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ABSTRACT

Scaling large language models has driven remarkable advancements across various
domains, yet the continual increase in model size presents significant challenges
for real-world deployment. The Mixture of Experts (MoE) architecture offers a
promising solution by dynamically selecting and activating only a subset of experts
during inference, thus substantially reducing computational costs while preserving
high performance. Despite these benefits, MoE introduces new inefficiencies, such
as excessive parameters and communication overhead. In this work, we present
a holistic study on compression techniques of Mixture of Experts to enhance
both efficiency and scalability. While recent efforts have focused on reducing the
number of experts, these approaches still suffer from considerable communication
and computational costs. To address this, we propose more aggressive strategies,
such as Layer Drop, which removes entire MoE layers, and Block Drop, which
eliminates transformer blocks. Surprisingly, these aggressive structure pruning
techniques not only preserve model performance but also substantially improve
efficiency. Additionally, beyond Expert Trimming, we also introduce Expert
Slimming, which compresses individual experts to further boost performance and
can be seamlessly integrated with Expert Trimming. Extensive experimental results
demonstrate the effectiveness of our proposed methods — Layer Drop and Block
Drop — along with the comprehensive recipe that integrates Expert Slimming and
Expert Trimming, achieving a 6.05× speedup with 77.1% reduced memory usage
while maintaining over 92% of performance on Mixtral-8×7B. Our code will be
made publicly available upon acceptance.

1 INTRODUCTION

While scaling large language models has shown exceptional performance across various domains
(Ramesh et al., 2021; OpenAI, 2024; Team, 2024a), the increasing model size poses significant
challenges in real-world deployments (Sun et al., 2023; Frantar et al., 2022) due to excessive
computational demands and associated costs. The Mixture of Experts (MoE) (Shazeer et al., 2017),
which selectively activates a subset of parameters during inference, offers a promising solution to
reduce these computational burdens. Additionally, integrating MoE with Large Language Models
(LLMs) has been shown to enhance performance further (Jiang et al., 2024; Dai et al., 2024).

Despite these advances, MoE models still suffer from significant redundancies that increase deploy-
ment costs. tandard MoE implementations replicate feed-forward layers across multiple experts,
resulting in models that are still heavily parameterized. For instance, Mixtral-8×7B (Jiang et al.,
2024) contains 47B parameters, but only 13B parameters are activated per token, leading to the
substantial GPU memory consumption and limited scalability. In addition, replicating experts often
introduces redundant experts. For example, He et al. (2023) observed that expert parameters could
be compressed through parameter sharing. Similarly, Lu et al. (2024) noted that not all experts are
essential, suggesting that some can be safely removed. These findings underscore the potential for
compressing MoE models to improve efficiency without sacrificing effectiveness.

In this paper, we first investigate the Expert Trimming based compression techniques that reduce
the number of experts to enhance the efficiency of MoE (Cheng et al., 2020; Liang et al., 2021).
The most prevalent approach for Expert Trimming is Expert Drop, which scores each expert and
drops the less important ones (Lu et al., 2024; Muzio et al., 2024). While Expert Drop reduces
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model size, it does not eliminate the costly computations within the MoE layer and the complex
communication among experts, leading to negligible improvements on the inference speed. To this
end, we propose aggressive Expert Trimming methods to enhance MoE efficiency. Specifically,
to mitigate communication and computation costs, we present Layer Drop that removes the entire
MoE layer. Additionally, given the computation-intensive nature of the attention mechanism within
transformer blocks, we further propose Block Drop, which removes the whole transformer blocks.
We use similarity-based metrics to demonstrate the feasibility of Layer Drop and Block Drop.
Surprisingly, these two coarse-grained methods outperform fine-grained Expert Drop by a large
margin in balancing performance and efficiency. Additionally, with small-scale post-finetuning, the
compressed models can be further optimized to achieve near-original performance.

Beyond removing experts, we also explore Expert Slimming, which focuses on compressing individual
experts. Techniques such as network pruning (Han et al., 2016; Zhu & Gupta, 2017) and quantization
(Jacob et al., 2017; Nagel et al., 2021) have proven effective for model compression, with quantization
being particularly well-suited for hardware acceleration. By integrating Expert Slimming with Expert
Trimming, we propose a unified framework for compressing MoE models that maximizes efficiency
gains while maintaining strong performance.

Our experimental results on two widely-used MoE models, Mixtral-8×7B (Jiang et al., 2024) and
DeepSeek-MoE-16B (Dai et al., 2024), demonstrate the effectiveness of our proposed methods.
For Expert Trimming, Expert Drop significantly reduces the memory usage but it provides only
marginal improvements in inference speed. In contrast, Layer Drop and Block Drop significantly
accelerate inference and reduce memory usage while maintaining comparable performance to the
original models. The combined strategy of Expert Trimming and Expert Slimming results in a 6.05×
speedup with only 22.8% memory usage (20.0GB) while maintaining over 92% of the original
performance on Mixtral-8×7B. The findings offer valuable insights for enhancing the efficiency
of MoE models. Additionally, post-finetuning allows compressed models to recover most of their
original performance, resulting in a minimal 0.6% performance gap compared to the uncompressed
DeepSeek-MoE-16Bmodel.

In summary, by conducting a holistic study on compressing Mixture of Experts, our key contributions
are as follows:

• We extend Expert Trimming to a higher architectural level by introducing Layer Drop and
Block Drop, significantly improving the efficiency while maintaining the model perfor-
mance.

• We introduce Expert Slimming, a method that compresses individual experts. By integrat-
ing Expert Slimming with Expert Trimming, we achieve further efficiency gains without
compromising performance.

• Extensive experimental results demonstrate the effectiveness of our proposed methods,
achieving a 6.05× speedup and reducing memory usage to just 20.0 GB, all while maintain-
ing over 92% of performance on Mixtral-8×7B.

2 RELATED WORK

Mixture of Experts The Mixture of Experts (MoE) is a kind of neural network architecture with an
extended set of parameters (referred to as “experts”) controlled by a router, which is first introduced
in the context of conditional computation (Jacobs et al., 1991; Jordan & Jacobs, 1994). The potential
of sparse activation in MoE is subsequently exploited by Shazeer et al. (2017) for efficient training
and inference on pretrained models with special designs, opening the door for MoE in various vision
(Riquelme et al., 2021) and language (Lepikhin et al., 2020; Du et al., 2022; Fedus et al., 2022)
scenarios. Attributed to its exceptional efficiency, MoE has been adopted as a foundational framework
in the designs of large language models (LLMs) (Jiang et al., 2024; Dai et al., 2024; Xue et al., 2024a;
Zhu et al., 2024; Team, 2024b), achieving superior scaling laws at low computational costs (Clark
et al., 2022). Further investigations emerge in developing improved expert structures (Gururangan
et al., 2022; Rajbhandari et al., 2022; Dai et al., 2024), router designs (Lewis et al., 2021; Roller et al.,
2021; Zhou et al., 2022), and training strategies (Shen et al., 2023; Chen et al., 2022), propelling the
continuous evolution on the representation capability and computational efficiency of MoE models.
Despite the success, MoE also suffers from efficiency issues. For instance, MoE replicates the experts,
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significantly increasing the parameter budget (He et al., 2023). On the other hand, adopting multiple
experts to process input tokens introduces communication costs and enhances latency (Song et al.,
2023; Xue et al., 2024b).

Compression Methods The escalating size of large language models presents considerable hurdles
for their practical implementation. Consequently, a range of efficient methods has emerged to
address the implementation issues. Among them, model quantization (Frantar et al., 2022; Lin et al.,
2024) and network pruning (Sun et al., 2023; Frantar & Alistarh, 2023) are widely utilized. Model
quantization reduces the precision of neural network weights to lower bits (Jacob et al., 2017), while
network pruning (Han et al., 2016) removes redundant parameters or architectures. Although these
methods have shown promising results on dense models, they lack consideration for the inductive
bias inherent in MoE. To bridge this gap, Expert Drop, as proposed in studies like (Muzio et al.,
2024; Lu et al., 2024), addresses the unique nature of MoE by removing unimportant experts. By
eliminating redundant experts, the MoE architecture becomes more compact and can be deployed at
a lower cost. However, while Expert Drop leads to a more compact architecture, it may also lead to
non-negligible performance drop and rely on post-training procedures for recovery.

3 PRELIMINARIES

3.1 MIXTURE OF EXPERTS

A Mixture of Experts (MoE) layer consists of a collection of n experts, E1,E2, . . . ,En, each
associated with weights W1,W2, . . . ,Wn, and a router G that dynamically selects the most relevant
experts for a given input x. The router computes selection scores, G(x) ∈ Rn, for all experts and
selects the top k experts, resulting in a sparse activation pattern. The input x is processed by the
selected experts, and their outputs are combined into a weighted sum based on the router’s scores.
This process is mathematically expressed as:

K = TopK(Softmax(G(x)), k), (1)

y =
∑

i∈K
G(x)i ·Ei(x|Wi), (2)

where K denotes the indices of selected experts, G(x)i represents the selection score for the i-th
expert, and Ei(x) is the output from the i-th expert. In transformer models, the MoE layer is often
used as a replacement for the feed-forward network (FFN). In this context, each expert functions as
an independent FFN module, enhancing the model’s capacity without a proportional increase in the
computational cost (Vaswani et al., 2017).

Challenges While MoE models have demonstrated strong performance across various tasks (Jiang
et al., 2024; Dai et al., 2024), they also encounter significant deployment challenges. On one hand,
MoE models replicate multiple expert networks, inflating model size and memory usage. For instance,
Mixtral-8×7B has a total of 47B parameters, requiring 87.7GB of memory for deployment, though
only 13B parameters are activated per token. On the other hand, the communication required to
manage multiple expert networks increases latency and slows down inference speed, especially in
distributed environments (Song et al., 2023; Yu et al., 2024).

3.2 OVERVIEW OF PREVIOUS COMPRESSION METHODS

To address the efficiency challenges, we first review several mainstream and state-of-the-art compres-
sion techniques for MoE models.

Pruning: Pruning reduces the number of active parameters by selectively disabling parts of the
model’s weights. In an MoE layer with n experts Eii = 1n and corresponding weights Wii = 1n,
pruning introduces binary masks Mi

n
i=1 to deactivate certain weights:

Ŵi = Mi ⊙Wi. (3)

Pruning can be unstructured (Lee et al., 2021; Bai et al., 2022), semi-structured, or structured.
Unstructured sparsity tends to yield the best performance, semi-structured sparsity strikes a balance
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MoE Normalization

MoE Normalization
Multi-Head Attention

MoE Normalization

Multi-Head Attention

Mixture of Experts

MHA Normalization

(a) Transformer Block (b) Mixture of Experts

MHA NormalizationGranularity Scales Up

QuantizationPruning

Expert Drop Layer Drop Block Drop

(d) Expert Trimming

(c) Expert Slimming

Figure 1: The Unified View of MoE Compression. The view integrates two complementary
perspectives: Expert Slimming and Expert Trimming. Expert Slimming compresses individual
experts, while Expert Trimming directly drops structured modules.

between efficiency and performance, and structured sparsity, while hardware-friendly, often results in
lower performance.

Quantization: Unlike pruning, which involves masking out unimportant parameters, quantization
reduces memory usage by converting model weights to lower-bit representations. For MoE layers,
quantization is applied as follows:

Ŵi = Quant(Wi), (4)
where “Quant” denotes the quantization function. Quantization decreases memory consumption
without reducing FLOPs or the total number of parameters, making it particularly advantageous for
hardware acceleration.

Expert Drop: Different from fine-grained pruning and quantization, Expert Drop entails the removal
of expert networks, based on the observation that not all experts are equally important (Lu et al.,
2024; Muzio et al., 2024). Given expert-wise importance scores S (e.g., the routing scores, S(Ei) =
G(x)i), Expert Drop retains only the experts with the highest n′ scores:

T ′ = TopK(S({Ei}ni=1), n
′), (5)

E ← {Ei}i∈T ′ , G← Gi∈T ′ . (6)
Here, T ′ denotes the subset of the original expert indices T = {1, 2, . . . , n}. Expert Drop reduces
FLOPs conditionally: when T ′ contains more than or equal to k indices, MoE still utilizes the top
k experts for each input; otherwise, it uses all remaining experts. While this approach reduces
communication between experts, the resulting speedup is usually insignificant when maintaining
acceptable performance.

Other Compression Techniques: Other methods, such as low-rank decomposition (Li et al., 2024b;a),
aim to compress model weights into smaller matrices, further reducing memory and computational
costs. In this work, we primarily focus on the widely-used methods (pruning, quantization, and
Expert Drop), leaving a more detailed exploration of these additional methods for future research.

4 A HOLISTIC STUDY OF MOE COMPRESSION TECHINIQUES

In this section, we propose a general framework that unifies various compression methods for MoE.
This framework provides a comprehensive understanding of MoE model efficiency issues and helps
identify new design spaces for further performance improvements.

4.1 OVERVIEW

Existing MoE compression methods primarily address two types of inefficiencies: structural re-
dundancies in the overall architecture and internal redundancies within individual experts. To
address both issues, we categorize these methods into two complementary perspectives: Expert
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Table 1: Summary of Compression Methods. “✓” means effective and “✗” means ineffective, while
“❍” represents conditionally effective, depending on specific settings and environments.

Method Formulation Parameter Memory FLOPs Speedup

Expert T ← T ′ ✓ ✓ ❍ ❍
LayerExpert Trimming
Block T ← ∅ ✓ ✓ ✓ ✓

Pruning M ⊙W ✓ ❍ ✓ ❍Expert Slimming Quantization Quant(W ) ✗ ✓ ✗ ✓

Trimming focuses on removing structured components (e.g., experts, layers, or blocks), and Expert
Slimming that compresses individual experts through techniques like pruning or quantization. An
overview of these perspectives is illustrated in Figure 1.

Expert Trimming deals with compressing structured modules by selecting and retaining only a subset
of the experts, denoted as T ′. This is represented by the transformation T ← T ′. Methods like
Expert Drop, which selectively drops unimportant experts, are examples of this approach. On the
other hand, the compression of individual experts (Expert Slimming) focuses on the transformation
and reduction of expert weights, denoted as W . We utilize a transformation function f(W ) to
represent this process. The transformation function f(W ) can be understood as a general mapping
that applies various compression techniques to the weights of the model. For example, in pruning,
f(W ) could be a function that sets a subset of the weights to zeros. In quantization, f(W ) might
reduce the precision of the weights from 32-bit floats to 8-bit integers. By integrating these two
perspectives, we can derive a general form for efficient MoE models. The compression within and
across experts can be expressed as follows:

y =
∑

i∈T ′
Gi ·Ei(x|f(Wi)). (7)

In the following sections, we will elaborate on Expert Trimming and Expert Slimming, respectively.

4.2 EXPERT TRIMMING

The core operation of Expert Trimming involves updating the set of remaining experts denoted as
T ← T ′, where T ′ is a subset of the original expert indices T . Specifically, Expert Drop updates the
experts and their corresponding routing weights as follows: E ← {Ei}i∈T ′ and G← Gi∈T ′ .

However, Expert Drop carries the risk of collapsing feature transformation. The absence of certain
experts can lead to incorrect selections for given inputs, thereby degrading model performance
(Chen et al., 2022). Additionally, partially reducing experts can disrupt routing patterns, negatively
impacting the model’s overall efficiency and effectiveness. Despite its benefits, Expert Drop still
retains the costly computation within each expert and the complex communication between experts.
These limitations highlight the need for further optimization of Expert Trimming to promote the
efficiency. By systematically analyzing the redundancies and inefficiencies inherent in MoE models,
we propose extending beyond expert-level optimizations to identify new design spaces for efficiency
improvements.

MoE Normalization

Mixture of Experts

Figure 2: Illustration of Similarity Mea-
surements in Layer Drop. Features for
calculating S(M) and S(NM) are colored
with red and blue, respectively.

We propose two novel techniques: Layer Drop and
Block Drop. Layer Drop focuses on removing entire
MoE layers, which significantly reduces both computa-
tion and communication overhead. Block Drop extends
this concept by eliminating entire blocks, including atten-
tion layers and MoE layers, within transformer models.
These advanced techniques aim to streamline the model
architecture, improve performance, and enhance overall
efficiency. -

Layer Drop Inspired by Raposo et al. (2024); El-
houshi et al. (2024), we consider a special scenario of Ex-
pert Drop where all experts are dropped (T ← T ′ = ∅),
effectively removing entire MoE layers. We refer to this
approach as Layer Drop. To perform Layer Drop, we use a similarity-based metric where high
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similarity indicates high redundancy in transformation. One straightforward metric is the cosine
similarity between the input x and the output y = MoE(x):

S(M) =
x · y

||x||2 ||y||2
, where y = MoE(x). (8)

However, this metric alone does not adequately capture the impact of the MoE layer within the context
of a transformer block, which includes a layer normalization module ("Norm") (Ba et al., 2016) and
residual connections (He et al., 2015). To address this, we propose concurrently removing both the
MoE and Norm layers. This approach ensures that the similarity metric more accurately reflects the
combined functionality of these layers, allowing for a more precise identification of redundancy and
a streamlined model architecture, as illustrated in Figure 2. By considering the similarity between the
raw residual input and the aggregated output, we can better evaluate the necessity of the MoE layer in
the overall architecture:

S(NM) =
x′ · y′

||x′||2 ||y′||2
, where y′ = x′ + MoE(Norm(x′)). (9)

Block Drop Within a transformer block, Layer Drop removes the MoE layers but retains the
computation-costly attention layers (Ribar et al., 2024; Zhang et al., 2023). To address this issue,
we further utilize the same similarity-based metrics to investigate whether the attention layer can
be dropped without a significant performance drop. If feasible, this allows us to drop the entire
block within MoE models, thus enhancing efficiency. We introduce Block Drop as an extension of
Layer Drop, which also removes the attention layers. Specifically, for the i-th block, we assess its
importance score by evaluating the similarity between its inputs xl and outputs yl. Compared to
Expert Drop, both Layer Drop and Block Drop focus on structures beyond expert level, with the
potential to further enhance the efficiency of MoE models.

4.3 EXPERT SLIMMING

Given that employing multiple experts in MoE significantly escalates parameters and inference costs,
Expert Slimming, stemming from single-model compression techniques, targets the compression
of individual expert weights W exclusively. We denote any efficient transformation function as
f(·), which encompasses pruning M ⊙W and quantization Quant(W ). Through the application
of such functions, we reduce the redundancy within each expert and create several light-weighted
slim experts, thus improving their intrinsic efficiency. However, it is important to note that Expert
Slimming primarily focuses on compressing individual experts without addressing the redundancy
across multiple experts. For maximum efficiency gains, Expert Slimmingand Expert Trimming can
be integrated to compress both individual experts and structured components. We summarize the
efficiency contributions of all the discussed Expert Trimming and Expert Slimming methods in Table
1, highlighting the unique advantages of each approach.

5 EXPERIMENTS ON EXPERT TRIMMING

n this section, we evaluate the effectiveness of Expert Trimmingtechniques, starting with Expert Drop,
and comparing it with our proposed methods, Layer Dropand Block Drop. Implementation details
are provided in Appendix A.

Expert Drop: Performance Degradation with Limited Efficiency Gains While experts are
specific structures in MoE, not all experts hold equal significance. Figure 11 visualizes the distribution
of expert-wise importance scores, highlighting this variability. To systematically drop experts at
varying proportions, we conduct experiments using both layer-wise and global dropping approaches
(see Appendix A.3). Given the importance of shared experts (Appendix E), we only dropped normal
experts for DeepSeek-MoE-16B. Under both settings, Expert Drop causes consistent performance
degradation. For example, dropping 25% of experts in Mixtral-8×7B results in a 23% performance
drop on the MMLU task. The efficiency improvement from Expert Drop is also marginal. For instance,
dropping 12.5% of experts results in less than a 1% speedup, despite significant performance losses.
More experimental results are available in Appendix F.
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Figure 3: Evaluation of Expert Drop. We consider two strategies: layer-wise (dotted lines) and
global (solid lines).
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Figure 4: Layer-Wise Similarity. We
consider two scenarios, i.e., for “MoE”
and “Norm + MoE”.

Layer Drop: Comparable Performance with Greater
Efficiency To verify the feasibility of Layer Drop, we vi-
sualize feature similarity across different modules in Figure
4. This visualization shows a high level of similarity for fea-
tures across the the MoE normalization module (Norm) and
the MoE layer. In contrast, the low similarity for features
across the MoE layer indicates the infeasibility of removing
only MoE layers. Results from Figure 5 show that Layer
Drop preserves performance within a wide range of com-
pression ratio, e.g. 1% performance drop on MMLU when
dropping 8 layers for Mixtral-8×7B, revealing significant
redundancy in the MoE layers.
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Figure 5: Evaluation of Layer Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-
16B (solid lines), along with the baseline and random guess performances (dotted lines).
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Figure 6: Evaluation of Block Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-
16B (solid lines), along with the baseline and random guess performances (dotted lines).

Block Drop: Further Optimizing Efficiency by Pruning Entire Transformer Blocks While
Layer Drop maintains the performance of the original models, it still preserves the computation-costly
attention layers. To address this, Block Dropextends Layer Dropby removing whole transformer
blocks, including both MoE and attention layers, further reducing computational and memory
costs. Figure 7 visualizes block-wise similarity, where both Mixtral-8×7B and DeepSeek-MoE-
16B demonstrate high similarity between specific blocks. Based on this observation, we conduct the
empirical study by varying the number of dropped blocks.

Surprisingly, as shown in Figure 6, the Mixtral-8×7B maintains over 90% of the original performance
even after removing 5 blocks (over 7 billion parameters). Similar observations are also found in
DeepSeek-MoE-16B, where 4 blocks can be removed when maintaining 90% performance. Since
Block Drop removes computationally expensive attention layers, it outperforms Layer Drop by a
large margin in terms of both memory and inference cost, as illustrated in Figure 8.

On the other hand, Block Drop prunes attention layers along with their corresponding KV-Cache Pope
et al. (2022). For instance, an input sequence with a batch size of 128 and a sequence length of 2048
results in 32GB of KV-Cache, which can be reduced by 5GB using Block Drop. Overall, by targeting
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Figure 7: Normalized Block-Wise Similarity.
We measure the cosine similarity among hidden
features between blocks.
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Figure 8: Speedup Scaling Curves of Expert
Trimming Methods. where we measure the
averaged decoding speed during generation.

higher-level structures, Layer Drop and Block Drop achieve substantial efficiency improvements
while maintaining acceptable performance levels.

Table 2: Comparison of Layer Drop and Block
Drop on dense and MoE models. “-Ln/m”,
“-Bn/m” represents dropping n out of m corre-
sponding modules with Layer Drop and Block
Drop, respectively.

Mistral-7B (Dense)
Method ARC-C HellaSwag MMLU OBQA Average

Baseline 61.5 83.7 62.5 43.8 62.9

+ L4/32 53.2 77.7 61.7 40.0 58.2 (-4.7)
+ L8/32 36.7 33.6 53.3 30.6 38.6 (-24.3)
+ B4/32 53.1 77.5 61.6 40.0 58.1 (-4.8)
+ B8/32 40.0 63.9 60.0 30.6 48.6 (-14.3)

Mixtral-8×7B (MoE)
Method ARC-C HellaSwag MMLU OBQA Average

Baseline 59.4 84.0 67.9 46.8 64.6

+ L4/32 56.2 81.3 67.6 44.6 62.4 (-2.2)
+ L8/32 47.7 75.2 67.3 40.0 57.6 (-7.0)
+ B4/32 53.8 80.2 67.9 43.0 61.2 (-3.4)
+ B8/32 40.8 55.8 66.3 37.2 50.0 (-14.6)

MoE Layers are More Redundant than Dense
Counterparts Since Layer Drop and Block
Drop can also be applied to dense models, we
take Mistral-7B, the corresponding dense model
of Mixtral-8×7B for comparison. Both models
have the same depth and differ only in the FFN
implementation, so we remove the same number
of layers or blocks from each. When dropping
an equal number of blocks, both MoE and dense
models exhibit performance degradation. How-
ever, the MoE model suffers less performance
drop under the same compression setting. For ex-
ample, when dropping 8 MoE layers, the Mistral-
7B receives a performance drop of 24.3, while
Mixtral-8×7B only receives a drop of 7.0. This
interesting finding highlights the higher redun-
dancy in MoE layers, and further validates the
effectiveness of applying Layer Drop and Block
Drop to MoE models.

6 VISUALIZATION EXAMPLES OF LAYER DROP AND BLOCK DROP

In this section, we visualize the layer-wise similarity and the corresponding dropping order of MoE
layers and blocks to investigate the varying levels of redundancy across different depths.

Since our similarity-based metrics depend on the hidden states of each block, the choice of data
may influence feature similarity across layers. To investigate this, we conducted ablation studies
on Mixtral-8×7B, examining both the number of samples and the types of datasets used for feature
extraction. This analysis helps us understand how data selection affects decisions regarding the
dropping of layers or blocks. The results are presented in Figure 9.

Robustness to Calibration Datasets In Figure 9a, we note that feature similarity remains relatively
stable across different layers as the sample size increases, indicating that Layer Drop and Block
Drop maintain consistency regardless of sample quantity. This confirms that using 128 samples
suffices for computing similarity, which is adopted for all our experiments. Similarly, Figure 9b shows
that varying the datasets, from pretraining with C4 to instruction tuning with Lima and MetaMathQA,
does not significantly alter feature similarity. This demonstrates the resilience of Layer Drop and
Block Drop to variations in data distribution.

Redundant Deeper Layers Figure 10 visualizes the remaining and dropped layers/blocks as the
number of dropped modules increases. Both MoE architectures exhibit similar patterns in Layer
Drop and Block Drop: initially, both models tend to drop the deeper layers, followed by the shallower
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Figure 9: Influence of Data Choices on Feature Similarity. We measure the similarity among layers
and blocks on Mixtral-8×7B. (a) The similarity calculated using different number of samples from
C4 Raffel et al. (2019). (b) The normalized similarity calculated using 1, 024 samples from different
datasets, i.e., C4, Lima Zhou et al. (2023) and MetaMathQA Yu et al. (2023).
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Figure 10: Dropping Patterns for Layer Drop and Block Drop. We visualize of the remaining
layers and blocks under different dropped numbers, where yellow areas represent the retained portions
and red areas indicate the dropped layers/blocks.

ones. These findings are consistent with Xu et al. Men et al. (2024), which suggests that deeper
layers tend to be more redundant.

7 INTEGRATION OF EXPERT TRIMMING AND EXPERT SLIMMING

Beyond Expert Trimming, another avenue for MoE compression is Expert Slimming, which targets
the compression of individual experts. Techniques such as quantization and network pruning are
among the most commonly employed methods. We provide a detailed comparison of network pruning
and quantization in Appendix B, where quantization outperforms in both performance and efficiency.

Since Expert Trimmingand Expert Slimmingfocus on different aspects of compression, we further
explore their potential integration. Given the superior average performance and practical efficiency of
quantization, we use it for Expert Slimming. For Expert Trimming, we include all three methods to
offer a comprehensive comparison. The orders of applying these two compression techniques are
discussed in Appendix D.

Quantization Preserves the Performance of Expert Trimming As shown in Table 3, the integra-
tion of Expert Slimming and Expert Trimming significantly enhances overall efficiency. Quantization
can be seamlessly combined with three different levels of dropping, achieving comparable perfor-
mance. For instance, after quantization, the average performance of Layer Drop and Block Drop is
nearly the same, maintaining more than 90% of the performance of the original models.

The Integration Significantly Enhances Efficiency In Table 3, the integration of Expert Trim-
ming and quantization promotes efficiency by a large margin. Different Expert Trimming strategies
showcase different advantages. Specifically, Expert Drop contributes to reducing memory usage
but its speedup is marginal. Layer Drop and Block Drop excel in speedup as illustrated in Figure
8, with Block Drop demonstrating both higher performance and greater speedup. Considering all
settings, the combination of Block Drop and quantization offers the best efficiency with comparable

9
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Table 3: Experimental Results of the Integration of Expert Trimming and Expert Slimming.
“-En/m” denotes dropping n out of m experts per MoE layer on average. “-Ln/m”, “-Bn/m”
represents dropping n out of m layers/blocks with Layer Drop and Block Drop, respectively. The
FLOPs are measured using an input with the 2, 048 sequence length.

Mixtral-8×7B
Method SpeedUp FLOPs Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 54.4T 87.7GB 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5
w/AWQ 5.08× 54.4T 24.4GB 58.4 84.2 83.3 66.6 45.8 83.0 69.0 76.3 70.8

+ E2/8 1.06× 54.4T 66.7GB 53.2 77.7 80.5 52.2 46.2 81.7 55.6 76.8 65.5
w/AWQ 5.28× 54.4T 20.1GB 50.7 79.1 78.9 52.4 44.2 81.2 55.6 75.9 64.8

+ L8/32 1.19× 42.9T 66.6GB 47.7 85.3 75.2 67.3 40.0 75.8 69.7 74.6 67.0
w/AWQ 6.05× 42.9T 20.0GB 46.2 84.2 74.2 66.2 39.0 75.5 69.3 74.2 66.1

+ B5/32 1.17× 46.0T 74.1GB 51.3 85.3 78.7 67.9 42.0 79.3 69.7 74.3 68.6
w/AWQ 5.94× 46.0T 21.9GB 50.6 85.1 77.5 66.9 41.4 76.1 71.8 74.5 68.0

DeepSeek-MoE-16B
Method SpeedUp FLOPs Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 11.7T 30.8GB 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8
w/AWQ 3.16× 11.7T 9.8GB 46.8 71.2 76.6 36.4 43.6 80.1 62.1 70.1 60.9

+ E16/64 1.06× 11.7T 23.9GB 45.0 67.1 75.6 31.8 42.2 80.2 59.9 70.0 59.0
w/AWQ 3.34× 11.7T 7.7GB 44.0 66.0 74.5 27.9 42.6 78.5 56.3 67.3 57.1
+ L4/28 1.14× 10.6T 26.6GB 39.5 70.2 67.6 35.2 40.4 75.8 48.4 65.7 55.3
w/AWQ 3.60× 10.6T 8.5GB 42.1 72.0 69.2 33.7 39.8 75.1 47.7 66.5 55.8

+ B4/28 1.16× 10.1T 26.4GB 40.3 71.3 69.0 36.2 37.8 75.8 51.6 68.0 56.3
w/AWQ 3.67× 10.1T 8.4GB 40.1 70.2 68.6 36.1 38.4 76.2 51.6 66.4 56.0

performance: a 6.05× speedup with only 20.0GB memory usage, while maintaining over 92% of the
performance on Mixtral-8×7B, making it available to be deployed on a NVIDIA RTX 3090 GPU.

8 POST-FINETUNING RECOVERS THE PERFORMANCE

While the discussed compression techniques maintains most of the performance of the original
models, we further conduct post-finetuning to recover the degraded performance. Specifically, for
comparison, we full-finetune DeepSeek-MoE-16B and corresponding compressed models on the
Alpaca-GPT4 dataset Peng et al. (2023) for 3 epochs using a learning rate of 8e-6 with 0.03 warmup
ratio and cosine scheduling, where the global batch size is set to 32. As shown in Figure 4, the
post-finetuning process significantly reduces the performance gap between the compressed models
and the original models, e.g. narrowing it from 5.5% to 0.6% for the model following Block Drop.

Table 4: Performance of the DeepSeek-MoE-16B models finetuned after Expert Trimming.

DeepSeek-MoE-16B
Method SpeedUp FLOPs Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 11.7T 30.8GB 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8
+SFT 44.6 75.3 79.0 40.3 44.6 80.3 70.4 71.7 63.3
+ E16/64

1.06× 11.7T 23.9GB 45.0 67.1 75.6 31.8 42.2 80.2 59.9 70.0 59.0
+SFT 44.4 74.0 78.6 38.5 45.8 79.6 65.7 70.1 62.1
+ L4/28

1.14× 10.6T 26.6GB 39.5 70.2 67.6 35.2 40.4 75.8 48.4 65.7 55.3
+SFT 42.1 78.9 75.2 40.8 43.4 77.6 71.1 69.5 62.3
+ B4/28

1.16× 10.1T 26.4GB 40.3 71.3 69.0 36.2 37.8 75.8 51.6 68.0 56.3
+SFT 43.2 78.2 75.0 40.4 43.8 76.8 74.0 70.2 62.7

9 CONCLUSION

In this paper, we conducted a holistic study of MoE compression techniques, facilitating a systematic
understanding of the efficiency issue of MoE and identifying the new design space to improve the
performance further. Based on this study, we propose a comprehensive recipe that integrates Expert
Slimming and Expert Trimming to further enhance efficiency. Our proposed methods and insights
not only address current challenges but also set the stage for future advancements in the field of MoE.
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A IMPLEMENTATION DETAILS

A.1 MODELS AND DATASETS

Models. For our experiments, we employed Mixtral-8×7B Jiang et al. (2024) and DeepSeek-MoE-
16B Dai et al. (2024). Mixtral-8×7B utilizes 8 experts for MoE layers and activates the top two for
each input token. In contrast, DeepSeek-MoE-16B employs an dense FFN in the first block and
utilizes two shared experts with additional 64 experts within MoE layers in other blocks.

Datasets. For compression experiments, we used the C4 dataset Raffel et al. (2019), with 128
samples and an input sequence length of 2,048, following the setup in Sun et al. (2023); Lu et al.
(2024); Lin et al. (2024); Frantar et al. (2022). To evaluate model performance, we report normalized
zero-shot accuracy on the LM-harness benchmark, which includes multiple tasks: ARC-C Clark et al.
(2018), BoolQ Clark et al. (2019), HellaSwag Zellers et al. (2019), MMLU Hendrycks et al. (2021),
OBQA Mihaylov et al. (2018), PIQA Bisk et al. (2019), RTE Wang et al. (2019), and WinoGrande
ai2 (2019). The evaluation code is based on EleutherAI LM Harness Gao et al. (2023).

A.2 IMPLEMENTATION DETAILS OF EXPERT SLIMMING

Both Expert Slimming methods (i.e., pruning and quantization) require calibration data to estimate
input statistics. To control this variable, we use 128 samples from the C4 dataset Raffel et al. (2019)
as the calibration dataset for pruning. For quantization, we follow the default settings of GPTQ 1

and AWQ 2, using 128 random samples from Alpaca Taori et al. (2023) and Pile Gao et al. (2020),
respectively. We use the default group size 128 for Mixtral-8×7B and 64 for DeepSeek-MoE-16B.

A.3 IMPLEMENTATION DETAILS OF EXPERT DROP

The Expert Drop compresses MoE by preserving only important experts {Ei}i∈T ′ while removing
others, where T ′ is determined by the importance scores {S(Ei)}i∈T . Following Muzio et al. Muzio
et al. (2024), we measure the importance scores through the averaged routing scores of a batched
data X , i.e., {S(Ei)} = 1

|X |
∑

x∈X Gi(x), and consider two dropping strategies for Expert Drop:
layer-wise dropping and global dropping.

Layer-Wise dropping removes the same number of experts for each layer. Given the total number of
experts n = |T | and the preserved number of experts n′ = |T ′| < n in layer l, the preserved expert
set T ′(l) is obtained by:

T ′(l) = {E(l)
t }, where S(E

(l)
t ) ∈ TopK({S(E(l)

i )}ni=1, n
′). (10)

Global dropping constrains the total number of preserved experts for the entire model. Given the
total number of layers L in the model, the preserved expert set T ′(l) for layer l is obtained by:

T ′(l) = {E(l)
t }, where S(E

(l)
t ) ∈ TopK

( m⋃
j=1

{S(E(j)
i )}ni=1, n

′L
)
. (11)

For the integration of Expert Slimming and Expert Trimming, we choose the global dropping as the
strategy of Expert Drop, which shows competitive performance compared to the layer dropping for
Mixtral-8×7B under low dropping ratios, as well as consistent better performance for DeepSeek-
MoE-16B in Figure 13.

1https://github.com/AutoGPTQ/AutoGPTQ
2https://github.com/casper-hansen/AutoAWQ
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B EXPERT SLIMMING

Pruning: Comparable Performance with Deployment Challenges In Table 5, we evaluate
representative pruning algorithms (i.e., Wanda Sun et al. (2023), SparseGPT Frantar & Alistarh
(2023)) on Mixtral-8×7B and DeepSeek-MoE-16B. Since DeepSeek-MoE-16B utilizes both shared
experts and normal experts, we conduct an ablation study on whether to prune shared experts, as
discussed in Appendix E. We find that unstructured pruning preserves more than 95% of performance.
However, it is not compatible with existing hardware. Conversely, the hardware-friendly semi-
structured pruning (i.e., 4:8 and 2:4 patterns) undergoes a significant performance drop. Nevertheless,
according to Lu et al. Lu et al. (2024), semi-structured sparsity is ineffective in speeding up MoE
models.
Table 5: Performance of Pruning on MoE. We consider two mainstream pruning methods (i.e.,
Wanda Sun et al. (2023) and SparseGPT Frantar & Alistarh (2023)) under 50% unstructured sparsity
and 2:4 semi-structured sparsity.

Mixtral-8×7B
Method Sparsity ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 0% 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5

Wanda 56.1 85.8 81.7 64.3 46.4 82.2 65.0 76.0 69.7
SparseGPT 50% 56.4 85.7 81.5 64.6 45.0 82.4 66.8 75.8 69.8
Wanda 51.4 79.4 77.8 60.3 44.0 80.7 65.3 74.1 66.6
SparseGPT 2:4 49.2 81.0 77.6 59.2 44.0 80.6 63.9 74.8 66.3

DeepSeek-MoE-16B
Method Sparsity ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 0% 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8

Wanda 43.6 74.3 72.6 31.1 43.0 79.5 58.1 69.4 59.0
SparseGPT 50% 43.9 73.5 74.0 33.8 41.4 79.0 61.0 68.3 59.4
Wanda 38.2 66.1 67.5 27.6 39.4 77.0 53.8 66.7 54.5
SparseGPT 2:4 43.1 68.9 71.6 27.6 41.6 78.3 57.4 66.6 56.9

Quantization: Better Performance and Greater Efficiency In Table 6, we evaluate the impact
of 4-bit quantization on MoE. Quantization offers two major benefits: it maintains the comparable
performance of the original models and significantly reduces memory costs. Specifically, the
quantized models achieve over 98% of the original performance while using less than 30% of
the memory. Moreover, when quantized with AWQ Lin et al. (2024), Mixtral-8×7B and DeepSeek-
MoE-16B achieve impressive speedups of ×5.08 and ×3.16, respectively. This demonstrates that
4-bit quantization is an effective technique for deploying MoE models in resource-constrained
environments.
Table 6: Performance of Quantization on MoE. We utilize GPTQ Frantar et al. (2022) and AWQ
Lin et al. (2024) as the quantization methods for 4-bit compression.

Mixtral-8×7B
Method Bits Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 16 87.7GB 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5
GPTQ 59.0 84.4 83.4 67.1 45.2 83.1 70.1 75.2 70.9
AWQ 4 24.4GB 58.4 84.2 83.3 66.6 45.8 83.0 69.0 76.3 70.8

DeepSeek-MoE-16B
Method Bits Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 16 30.8GB 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8
GPTQ 46.3 71.8 76.8 36.4 43.4 80.0 63.9 70.2 61.1
AWQ 4 9.8GB 46.8 71.2 76.6 36.4 43.6 80.1 62.1 70.1 60.9
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C ANALYSIS ON THE DROPPING PATTERNS OF EXPERT DROP
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Figure 11: Distribution of Normalized Impor-
tance Scores S for Expert Drop. We highlight
the density of scores under different drop ratios
with different colors.

Score Distribution Directs Expert Drop.
The distribution of importance scores is infor-
mative to determine the proportion of dropped
experts. In Figure 11, we visualize the
score distribution of Expert Drop for Mixtral-
8×7B and DeepSeek-MoE-16B, respectively.
DeepSeek-MoE-16B, which allocates more ex-
perts, shows a left-skewed distribution where
most experts have low scores. In contrast,
Mixtral-8×7B demonstrates a right-skewed
distribution, with only a few experts being
deemed unimportant. This distribution differ-
ence results in different resistance capability
against Expert Drop, where DeepSeek-MoE-
16B can drop much more experts than Mixtral-
8×7B while maintaining competitive perfor-
mance, as demonstrated in Table 3 and Figure
13.
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Figure 12: Distribution of Dropped Experts for
Expert Drop. We visualize of the dropped experts
under different drop ratios, where the dropped ex-
perts are colored from yellow to blue as the drop
ratio increases.

Global Expert Drop Removes Experts Fine-
Grainedly. We employed two different strate-
gies for Expert Drop, namely layer-wise and
global. Layer-wise dropping treats each layer
equally by dropping the same number of experts,
while global dropping results in different pro-
portions of remaining experts across layers. We
visualize the distribution of remaining experts
after global dropping in Figure 12. We find
the global dropping shows a more fine-grained
pattern on dropping experts, where the bottom
layers are more vulnerable under lower dropping
ratios (yellow part).
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D ABLATION STUDY ON COMPRESSION ORDERS

In Section 7, we discussed the combination of Expert Trimming and Expert Slimming. Here we
ablate on the orders of compression when combining these two techniques. Results in Table 7 show
that the order of Expert Trimming and Expert Slimming doesn’t have a significant influence on the
performance, where applying Expert Slimming then Expert Trimming (“S+T”) performs slightly
better for Mixtral-8×7B (e.g. +0.5, +0.4 and +0.1 for Expert Drop, Layer Drop and Block Drop,
respectively). To this end, we choose “S+T” as the final implementation in our experiments.

Table 7: Ablation results on different orders of Expert Slimming and Expert Trimming. “S+T”
denotes first applying Expert Slimming then Expert Trimming, and “T+S” denotes the reversed order.

Mixtral-8×7B

Method ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5

+ E2/8, AWQ (S+T) 50.7 79.1 78.9 52.4 44.2 81.2 55.6 75.9 64.8
+ E2/8, AWQ (T+S) 50.8 79.9 78.7 49.2 44.4 80.9 55.2 75.4 64.3
+ L8/32, AWQ (S+T) 46.2 84.2 74.2 66.2 39.0 75.5 69.3 74.2 66.1
+ L8/32, AWQ (T+S) 46.8 84.4 74.0 65.3 39.8 75.0 66.8 73.2 65.7
+ B5/32, AWQ (S+T) 50.6 85.1 77.5 66.9 41.4 76.1 71.8 74.5 68.0
+ B5/32, AWQ (T+S) 50.3 84.7 77.4 65.8 42.0 78.8 70.4 74.0 67.9

DeepSeek-MoE-16B

Method ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8

+ E16/64, AWQ (S+T) 44.0 66.0 74.5 27.9 42.6 78.5 56.3 67.3 57.1
+ E16/64, AWQ (T+S) 44.7 64.1 74.0 29.0 42.6 79.9 54.2 68.4 57.1
+ L4/28, AWQ (S+T) 42.1 72.0 69.2 33.7 39.8 75.1 47.7 66.5 55.8
+ L4/28, AWQ (T+S) 42.4 71.7 69.1 33.4 40.1 74.8 47.6 66.2 55.7
+ B4/28, AWQ (S+T) 40.1 70.2 68.6 36.1 38.4 76.2 51.6 66.4 56.0
+ B4/28, AWQ (T+S) 41.6 69.4 69.1 35.8 38.6 76.2 50.9 67.0 56.1
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E ABLATION STUDY ON SHARED EXPERTS IN DEEPSEEK-MOE-16B

While most MoE models follow Equation 2 to implement the experts, models like DeepSeek-MoE-
16B adopt a residual Rajbhandari et al. (2022) form of experts, which brings a special scenario to
discuss. In the residual MoE, an extra set of m shared experts

{
Ē1, Ē2, . . . , Ēm

}
are always selected

by the router G and activated for all inputs. Given an input x, the output can be represented as a
degenerated form of Equation 2, where the scores of shared experts are fixed to 1:

y =
∑

i∈K
G(x)i ·Ei(x) +

∑m

j=1
Ēj(x). (12)

This special form of expert routing may bring a difference in the redundancy distribution of MoE.
Here we discuss the influence of shared experts through pruning and present the results in Table 8. We
find that pruning without the shared experts will boost the performance at a considerable scale, i.e.,
+3.6% and +1.5% of the averaged accuracy for unstructured pruning with Wanda and SparseGPT,
respectively. This finding reveals a different pattern of the inner redundancy in that the shared experts
are less compressible compared to the others in residual MoE models, which may inform future work.

Table 8: Ablation Study of Pruning Shared Experts on DeepSeek-MoE-16B. We consider two
scenarios, i.e., pruning both shared experts and normal experts (“w/Pruning Shared Experts”) and
pruning normal experts only (“w/o Pruning Shared Experts”). We use two mainstream pruning
methods (i.e., Wanda Sun et al. (2023) and SparseGPT Frantar & Alistarh (2023)) under both
unstructured sparsity (50%) and semi-structured sparsity (2:4).

DeepSeek-MoE-16B
Method Sparsity ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 0% 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8

w/ Pruning Shared Experts

Wanda 43.6 74.3 72.6 31.1 43.0 79.5 58.1 69.4 59.0
SparseGPT 50% 43.9 73.5 74.0 33.8 41.4 79.0 61.0 68.3 59.4
Wanda 38.2 66.1 67.5 27.6 39.4 77.0 53.8 66.7 54.5
SparseGPT 2:4 43.1 68.9 71.6 27.6 41.6 78.3 57.4 66.6 56.9

w/o Pruning Shared Experts

Wanda 44.0 76.3 73.5 36.2 41.0 79.3 59.9 70.2 60.0
SparseGPT 50% 45.0 75.5 74.4 36.3 41.0 79.4 64.3 69.3 60.7
Wanda 40.1 75.7 69.9 33.5 40.0 77.9 58.8 68.6 58.1
SparseGPT 2:4 40.7 75.7 69.9 33.3 39.0 77.7 61.4 69.4 58.4
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F FULL EXPERIMENTAL RESULTS

We provide the full results of Expert Trimming, including Expert Drop, Layer Drop and Block Drop,
in Figure 13, 14, and 15, respectively.
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Figure 13: Full Results for Expert Drop. We consider two strategies: layer-wise (dotted lines) and
global (solid lines).
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Figure 14: Full Results for Layer Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-
16B (solid lines), along with the baseline and random guess performances (dotted lines).
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Figure 15: Full Results for Block Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-
16B (solid lines), along with the baseline and random guess performances (dotted lines).

21


	Introduction
	Related Work
	Preliminaries
	Mixture of Experts
	Overview of Previous Compression Methods

	A Holistic Study of MoE Compression Techiniques
	Overview
	Expert Trimming
	Expert Slimming

	Experiments on Expert Trimming
	Visualization Examples of Layer Drop and Block Drop
	Integration of Expert Trimming and Expert Slimming
	Post-Finetuning Recovers the Performance
	Conclusion
	Implementation Details
	Models and Datasets
	Implementation Details of Expert Slimming
	Implementation Details of Expert Drop

	Expert Slimming
	Analysis on the Dropping Patterns of Expert Drop
	Ablation Study on Compression Orders
	Ablation Study on Shared Experts in DeepSeek-MoE-16B
	Full Experimental Results

