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Abstract

In this paper, we study the application of Test-
Time Training (TTT) as a solution to handling
distribution shifts in speech applications. In par-
ticular, we introduce distribution-shifts to the test
datasets of standard speech-classification tasks—
for example, speaker-identification and emotion-
detection—and explore how Test-Time Training
(TTT) can help adjust to the distribution-shift. In
our experiments that include distribution shifts
due to background noise and natural variations
in speech such as gender and age, we identify
some key-challenges with TTT including sensitiv-
ity to optimization hyperparameters (e.g., number
of optimization steps and subset of parameters
chosen for TTT) and scalability (e.g., as each
example gets its own set of parameters, TTT is
not scalable). Finally, we propose using BitFit
— a parameter-efficient fine-tuning algorithm pro-
posed for text applications that only considers the
bias parameters for fine-tuning — as a solution to
the aforementioned challenges and demonstrate
that it is consistently more stable than fine-tuning
all the parameters of the model.

1. Introduction

Deep learning methods achieve impressive results in a vari-
ety of speech-based downstream tasks when the train and
test data are in-distribution (Gulati et al., 2020; Snyder et al.,
2017; Zou et al., 2022). In practice, however, the train
and test distributions are usually different, i.e., there exists
a distributional shift between the train and test data. In
speech, such distributional shifts can be introduced due to
inter-speaker variations such as speaking style, gender, age,
etc., or due to background induced noises such as babble,
living room, traffic, etc. These distributional shifts signifi-
cantly degrade the performance of the deep learning models
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(Likhomanenko et al., 2021; Garcia-Romero et al., 2019;
Parry et al., 2019). In real-world applications, some form of
distributional shifts often occurs in the test data, making it
of vital importance for deep learning models to be robust to
these shifts.

One approach to handling distributional shift is with train-
time techniques (Khurana et al., 2021; Li et al., 2020), in
which we need to anticipate the type of distributional shifts
that can occur during testing, and then train the model on
data collected with this anticipated list of distributional
shifts. In practice, the anticipated list of distributional shifts
is non-exhaustive, and there is no guarantee that the trained
model can generalize well to an unseen domain at test-time.

Another interesting approach which attained significant im-
provements in performance for imaging tasks is test-time
training (TTT) (Sun et al., 2020; Liu et al., 2021; Gandels-
man et al., 2022). In TTT, we update the model at inference
using the test-sample. As the test sample does not have a
label, a self-supervised learning task is used for this update.

The efficacy of TTT is impacted by the choice of the self-
supervised learning task (Liu et al., 2021). Gandelsman
et al. (2022) shows that masked auto-encoding on images
is a suitable task for TTT. Motivated by the success of the
transformer-based masked autoencoders (MAE) for speech
(Huang et al., 2022a), we extend a test-time training ap-
proach based on MAE (Gandelsman et al., 2022) to speech
in this work. To the best of our knowledge, this is the first
work to adapt TTT to the speech domain. We show that TTT-
MAE for speech shows significant improvements on three
different downstream tasks under a variety of distributional
shifts.

Two major challenges of using TTT during inference
are maintaining stable performance robust to (reasonable)
ranges of hyperparameters, and the potential high compu-
tational cost, which is due to both (a) increased memory
requirements for updating all parameters of the model, and
(b) inability to process a batch of samples if the individual
samples in the batch are associated with different distribu-
tional shifts. We show that, for speech, it is possible to make
significant improvements with respect to all of these issues,
i.e. we improve stability, reduce memory requirements,
and allow batch processing, all by using parameter-efficient
training. Specifically, we show that using bias fine-tuning
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(Zaken et al., 2022), we can process a batch of test samples,
even under the condition that each test sample has a different
distributional shift.

2. Method

Pre-training MAE. Our masked autoencoder (MAE) for
speech, following Huang et al. (2022a); Chong et al. (2022),
aims to reconstruct the masked patches of the speech Mel-
spectrogram with an asymmetrical encoder-decoder archi-
tecture. Below, we provide a brief overview of the MAE.

First, we transform the input speech waveform into 128-
dimensional Mel-spectrograms using a Hanning window of
size 25ms for every 10ms. Next, we divide the spectrogram
into a sequence of non-overlapping patches, each patch sized
16 x 16. These patches are then flattened and embedded
with a linear projection layer. To provide positional infor-
mation, fixed sinusoidal positional embeddings are added
to the embedded patches. Afterward, we randomly mask
75% of the patches while preserving positional indices of
all the patches. This enables the decoder to reconstruct
the spectrogram. For the encoder, only unmasked patches
are used to generate latent representations. The decoder
then tries to reconstruct the original spectrogram, given la-
tent representations of the encoder and masked patches as
input. The latent representations and masked patches are
organized in the initial order before being provided as input
to the decoder. During training, the objective is to minimize
mean squared error (MSE) between reconstructed and input
spectrograms, averaged over the masked patches.

Train-time training. For the downstream tasks, we only
use the encoder and discard the decoder. The latent repre-
sentations generated by the encoder are provided as input
to the task-specific classifier head. In this paper, we con-
sider three different ways to use the pre-trained encoder for
downstream tasks: 1) Linear probing: freeze the encoder
to use it as a feature extractor and train only the classifier
head; 2) Fine-tuning: train both encoder and classifier head,
end-to-end, for the downstream task; 3) Linear-probing and
fine-tuning (LP-FT): first train only the classifier head using
linear probing, and then fine-tune both encoder and classifier
head end-to end as explained in (Kumar et al., 2022).

Test-time training. Similar to (Sun et al., 2020; Gandels-
man et al., 2022), we use a Y-shaped architecture: a shared
encoder network e followed by two heads, a self-supervised
head g and a task-specific classifier head h. Here, e and
g are the encoder and decoder networks of the pre-trained
MAE, respectively. The classifier head h, uses a linear pro-
jection from the dimension of the encoder features to the
number of classes, depending on the downstream task.

When using TTT, we use linear-probing to update the
weights of the classifier head h and freeze the weights of the

shared encoder e during train-time training. As explained
in (Gandelsman et al., 2022), we found that linear-probing
is more suitable for TTT as compared to full-model fine-
tuning. At test-time, the parameters of the shared encoder
are updated to minimize the self-supervised loss. We ex-
plore the following approaches to update the weights of the
encoder during test-time:

1) Full fine-tuning: In full fine-tuning, all parameters of the
shared encoder are updated to minimize the self-supervised
loss across various augmentations of a single test sam-
ple. However, the large size of pre-trained models, such
as the MAE used in this study with 75M parameters, makes
full fine-tuning computationally expensive during test time.
Moreover, extensive steps of full fine-tuning during test
time, as shown in Figure 1, can result in performance degra-
dation. Since there is no validation data available at test
time, early stopping is not an option.

Therefore, it is desirable to maintain stability in performance
during Test-Time Training (TTT). However, even when
using the SGD optimizer as suggested in (Gandelsman et al.,
2022), full fine-tuning still exhibits performance degradation
in speech-related tasks. Furthermore, TTT techniques entail
a higher computational cost as TTT is approached as a one-
sample learning problem. This means that the model can
only be adapted to one test sample at a time, and batch
processing is not feasible under the assumption that each
test sample is subject to a different distribution shift.

Table 1. Trainable parameters in different blocks of our MAE for
speech. Number of Parameters in one Encoder block are same as
the number of parameters in each of the first, middle or last blocks
of the encoder.

#parameters(Proportion %)

MAE 74751488 (100.00)
Encoder 64457216 (86.23)
Decoder 10294272 (13.77)
One Encoder block 7087872 (9.48)
Bias - MAE 96000 (0.13)

Bias - Encoder 77568 (0.10)

To address these challenges, we investigate parameter-
efficient fine-tuning techniques (PEFT) that have proven
to be highly effective in supervised learning tasks within the
field of NLP. However, their application in the context of
TTT has not previously been explored.

2) Parameter-efficient fine-tuning (PEFT): Here we ex-
plore different PEFT techniques to adapt the encoder to the
test sample during inference. We conduct experiments us-
ing four different PEFT techniques for TTT: (i) First block:
updating only the final/last block of the encoder, (ii) Last
block: updating only the final/last block of the encoder, (iii)
Middle block: updating only the middle block of the en-
coder, and (iv) Bias: updating only bias parameters of the
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Figure 1. We compare the accuracy (speaker identification) across TTT steps between three different variants of TTT (full, last-layer and
bias fine-tuning). For most distributional shifts, full fine-tuning shows degradation in performance with longer test-time training (after 20
steps) whereas bias and last layer fine-tuning show relatively stable performance even after 25 steps

encoder using the self-supervised task on the test sample.
As shown in Table 1, the number of trainable parameters
for updating any one block (first, middle, or last) accounts
for 9.48% of the total parameters, while updating the bias
parameters involves just 0.1% of the total parameters. In
this study, we primarily focus on bias fine-tuning for TTT
due to the following reasons:

* Bias fine-tuning is much more lightweight compared
to full fine-tuning, training 830 times fewer parameters
(0.78M vs. 64M).

e Zaken et al. (2022) demonstrated that, in supervised
learning with limited training data, fine-tuning only
bias parameters yields superior performance to full
fine-tuning. Since TTT-MAE can be regarded as a one-
sample unsupervised domain adaptation technique, we
investigate effectiveness of updating only bias parame-
ters during test-time training.

e TTT techniques incur higher computational costs as
TTT is approached as a one-sample learning problem.
This means that the model can only be adapted to one
test sample at a time, and batch processing is not fea-
sible when each test sample is drawn from a different
distribution. We show that bias fine-tuning allows pro-
cessing an entire batch of test samples.

Distributional shifts in speech. In this work, we identify
and examine two types of distributional shifts: (1) those re-
sulting from background noise that degrades/distorts speech
quality, and (2) natural distributional shifts resulting from
inter-speaker variations, including gender, age, and speaking
style.

To generate degraded speech, we introduce background
noise to clean speech signals at a specified signal-to-noise
ratio (SNR) (see Figures 6 and 7 in Appendix). We iden-
tify two categories of background noise: (1) Time-invariant,
where noise characteristics remain constant over time. Ex-
amples include additive white Gaussian noise (AWGN) and
air conditioner (AC). (2) Time-varying, where noise charac-
teristics change over time. Examples include background
babble, living room, restaurant, reverberation, and traffic.
Distributional shifts introduced by these types of noise are
generally difficult to learn, even with adversarial training.
Furthermore, some noises (e.g. babble, restaurant, and re-
verberation) exhibit patterns similar to speech, which can
corrupt and contaminate information contained in the origi-
nal signal, such as linguistic content, speaker characteristics,
emotions, etc.

In this study, we explore significance of TTT in handling
distributional shifts introduced by both background noise
and natural variations in speech. We show that TTT-based
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Figure 2. Compare TTT with non-TTT approaches (linear probing,
fine-tuning, LP-FT, TENT) under different distributional shifts due
to background noises (noises added at 0 dB). TTT significantly
outperforms the non-TTT approaches across all the distributional
shifts for the task of speaker identification. Results averaged over
3 runs

methods consistently outperform non-TTT techniques with
significant margins. Use of PEFT techniques, particularly
BitFit, further improve the performance and stability of TTT
under different distributional shifts. To show the effective-
ness of TTT under different distributional shifts, we conduct
the following experiments: 1) Training with clean speech
and testing with speech corrupted by various background
noises. 2) Training models on one speaking style and testing
with another speaking style. 3) Training with speech from
one gender and testing with the other gender. 4) Training
with either younger or older speakers and testing with the
other.

3. Experiments and Results

Implementation Details In all experiments, we use 9-layer
ViT by default as the MAE encoder. For the decoder, we use
a 3-layer Transformer. We use Voxceleb2 dataset (Chung
et al., 2018) for pre-training the MAE. We pre-train the
MAE for 120K steps with a batch size of 392, which takes
about 7 days using 8 Nvidia RTX6000 24GB GPUs. The
AdamW optimizer with an initial learning rate of 0.001
and a weight decay of 0.05 is applied. The learning rate
has a cosine decay schedule (Chen et al., 2020) with 20K
warmup steps. We transform raw waveform (mono-channel
sampled at 16 KHz) into 128 Mel-frequency bands extracted
with 20 ms Hanning window and 10 ms stride. We use the
original speech spectrograms and apply no augmentations.
We only use random masking of the spectrograms as an
augmentation, with a masking ratio of 0.75 for pre-training.
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Figure 3. Compare TTT with non-TTT approaches (linear probing,
fine-tuning, LP-FT, TENT) under different distributional shifts due
to background noises (noises added at 0 dB). TTT significantly
outperforms the non-TTT approaches across all the distributional
shifts for the task of emotion classification. Results averaged over
3 runs. Emotion classification reported in terms of unweighted
average recall (UAR (%))

During TTT, for each test sample, we train only the encoder
(freezing the decoder weights)for 20 steps using SGD op-
timizer with a fixed learning rate of 2.5e-3, batch size of
128, momentum of 0.9 and weight decay of 0.2. We also
show performance plots for 25 steps of TTT (see Figure 1).
During TTT, we follow the same procedure as pre-training:
mask 75% of the input patches and provide the unmasked
patches as input to the encoder whereas all the patches are
provided to the decoder. Then update the encoder weights
using reconstruction loss (MSE) on the masked patches
as the objective function. We follow the same procedure
for full, bias, first-layer, middle-layer and last layer fine-
tuning.s Moreover, we do not use any augmentation on top
of random masking for TTT. We performed most of these
experiments using a single Nvidia A40 48GB GPU. Unless
and otherwise specified, we report results for TTT after 20
TTT steps.

Dataset details. Table 3 (see Appendix) provide details of
the datasets used in this work. We perform speaker iden-
tification using VCTK (Yamagishi et al., 2019); emotion
recognition using CREMA-D (Cao et al., 2014), IEMO-
CAP (Busso et al., 2008), RAVDESS (Livingstone &
Russo, 2018) and TESS (Dupuis & Pichora-Fuller, 2011)
datasets; low-vocabulary speech recognition using Speech
commands (Warden, 2018) dataset. We use original speech
samples from each of the datasets in the pre-training and
train-time training phases. To evaluate models’ performance
under different distributional shifts, we introduce diverse
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Table 2. Performance of different variants of TTT under distributional shifts due to background noises added at 0dB SNR. Different
variants of TTT: Full refers to Full fine-tuning; First, Middle, Last and Bias refer to fine-tuning only the first layer, middle layer, last layer
and bias parameters, respectively. AWGN — additive white Gaussian noise. Bias fine-tuning performs better than other variants of TTT

across most of the distribution shifts due to background noise

Speaker Identification

Emotion Recognition

Full First Middle Last Bias Full First Middle Last Bias
Air Conditioner 41.8 426 40.8 425 439 377 376 36.1 38.0 428
Gaussian (AWGN) 8.8 9.1 8.2 93 104 592 59.0 58.6 59.7 628
Babble 157 17.0 160 157 173 40.8 423 416 412 428
Kitchen 172 178 169 17.1 21.8 635 64.1 63.7 64.6 659
Living Room 15.1 163 160 154 169 383 394 385 40.5 403
Park 22.1 224 233 212 256 589 596 582 60.1 62.1
Restaurant 16.1 18.5 163 172 194 41.7 43.1 41.8 425 439
Reverberation 347 354 352 358 379 523 534 522 525 547
Squeaky-Chair 60.3  60.6 60.8 625 62.1 637 643 644 63.6 65.5
Traffic 529 559 543 527 572 61.7 653 63.2 657 66.8
Typing 552 574 574 559 577 621 632 59.7 633 64.6
Washing-Machine  56.0 60.8 60.5 604 614 064.1 65.1 65.0 654 66.2

background noises sourced from Microsoft’s Scalable Noisy
Speech Dataset (MS-SNSD) (Reddy et al., 2019). These
noises are exclusively added during the testing phase and are
not used in pre-training or train-time training of the models.

Test-time Training vs No Test-time Training. In Figure 2
and 3, we compare TTT for speech with different non-TTT
techniques (linear probing, fine-tuning, LP-FT (Kumar et al.,
2022) and TENT (Wang et al., 2021)) for different back-
ground noises unseen during training. TTT outperforms the
non-TTT techniques for every unseen background noise con-
dition. When comparing between non-TTT techniques, for
most of the background noises, simple linear-probing per-
forms better than fine-tuning. Similar to images in (Kumar
etal., 2022), LP-FT performs better than both linear-probing
and fine-tuning. TENT, a test-time adaptation technique,
performs better or comparable to LP-FT but performs in-
ferior to TTT. This can be attributed to the fact that TENT
requires a large set of test samples to learn the distribution
of the test sample but performs poorly under one-sample
testing condition, as illustrated in (Khurana et al., 2022).

Even though TTT achieves significant improvements in
performance under different distributional shifts, there are
a few shortcomings of TTT when applied to speech such
as high memory requirements during TTT, degradation in
performance across TTT steps and inability to process batch
of test samples, as shown in Figure 1 and explained in
Section 2.

We overcome these issues by incorporating PEFT tech-
niques into TTT. PEFT techniques are light weight as we
need to fine-tune fewer parameters compared to full fine-
tuning, thus requiring lesser memory (see Table 1). We
also find that, for speech, PEFT techniques achieve better
consistency in performance compared to full fine-tuning

across the TTT steps (see Figure 1). Here we compare per-
formance of different PEFT techniques used during TTT
under different distributional shifts in Table 2. PEFT tech-
niques of fine-tuning a specific block performs comparable
to full-fine-tuning. Similar to (Lee et al., 2022), we find cer-
tain layers are more suitable for a specific set of background
noises and there is no single block which is optimal for every
background noise. Selecting a layer to fine-tune during TTT
is not feasible as we only have a single test sample. To over-
come this issue, we use Bitfit (Zaken et al., 2022) for TTT,
where we fine-tune only the bias parameters of the encoder
during TTT. Bitfit, a light-weighted fine-tuning approach,
consistently performs better (comparable) to full-fine-tuning
across all the distributional shifts.

4. Conclusion

In this work, we extend test-time training to speech related
tasks such as speaker identification and emotion recognition
under a variety of distributional shifts. In our application of
TTT-MAE to speech, we observed that TTT is sensitive to
hyperparameters such as training steps and subset of param-
eters considered for optimization. To overcome these issues,
we applied PEFT techniques to make TTT more stable and
scalable. We find that PEFT techniques, being light-weight,
achieve better or comparable performance to full fine-tuning.
Specifically, we find that bias fine-tuning, motivated from
BitFit, improves both performance and stability. Further, we
propose a new approach to process batches of test samples
using bias fine-tuning for TTT.
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Table 3. Details of the datasets used for pre-training and downstream tasks. Total Duration is in hours and Average Length is in seconds.
The tasks Speaker ID, Emotion Recog., Ltd Vocab. ASR refer to Speaker identification, emotion recognition and limited vocabulary ASR,
respectively.

Dataset Task #Classes  #Speakers #Total Total  Average

Samples  Duration Length
VoxCeleb2 Pre-training - 5994 770000 2300 8.6
VCTK Speaker ID 109 109 42075 44 3.8
CREMA-D Emotion Recog. 4 91 4397 3.04 2.5
IEMOCAP Emotion Recog. 4 10 5531 7.00 4.6
RAVDESS Emotion Recog. 4 24 672 0.70 3.7
TESS Emotion Recog. 4 2 1600 0.92 2.1
Speech Commands ~ Ltd. Vocab. ASR 12 2618 105829 29.5 1.0

A. Related work

Domain adaptation and generalization. These methods are based on the assumption that models will have access to
labelled data from the train distribution and unlabelled (labelled) data from the test distribution. A common strategy in
domain adaptation is to learn domain invariant features between train and test data distributions (Sun & Saenko, 2016;
Tzeng et al., 2017; Long et al., 2018). Another approach is to perform self-training on the test distribution by generating
pseudo-labels for the unlabelled data (Xie et al., 2020). Domain generalization techniques mainly resort to adversarial
training, meta learning or adversarial data augmentation (Yang et al., 2021; Balaji et al., 2018; Dou et al., 2019; Volpi et al.,
2018). In speech, domain adaptation and generalization techniques have been applied to tasks such as automatic speech
recognition, emotion recognition and speaker classification (Khurana et al., 2021; Hu et al., 2021; Song et al., 2017; Li et al.,
2020) All these methods assume information about the test domain is available during training.

Learning at inference. In the above techniques, the model is trained to generalize to all possible distributional shifts. But
anticipating every possible distributional shift at train time is not feasible, particularly in real world applications. Most
models trained using domain generalization techniques are fixed during inference even when the test distribution changes.
To alleviate this problem, another line of work is to adapt the model to test samples at inference. Methods to update the
model at inference can be classified into two types: test-time adaptation and test-time training.

Test-time Adaptation (TTA): These methods allow using off-the-shelf models without any additional training. In general
terms, test-time adaptation focuses on adapting models that were not trained with a special configuration prior to being used
at inference (Goyal et al., 2022; Boudiaf et al., 2023). One of the first approaches of this category, called TENT (Wang
et al., 2021), requires the model and target data. It then updates the model layers by minimizing the Shannon entropy of
predictions. Mummadi et al. (2021) improves TENT by using a log-likelihood ratio instead of entropy, and by estimating
target batch statistics. Another approach is to update batch normalization (BN) statistics using large number of test samples
(Nado et al., 2020; Schneider et al., 2020). SITA (Khurana et al., 2022) is one such approach which can be used on a single
test data example. SITA generates a pseudo-batch by randomly augmenting this example and then computes statistics
on this pseudo-batch. TTA in computer vision is heavily targeted on the BN layer’s adaptation by re-estimating batch
statistics on target data. In this work we use transformer models, which have achieved state-of-the-art performance on many
speech-based downstream tasks. Since transformer models are not equipped with BN layers, as the length of batched input
sequences are different, TTA techniques cannot be applied directly to speech. Only one work has applied TTA to speech
(Lin et al., 2022); this approach appears limited to ASR models trained with CTC loss.

Test-time training (TTT): The basic paradigm in TTT (Sun et al., 2020) is to use a test-time task (usually a self-supervised
learning task) besides the main task during training, and update the pre-trained model using test data with the (self-supervised)
test-time objective before the final prediction. Sun et al. (2020) uses rotation prediction as the self-supervised task. Later,
TTT++ (Liu et al., 2021) considers contrastive loss as the self-supervised task in addition to aligning the features by
comparing the statistics of the source data with those of the current test batch. Recently, Osowiechi et al. (2023) minimizes
the distribution shift, between the train and test distributions, estimated using normalizing flows. Gandelsman et al. (2022)
shows that using masked autoencoding (MAE) (He et al., 2022) as the self-supervised task for TTT achieves substantial
improvements in image recognition under various distributional shifts. TTT-based techniques are applied to other domains
such as videos (Azimi et al., 2022; Wang et al., 2023), natural language processing (NLP) (Banerjee et al., 2021) and
compressed sensing of medical images (Darestani et al., 2022), where the self-supervised task varies across domains. In
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this work, we extend TTT framework to speech domain for the first time. Our work extends the TTT-MAE framework
(Gandelsman et al., 2022) to speech by using work on audio MAE trained with spectrograms (Huang et al., 2022a; Chong
et al., 2022).

Parameter efficient fine-tuning (PEFT). Fine-tuning entire pre-trained models achieves state-of-the-art performance for
various downstream tasks (Kenton & Toutanova, 2019; Raffel et al., 2020; Mohamed et al., 2022). However, as the size
of these models increases rapidly, updating the models in parameter-efficient ways becomes crucial (Yang et al., 2022;
Chen et al., 2022). In the NLP domain, PEFT techniques typically refer to either: a) insertion of new learnable modules
with fewer parameters as compared to the whole model; or b) modifying carefully selected parameters of the model. In
(Houlsby et al., 2019; Pfeiffer et al., 2020; Sung et al., 2022b; Li & Liang, 2021), only the additional parameters added to
the pre-trained models are fine-tuned for the downstream tasks while (Yang et al., 2022; Zaken et al., 2022) fine-tune a
subset of parameters for downstream tasks without inserting any new modules. Zaken et al. (2022) show that just fine-tuning
the bias parameters, which constitute about 0.1% of the overall parameters, can outperform full fine-tuning, especially for
small datasets. Motivated from NLP, PEFT techniques are also applied to pre-trained models trained using images (Jia et al.,
2022; Chen et al., 2022; Sung et al., 2022a; Lee et al., 2022), and speech (Li et al., 2021; Huo et al., 2022). In this work,
we study PEFT techniques applied to speech in the context of TTT, focusing on the following questions: 1) Can PEFT
techniques achieve comparable or improved performance compared to full fine-tuning in TTT? 2) Can PEFT be more stable
than full fine-tuning in TTT?

Self-Supervision using masking in speech. Denoising autoencoders (Vincent et al., 2008) is one of the earliest forms of
self-supervision in speech (Lu et al., 2012). Subsequent advancements in self-supervision have predominantly focused
on masked language modeling (MLM) (Liu et al., 2020; Baevski et al., 2020; Hsu et al., 2021; Gong et al., 2022; Huang
et al., 2022b). Many of these works employ transformer networks trained with MLM frameworks to achieve state-of-the-art
performance on various speech-related downstream tasks. More recently, the concept of a masked autoencoder (MAE) based
on the Vision Transformer (ViT) has been extended to the audio and speech domain (Huang et al., 2022a; Baade et al., 2022;
Chong et al., 2022; Niizumi et al., 2022). In MAE, only the non-masked spectrogram patches are encoded, distinguishing it
from other approaches that encode both masked and non-masked input (wave/spectrogram) segments for self-supervised
pre-training. This distinction makes MAE-based models computationally appealing. In this work, we analyze the effect of
distributional shift on the performance of MAE for speech and use TTT-based approach to enhance the robustness of MAE
in the presence of such distributional shifts.

Table 4. Emotion recognition under natural distributional shifts caused by (a) speaking style variations: Train model using CREMA-D
(CRE) dataset and test with other datasets i.,e IEMOCAP (IEM), RAVDESS (RAV) and TESS. Column CRE: matched condition — train
and test on CREMA-D dataset, (b) Gender variations: Train model using speech data from speakers of one gender and test with speakers
from other gender. F-M: train on female and test on male; M-F: train on male and test on female; F-F and M-M: train and test speakers
from the same gender. We use CREMA-D dataset for these experiments. TTT variants (Full and Bias fine-tuning) outperform non-TTT
methods (linear probing and fine-tuning) across different natural distribution shifts.

Table 5. * Table 6. *
(a) evaluate across datasets - variation in speaking style (b) Across genders - variation in gender
CRE IEM RAV TESS F-F F-M M-M M-F
Linear 522 354 347 33.1 Linear 542 316 521 309
Fine-tune 61.5 325 33.8 343 Fine-tune 594 29.8 58.6 30.2
Full 66.8 455 443 39.4 Full 66.0 54.1 615 56.8
Bias 67.3 459 442  40.6 Bias 68.2 565 64.0 60.5

Evaluation under natural distributional shifts. We evaluate performance of TTT techniques across different natural
distributional shifts caused by inter-speaker variations, e.g., speaking style (Table 5), gender (Table 6), and age (Table 7).

In Table 5, we compare performance of non-TTT (Linear probing and fine-tuning) with TTT (full fine-tuning (Full) and
Bias) techniques for distributional shift due to speaking style variation. Here we train on CREMA-D (emotively acted
utterances in American English) and test with samples from IEMOCAP (emotive conversations enacted in American
English), RAVDESS (emotively acted utterances in North American English) and TESS (emotively acted utterances in
Canadian English). TTT-based techniques achieve significantly better performance compared to non-TTT methods for
speaking style variations.
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To evaluate the performance of TTT in addressing distributional shifts caused by gender variations for the task of emotion
classification (CREMA-D dataset), we conducted training using speech data from one gender (either female or male) and
carried out testing using speech data from the opposite gender (male or female). Table 6 provides a comparison between
non-TTT and TTT-based techniques. For gender variations, non-TTT approaches exhibit a steep decline in performance
between matched (F-F and M-M) and mismatched (F-M and M-F) conditions. In contrast, TTT approaches (full and
Bias) show very small degradation in performance between matched and mismatched conditions. For both matched and
mismatched conditions, TTT with Bias fine-tuning performs better than full fine-tuning.

We evaluate performance of TTT under age variations using TESS dataset for the task of emotion recognition (refer to
Table 7). The TESS dataset was collected from two female speakers: a younger (Y) speaker aged 26 years and an older
speaker aged 64 years. In the O-Y scenario, we trained the model using younger (Y) speaker’s speech and tested it with
older (O) speaker’s speech. Similarly, in the Y-O scenario, we trained with the older speaker (O) and tested with the younger
(Y) speaker. For unmatched train-test conditions (Y-O and O-Y), TTT techniques outperformed non-TTT techniques, with
bias fine-tuning performing better than full fine-tuning. Interestingly, even in matched conditions (Y-Y and O-O), TTT-based
techniques performed comparably or better than non-TTT techniques for all the natural distributional shifts.

Table 7. Emotion classification under age variation. We use TESS dataset consisting of two female speakers: one Younger (Y) and one
older (O). We train on one speaker and test using other speaker’s speech. Y-O — train on Y and test with O; O-Y — train on O and test
with Y

YY YO OO0 OY

Linear 493 298 502 31.7
Fine-tune 51.8 282 523 304
Full 522 408 525 416
Bias 524 419 529 428

B. Results on Speech Commands Dataset

In Table 8, we compare the performance of non-TTT techniques (Linear, Fine-tune) with TTT-based techniques (TTT-Full,
TTT-Bias) using speech commands dataset for the task of low-vocabulary speech recognition. Results show that TTT
techniques outperform non-TTT techniques under different distributional shifts. Also in TTT-based techniques, the Bias
fine-tuning performs better (comparable) to full fine-tuning across all the distributional shifts.

Table 8. Results on Speech Commands dataset for the task of low-vocabulary speech recognition. performance in terms of Accuracy (in %
averaged over 3 random seeds) when tested with samples corrupted with different noises. All noises added at 0dB SNR. Results show that
the TTT-based techniques significantly improves the performance over non-TTT techniques under different distributional shifts. Bias
fine-tuning performs better than full-fine-tuning across all distributional shifts.

N
IS N & % & P
& < N o & $ & R O S
S T R Q_@%@ <& & &
Linear 923 514 309 542 358 502 378 407 561 538
Fine-tune 952 50.9 293  53.6 342 493 383 392 554 545

TTT-Full 954 622 374 63.3 455 583 45.5 55.1 63.7  64.1
TTT-Bias 94.8 63.7 39.2 64.4 464 604 47.8 572 664 673

C. Improved utilization of computational resources.

We discuss an approach to process a batch of test samples using TTT for the real world scenario of each test sample
associated with a different distributional shift. Since each test sample gets its own copy of parameters, TTT can be applied
with only one test sample at a time. However, bias fine-tuning gives us an unique opportunity to apply TTT to a batch of
examples while still ensuring that each sample gets its own copy of parameters. For example, consider a simple linear layer
containing weight matrix W and a bias-vector b; given a batch x containing B samples, the output of this layer can be
written as y = Wx + b. In TTT-bias, each example in this batch gets its own b while sharing W; now, suppose that the
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linear layer gets an additional input Ab (initialized to zeros) that contains B learnable vectors and is used to compute the
output y = Wx + b+ Ab: since Ab contains B learnable parameters, each parameter can be optimized independently
while taking advantage of the GPU batch-processing. We illustrate this in Figure 4: in practice, this can be implemented as
forward hooks in PyTorch without changing the model code.

(B X 768) A

Multi-Head Scaled Attention

Multi-head Attention

Figure 4. llustration of TTT-Bias Fine-tuning on Batch of Test Samples: for each example in a batch containing B samples, we create a
learnable parameter corresponding to each trainable bias as shown in green boxes and the outputs of the modules are adjusted accordingly
as shown. Only the parameters in green boxes need to be fine-tuned and since these parameters are not shared across examples in a batch,
TTT-bias can take advantage of GPU batch processing to improve throughput.

Figure 5 shows the timing analysis for processing a batch of test samples using (1) TTT (process single sample at a time),
(2) TTT-Batch: Process a batch of test samples using the approach illustrated in Figure 4. As shown in Figure 5, as the batch
size increases, the throughput of TTT-Batch improves.
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Figure 5. Timing analysis of TTT-Bias Fine-tuning on Batch of Test Samples. Here we provide the timing analysis of the approach shown
in Figure 4 to process a batch of test samples. We vary the batch size of the test samples and compare the time taken by TTT (process
only one sample at a time) and TTT-Batch (process batch of test samples simultaneously. We show that the difference in time taken by
TTT-Batch and TTT increases as the batch size increases). For the purpose of this illustration, we use 32 augmentations for each TTT step
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(a) Clean Speech

(b) Speech + Air Conditioner

(e) Speech + Kitchen

Figure 6. Mel-spectrograms of speech with different distributional shifts due to background noises added at 0 dB SNR. Remaining
spectrograms (g-m) are continued in Figure 7. (a) spectrogram of clean speech. (b-m) shows the Mel-spectrograms of speech when added
with different background noises. Characteristics of background noises (e)-(i) and (k) vary with time thus distorting the characteristics of
speech critical for speech-based applications. For instance, panel (d) shows how babble noise, which has similar characteristics to speech,
when added to speech, introduces patterns similar to clean speech along both time and frequency dimensions, and thus distorts the patterns
in clean speech. Similarly, living room (see (f) and restaurant (see (h)) noises distort speech patterns in time and frequency dimensions.
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(g) Speech + Park

(h) Speech + Restaurant

(i) Speech + Reverberation
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Figure 7. Mel-spectrograms of speech with distributional shifts caused due to different background noises added at 0 dB SNR
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