts

20

25

30

35

40

45

50

Ac
cu

ra
cy

(%
)

ARC-C
Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

40

45

50

55

60

65

70

75
BoolQ

Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

20

30

40

50

60

70

80

HellaSwag
Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

22

24

26

28

30

32

34

36

38

MMLU
Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

25

30

35

40

45

OBQA
Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

45

50

55

60

65

70

75

80

PIQA
Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0
RTE

Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

50

55

60

65

70

WinoGrande
Layer-wise
Global
Random Guess

DeepSeek-MoE-16B

Figure 13: Full Results for Expert Drop. We consider two strategies: layer-wise (dotted lines) and
global (solid lines).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Dropped Lyers

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

(%
)

ARC-C
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

40

50

60

70

80

90
BoolQ

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

20

30

40

50

60

70

80

HellaSwag
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

20

30

40

50

60

70

MMLU
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

25

30

35

40

45

OBQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

50

55

60

65

70

75

80

85

PIQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

45

50

55

60

65

70

RTE
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

50

55

60

65

70

75

WinoGrande
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

Figure 14: Full Results for Layer Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-
16B (solid lines), along with the baseline and random guess performances (dotted lines).

0 5 10 15 20 25 30
Dropped Blocks

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

(%
)

ARC-C
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

40

50

60

70

80

90
BoolQ

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

20

30

40

50

60

70

80

HellaSwag
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

20

30

40

50

60

70

MMLU
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

25

30

35

40

45

OBQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

50

55

60

65

70

75

80

85

PIQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

45

50

55

60

65

70

RTE
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

45

50

55

60

65

70

75

80
WinoGrande

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

Figure 15: Full Results for Block Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-
16B (solid lines), along with the baseline and random guess performances (dotted lines).

21

	Introduction
	Related Work
	Preliminaries
	Mixture of Experts
	Overview of Previous Compression Methods

	A Holistic Study of MoE Compression Techiniques
	Overview
	Expert Trimming
	Expert Slimming

	Experiments on Expert Trimming
	Visualization Examples of Layer Drop and Block Drop
	Integration of Expert Trimming and Expert Slimming
	Post-Finetuning Recovers the Performance
	Conclusion
	Implementation Details
	Models and Datasets
	Implementation Details of Expert Slimming
	Implementation Details of Expert Drop

	Expert Slimming
	Analysis on the Dropping Patterns of Expert Drop
	Ablation Study on Compression Orders
	Ablation Study on Shared Experts in DeepSeek-MoE-16B
	Full Experimental Results

