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Abstract
Successor Features (SFs), together with General-
ized Policy Improvement (GPI), comprise a con-
ventional transfer Reinforcement Learning (RL)
algorithm, which can transfer knowledge using
the characteristic of decoupling policy with the
task. However, SFs are value-based and can-
not handle environments with continuous action
spaces since GPI cannot transfer knowledge by
traversing all possible actions in such a case. Re-
cently, PeSFA (Li et al., 2022) decouples SFs
from policies and further endows SFs with gen-
eralization capabilities in the policy space. How-
ever, it cannot be applied to continuous action
spaces. In this paper, we introduce the Continu-
ous PeSFA (CPeSFA) algorithm, an Actor-Critic
(AC) architecture designed for learning and trans-
ferring policies in continuous action spaces. Our
theoretical analysis shows that CPeSFA leverages
SFs’ generalization in the policy space to acceler-
ate learning rate. Experimental results across Grid
World, Reacher, and Point Maze environments
demonstrate CPeSFA’s superiority and effective
knowledge transfer for rapid policy learning in
new tasks.

1. Introduction
Reinforcement Learning (RL), a prominent technique within
the field of artificial intelligence, addresses the challenge of
optimal continuous control and has achieved notable suc-
cess in the field of games, robot control, etc (Mnih et al.,
2015; Silver et al., 2016). In RL, an agent dynamically inter-
acts with the environment (Sutton & Barto, 1998; Lillicrap
et al., 2016) to gather essential data. Through experiential
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knowledge, the agent continually learns the optimal policy
for the task, endeavoring to maximize the long-term cumu-
lative rewards within the environment. However, when the
interaction cost between the agent and the environment is
excessive or the exploration complexity is significant, the
agent may encounter difficulties in swiftly acquiring the
optimal policy (Hao et al., 2023). Transfer learning offers
a compelling resolution to challenges tied to sample ineffi-
ciency and sluggish learning rates (Zhu et al., 2020; Taylor
& Stone, 2009; Yang et al., 2020). Transfer RL can acceler-
ate the learning of the target task by transferring knowledge
from past-learned tasks to the target task, mitigating the
challenges of sample inefficiency.

One major category of transfer RL algorithms is based on
Successor Features (SFs) (Barreto et al., 2017), which ad-
dresses knowledge transfer across scenarios where the dy-
namics of the environment remain unchanged across dif-
ferent tasks, but the reward functions vary between tasks.
SFs decompose the reward function into dynamic-related
features and task-specific weights, thereby decoupling the
policy from the task. By leveraging SFs learned from his-
torical tasks and the task-specific weights of the target task,
the action-value function of the target task can be quickly
computed. On this basis, Generalized Policy Improvement
(GPI) (Barreto et al., 2017) is employed to select the best
action for the target task, effectively transferring knowledge
from historical tasks.

Existing classical SFs algorithms leverage SFs’ ability to
quickly compute action-value functions for historical poli-
cies on new tasks, aiding the transfer of historical policies,
while GPI is utilized to derive policies with basic perfor-
mance on new tasks. These SFs methods can be broadly
categorized into four types.

The first category of methods (Alver & Precup, 2022; Ale-
gre et al., 2022; Nemecek & Parr, 2021) primarily enhances
the performance of policies obtained through GPI method
in downstream tasks by constructing a comprehensive set
of source policies. However, these approaches face chal-
lenges in dealing with more complex environments or task
settings, as the complexity of constructing a thorough source
task set become prohibitive. The second category (Touati
et al., 2023; Kim et al., 2022; Tang et al., 2023) focuses on
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leveraging the zero-shot capability of GPI methods based
on SFs. However, these approaches primarily rely on the
knowledge transfer capability of GPI methods for historical
policies, which is limited by the inherent characteristics of
GPI methods, such as difficulties in transferring knowledge
in continuous action spaces. The third category (Han &
Tschiatschek, 2022; Garces et al., 2023) explores methods
to alleviate the constraints imposed by SFs on the setting
of environment dynamics. While these methods may al-
leviate the limitations of SFs on environmental dynamics,
they introduce additional constraints on other environmental
settings, limiting their applicability.

The fourth category of methods (Borsa et al., 2019; Hansen
et al., 2020; Liu & Abbeel, 2021) introduce additional in-
puts to SFs to enhance their generalization, which is also
the type to which our approach belongs. This category of
methods exhibits greater versatility compared to others and
can be easily adapted to various RL architectures with sim-
ple modifications. Moreover, their extended generalization
of SFs endows them with exceptional attributes, enhanc-
ing learning, knowledge transfer, and applicability across
diverse scenarios.

Although the aforementioned SFs algorithms can leverage
the characteristics of SFs to transfer knowledge through GPI
methods or rapidly compute action-value functions across
tasks, SFs have inherent drawbacks (Lehnert et al., 2017):
1) SFs cannot ensure that the policy produced by the GPI
algorithm is optimal for the target task, necessitating further
exploration and learning in the target task. 2) SFs employ a
value-based RL framework, which fails to handle tasks with
continuous action spaces. In continuous action spaces, the
inability to traverse the action space prevents the use of GPI
algorithm for transferring historical knowledge. 3) Due to
the strong dependence of SFs’ transferability on historical
policies and the fact that the policies obtained by GPI are
not optimal for the target task, negative transfer effects
can easily occur in new tasks. Therefore, it is necessary to
decouple SFs from policies and facilitate knowledge transfer
based on generalization within the policy space.

PeSFA (Li et al., 2022), on the other hand, decouples poli-
cies from SFs by incorporating policy representations as
additional inputs to SFs. This enables PeSFA to leverage
its generalization capabilities in both the policy and task
spaces, utilizing knowledge from historical policies to expe-
dite learning in the target task.

However, PeSFA still follows a value-based architecture
and is limited to discrete action spaces. To overcome this
challenge, in this paper, we modify the value-based PeSFA
framework to Actor-Critic (AC) architecture (Grondman
et al., 2012) known as Continuous PeSFA (CPeSFA). This
modification allows CPeSFA to effectively tackle control
problems in continuous action spaces. CPeSFA adapts the

Critic network in the AC architecture to the structure of
PeSFA, enabling its straightforward application to various
AC architecture-based RL algorithms.

Moreover, CPeSFA addresses a limitation of SFs in con-
tinuous action spaces, where SFs cannot utilize the GPI
algorithm for effective knowledge transfer. By decoupling
SFs from both policy and task, CPeSFA achieves a dual
level of generalization at the policy and task levels. We
further demonstrate that CPeSFA, leveraging policy-level
generalization accelerates the learning rate. CPeSFA also
efficiently leverages historical policy knowledge after task
switching to expedite learning in the new task. Our experi-
mental results also demonstrate that CPeSFA can accelerate
the learning rate and effectively utilize the transfer of histor-
ical knowledge to expedite policy learning on new tasks.

Our contributions are summarized as follows: (1) We ex-
tend PeSFA from value-based to AC architecture, creating
CPeSFA, enabling it to learn policies in continuous action
spaces and transfer historical knowledge; (2) We conducted
theoretical analyses, demonstrating that CPeSFA can lever-
age the generalization property of SFs in the policy space
to expedite policy learning. (3) We conducted experimental
comparisons of CPeSFA with baseline algorithms in various
environments, confirming the effectiveness of our approach.

2. Related work
Construction of a complete source policy set for SFs.
Some methods (Alver & Precup, 2022; Alegre et al., 2022;
Nemecek & Parr, 2021) aim to construct comprehensive
source policy sets to facilitate the knowledge of source tasks
and address more complex downstream tasks using GPI
methods. SIP (Alver & Precup, 2022) and SFOLS (Alegre
et al., 2022) are approaches that construct relatively com-
prehensive policy sets. They use policy sets along with
GPI methods to address complex downstream tasks effi-
ciently. Policy Caches (Nemecek & Parr, 2021) compute
upper bounds for the current policy sets in a new task, de-
termining whether to utilize existing SFs with GPI methods
or relearn policies for the task. However, these methods pri-
marily focus on improving GPI’s performance by creating
source task sets. In complex task settings or environments,
constructing these source task sets can be intricate and lead
to significant overhead.

Zero-shot capability of SFs. SFs decouples policy and
task, enabling quick inference of the action-value function
for the source policy in target task. With GPI method,
we can obtain a well-performing policy for the target task.
Therefore, many methods concentrate on exploring zero-
shot capabilities of SFs. Zero-shot SFs (Touati et al., 2023)
explored the zero-shot performance of SFs under various
dynamic feature learning methods. In this approach, some
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experiments were conducted in continuous action space en-
vironments without using transfer methods. Instead, they
directly employed a goal-dependent actor network to re-
place the typical action selection mechanism in value-based
methods. Constrained GPI (Kim et al., 2022) focuses on
constraining SFs with tighter bounds to limit fitting errors.
These bounds are then used during policy learning for the
new task, reducing fitting errors and accelerating the learn-
ing process. Composition SFs (Liu & Ahmad, 2023) pri-
marily aim at integrating value composition with SFs in
a multi-task setting. This integration allows SFs to aggre-
gate knowledge from multiple historical policy sets, effec-
tively leveraging policy knowledge across multiple tasks.
However, these methods mainly leverage the decoupling
property of SFs between tasks and policies, obtaining a
well-performing policy using the GPI method. In continu-
ous action spaces, the inability to traverse the action space
hinders the GPI method from fully leveraging its zero-shot
capabilities.

Applying SFs in different dynamic seting. Traditional SFs
are typically applied in environments where dynamic remain
constant but task weights vary. However, some works (Han
& Tschiatschek, 2022; Garces et al., 2023) have relaxed
this constraint, allowing for knowledge transfer across envi-
ronments with varying dynamic. TSF (Garces et al., 2023)
overcomes limitations of SFs by allowing knowledge trans-
fer across different dynamic environments. It efficiently
transforms SFs based on the base dynamic, projecting var-
ied dynamics into a common dynamic distribution. Abstract
Successor Option (Han & Tschiatschek, 2022) represents
options in the form of SFs, facilitating knowledge transfer
of abstract successor options across various environments
through shared features. However, these methods are pri-
marily designed for scenarios where dynamics or the envi-
ronment undergo changes. In contrast, this paper focuses
on the traditional setting where the environment dynamics
remain constant. Therefore, the research direction of these
methods is orthogonal to that of this paper.

Generalization of SFs on Extended Inputs. SFs can also
incorporate additional inputs, such as task weights or policy
representations, allowing SFs to generalize at the task or
policy level and leverage this generalization for knowledge
transfer. USFA (Borsa et al., 2019), based on UVFA (Schaul
et al., 2015), introduces task weights as an extra input to
model the correspondence between task weights and opti-
mal policies. This enables SFs to assist in transfer through
the utilization of source policy knowledge by sampling task
weights from the task weight space that are similar to the
target task during GPI. VISR (Hansen et al., 2020) and APS
(Liu & Abbeel, 2021) methods introduce diversity criteria to
SFs and use skills as an extra input to the SFs network. They
employ a method focused on maximizing behavioral mutual
information to learn various skills and policies. PeSFA (Li

et al., 2022), on the other hand, introduces policy represen-
tations as additional inputs to SFs. This empowers SFs to
generalize at both the policy and task levels. However, these
methods are primarily designed for settings with discrete
action spaces. In continuous action spaces, the value-based
SFs algorithm used by these methods struggles to learn the
optimal policy.

Policy Representation. The PeVFA (Tang et al., 2022)
algorithm takes policy representations as additional inputs
to the value function, enabling the value function to gener-
alize at the policy level. This allows for a more accurate
estimation of the value corresponding to the optimized pol-
icy, providing a better starting point for learning the true
value of the policy and thus accelerating the overall learn-
ing speed. Off-policy PeVFA (Zhang et al., 2023) extends
PeVFA to off-policy reinforcement learning algorithms and
adaptively modifies the training approach of PeVFA based
on the characteristics of off-policy algorithms.

3. Preliminaries
3.1. Reinforcement Learning

The main objective of reinforcement learning is to enable
an agent to learn a policy through interaction with the envi-
ronment to maximize the obtained reward, and this process
can be represented as a Markov Decision Process (MDP)
(Feinberg, 1996).

An MDP can be represented in the form of a quintuple
M = (S,A, p, r, γ), where S denotes the state space, A
denotes the action space, r(s, a) is the reward function,
representing the reward obtained by taking action a in state
s, and p(· | s, a) is the transition function, and γ is the
discount factor (Feinberg, 1996).

Soft Actor-Critic (SAC) (Haarnoja et al., 2018) is a rein-
forcement learning algorithm framework based on maxi-
mum entropy. The objective of SAC is to maximize the
entropy of the policy at each time step on top of maximizing
the reward, enhancing the agent’s exploration efficiency by
making the policy more random. The Soft Q function is
defined as follows:

Qπ(s, a) = r(s, a) + γE[Q(s′, a′)− α log π(a′ | s′)] (1)
where α is the entropy weight. The objective functions of
the actor in SAC is:

JQ(θQ) = E
[(
QθQ(s, a)− (r

+ γE[Qθ̄Q(s
′, a′)− α log π(a′ | s′)])

)2] (2)

The objective functions of the critic in SAC is:
Jπ(θa) = E[α log πθa(a | s)−QθQ(s, a)] (3)

where θQ and θa are network parameters of the critic and
actor network, θ̄Q is the target network parameters of the
critic network.
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3.2. Successor Features

In the setting of Successor Features (Barreto et al., 2017),
the environment dynamics of the MDP are the same across
different tasks, but the reward functions vary. The reward
function is divided into two parts: environment-related fea-
ture ϕ and task-related weight w. Therefore, the reward
function can be represented as rw(s, a) = ϕ(s, a, s′)⊤w.

According to the definition of the reward function, the
action-value function can be rewritten as follows:

Qπ(s, a) = Eπ
[ ∞∑
i=t

γi−tϕi+1 | St = s,At = a

]⊤

w

= ψπ(s, a)⊤w

(4)

Where ψπ represents the SFs under the control of policy π,
and w is the task-related weight. Since the SFs decouples
the policy from the task, when the task is switched, the
action-value function for a policy π under any task w′ can
be quickly calculated based on the SFs and the task weight
w′ for the new task, i.e., Qπw′(s, a) = ψπ(s, a)w′.

3.3. Policy-extended Successor Features

PeSFA (Li et al., 2022) builds upon SFs by introducing the
policy representation as an additional input, enabling SFs
to have generalization at the policy level. Assuming a map-
ping function for policy representation g : Π → χ ∈ Rn,
any policy π ∈ Π can be mapped to an n-dimensional
representation χπ = g(π). By incorporating policy repre-
sentation as an additional input to SFs, we obtain PeSF as
ψ(s, a, π) = ψπ(s, a), and the action-value function can be
expressed as follows:

Qπ(s, a,w) = ψπ(s, a)⊤w = ψ(s, a, χπ)
⊤w (5)

We refer to ψ̃(s, a, χπ) ≈ ψ(s, a, χπ) as PeSFA. PeSFA
takes the policy representation as additional input, decou-
pling SFs from the policy. It essentially fits the SFs cor-
responding to various policies in the policy representation
space.

4. Continuous Policy-extended Successor
Features

Traditional SFs employ a value-based RL architecture,
which is more conducive to leveraging SFs’ property of
decoupling policy from the task. However, this method has
a drawback: it cannot learn policies or transfer knowledge in
environments with continuous action spaces. In continuous
action spaces, due to the inability to traverse all possible
actions directly, GPI methods cannot be used to select the
optimal action for a given state based on the Q network.
This limitation hinders SFs from harnessing the advantage
of knowledge transfer across tasks in an environment with
continuous action space. Additionally, the value-based ar-
chitecture struggles with continuous control problems when

discretizing action spaces, as this method fails to achieve
precise control.

Therefore, we propose the Continuous PeSFA (CPeSFA)
algorithm based on the Actor-Critic (AC) architecture, ex-
tending the traditional value-based SFs algorithm to con-
tinuous action spaces. Furthermore, CPeSFA leverages the
generalization capabilities of CPeSFA in the policy space
to achieve knowledge transfer, a challenge that traditional
SFs struggle with in continuous action spaces. As CPeSFA
is an AC-based algorithm, it can seamlessly be applied to
any AC-based reinforcement learning algorithm, such as the
Soft Actor-Critic (SAC) algorithm.

4.1. Framework Overview

CPeSFA can be divided into three components: the policy
network module, the CPeSFA module, and the policy repre-
sentation module. The policy network module consists of a
standard actor network, which takes the state as input and
outputs the corresponding actions for interaction with the
environment. Additionally, the actor network serves as input
to the policy representation module and can be encoded into
the respective policy representation. The CPeSFA module
involves a CPeSFA network, which takes the state, action,
and corresponding policy representation as input to generate
the SFs for the given policy. The policy representation mod-
ule includes an encoding network that takes the parameters
of the actor and encodes them into the policy representa-
tion, which is then input into the CPeSFA module. The
architecture diagram is shown in Figure 1.
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Figure 1: The overall Architecture of CPeSFA

4.2. Continuous PeSFA

Building upon PeSFA, we modified the original value-based
architecture of PeSFA into the AC framework to enable
learning policies in continuous action spaces. We refer to
this adapted version as Continuous PeSFA (CPeSFA).

In order to apply PeSFA to AC architecture algorithms and
endow it with adaptability across different AC algorithms,
we modify the Critic part of the AC framework to adopt the
CPeSFA structure. Specifically, we modify the action-value
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function to be calculated by CPeSFA combined with the
corresponding task weight. The action-value function of
policy π under task w can be expressed as a composition of
CPeSFA and the task weight w: Qπ(s, a) = ψ(s, a, π)⊤w.

In the CPeSFA framework, the loss function for Actor is:

Jπ(θA) = E[log π(s, a)(ψθ(s, a, χπ)⊤w)] (6)
And loss function for Critic is:

JQ(θ) = E[(ψθ(s, a, χπ)⊤w
− (r + γψθ−(s

′, a′, χπ)
⊤w))2]

(7)

where θ and θA represent the parameters of CPeSFA and the
actor, respectively. θ− denotes the target network parame-
ters of CPeSFA, χπ represents the representation of policy
π, and w stands for the task weight.

Due to the explicit definition of the actor in CPeSFA using
the AC architecture, we can employ the Origin Policy Repre-
sentation (OPR) (Tang et al., 2022) algorithm to encode the
network parameters of the actor as the policy representation.
This approach, in contrast to PeSFA’s (Li et al., 2022) use of
the Surface Policy Representation (SPR)(Tang et al., 2022)
algorithm to encode state-action pairs as policy representa-
tion data, is more stable and less susceptible to the influence
of data collected from the environment. Additionally, when
conventional SFs are extended to continuous action spaces,
the inability to traverse the action space and select the action
with the maximum value prevents the use of GPI algorithms,
rendering SFs incapable of knowledge transfer. However,
CPeSFA, through decoupling SFs from policies, enables the
utilization of its policy-level generalization in continuous
action spaces, leveraging historical knowledge to acceler-
ate learning. This realization grants CPeSFA the ability
to transfer knowledge in continuous action spaces. In the
subsequent Section 4.3, we will further demonstrate how
CPeSFA utilizes its policy-level generalization to expedite
learning.

4.3. Theoretical Analysis of Generalization in Policy
Representation Space for Continuous PeSFA

CPeSFA inherits the excellent properties of PeSFA, allowing
the agent to learn SFs in continuous action space environ-
ments. By leveraging the generalization in policy space,
CPeSFA accurately estimates the SFs of the optimized pol-
icy during the iterative optimization process when learning
the optimal policy for a given task, thereby accelerating the
learning rate. Next we will show the theorem and excellent
properties of CPeSFA. The theoretical derivation and proof
process and more details can be found in Appendix C.

Furthermore, due to the decoupling property of policies
and tasks in CPeSFA, when the agent learns a policy for a
new task, it can quickly compute the action-value function
with the weight of the given task and the SFs of the policy,
i.e., Qπw′(s, a) = ψ(s, a, χπ)

⊤w′. Moreover, CPeSFA can

utilize policy-level generalization to fit SFs for policies from
historical tasks when learning the policy for a new task. This
provides a better starting point for estimating the policy
value for the new task, accelerating policy learning, and
achieving the effect of utilizing knowledge from historical
task policies for transfer.

For illustrative purposes, we employ a consistent policy rep-
resentation function, denoted as χπ = π. We define the
approximation loss of CPeSFA for any policy π from the
policy space Π as fθ(π) = ∥ψθ(π)− ψπ∥. The approxima-
tion error of the action value function corresponding to task
w can be defined as:

fwQθ
(π) = ∥ψθ(π)⊤w −Qπw∥

= ∥(ψθ(π)− ψπ)⊤w∥
Next, we will explain how CPeSFA can expedite the learn-
ing process by leveraging its generalization capabilities in
the policy space during policy evaluation and optimization.
We define the optimization process for policy evaluation
under task w as: Pw

π = Θ → Θ̂, and for θ̂ = Pw
π (θ),

the approximation error is further reduced, i.e., fwQθ̂
(π) ≤

γfwQθ
(π), where γ ∈ [0, 1). Therefore, the process of policy

evaluation and policy optimization can be represented as

θ0
Pw

π1−→ θ1
Pw

π2−→ θ2
Pw

π3−→ . . . .

Theorem 4.1. In the process of policy evaluation and opti-
mization, for any t ≥ 0, if fwQθt

(πt)+f
w
Qθt

(πt+1) ≤ ∥Qπt−
Qπt+1∥, then fwQθt

(πt+1) ≤ ∥(ψθt(πt)− ψπt+1)⊤w∥

According to the above theorem, it is evident that during
the process of policy evaluation and policy optimization,
CPeSFA places an upper bound on the estimation of the
action values for the optimized policy. This upper bound
is determined by the difference between the estimate of the
action values for the previous policy and the true action
values of the optimized policy. Therefore, in the process of
policy evaluation and optimization, CPeSFA can provide a
more accurate starting point by more accurately estimating
the SFs of the optimized policy. This results in a more
precise estimation of action values, thereby accelerating the
rate of policy learning.

Corollary 4.2. When switching task weights, the change in
estimation error mainly depends on the difference in task
weights and the estimation error of SFs for the policy π.
The approximation error of the action-value function for the
same policy under the new task can be expressed as:

fw2

Qθt
(πt+1) ≤

t∏
i=0

γtfQw1
θ0

(π1) +

t−1∑
i=0

t∏
j=i+1

γjMi

+Mt + fθt(πt+1)∥w2 − w1∥

From the above derivation, it can be inferred that the up-
per bound of the fitting error for the policy under the new
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task is determined by the repetitive contraction of the initial
approximation error from the historical task, coupled with
the local generalization error along the policy optimization
path and the disparity in weights between the new task and
historical task. Therefore, when CPeSFA switches tasks, it
can also utilize the generalization capabilities in the policy
space, providing the agent with more accurate estimates of
action values for policies under different tasks. Furthermore,
leveraging CPeSFA’s generalization capabilities across pol-
icy space and task space, it enables rapid estimation of
the action-value function for the current policy under the
new task by utilizing knowledge of historical policy. This
facilitates the transfer and utilization of knowledge from
historical tasks and policies.

Corollary 4.3. If we switch tasks during the process of
policy evaluation and optimization from w1 to w2, i.e.,

θw1
t−1

Pw2
πt−→ θw2

t

Pw2
πt+1−→ θw2

t+1

Pw2
πt+2−→ . . . , and fw1

Qθt
(πt) +

fw2

Qθt
(πt+1) ≤ ∥Qπt

w1
−Qπt+1

w2 ∥, there exists an upper bound
when using CPeSFA to estimate the action values function
of the optimized policy under the new task:

fw2

Qθt
(πt+1) ≤ ∥ψθt(πt)⊤(w2 − w1)∥

+ ∥(ψθt(πt)− ψ(πt+1))
⊤w2∥

This upper bound is related to the change in tasks during
the switch and the difference between CPeSFA’s estimate of
SFs for the current policy and the true SFs for the optimized
policy. Compared to a standard critic, CPeSFA can more
rapidly estimate action values in the new task by leveraging
its property of decoupling policy from the task. Additionally,
it can utilize its generalization properties in the policy space
to more accurately estimate the actions of the optimized
policy in the new task, thus accelerating the learning rate of
the policy.

4.4. The training algorithm of CPeSFA

The CPeSFA algorithm can be combined with any AC ar-
chitecture RL algorithm. For the ease of presentation of
our algorithm’s training process and corresponding experi-
ments, we opt to use the SAC algorithm as the foundational
framework to implement CPeSFA. The overall algorithm of
CPeSFA is shown in Algorithm1.

The policy network module and the CPeSFA module to-
gether form the actor and critic components of the AC ar-
chitecture in SAC. The policy network module comprises a
conventional actor network, and its update formula is similar
to SAC. It only needs to replace the action value function in
the target distribution that the actor aims to match with the
form of CPeSFA. i.e., π(· | s) ∝ eQ(s,·) = eψ(s,·,π)

⊤w. For
the policy representation χπ in this paper, we use the encod-
ing network to encode the parameters θa of the actor into

the corresponding policy representation, i.e., χπ = fθp(θa),
where θp represents the parameters of the policy representa-
tion encoding network. Then the actor’s objective function
is as follows:

Jπ(θa) = E[α log πθa(a | s)− ψθ(s, a, fθp(θa))⊤w] (8)

Where θa represents the parameters of the policy network.

On the other hand, the critic part is a combination of the
CPeSFA network and the task weight vector. The CPeSFA
module first encodes the policy network into policy repre-
sentations using the policy representation module. It then
inputs these representations into the PeSFA network, com-
bined with the given task weight vector, to form the critic
part, i.e., Qπ(s, a) = ψ̃(s, a, π)⊤w. The target for TD
learning can now be represented as:

y = r + γE[ψθ−(s′, a′, fθ−p (θa))
⊤w − α log πθa(a

′ | s′)]
(9)

where θ−p represents the target policy representation encod-
ing network, updated using θ−p ← τθp+(1−τ)θ−p . CPeSFA
is updated as:

JQ(θ, θp) = E[(y − ψθ(s, a, fθp(θa))⊤w)2] (10)
During the update of the CPeSFA network, gradients are
backpropagated to the policy representation module, en-
abling an end-to-end update of the policy representation
encoding network.

The policy representation module primarily consists of en-
coding networks θp that encode the network parameters of
each layer of the actor network into policy representations.
The representations obtained from each layer of the actor
are concatenated to form the complete policy representa-
tion. Therefore, the number of encoding networks in the
policy representation module is consistent with the layers
of the actor. Each layer of the actor has a corresponding
encoding network to encode the respective network weights
as the policy representation, i.e., χliπ = f iθp(θ

li
a ), where li

denotes the i-th layer of the actor. Thus, when the actor has
three layers, the policy representation can be expressed as
χπ = fθp(θa) = concat(χl1π , χ

l2
π , χ

l3
π ).

5. Experiments
In this section, we will present the primary experimental
results of CPeSFA and compare them with baseline meth-
ods. To more effectively demonstrate the robustness and
efficacy of the proposed CPeSFA algorithm, we will assess
its performance across various environments by integrating
it with both the discrete and continuous versions of the SAC
(Haarnoja et al., 2018) algorithm.

We primarily utilize the Grid World (Barreto et al., 2017),
Reacher (Barreto et al., 2017), and Point Maze (Fu et al.,
2020) environments to assess the performance of CPeSFA.
We compare CPeSFA with two baseline algorithms, namely
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SFs (Barreto et al., 2017) and PeSFA (Li et al., 2022). For
each algorithm across various environments and tasks, we
conducted testing on multiple seeds and averaged the results
to mitigate experimental variability. The experimental out-
comes demonstrate the effectiveness of our algorithm. More
implementation details can be found in the AppendixA.

First, we will conduct experiments in Grid World with a
discrete action space under the mini-grid engine (Chevalier-
Boisvert et al., 2023). In the Grid World environment, the
agent aims to maximize the cumulative reward by navigating
towards the goal while picking up objects with higher reward
values whenever possible,

Figure 2: Evaluate reward of each task on Grid World

We design a series of tasks to verify whether CPeSFA can
leverage its generalization in the policy representation space
to expedite the learning rate of the agent on individual tasks.
We also investigate whether CPeSFA can utilize SFs’ decou-
pling of policies and tasks, along with policy-level general-
ization, to quickly find optimal policies for new tasks using
learned policy spaces from historical tasks.

As shown in Figure 2, we present reward curves depicting
the performance of CPeSFA and baseline algorithms across
multiple tasks in the Grid World environment. The x-axis
of each subplot represents the training steps, while the y-
axis represents the average reward over multiple testing
rounds. The title of each subplot indicates the correspond-
ing task weight vector. It can be observed that, except for
the first task where CPeSFA exhibits a slower learning rate,
CPeSFA converges faster than the baseline algorithms on
the remaining tasks, achieving higher reward. This sug-
gests that CPeSFA effectively leverages the generalization
in the policy space of SFs to expedite learning. Through

the iterative process of policy evaluation and optimization,
CPeSFA uses the generalization in the policy space to more
accurately estimate the SFs corresponding to the optimized
policy. This provides a better starting point for policy opti-
mization, thus accelerating the learning rate of policies on
individual tasks.

Moreover, from the result of tasks 2-9, it can be observed
that CPeSFA consistently converges rapidly. This indicates
that CPeSFA can utilize the learned policy from historical
tasks to accelerate the overall learning rate. Due to the
decoupling of SFs from policies in CPeSFA, the model can
quickly identify the optimal policy for new tasks in the
policy space. It can leverage the generalization in the policy
space, find the optimal policy swiftly, and utilize the learned
SFs corresponding to historical tasks in the policy space as a
better starting point, thereby accelerating the learning rate of
policies even after task switching. Additionally, Figure 5a
presents the cumulative average reward curves. It shows that
CPeSFA consistently outperforms the baseline algorithms
throughout the training process.

Figure 3: Evaluate reward of each task On Reacher

Subsequently, we evaluated the performance of CPeSFA in
the Reacher environment. The Reacher environment is a
continuous control task under the Mujoco engine (Todorov
et al., 2012), where the goal is to manipulate a robotic arm to
a specified location. In this environment, we conduct exper-
iments using both the SAC algorithm based on continuous
action space and discrete action space in conjunction with
CPeSFA. We refer to them as CPeSFA-SAC and CPeSFA-
SAC-Discrete, respectively. The baseline algorithms for
comparison are tested on the discrete action space of the
Reacher environment.

7
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As seen in Figure 3, the CPeSFA algorithm exhibits notably
superior performance in continuous action spaces. In the
initial learning stage of the first task, CPeSFA-SAC demon-
strates excellent results, converging more rapidly compared
to other algorithms. Moreover, after switching to new tasks,
CPeSFA-SAC leverages its generalization capabilities and
knowledge acquired from historical tasks to swiftly learn
the optimal policy for new tasks.

Examining the performance of CPeSFA-Discrete, it is ob-
served that CPeSFA-Discrete performs slightly worse than
CPeSFA-SAC. However, it still capitalizes on the advan-
tages of CPeSFA in quickly learning the optimal policy
after task switching, yielding better experimental results
than most of the baseline algorithms in the majority of tasks.
Figure 5b displays the cumulative average reward curves in
the Reacher environment. CPeSFA-SAC outperforms other
algorithms significantly, and CPeSFA-SAC performs better
than CPeSFA-Discrete, indicating that CPeSFA excels in
continuous action space environment with more nuanced
control methods than the coarse-grained control of discrete
action space.

Furthermore, our extension of the PeSFA to continuous
action spaces in CPeSFA, allowing SFs to leverage its de-
coupling feature of policies and tasks, facilitates the transfer
of historical knowledge. This extension enables algorithms
based on the SFs framework to achieve excellent results
in continuous action spaces through more refined control.
The cumulative average reward curves also demonstrate
that the performance of CPeSFA-SAC is significantly better
than PeSFA, underscoring the necessity of extending SFs
algorithms to continuous action spaces.

Figure 4: Evaluate reward of each task on Point Maze
Finally, we validate the effectiveness of the CPeSFA algo-

rithm in the Point Maze environment under D4RL (Fu et al.,
2020). The Point Maze environment is designed with a
scenario similar to the Grid World environment, but both
the state and action spaces are continuous.

We aim to evaluate the performance of CPeSFA in naviga-
tion tasks in continuous action environment. Additionally,
we discretize the action space to test the effects of PeSFA
and SFs in this environment. However, through experimen-
tation, we found that PeSFA and SFs algorithms completely
fail to converge or learn effective policies in this discretized
continuous action environment. This underscores the ne-
cessity of extending SFs algorithms to continuous action
spaces. Therefore, we will compare the performance of
CPeSFA with the SAC algorithm in this environment.

(a) Grid World (b) Reacher (c) Point Maze

Figure 5: Accumulated reward of the total training phase

Figures 4 and 5c respectively illustrate the reward curves
for each task and the cumulative average reward curves for
algorithms in the Point Maze environment. It is evident
that the CPeSFA algorithm significantly outperforms SAC.
CPeSFA exhibits a faster learning rate and overall robust-
ness across tasks compared to SAC. Furthermore, even after
task switching, CPeSFA can swiftly learn the optimal pol-
icy for new tasks, demonstrating the transfer of historical
knowledge to accelerate the learning rate in new tasks.

6. Conclusion
This paper introduces the Continuous PeSFA (CPeSFA) al-
gorithm, extending the value-based PeSFA algorithm to an
easily integrable form within the Actor-Critic (AC) archi-
tecture. CPeSFA is designed to learn policies in continuous
action spaces while inheriting the advantageous features of
the PeSFA algorithm. We demonstrate that CPeSFA lever-
ages the generalization property of SFs in the policy space to
expedite the learning rate. Furthermore, CPeSFA achieves
the transfer capability that is challenging for traditional SFs
in continuous action spaces. Finally, the experiments re-
sults demonstrate that CPeSFA outperforms other baseline
algorithms significantly and effectively transfers historical
knowledge for rapid learning. In the future, we will further
enhance the transferability of CPeSFA. Leveraging CPeSFA
as a foundational framework, we aim to develop new transfer
algorithms for SFs in continuous action spaces, capitalizing
on the generalization capability in policy space.
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A. Details of environments
We employed three environments to validate the effectiveness of CPeSFA, namely Grid World, Reacher, and Point Maze.
The specific configurations of these three environments will be detailed in the following sections.

Table 1: Task weight per environment.

task Grid World/Point Maze Reacher

1 [1, 0, 0, 10] [1, 0, 0, 0]
2 [0, 1, 0, 10] [0, 1, 0, 0]
3 [1, 0, 1, 10] [0, 0, 1, 0]
4 [1, 1, 1, 10] [0, 0, 0, 1]
5 [−1, 1, 1, 10] [0.25, 0.25, 0.25, 0.25]
6 [1,−1, 1, 10] [−0.25, 0.25, 0.25, 0.25]
7 [1, 1,−1, 10] [0.25,−0.25, 0.25, 0.25]
8 [1,−1,−1, 10] [0.25, 0.25,−0.25, 0.25]
9 [−1, 1,−1, 10] [0.25, 0.25, 0.25,−0.25]

In the Grid World environment, the agent starts from an initial position in a 15x15 grid and aims to maximize the cumulative
reward by navigating towards the goal while picking up objects with higher reward values whenever possible, as illustrated
in Figure 6a. There are a total of 12 objects in the environment, with four different types, each having four objects.
The state space dimension of this environment is 43, including one-hot vectors for the x and y coordinates and one-hot
vectors indicating whether the agent has picked up a specific object. The action space is four-dimensional, denoted as
A = {UP,RIGHT,DOWN,LEFT}. The reward function is defined as r(s, a, s′) = ϕ(s, a, s′)⊤w, where the dynamic
features ϕ(s, a, s′) ∈ {0, 1}4 indicate whether the agent picks up a particular object in a one-step transition. The dynamic
feature ϕ in SFs is a four-dimensional one-hot vector, representing whether the agent picks up a certain type of object in a
one-step transition. If the agent picks up an object of a particular type, the corresponding position in ϕ is 1; otherwise, it
is 0. The task-specific weight w vector is a four-dimensional vector representing the reward values for each object type.
Therefore, r = ϕ(s, a, s′)⊤w signifies the reward obtained by the agent in a single-step transition.

Reacher is an environment with continuous action space, where the agent controls two joint-connected robotic arms to bring
the end endpoint as close as possible to target points with higher reward values. The closer the endpoint of the robotic arm is
to the target point, the greater the reward, as illustrated in Figure 6b. There are four target points in this environment, and
the coordinates of the targets, with the starting point of the robotic arms as the origin, are (0, 0.14), (0.14, 0), (−0.14, 0),
and (0,−0.14). The state space dimension of this environment is 5, representing dynamic features of the robotic arms.
The action dimension is 2, representing the magnitude and direction of the forces applied by the two robotic arms. In this
environment, the dynamic feature ϕ in SFs is a four-dimensional vector, with each dimension given by ϕi = 1− 4 · d, where
d is the Euclidean distance of the endpoint to target point i. The task weight is a four-dimensional vector representing the
reward magnitudes for the four target points.

In the continuous action space of this environment, the action dimension is 2, controlling the magnitude of the force in
two directions for the agent’s two robotic arms. In the case of a discrete action space, we discretize the action space into
9 discrete actions, denoted as {−1, 0, 1}2. In this environment, we conduct experiments using both the SAC algorithm
based on continuous action space and discrete action space in conjunction with CPeSFA. We refer to them as CPeSFA-SAC
and CPeSFA-Discrete, respectively. The baseline algorithms for comparison are tested on the discrete action space of the
Reacher environment.

Point Maze is an environment with continuous action space, similar to the Grid World environment. The settings for SFs,
including ϕ and w, are consistent with those in the Grid World environment, as illustrated in Figure 6c.. However, the state
space and action space differ. The state space dimension in this environment is 17, representing information related to the
velocity and position of the ball, as well as a one-hot vector indicating whether the agent has picked up a certain object. The
action space dimension is 2, representing the magnitude and direction of the force applied to the ball along the x and y axes.

Task weights for each environment are set as shown in Table 1.
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(a) Grid World (b) Reacher (c) Point Maze

Figure 6: Environmental schematic diagram

B. Details of Training
The parameter settings for CPeSFA, PeSFA, and SFs algorithms used in this paper are shown in the following table.

Table 2: CPeSFA’s hyperparameters per environment.

Grid World Reacher Point Maze

CPeSFA networkψ̃ MLP([256, 256]) MLP([256, 256]) MLP([256, 256])
Actor networkπθa MLP([64, 64]) MLP([64, 64]) MLP([64, 64])

Minibatch size 128 128 128
learning rate 0.001 0.001 0.001

gamma 0.9 0.95 0.99
Optimiser ADAM ADAM ADAM

policy representation dim 48 16 32
OPR encoder network fθp MLP([32, 32]) MLP([32, 32]) MLP([32, 32])
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Table 3: PeSFA’s hyperparameters per environment.

Grid World Reacher Point Maze

PeSFA networkψ̃ MLP([256, 256]) MLP([256, 256]) MLP([256, 256])
Minibatch size 128 128 128
learning rate 0.001 0.001 0.001

gamma 0.9 0.95 0.99
Optimiser ADAM ADAM ADAM

policy representation dim 32 32 24
SPR encoder network MLP([64, 64]) MLP([64, 64]) MLP([64, 64])
SPR decoder network MLP([128, 128]) MLP([128, 128]) MLP([128, 128])

Table 4: SF’s hyperparameters per environment.

Grid World Reacher Point Maze

Critic network MLP([256, 256]) MLP([256, 256]) MLP([256, 256])
Minibatch size 128 128 128
learning rate 0.001 0.001 0.001

gamma 0.9 0.95 0.99
Optimiser ADAM ADAM ADAM

Algorithm 1 CPeSFA-SAC

Input: PeSFA net ψ̃θ, Actor π̃θa , policy representation encoder net fθp , replay buffer Dmemory

for task id← 1, 2, ..., task num do
for epoch← 1, 2, ...,max epoch do

select initial state s ∈ S
Execute action a and observe s′, r, ϕ
push (s, a, ϕ, s′, r) into Dmemory

if step % training gap == 0 then
sample (s, a, ϕ, r, s′) from Dmemory

update ψ̃θ and θp using equation 10
update actor θa using equation 9
update target networks θ− ← τθ + (1− τ)θ−,θ−p ← τθp + (1− τ)θ−p

end if
end for

end for
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C. Details of theoretical derivation and proof
Theorem C.1. In the process of policy evaluation and optimization, for any t ≥ 0, if fwQθt

(πt) + fwQθt
(πt+1) ≤ ∥Qπt −

Qπt+1∥, then fwQθt
(πt+1) ≤ ∥(ψθt(πt)− ψπt+1)⊤w∥

Proof. According to the triangle inequality, if fwQθt
(πt) + fwQθt

(πt+1) ≤ ∥Qπt −Qπt+1∥, we can obtain:

fwQθt
(πt) + fwQθt

(πt+1) ≤ ∥Qπt −Qπt+1∥

≤ ∥Qθt(πt)−Qπt∥+ ∥Qθt(πt)−Qπt+1∥
= fwQθt

(πt) + ∥Qθt(πt)−Qπt+1∥

After simplification, we obtain the following equation:

fwQθt
(πt+1) ≤ ∥Qθt(πt)−Qπt+1∥ = ∥(ψθt(πt)− ψπt+1)⊤w∥

Corollary C.2. When switching task weights, the change in estimation error mainly depends on the difference in task
weights and the estimation error of SFs for the policy π. The approximation error of the action-value function for the same
policy under the new task can be expressed as:

fw2

Qθt
(πt+1) ≤

t∏
i=0

γtfQw1
θ0

(π1) +

t−1∑
i=0

t∏
j=i+1

γjMi +Mt + fθt(πt+1)∥w2 − w1∥

Proof. For the same network parameters and policy, when the task weight is switched from w1 to w2, the difference in error
for the same policy can be expressed in the following form:

fw2

Qθ
(π)− fw1

Qθ
(π) ≤ ∥ψθ(π)⊤(w2 − w1)− (Qπw2

−Qπw1
)∥

= ∥ψθ(π)⊤(w2 − w1)− (ψπ)⊤(w2 − w1)∥
= ∥(ψθ(π)− ψπ)⊤(w2 − w1)∥
≤ ∥ψθ(π)− ψπ∥∥w2 − w1∥ = fθ(π)∥w2 − w1∥

From the definition in PeVFA (Tang et al., 2022), in the policy evaluation and optimization process θt−1

Pw
πt−→ θt, if fwQθ

is L-continuous at policy πt, then we have fwQθt
(πt+1) ≤ γtf

w
Qθt−1

(πt) +Mt(πt, πt+1, L), whereMt(πt, πt+1, L) =

Lt · d(πt, πt+1), and the following corollary can be obtained.

fw1

Qθt
(πt+1) ≤

t∏
i=0

γtf
w1

Qθ0
(π1) +

t−1∑
i=0

t∏
j=i+1

γjMi +Mt

When switching tasks, the approximation error of the action-value function for the same policy under the new task can be
expressed as:

fw2

Qθt
(πt+1) ≤ fw1

Qθt
(πt+1) + fθt(πt+1)∥w2 − w1∥

≤
t∏
i=0

γtf
w1

Qθ0
(π1) +

t−1∑
i=0

t∏
j=i+1

γjMi +Mt + fθt(πt+1)∥w2 − w1∥

14
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Corollary C.3. If we switch tasks during the process of policy evaluation and optimization from w1 to w2, i.e., θw1
t−1

Pw2
πt−→

θw2
t

Pw2
πt+1−→ θw2

t+1

Pw2
πt+2−→ . . . , and fw1

Qθt
(πt)+ fw2

Qθt
(πt+1) ≤ ∥Qπt

w1
−Qπt+1

w2 ∥, there exists an upper bound when using CPeSFA
to estimate the action values function of the optimized policy under the new task:

fw2

Qθt
(πt+1) ≤ ∥ψθt(πt)⊤(w2 − w1)∥+ ∥(ψθt(πt)− ψ(πt+1))

⊤w2∥

Proof. According to the condition fw1

Qθt
(πt) + fw2

Qθt
(πt+1) ≤ ∥Qπt

w1
−Qπt+1

w2 ∥, we have

fw1

Qθt
(πt) + fw2

Qθt
(πt+1) ≤ ∥Qπt

w1
−Qπt+1

w2
∥

≤ ∥Qw1

θt
(πt)−Qπt

w1
∥+ ∥Qw1

θt
(πt)−Qπt+1

w2
∥

= fw1

Qθt
(πt) + ∥Qw1

θt
(πt)−Qπt+1

w2
∥

= fw1

Qθt
(πt) + ∥ψθt(πt)⊤w1 − ψ(πt+1)

⊤w2∥

= fw1

Qθt
(πt) + ∥ψθt(πt)⊤w1 − ψθt(πt)⊤w2 + ψθt(πt)

⊤w2 − ψ(πt+1)
⊤w2∥

= fw1

Qθt
(πt) + ∥ψθt(πt)⊤(w2 − w1)− (ψθt(πt)− ψ(πt+1))

⊤w2∥

After simplification, we obtain the following equation:

fw2

Qθt
(πt+1) ≤ ∥ψθt(πt)⊤(w2 − w1)∥+ ∥(ψθt(πt)− ψ(πt+1))

⊤w2∥
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