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Abstract

Using special tokens (e.g., gist, memory, or
compressed tokens) to compress context infor-
mation is a common practice for large language
models (LLMs). However, existing approaches
often neglect that position encodings inherently
induce local inductive biases in models, caus-
ing the compression process to ignore holis-
tic contextual dependencies. We propose En-
hanced Position Layout (EPL), a simple yet
effective method that improves the context com-
pression capability of LLMs by only adjust-
ing position IDs, the numerical identifiers that
specify token positions. EPL minimizes the
distance between context tokens and their cor-
responding special tokens and at the same time
maintains the sequence order in position IDs
between context tokens, special tokens, and the
subsequent tokens. Integrating EPL into our
best performing context compression model
results in 1.9 ROUGE-1 F1 improvement on
out-of-domain question answering datasets in
average. When extended to multimodal scenar-
ios, EPL brings an average accuracy gain of 2.6
to vision compression LLMs. !

1 Introduction

In Transformer (Vaswani et al., 2017) architec-
tures, special tokens have been widely adopted
as compression carriers of contextual information
across natural language processing (Devlin et al.,
2019; Liu et al., 2019; Bulatov et al., 2022; Ge
et al., 2024; Li et al., 2024b) and computer vi-
sion (Dosovitskiy et al., 2021; Ye et al., 2025). For
context compression, so-called soft prompt meth-
ods (Chang et al., 2024; Li et al., 2025) employ
encoders to condense long contexts into few spe-
cial tokens, enabling decoders to perform inference
based on compressed representations rather than
raw inputs, thereby significantly reducing memory
consumption and inference latency in long-context

'We will release the code upon acceptance.

scenarios (Jiang et al., 2024; Xu et al., 2024). We il-
lustrate typical soft prompt architectures in Figure 1
where special tokens are appended at the end of the
context, intending to capture the context semantics
via causal attention mechanism in LLMs.

The design ensures full context visibility for spe-
cial tokens. However, we remark that in Trans-
former architectures position IDs do not need to
coincide with physical token positions and the
model’s perceived positional information is primar-
ily determined by position IDs rather than physical
token positions (Vaswani et al., 2017). From this
viewpoint, the local inductive biases introduced by
position encodings (Devlin et al., 2019; Vaswani
et al., 2017; Su et al., 2023; Raffel et al., 2020;
Press et al., 2022) weaken the efficacy of con-
text compression under the default position layout
(DPL), primarily because of the substantial dis-
tance between the special tokens and the context
tokens, as illustrated in Figure 1 DPL. In this paper,
we examine carefully position layout designs and
propose Enhanced Position Layout (EPL) for soft
prompt architectures, which comprises Uniform
Position Layout (UPL) and Consistent Position
Layout (CPL).

UPL redistributes special tokens’ position IDs to
achieve uniform distribution in the context tokens’
position ID space, as exemplified in Figure 1. By
uniformly assigning position IDs amongst context
token position IDs, a priori, most context tokens
would have corresponding special tokens close to
them. We assume that such a prior helps the special
tokens compress the context. We formalize such
intuitions, demonstrating the optimality of the UPL
in Section 3.2.1. During compression, because
special tokens are inserted and text chunks are reor-
ganized, the position IDs between context, special
tokens and subsequent tokens (e.g. reconstructed
tokens or subsequent tokens such as QA pairs) can
become inconsistent compared to their original po-
sitions before compression. Our proposed CPL in



Section 3.2.2 guarantees to maintain the position
ID sequence order for different tokens, between
different text chunks in their natural causal order.

We empirically apply EPL to two dominant con-
text compression frameworks ICAE (Ge et al.,
2024) and 500xCompressor (Li et al., 2024b). For
the best model, on the autoencoding (AE) task,
EPL yields a 1.8 BLEU gain and converges 9.7
times faster than DPL; on out-of-domain question
answering (QA) tasks, EPL gives an average 1.9
ROUGE-1 F1 gain. When extending our applica-
tion to multimodality with VoCo-LLaMA (Ye et al.,
2025), EPL yields an average 2.6 accuracy gain on
multimodal benchmarks. The EPL improvement
is consistent across base models of different scales.
Further analysis shows that both UPL (which aims
for better context compression) and CPL (which
maintains causal sequence ordering) are essential
for the final performance improvement across tasks.
Finally, our UPL attention map visualization con-
firms the usefulness of our specified prior: UPL
special tokens indeed focus more on tokens close
to its assigned position IDs.

2 Background

2.1 Local Bias of Position Encodings

Transformer architectures (Vaswani et al., 2017)
compute contextual token embeddings through
position-invariant self-attention. Since natural lan-
guage semantics crucially depend on token order,
various position encodings (PEs) have been pro-
posed to inject positional awareness including Si-
nusoidal PE (Vaswani et al., 2017), RoPE (Su
et al., 2023), Learnable PE (Devlin et al., 2019),
T5 Bias (Raffel et al., 2020) and ALiBi (Press et al.,
2022), etc. All approaches share the inductive bias
that adjacent tokens should correlate more strongly.
Taking the PEs with the trigonometric encoding
(e.g. Sinusoidal/RoPE) design as examples, the
position embedding at a certain position is mostly
similar to its neighbors and the similarity decay as
the distance increase, see Appendix H.1 for more
details. ALiBi enforce such inductive bias by apply-
ing distance-sensitive penalties to attention scores.
We further show in Section 5.3 that Learnable PE
and T5-bias learn similar local bias through pre-
training on natural text.

2.2 Position Layout

While the local inductive bias for PEs is well
known, less is known about the position layout.
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Figure 1: Comparison of UPL and DPL. In prior work
(DPL), memory tokens are assigned position IDs 7 and
8. Our method (UPL) allocates them to position IDs 2
and 5. Tokens with ID in close proximity tend to exhibit
higher attention scores.

For any given token sequence and model, we re-
fer to position layout as the actual position ID se-
quence that is assigned by the model to the token
sequence. Notably, in this work, we remark that the
local inductive bias applies to the position layout,
not the physical token positions.

This nuance is important but hardly noticeable
because the default position layout (DPL) often
coincides with the physical token positions as illus-
trated in DPL in Figure 1 (see Table 11 for more
details on DPL). Such position layout is helpful
for language modeling (LM) task since the task
has been known to depend largely on its recent
context (Hu et al., 2024; Liu et al., 2024a). How-
ever, as LLMs are becoming a ubiquitous tool, we
hypothesize that careful position layouts for some
tasks can inject helpful inductive bias. In the rest
of the paper, we focus on LLM compression tasks
as our testbed.

3 Method

In Section 3.1, we review existing LLM compres-
sion frameworks and their DPLs; in Section 3.2 we
describe our improved position layout.

3.1 Soft Prompt Methods

ICAE (Ge et al., 2024) is a widely used encoder-
decoder soft prompt method. Its encoder com-
presses long context into a few memory tokens,
after which the decoder performs inference con-
ditioned only on the memory tokens to achieve
faster inference speed. Left of Figure 3 in Ap-
pendix illustrates this process through an example.
ICAE can be trained through two stages: continued
pretraining and fine-tuning. Continued pretrain-
ing trains on a combination of AutoEncoding (AE)
tasks and Language Modeling (LM) tasks, which
trains the LLM encoder so that the encoded mem-
ory tokens enable a frozen LLM to reconstruct
losslessly the original context and at the same time



predict the subsequent tokens following the context
to maintain ICAE’s generation capability. Right of
Figure 3 illustrates the AE training process. Fine-
tuning further trains the ICAE encoder to adapt to
real-word applications such as question answering
(QA) that we use in this work. We review the AE
and LM pretraining as well as QA finetuning in the
next subsections. To handle arbitrarily long con-
texts, we adopt the multi-chunk version of ICAE,
which divides any long context into chunks for in-
dependent compression and then aggregates the
resulting memory tokens to represent the complete
long context. 500xCompressor (Ge et al., 2024) is
similar to ICAE, with the difference of using the
KV Cache of memory tokens as the compression
carrier instead of the output of memory tokens.

3.1.1 Pretraining

During the pretraining stage, for a token sequence
X = {xo,71,...,2x)-1}, we take the first p to-
kens as the context Xconext = {20, Z1,...,Zp—1}
and the subsequent | X| — p tokens as the com-
pletion Xcompletion = {¥p; Tp+1, -+ -, T|x|—1}- The
AE task only uses Xcontext, While the LM task lever-
ages both Xcopexc and Xcompletion-

Compress X ontext is partitioned into k = [p/L]
chunks (with chunk size L) where each chunk
SO = {$(i—1)L>$(i—1)L+1> co, L1} 1S ap-
pended with a set of learnable memory tokens
M@ = {m((f),mgl), ey m|(;\)4\71}' A LLM learns
to encode each chunk into memory output tokens
M® and key-value cache KV ():

MY KV® = LLM([SD; MD] | fora) (1)

where [;] denotes concatenation along the se-
quence dimension. All M (®) share the same learn-
able parameters M, and 6y ,ra denotes a set of
low-rank adapter (Hu et al., 2022) parameters
for the LLM. The final compressed representa-
tion is obtained by concatenating the results of
each chunk: M = [MW; M3 . ; M®)] or
KV =KV, Kv®,  ,Kv®),

Pretraining AE loss in ICAE is given by:
Lag = —1og P(Xeonex: | [M;[AE]])  (2)

where [AE] is a learnable token prompting the
frozen decoder to generate X optext aS reconstruc-
tion. Similar to the AE task, the loss for LM task
in ICAE is given by:

Liv=— logP(Xcompletion | [M, [LM]]) 3)

where [LM] is a learnable token that prompts
the LLM to perform completion. We employ a
weighted loss function for joint training” :

ﬁpretrain = aLlag + (1 - Ol)ﬁLMy a=0.5
Position Layout Recall that for encoding, the to-
ken sequence starts with text chunk S followed
by memory tokens M (). For decoding, the to-
ken sequence starts with memory token outputs M
for ICAE or KV for 500xCompressor followed
by [LM] or [AE] and then subsequent tokens (i.e.
Xcontext or X, completion)-

The ICAE default position layout (DPL) al-
ways coincides with their physical token posi-
tions. For ICAE encoder for example, this means
its DPL starts with position ID 0 and ranges till
|S @+ M@ — 1|. For 500xCompressor, its en-
coder DPL also coincides with physical token posi-
tions. However, the position IDs of the decoder’s
KV are the same as the position IDs of the
encoder’s M) (the memory tokens of the i-th
chunk)?, which implies that the decoder DPL for
the K'V* consists of k repeated range from |S®)|
to |S® + M® — 1|. During decoding, DPL for
the rest of the tokens (e.g. [AE], Xcontext in AE
task) still coincides with their physical token po-
sitions. Table 2 and 3 show examples of ICAE
and 500xCompressor DPL with X onexc having two
chunks (k=2) under LM and AE task respectively.

3.1.2 Fine-tuning

ICAE (Ge et al., 2024) allows further fine-tuning
to enhance downstream task performance by en-
abling memory tokens to learn to focus on con-
text that most relate to the task; the training pro-
cess is similar to the LM pretraining. Let each
training instance consists of a triplet (C,Q, A),
where context C' is compressed into either M
(ICAE) or KV (500xCompressor). The answer
A = {ap, a1, ..., a|A|_1} is generated conditioned
on the compressed representation and the question
Q = {90,491, -, qq|—1}- The loss for QA task in
ICAE is given by:

Loa = —log P(A|[M;[LM};Q]) (4

2Unlike Ge et al. (2024)’s per-instance task allocation (AE
with probability oo /LM with 1 — «), our joint training pro-
cesses both tasks simultaneously through shared compressed
representations, improving training efficiency by eliminating
redundant context compression operations.

3This is because the KV Cache has already cached the
position information of the key_state, see this code snippet.

“Recall that KV concatenates all KV with KV =
KV, Kv®, kv ®),


https://github.com/huggingface/transformers/blob/774dc274ac966f4bccbcd90d55bba23f6cca37ae/src/transformers/models/llama/modeling_llama.py#L247-L252

k=2, L=510,|M| =102,r = 5, | X| = 2040, p = 1020

‘ s | s(2
1 1 1 2 2 2
‘ To ®1 ...  ®509 ml() ) mg ) m(lo)l ‘ T510  T511 1019 mf) ) mg b mgo)l
DPL(ICAE/500x) 0 1 509 510 511 611 0 1 509 510 511 611
EPL 1 2 510 3 8 508 511 512 1020 513 518 1018

Table 1: Position layout of encoder for S!) and S(2). More details see Appendix A, Table 12.

k =2,L =510, |M| = 102,r = 5, | X| = 2040, p = 1020

| wm/rv® /v P rv® DV wE w m Z1019

DPL(CAE) 0 101 102 203 204 205 206 1224
DPL(500%) 510 611 510 611 204 205 206 1224
EPL 3 508 513 1018 0 1 2 1020

Table 2: Position layout example of decoder in AE Task. More details see Appendix A, Table 13.

k=2, L=510,|M| = 102,r = 5, | X| = 2040, p = 1020

| mM/ev® L w0 kv aPrv® wB kv zi00 w1021 22039

DPL(CAT) 0 101 102 303 304 205 206 1224
DPL(500%) 510 611 510 611 204 205 206 1224
EPL 3 508 513 1018 1020 1021 1022 2040

Table 3: Position layout example of decoder in LM Task. More details see Appendix A, Table 14.

The QA loss for 500xCompressor is similar to
Eq. (4), with the difference of conditioning on K'V'
instead of M.

Position Layout The DPL for the QA task is sim-
ilar to the DPL for the LM task and can be derived
by replacing the Xcompletion in the LM task with the
concatenation [@Q; A]. The resulting DPL for [Q; A]
coincides with their physical token positions. For
the detailed DPL, see Table 15 in the appendix.

3.2 Enhanced Position Layout

For the DPL in soft prompt methods as described
in Section 3.1, we identify two limitations:

Distant Memory Tokens Memory tokens in soft
prompt framework mainly aim to compress the
context tokens so that the inference can be solely
based on them to accelerate inference. However,
the memory token DPL consists of a continuous
range (i.e. 510-611 in Table 1) and are all very
distant from the context token’s range (i.e. 0-509).
Given the local inductive bias of PEs that we briefly
review in section 2.1, it would be advantageous to
have memory token position IDs to be both close
to context token position IDs and covering the con-
text token ID range. In Section 3.2.1, we propose
Uniform Position Layout (UPL) that has memory
token position layout covering the context token
ID range while achieving minimum ID distances
between memory tokens and context tokens.

Inconsistent Layout Standard Transformer DPL
coincides with physical token positions, which im-

Algorithm 1 Generate Uniformly Distributed Com-
pression Position IDs

Require: Memory tokens count | M|, start/end IDs
V1, V],
Ensure: Uniform positions U*
17« (vp—v +1)/| M|
2: 04— Lgl
3: U* < torch.linspace(v1 + 0,vr, — o, |M])
4: return torch.round(U™)

plies that tokens with larger position IDs follow
the tokens with smaller position IDs, reflecting
the causal relationship between the tokens through
their assigned IDs. However, we observe that
some DPL does not comply with such proper-
ties. For example, 500xCompressor’s decoder DPL
as shown in Table 3 starts with the K'V' position
IDs {510, 511, ..., 611} but is followed by posi-
tion ID sequence {204, 205, ..., 1224} represent-
ing [[LMI; Xcompletion)- In Section 3.2.2, we detail
our Consistent Position Layout (CPL) design which
guarantees the resulting position layout to maintain
the causal structure amongst position IDs. We hy-
pothesize that aligning the causal structures for
position IDs will benefit performance.

3.2.1 Uniform Position Layout

Recall that for memory token position layout, we
aim to achieve two objectives: (1) the memory to-
ken position ID should be close to context tokens
(2) for any context token, there is some memory
token(s) whose IDs are close to it. Figure 1 (b)



Uniform Position Layout (UPL) illustrates such
design, for any context token position ID, the near-
est memory token position ID does not deviate
more than 1, which sets contrast to DPL where the
position ID of the first context token x is far from
all memory token position IDs. In the following,
we formalize the desiderata to derive analytically
the optimal position layout UPL.

Given a sequence of context token position
IDs V = {Ul,vg, . ,UL}, v; € N and Vig1l —
v; = 1 Vi, we aim to devise an algorithm to
find position IDs for |M| memory tokens U =
{ur,ug, ... ;upg ), uj € N 3, that minimize the
following function:

max | min |v; — ;|
v;EV UJ'EU

where min, ey [v; — u;| represents the distance
from the ¢-th context token to its nearest memory
token, and max,, ¢y takes the maximum of all min-
imum distances across context tokens.

The optimal solution divides V" evenly into | M |
groups, with each group containing at most [r ]
tokens (r = ﬁ), and assigns each memory token
the middle position of each group. In this case,
the maximum distance from any context token to

[r]

its nearest memory token is {TJ()' Intuitively,

the solution spreads memory token position IDs
uniformly in the range of context token position
IDs to ensure that no context token position ID is
too far away. We detail the memory token position
layout algorithm in Algorithm 1 that we apply for
each chunk to be compressed. Table 1 EPL row
shows how the memory token position layout in
UPL differs from DPL.

3.2.2 Consistent Position Layout

In this subsection, we propose consistent position
layout (CPL) to ensure that the decoder position
layout maintains the causal sequence order in posi-
tion IDs between context tokens, [LM]/[AE], and
the subsequent tokens. As shown in Table 2 and 3
EPL rows, we keep memory token position layout
unchanged compared to its encoding stage.

For tokens in Xconext and Xcompletion, We simply
assign their original sequence positions as their po-

5 Although non-integer position IDs are valid in RoPE (Su
et al.,, 2023), they have not been encountered during pre-
training, making it difficult for the model to effectively utilize
these non-integer position IDs.

®Note that any position layout will have its maximum

distance > V—;WJ , proving the optimality.

sition IDs. For example, in the AE task, the token
sequence [[AE]; Xcontext] Will be equipped with the
position layout {0, 1, ..., p} where p is the context
length to reflect the tokens to be reconstructed from
memory tokens.” For the LM task, the position lay-
outis {p,p+1,...,|X]|} for [[LMI; Xcompletion] @S
Xcompletion logically follow Xconeex in the physical
token space. Table 2 and 3 EPL rows show concrete
CPL during decoding through examples.

4 Experimental Results

4.1 Experimental Setup

Data For continued pretraining, we utilize
the SlimPajama-6B (Soboleva et al., 2023) cor-
pus. To evaluate model fine-tuning performance,
we use MRQA (Fisch et al., 2019a) dataset as our
testbed. The dataset contains evaluation on both
in-domain scenarios where the validation dataset
has its training counterpart used during training and
out-of-domain scenarios. We report results from
both settings but mainly discuss results for out-of-
domain scenarios as it assesses more critically the
soft prompt compression effectiveness.

Model Configuration We evaluate our method
on Llama-3.2-1B (Grattafiori et al., 2024). For effi-
cient adaptation, we apply LoRA(Hu et al., 2022)
to the query and value projection matrices within
the multi-head attention layers of the encoder. The
LoRA rank is set to 128, and the LoRA alpha is set
to 256. Following ICAE (Ge et al., 2024), we do
not train the decoder. In our default configuration,
the number of memory tokens is |M| = 102, the
chunk size is L = 510 8, implying a r = 5 com-
pression ratio. All models are further pretrained
and fine-tuned for 20k steps with a batch size of
16. Further hyperparameter details can be found in
Appendix C, Table 8.

4.2 Fine-tuning Results

Following ICAE and 500xCompressor, we pre-
train then fine-tune Llama-3.2-1B; we integrate
our EPL changes described in Section 3.2 into dif-
ferent architectures respectively, then follow the
same pretraining and finetuning steps. We evaluate
the downstream performance using MRQA (Fisch
et al., 2019b) for different experiments. We assess

"Remark that the procedure is the inverse of memory token
construction presented in Table 1.

8As context often exceeds the chunk size, we exten-
sively evaluate multi-chunk settings, contrary to ICAE and
500xCompressor.


https://huggingface.co/datasets/DKYoon/SlimPajama-6B
https://huggingface.co/datasets/mrqa-workshop/mrqa
https://huggingface.co/meta-llama/Llama-3.2-1B

the quality of the model’s answers using ROUGE-1
F1 (Lin, 2004) and Exact Match (EM) and report
out-of-domain results in Table 4.

For both ICAE and 500xCompressor, incorpo-
rating EPL significantly improves the performance.
The average ROUGE-1 F1 improves from 39.95
to 43.87 for ICAE and improves from 45.76 to
48.03 for 500xCompressor. The improvement was
observed for most domains, suggesting that the
method is overall effective. We observe a similar
improvement for in-domain settings (see Table 16
in the appendix).

4.3 Pretraining Results

Through pretraining LLMs have learned to com-
press context into memory tokens, allowing eval-
uation over memory tokens for its reconstruction
and language modeling capability. The evaluation
methodology is widely adopted for soft prompt-
ing (Ge et al., 2024; Li et al., 2024a) and we expect
EPL to bring a similar improvement to the fine-
tuning settings since EPL incorporates useful prior
to reconstruction and language modeling through
its position layouts. The reconstruction quality
and language modeling capability are evaluated us-
ing BLEU-4 (Papineni et al., 2002) and perplexity
(PPL), respectively’.

Table 4 confirms the EPL improvement. For
both ICAE and 500xCompressor architectures, we
observe better language modeling capability with
lower perplexity as well as better reconstruction
capability with higher BLEU. The improvement is
more significant with the weaker ICAE model but
significant for both architectures.

4.4 Applications to Multimodal Models

As EPL can be applied to all applications that com-
press context into special tokens, in this subsection,
we showcase its application in multimodaility. We
follow VoCo-LLaMA (Ye et al., 2025) for visual
question-answering tasks. Given a triplet (1, @), A),
the model encodes image [ into a sequence of
576 visual tokens V! = {vtq,vty, ..., vts75}, and
subsequently compresses V' into the KV values
of Vision Compression (VoCo) tokens. VoCo-
LLaMA adopts a single training stage akin to fine-
tuning stage in 500xCompressor and employs a
single-forward via an attention mask (see Figure 8
for the attention mask detail) to prevent () and A
from directly accessing V!. VoCo-LLaMA uses

“Reconstruction texts are generated via greedy search.

DPL and we follow its experimental setup to ex-
amine the effect of changing DPL to EPL. The
position layout changes are illustrated on top of
Figure 8.

We evaluate VoCo-LLaMA with 128 VoCo to-
kens (i.e. 4.5x compression ratio) and report per-
formance on multimodal benchmarks. As shown in
Table 5, VoCo-LLaMA combined with EPL signif-
icantly outperforms both its DPL counterpart from
our reproduction and the results reported by Ye et al.
(2025). We observe improvement across all three
evaluated tasks, validating again the universality of
EPL.

4.5 Ablation Studies

We conduct ablation studies to analyze the inde-
pendent effects of UPL and CPL in EPL (see Sec-
tion 3.2 for detailed description of UPL and CPL).
LM perplexity and AE BLEU are measured under
the same experimental settings as section 4.3 while
out-of-domain performance is measured same as
section 4.2. We show the results in Table 6 which
confirm that:

UPL improves performance by injecting com-
pression prior For all testing cases (AE and LM
during pretraining and MRQA out-of-domain per-
formance for fine-tuning) over all architectures
(ICAE and 500xCompressor), UPL improves per-
formance compared to its counterparts. We note
that the improvement is more significant for the
weaker ICAE model. For example, the MRQA
out-of-domain ROUGE-1 F1 improves 3.72 while
the improvement was 1.07 for 500xCompressor.
The results confirm that by carefully designing
the memory position layout for compression tasks,
the memory tokens obtain useful compression in-
ductive prior, improves the compression efficiency
(i.e. AE task performance) and consequently down-
stream task performance as shown by MRQA out-
of-domain performance.

CPL improves performance by maintaining to-
ken sequential orders Similarly, we observe
consistent improvement across the board by in-
corporating CPL. We note that the performance
improvement for CPL on top of UPL is more
prominent for the stronger 500xCompressor model;
MRQA out-of-domain ROUGE-1 F1 improves
1.20 while the improvement is only 0.20 for ICAE.
We think this is because ICAE DPL maintains the
token sequential orders between X ontext, LLM], and
Xcompletion While 500xCompressor does not. As



| LM AE |  BioASQ DROP DuoRC RACE RE TQA Avg.

| PPL  BLEU | FI EM Fl EM Fl EM Fl EM Fl EM Fl EM Fl EM
ICAE(DPL) | 12.18  31.80 | 3839 2699 3713 2728 2790 1832 2167 430 7698 6445 3762 2255 3995  27.32
ICAE(EPL) | 1142 9598 | 42.66  29.19 3703 2695 3250 2139 2687 534 7690 6431 4725 2981 4387  29.50
500x(DPL) | 1122 9373 | 4422 3138 4047 2934 3220 2119 2767 593 8303 7198 4700 2888 4576  31.45
500x(EPL) 1080 9850 | 4611 3191 4094 2941 3907 2632 3189 727 8039 6771 49.80 3L14  48.03 3229

Table 4: Pretraining and fine-tuning results. For the pretraining results, we report perplexity for completion and
BLEU-4 (Papineni et al., 2002) score for reconstruction calculated on a held-out set of 1k examples. For the
fine-tuning results, we report out-of-domain results, which includes 6 datasets: BioASQ (Tsatsaronis et al., 2015),
DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), Relation Extraction (RE) (Levy et al.,
2017), and TextbookQA (TQA) (Kembhavi et al., 2017). F1 in all the tables is ROUGE-1 F1 (Lin, 2004).

SQA(OOD) MMB(0OOD) VQAV2(ID)
DPL* - 61.0 76.9
DPL 64.9 59.9 76.9
EPL 66.5 64.6 78.4

Table 5: Results of VoCo-LLaMA on SQA (Lu et al.,
2022), MMB (Liu et al., 2024b), and VQAv2 (Goyal
et al., 2017). Results marked with * are from (Ye et al.,
2025).

LM AE Out-of-Domain

PPL BLEU F1 EM
ICAE-1B 12.18 31.80 39.95 27.31
+UPL 11.50 72.35 43.67 29.11
+UPL & CPL (i.e. EPL) 11.42 95.98 43.87 29.50
500x-1B 11.22 93.73 45.76 3145
+UPL 10.94 95.86 46.83 31.64

+UPL & CPL (i.e. EPL) 10.80 98.50 48.03 32.29

Table 6: Ablation study on EPL integration. +UPL
applies only UPL to encoder; UPL & CPL (i.e. EPL)
applies both UPL and CPL. Reported values are aver-
ages. More ablation results in Tables 18 and 19.

illustrated in Table 3, while the ICAE DPL coin-
cides with physical token sequence positions, the
500xCompressor DPL exhibits KV position IDs
larger than the [LM] token position ID (and some
Xcompletion position IDs), breaking the causal re-
lationship between { Xcontext; [LMJ, Xcompletion } in
the position layout.

4.6 Scalability Results

We conduct experiments at 3B and 8B scales from
the same model family to verify method scalabil-
ity. Table 7 shows that EPL achieves performance
improvements at all scales and the improvement
does not attenuate with larger scale. For example,
at 8B scale, the MRQA ROUGE-1 F1 increased
14.03 for ICAE and increased 1.89 for 500xCom-
pressor, which are similar to the improvement ob-
served in 1B case in Table 4, holding promise for
the method’s effectiveness on large-scale language
models. More detailed results on MRQA can be
found in Table 16 and 17.

LM AE Out-of-Domain
PPL BLEU F1 EM
Llama-3.2-3B
ICAE(DPL) 10.33 48.12 42.49 29.87
ICAE(EPL) 9.07 97.05 55.03 38.54
500x(DPL) 9.44 96.86 51.37 36.58
500x(EPL) 8.68 99.34 57.71 40.49
Llama-3.1-8B
ICAE(DPL) 9.22 49.08 43.09 30.01
ICAE(EPL) 7.61 98.82 57.12 39.76
500x(DPL) 7.61 97.68 57.42 40.32
500x(EPL) 7.40 99.49 59.31 41.45

Table 7: Results at Llama-3.2-3B (Grattafiori et al.,
2024), and Llama-3.1-8B. Reported values are averages.

5 Analysis
5.1 Training Curve

During pretraining, we observe that the adoption
of EPL significantly accelerates the convergence
speed of the AE loss. In the 8B-500xCompressor
setting, for example, EPL reduces the training steps
required to achieve an AE loss of 0.01 from 9.7k
to 1.0k steps, while effectively mitigating AE loss
fluctuations. This suggests that the prior informa-
tion that EPL incorporates is well-suited for AE
tasks. For more discussion, see Appendix E.

5.2 Attention Visualization

To verify whether the performance improvement
we observe previously is indeed due to more suit-
able attention patterns for compression tasks ideal-
ized in Figure 1, we visualize the summed attention
matrices of all attention heads in the second and
final layers of the ICAE-3B model (Figure 6 and
Figure 7) after the model has been fine-tuned on
MROQA tasks.

For the second layer, we observe that the mem-
ory token under UPL attends to its surrounding'”
context tokens, forming a slope (central top of
Figure 6), contrast to DPL that only exhibits self-
attention among memory tokens, showing that the

1%In terms of position IDs, not physical token positions.
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attention adheres to our specified prior through EPL
even after learning'!. In the final layer (Figure 7),
UPL maintains the slope pattern, while DPL over-
comes the position encoding resistance and attends
to distant context tokens through learning without
a clear pattern.

5.3 Learnable PEs

Our results rely on local bias of PEs that are ex-
plicitly defined in (Vaswani et al., 2017; Su et al.,
2023; Press et al., 2022). We examine in this sec-
tion empirically the properties of learnable position
encodings (Devlin et al., 2019; Raffel et al., 2020).

Figure 9 shows the cosine similarity of
BERT’s (Devlin et al., 2019) position embeddings
where we observe significantly higher similarity
between adjacent position embeddings compared
to distant tokens. Similarly, The bias values of T5
Bias (Raffel et al., 2020) decay with increasing rel-
ative distance as shown in Figure 2, indicating that
attention is stronger amongst close tokens.

The BERT’s [CLS] token (position ID 0) shows
a special pattern as shown in Figure 10: contrast to
other tokens, its cosine similarities are not higher
with its adjacent tokens. Given [CLS] token be-
haves like a compressed memory token trained us-
ing next sentence prediction, the phenomenon mo-
tivates our current work, suggesting that different
priors should be given to special tokens for best
performance.

6 Related Work

Soft Prompt Methods GIST (Mu et al., 2023)
trained LLMs with modified attention mechanisms
(similar to Figure 8) to compress prompt infor-
mation into a few gist tokens. AutoCompres-
sor (Chevalier et al., 2023) trained an LLM to re-
cursively compress long prompts by combining
compressed tokens with new sub-prompts in each
iteration, ultimately collecting all compressed to-
kens to form a compact representation. ICAE (Ge
et al., 2024) introduced an AE task enabling LLMs
to pre-train compression capabilities on large-scale
corpora, requiring only minimal parameter tun-
ing for the encoder while freezing the decoder.
500xCompressor (Li et al., 2024b) built upon ICAE
by changing the information carrier from memory
token outputs to memory tokens’ KV values. Uni-
ICL (Gao et al., 2024b) and SelfCP (Gao et al.,

""The angle of the slope is around 11° (arctan(1/5) =
11.3° at a compression rate of 5), which is consistent with our
UPL conception illustrated in Figure 1.

2024a) freeze both the encoder and decoder, train-
ing only a connector module to transform the en-
coder’s output memory tokens into decoder inputs.
VoCo-LLaMA (Ye et al., 2025) is the first to use
LLMs for compressing visual tokens. Similar to
GIST, it compresses visual token information into
VoCo tokens through modified attention masks, out-
performing methods like Q-Former (Li et al., 2023)
and average pooling with linear projection (Li et al.,
2024a). None of these methods discussed the im-
pact of position layout and our EPL can be applied
to all these soft prompt methods.

Position Layout Although we are not aware of
position layout work in the compression domain,
we find related work in multimodality by consid-
ering memory tokens as another modality. Due
to images being two-dimensional and text being
one-dimensional, handling mixed image-text posi-
tional layout remains an open question. Current
mainstream approaches in multimodality flatten 2D
images into 1D sequences (Liu et al., 2023b,a; Bav-
ishi et al., 2023; Lu et al., 2024; Sun et al., 2024).
Seeking a more elegant solution, Su (2024) pro-
posed RoPE-Tie by placing visual and text tokens
along the diagonal (y = x) in 2D space. Although
Su (2024) does not thoroughly validate their de-
sign, as the approach maintains the sequence order
between modalities and the internal locality of im-
ages and text respectively, our empirical results
suggest that the design can results in better per-
formance. Qwen2-VL (Wang et al., 2024) adopt
similar designs in video domains.

7 Conclusion

We examine position layout, an understudied topic
in context compression, and propose EPL for soft
prompt methods. Our proposed position layout
improves over default position layout by bringing
memory tokens close to its context and at the same
time maintains the logical sequence token ordering
amongst context, memory tokens and the subse-
quent tokens. Extensive experiments demonstrate
that EPL improves the compression efficiency and
downstream task performance over different archi-
tectures across different modalities.

Given LLM’s ubiquitous usage, we believe that
carefully examining position layout will give fruits
to problems beyond context compression. We hope
the success of EPL fosters research in this under
explored area.



8 Limitations

Throughout our experiments, we have tested and
confirmed EPL effectiveness under 5x compression
ratio for text reconstruction and QA tasks and 4.5x
compression ratio for visual QA. There remains
question if our method is still effective at high com-
pression ratio. We don’t have a positive outlook on
this question.

First, EPL, requiring memory tokens to achieve
uniform coverage across the context, intrinsically
aligns with lossless compression scenarios (i.e., au-
toencoding tasks) which assumes that “all tokens
in the context are equally important”; however, un-
der high compression ratio (lossy compression),
with information carrier capacity being limited, fo-
cus should be placed on important tokens, which
violates our “equally important” assumption. Em-
pirically, Figure 10 shows that the BERT’s [CLS]
would have higher attention to some tokens without
a clear pattern. Our preliminary results in Table 10
on VoCo-LLaMA also shows that EPL does not
demonstrate any significant gains when used under
high compression ratio (288x).

The analysis suggests that high ratio lossy com-
pression may require compression mechanism that
goes beyond our current work. At higher level, this
suggests when adapting position layout methods
to different application scenarios, the success can
highly depend on whether the conceived layout cap-
tures the underlying prior characteristics of specific
tasks.
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A Detailed Position Layout

Detailed position layouts are provided in this sec-
tion. Table 11 illustrates the position layout for
LLMs without compression under standard condi-
tions, reflecting natural language priors. Table 12
details the encoder’s position layout. For the de-
coder, position layouts are described in Tables 13,
14, and 15, with slight variations depending on the
specific task (AE, LM, or QA). Each of these tables
(Tables 12, 13, 14, and 15) includes a formula at
the top representing the generalized layout. Be-
low the formula, an illustrative example is given
using a context length |C| = p = 1020, chunk size
L = 510, compression ratio r = 5, total sequence
length | X'| = 2040, question length |Q)| = 50, and
answer length |A| = 5.

B Overview of ICAE

ICAE (Ge et al., 2024) is an autoencoder frame-
work to compress long contexts into short compact
memory slots. The method operates by concate-
nating designated memory tokens to the end of the
input sequence before an encoder processes the en-
tire combined sequence. Subsequently, a decoder
reconstructs the original sequence using only the
information contained within the memory tokens.
ICAE is trained in two main phases. It is first pre-
trained on massive text data using a combination
of autoencoding and language modeling objectives,
enabling it to generate memory slots that represent
the original context. Following pretraining, the
model is fine-tuned on instruction data for the pur-
pose of producing desirable responses to various
prompts. An overview of the ICAE framework is
shown in Figure 3.

C Hyperparameters

For the 1B and 3B models, we perform continued
pre-training on sequences with lengths | X| rang-
ing from 510 to 2040. For the 8B model, the in-
put sequence length | X'| ranges from 510 to 4080
during continued pre-training. We take the first
p = ||X]/2] tokens as the context. Additional
hyperparameters are listed in Table 8.

D Detailed Results

In this section, we provide detailed results. Consid-
ering the potential risk of data leakage where LLMs
may have encountered context information from
evaluation datasets during the pretraining phase(Li

13

Hyperparameter Value
Optimizer AdamW
Betas (0.9, 0.95)
Weight decay 0.1

Learning rate

le-4 (pretrain)
Se-5 (fine-tuning)

Scheduler Constant

Batch size 16

Warmup 300

Training steps 20k (pretrain)
20k (fine-tuning)

Clip norm 2.0

Table 8: Hyperparameters for training

et al., 2024b), we also report on NoContext and
FullContext settings where NoContext performs
inference solely based on the question and Full-
Context utilize the complete context and the ques-
tion for inference. In both cases, we only train
[AE] and [LM] tokens to guide the model execut-
ing corresponding tasks.

Table 9 fully presents the performance of ICAE
and 500xCompressor of different scales on LM
tasks and AE tasks. Table 16 and Table 17 respec-
tively show all results of these models in-domain
and out-of-domain in MRQA. Ablation results in-
domain and out-of-domain in MRQA are presented
in Table 18 and Table 19, respectively. Table 10
shows all results of VoCo-LLaMA on multimodal
benchmarks.

PPL(AE) PPL(LM) BLEU(AE)

Llama-3.2-1B

NoContext 11.56 13.25 0.00
ICAE(DPL) 1.40 12.18 31.80
ICAE(EPL) 1.04 11.42 95.98
500x(DPL) 1.04 11.22 93.73
500x(EPL) 1.01 10.80 98.50
FullContext 1.02 9.90 33.49
Llama-3.2-3B

NoContext 9.58 11.02 0.00
ICAE(DPL) 1.49 1033 48.12
ICAE(EPL) 1.02 9.07 97.05
500x(DPL) 1.02 9.44 96.86
500x(EPL) 1.00 8.68 99.34
FullContext 1.06 8.25 60.16
Llama-3.1-8B

7.79
1.58
1.00
1.01
1.00
1.00

9.02
9.22
7.61
7.61
7.40
7.30

0.00
49.08
98.82
97.68
99.49
98.00

NoContext
ICAE(DPL)
ICAE(EPL)
500x(DPL)
500x(EPL)
FullContext

Table 9: Perplexity of Xcopext and Xcompletion’ and
BLEU score for the reconstruction quality of Xcontext,
calculated on a held-out set of 1k examples.

E Training Curves

This section provides training curves. Figure 4 and
Figure 5 respectively show the training curves of



voco_num SQA(OOD) MMB(OOD) VQAv2(ID)
Lower Bound* 1 60.7 223 41.2
DPL* 2 - 60.1 735
DPL 2 66.1 61.5 73.7
EPL 2 67.6 61.4 69.5
DPL* 128 - 61.0 76.9
DPL 128 64.9 59.9 76.9
EPL 128 66.5 64.6 78.4
Upper Bound* 576 66.5 64.0 71.7

Table 10: Results of VoCo-LLaMA on SQA (Lu et al.,
2022), MMB (Liu et al., 2024b), and VQAv2 (Goyal
et al., 2017) from our experiments. Results marked with
* are from (Ye et al., 2025).

ICAE and 500xCompressor of different scales dur-
ing pretraining. For AE loss, it can be observed
that ICAE(DPL) struggles to decrease to O, while
500xCompressor(DPL) requires a period of oscil-
lation before converging near 0. When UPL is
applied, their AE loss rapidly converges to around
0.

F VoCo-LLaMA

VoCo-LLaMA (Ye et al., 2025) employs a modi-
fied attention mask which restricts text tokens from
attending to vision tokens. Figure 8 illustrates this
mask, and we have indicated its position layout at
the top of the figure.

G Attention Visualization

Attention maps are presented in this section. Due
to the low attention values of memory tokens in
the first layer (which appear almost empty in the
figure), we present the attention map of the second
layer. See Figure 6. We provide a magnified view
of the self-attention of memory tokens and their
attention to other tokens. It can be observed that
in the second layer, memory tokens in DPL only
attend to themselves, while in UPL, they are able to
attend to the entire context. Additionally, we also
present the attention map of the last layer, shown
in Figure 7. We use grey dashed lines to indicate
the special attention pattern of UPL.

H Local bias of Position Encodings

H.1 Sinusoidal Position Encoding

The sinusoidal position encoding (Vaswani et al.,
2017; Su et al., 2023) is given by:

) pos
PE(pos 2i) = sin (m)
j— Q pos
PE(pos,Qi—l—l) = Ccos (m)

14

Consider two nearby positions, pos and pos + 4,
where ¢ is a small number.
For any dimension ¢, the argument to the

: . : ____pos
sine/cosine function changes from 100002 Fmodet
pos+4

to m%owm. The Change in the argument 1S

100002%/dmodet * ) )
For small 4, this change in the argument is small

for all dimensions.

Since sine and cosine functions are continuous,
a small change in their input argument results in a
small change in their output value.

sin(z + €) ~ sin(xz) for small e

cos(z + €) = cos(z) for small e

Therefore, each dimension of P E s s) is very
close to the corresponding dimension of PE ;).

This means the entire vector PE s 4) is very
similar to PE(;,,s) when § is small.

This property injects a local inductive bias.

H.2 Learnable Position Encodings

In this section, we present figures related to learn-
able position embeddings. Figure 9 illustrates the
cosine similarity between different positions of
BERT (Devlin et al., 2019). It can be observed
that the cosine similarity between nearby positions
is significantly high. To illustrate the special behav-
ior of the [CLS] token’s position embedding, we
show in Figure 10 the cosine similarity of position
0 (i.e., the position ID of [CLS]), position 100, po-
sition 200, and position 300 with other positions.
Figure 2 illustrates that as the relative distance in-
creases, the learnable bias added by TS5 (Raffel
et al., 2020) to the attention scores decreases.

Cross-layer Head Average Bias

» Encoder
Decoder

Mean Bias Value

-4

-6

=200 =100 0

Relative Distance

100 200

Figure 2: T5 bias.



[ 0 BN T x|—1 Yo y1 Yy|—1
Default Position ID | 0 1 | X| -1 | X [ X[ +1 \X|+\Y\—1
[ KV(zo) KV(zr1) ... KV(z|x|_1) wo v1 vi-1
Default Position ID_| 0 1 X]—1 X[ IXI+1 .. \X|+\Y\ —1
Table 11: Default position layout of Transformers.
Ti—1)L T(i—1)L+1 TiL—1 mo mi1 miM|-1
DPL 0 1 . L—1 L L+1 L+ |M[—1
EPL | G—1)L+1 (i—1DL+2 .. iL 6] |[b+7] L(b+ (M| — 1)r]
i=1,L=510,]M|=102,r=5
(O 1 T509 mo mq mi01
DPL 0 1 509 510 511 611
EPL 1 2 510 3 8 508
i=2,L =510, M| =102,r =5
510 511 1019 mo mi mio1
DPL 0 1 509 510 511 611
EPL 511 512 1020 513 518 1018

Table 12: Position Layout of Encoder for S®). r = E:b= (i — 1)« L + 1 4 =5+

it . The notation |-] indicates
rounding to the nearest integer.

~ (1 1 ~ (1 1 - (k) (k
'rn((J )/KVO( ) 'm(1 )/KVl( ) 'm‘(J\[| 1/KVU\4)| [AE] 0 T Tp_1
DPL(ICAE) 0 T E[M] — 1 EM]  kIM|+1  KM[+2 ... kM| +p
DPL(500x) L L+1 L+ |M|—1 kM|  kIM|+1 KkM|+2 .. k|M|+p
EPL [b] Lb+ 7] b+ (k| M| — 1)r] 0 1 2 p
k=2,L =510,|M| =102,r = 5,p = 1020
77L‘(31)/KV0<1) 'm(l)/KV(l) 77L(120)1/KV1(021> [AE] 0 T 1019
DPL(ICAE) 0 1 . 203 204 205 206 e 1224
DPL(500x) 510 511 611 204 205 206 1224
EPL 3 8 1018 0 1 2 1020

Table 13: Position Layout of Decoder in AE Task. 7 = £-; b =1+ =

L. The notation |-] indicates rounding to

. [M]>
the nearest integer.
ﬁLél)/KVo(l) nL(l)/KV(l) "LUW\ /KVU\I)\ [LM] Tp Tpt1 T x| -1
DPL(ICAE) 0 I R[] — 1 R[M[  RIM[T1  kM[+2 .. KM +[X[—p
DPL(500x) L L+1 L+ |M|—1 E|M|  k[M|+1 k|M|+2 .. kM| +|X|-p
EPL 6] b+ 7] |b+ (k| M| — 1)r] p p+1 p+2 | X|
k=2, L =510, |M| = 102, 7 = 5, | X| = 2040, p = 1020
T?Lél)/KVO(I) 'rh(lU/KVl(l) m(li)l/KVI(gl) [LM] 1020 1021 2039
DPL(ICAE) 0 1 .. 203 204 205 206 . 1224
DPL/(500x) 510 511 611 204 205 206 1224
EPL 3 8 1018 1020 1021 1022 2040
Table 14: Position Layout of Decoder in LM Task. r = ﬁ; = 1. The notation |-] indicates rounding to
the nearest integer.
‘ wl kv w W kv m\(zkm 1/KV‘M)‘ [LM] @ o qo)-1 a0 aja|-1
DPL(ICAE) 0 1 E[M] — 1 E[M] kM| +1 .. t t+1 t+ A
DPL(500x) L L+1 L+|M|—1 kM| kIM]+1 .. t t41 t+ A
EPL [b] b+ 7] b+ (k|M| — 1)r] |C| |C]+1 t/ t+1 .. t' +]A]|
k=2,L =510, M| = 102,r = 5,]C| = 1020, |Q] = 50, [A] = 5
| mM/xv®  wBevd w2 k) [LM] % 49 ag .. a
DPL(ICAE) 0 1 203 204 205 254 255 259
DPL(500x) 510 511 611 204 205 254 255 259
EPL 3 8 1018 1020 1021 1070 1071 1075
Table 15: Position Layout of Decoder in QA Task. r = ﬁ b=1+51t =kM|+|Q[;t' =|C| +|Q|. The

notation | -] indicates rounding to the nearest integer.
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Long context

As artificial intelligence becomes an increasingly powerful force, some of the world’s biggest Original Context
companies are worrying about how the technology will be used ethically, and how the public will Wi oWy, Wy e Wi . W
perceive its spread. To combat these problems (among others), five tech companies — z
. etup  reseorchgroup clled he Patnership on 1 tt t 1 t
white collar jobs, eroding min ons LLM
like the courts and hospitals: these are the sorts of problems facing the industry in the future.

[AE] e(w) e(wy) - ew) - e(w,_)
»

R Teacher-forcing
ontext:: 771y My ... 1M

Prompt: What are potential H
i challenges the Al industry might :
i face in the future?

Suipoousojne
ARU0d-u|

rompt: List the companies that
t up Partnership on Al research

roup 1 2 k

oottt

Memory Slots e(w) e(wy)) ~ ew) -~ e(w) e, (m) ~ e,(m)
) » sy

LM Response:

Original Context Memory tokens

ICAE can condense a lengthy context into a few memory slots for future use

as a substitute for the original context. ICAE is lightweight, easy to train, and compatible with existing LLMs.

Figure 3: Overview of the ICAE framework proposed by (Ge et al., 2024). Source: ICAE official repository
(CCO0-1.0).

SQuAD NewsQA TriQA SearchQA HQA NQ Avg.
Fl EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM
Llama-3.2-1B
NoContext 9.34 1.92 4.80 0.59 3.04 0.92 14.99 8.71 9.47 3.27 10.88 3.91 8.75 322

ICAE(DPL) 54.58 36.99 37.57 21.25 57.96 48.85 68.90 56.68 59.61 43.01 59.40 42.01 56.34 41.47
ICAE(EPL) 59.94 39.39 43.61 24.95 61.50 51.98 69.31 57.11 64.22 46.84 61.21 42.11 59.97 43.73
500x(DPL) 68.26 49.15 43.17 25.31 60.30 51.03 70.33 57.96 66.44 49.45 64.69 46.78 62.20 46.61
500x(EPL) 67.87 47.54 49.23 29.58 64.53 55.16 72.51 60.39 68.51 51.06 65.55 46.97 64.70 48.45

FullContext 58.72 39.20 38.72 16.62 31.82 24.42 49.15 36.27 53.22 39.08 53.47 36.12 47.51 31.95
Llama-3.2-3B
NoContext 15.65 7.09 6.15 1.26 8.68 6.38 42.54 31.83 16.31 9.02 16.43 8.18 17.63 10.63

ICAE(DPL) 58.95 41.53 39.70 23.12 60.49 51.64 66.35 53.81 58.68 42.55 58.55 41.94 57.12 42.43
ICAE(EPL) 73.82 53.67 58.02 36.51 71.22 62.26 71.41 59.90 72.61 55.77 70.19 51.33 69.55 53.24
500x(DPL) 68.28 50.15 50.98 32.15 68.10 59.54 74.16 62.11 70.63 53.57 67.58 50.19 66.62 51.28
500x(EPL) 71.74 58.38 61.19 41.62 71.62 62.66 74.32 62.67 75.06 58.52 72.03 54.07 71.99 56.32
FullContext 74.07 55.43 48.99 24.62 63.92 54.05 67.69 5231 63.73 48.33 64.32 46.54 63.79 46.88

Llama-3.1-8B

NoContext 21.84 11.74 9.52 3.28 31.58 26.37 59.66 45.49 20.34 12.71 29.62 17.94 28.76 19.59
ICAE(DPL) 56.56 38.87 36.99 20.06 64.54 55.58 71.35 58.92 57.04 41.20 58.04 41.19 57.42 42.64
ICAE(EPL) 78.44 58.90 61.69 40.17 73.92 65.05 80.05 67.65 74.93 58.33 7243 54.14 73.58 57.37
500x(DPL) 80.56 62.11 60.31 40.65 74.00 65.39 79.60 67.51 76.18 59.62 74.17 56.48 74.14 58.63
500x(EPL) 80.60 61.37 64.43 44.35 74.75 66.04 79.39 67.74 77.17 60.53 74.71 56.16 75.18 59.36
FullContext 80.53 61.97 60.24 40.05 72.65 63.28 76.54 61.99 73.07 57.19 72.25 54.01 72.55 56.42

Table 16: Results on the in-domain validation set, including six QA datasets: SQuAD (Rajpurkar et al., 2016),
NewsQA (Trischler et al., 2017), TriviaQA (TriQA) (Joshi et al., 2017), SearchQA (Dunn et al., 2017), HotpotQA
(HQA) (Yang et al., 2018), and NaturalQuestions (NQ) (Kwiatkowski et al., 2019).

BioASQ DROP DuoRC RACE RE TQA Avg.
Fl1 EM F1 EM Fl1 EM Fl1 EM F1 EM F1 EM Fl1 EM
Llama-3.2-1B
NoContext 10.63 4.52 17.72 10.18 3.93 0.53 6.58 0.30 11.74 3.70 20.50 9.78 11.85 4.83

ICAE(DPL) 38.39 26.99 37.13 27.28 27.90 18.32 21.67 4.30 76.98 64.45 37.62 22.55 39.95 27.32
ICAE(EPL) 42.66 29.19 37.03 26.95 32.50 21.39 26.87 5.34 76.90 64.31 47.25 29.81 43.87 29.50
500x(DPL) 44.22 31.38 40.47 29.34 32.20 21.19 27.67 5.93 83.03 71.98 47.00 28.88 45.76 31.45
500x(EPL) 46.11 31.91 40.94 29.41 39.07 26.32 31.89 7.27 80.39 67.71 49.80 3114 48.03 32.29
FullContext 45.72 31.45 40.74 30.27 39.20 27.85 29.57 7.72 74.85 64.01 53.31 34.60 47.23 32.65

Llama-3.2-3B

NoContext 24.84 17.22 21.17 13.37 5.87 1.93 8.87 1.19 20.60 13.30 37.34 22.82 19.78 11.64
ICAE(DPL) 41.75 31.65 38.77 29.81 28.40 18.99 21.58 3.56 76.56 64.82 47.85 30.41 42.49 29.87
ICAE(EPL) 50.83 36.70 54.10 43.38 45.66 33.24 38.78 9.35 82.71 71.64 58.13 36.93 55.03 38.54
500x(DPL) 50.20 37.63 48.64 38.32 38.77 26.85 31.86 8.16 83.67 73.71 55.08 34.80 51.37 36.58
500x(EPL) 53.15 39.03 57.00 45.84 50.35 36.51 4245 10.83 85.20 75.20 58.09 35.53 5771 40.49

FullContext 59.20 42.82 50.30 35.53 39.09 27.51 36.72 9.20 81.73 73.27 67.50 43.65 55.76 38.66
Llama-3.2-8B
NoContext 43.16 33.64 25.60 18.43 6.15 2.33 7.98 1.63 33.89 25.27 50.27 32.67 27.84 19.00

ICAE(DPL) 47.42 33.98 35.98 27.41 22.54 13.99 21.48 4.60 77.58 65.98 53.55 34.13 43.09 30.01
ICAE(EPL) 53.21 37.90 58.83 47.50 47.26 33.44 40.65 9.64 84.35 73.91 58.39 36.13 57.12 39.76
500x(DPL) 51.50 37.70 59.85 47.64 47.95 34.44 41.17 10.39 85.86 75.85 58.22 35.93 57.42 40.32
500x(EPL) 54.80 39.43 62.46 50.70 51.33 37.38 43.40 11.13 85.77 75.10 58.11 35.00 59.31 41.45
FullContext 59.80 42.95 60.64 47.64 26.91 16.86 42.80 10.53 85.11 74.08 71.68 47.57 57.83 39.94

Table 17: Results on the out-of-domain validation set, including six QA datasets: BioASQ (Tsatsaronis et al., 2015),
DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), Relation Extraction (RE) (Levy et al.,
2017), and TextbookQA (TQA) (Kembhavi et al., 2017).
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SQuAD NewsQA TriQA SearchQA HQA NQ Avg.

Fl1 EM Fl1 EM F1 EM Fl1 EM Fl1 EM Fl1 EM F1 EM

Llama-3.2-1B

ICAE(DPL) 54.58 36.99 37.57 21.25 57.96 48.85 68.90 56.68 59.61 43.01 59.40 42.01 56.34 41.47
ICAE(UPL) 62.22 42.25 44.49 26.16 61.35 51.88 70.33 57.73 63.85 46.89 61.71 43.00 60.66 44.65
ICAE(EPL) 59.94 39.39 43.61 24.95 61.50 51.98 69.31 57.11 64.22 46.84 61.21 42.11 59.97 43.73
500x(DPL) 68.26 49.15 43.17 25.31 60.30 51.03 70.33 57.96 66.44 49.45 64.69 46.78 62.20 46.61
500x(UPL) 65.92 46.35 49.33 29.89 63.97 54.98 71.85 59.77 67.04 50.53 64.20 45.66 63.72 47.86
500x(EPL) 67.87 47.54 49.23 29.58 64.53 55.16 72.51 60.39 68.51 51.06 65.55 46.97 64.70 48.45

Table 18: Ablation results on the in-domain validation set, including six QA datasets: SQuAD (Rajpurkar et al.,
2016), NewsQA (Trischler et al., 2017), TriviaQA (TriQA) (Joshi et al., 2017), SearchQA (Dunn et al., 2017),
HotpotQA (HQA) (Yang et al., 2018), and NaturalQuestions (NQ) (Kwiatkowski et al., 2019).

BioASQ DROP DuoRC RACE RE TQA Avg.

F1 EM Fl1 EM Fl1 EM F1 EM Fl1 EM F1 EM Fl1 EM

Llama-3.2-1B

ICAE(DPL) 38.39 26.99 37.13 27.28 27.90 18.32 21.67 4.30 76.98 64.45 37.62 22.55 39.95 27.32
ICAE(UPL) 41.82 29.32 37.77 27.41 33.73 2245 26.90 4.90 73.61 60.62 48.19 29.94 43.67 29.11
ICAE(EPL) 42.66 29.19 37.03 26.95 32.50 21.39 26.87 5.34 76.90 64.31 47.25 29.81 43.87 29.50
500x(DPL) 44.22 31.38 40.47 29.34 3220 21.19 27.67 5.93 83.03 71.98 47.00 28.88 45.76 31.45
500x(UPL) 45.71 32.38 40.19 28.81 37.66 26.12 29.02 6.08 78.22 64.55 50.19 31.87 46.83 31.64
500x(EPL) 46.11 31.91 40.94 29.41 39.07 26.32 31.89 7.27 80.39 67.71 49.80 31.14 48.03 32.29

Table 19: Ablation results on the out-of-domain validation set, including six QA datasets: BioASQ (Tsatsaronis
et al., 2015), DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), Relation Extraction
(RE) (Levy et al., 2017), and TextbookQA (TQA) (Kembhavi et al., 2017).
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Figure 4: Training Loss of ICAE.
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Figure 5: Training Loss of 500xCompressor.
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Figure 6: Attention Matrix in the 2nd layer of ICAE after MRQA finetuning.
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Figure 7: Attention Matrix in the last layer of ICAE after MRQA fine-tuning.
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Figure 8: Attention mask and position layout of VoCo-LLaMA (Ye et al., 2025). The Position IDs modified by EPL

are marked in green (UPL) and blue (CPL) on top of the figure.
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Figure 10: The cosine similarity between the positional encoding of the [CLS] token and other positions.
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Figure 9: The cosine similarity of BERT’s positional encodings. To improve readability, we have removed results
beyond the top 10 and zoomed in on the first 50 positions.
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