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Abstract001

Using special tokens (e.g., gist, memory, or002
compressed tokens) to compress context infor-003
mation is a common practice for large language004
models (LLMs). However, existing approaches005
often neglect that position encodings inherently006
induce local inductive biases in models, caus-007
ing the compression process to ignore holis-008
tic contextual dependencies. We propose En-009
hanced Position Layout (EPL), a simple yet010
effective method that improves the context com-011
pression capability of LLMs by only adjust-012
ing position IDs, the numerical identifiers that013
specify token positions. EPL minimizes the014
distance between context tokens and their cor-015
responding special tokens and at the same time016
maintains the sequence order in position IDs017
between context tokens, special tokens, and the018
subsequent tokens. Integrating EPL into our019
best performing context compression model020
results in 1.9 ROUGE-1 F1 improvement on021
out-of-domain question answering datasets in022
average. When extended to multimodal scenar-023
ios, EPL brings an average accuracy gain of 2.6024
to vision compression LLMs. 1025

1 Introduction026

In Transformer (Vaswani et al., 2017) architec-027

tures, special tokens have been widely adopted028

as compression carriers of contextual information029

across natural language processing (Devlin et al.,030

2019; Liu et al., 2019; Bulatov et al., 2022; Ge031

et al., 2024; Li et al., 2024b) and computer vi-032

sion (Dosovitskiy et al., 2021; Ye et al., 2025). For033

context compression, so-called soft prompt meth-034

ods (Chang et al., 2024; Li et al., 2025) employ035

encoders to condense long contexts into few spe-036

cial tokens, enabling decoders to perform inference037

based on compressed representations rather than038

raw inputs, thereby significantly reducing memory039

consumption and inference latency in long-context040

1We will release the code upon acceptance.

scenarios (Jiang et al., 2024; Xu et al., 2024). We il- 041

lustrate typical soft prompt architectures in Figure 1 042

where special tokens are appended at the end of the 043

context, intending to capture the context semantics 044

via causal attention mechanism in LLMs. 045

The design ensures full context visibility for spe- 046

cial tokens. However, we remark that in Trans- 047

former architectures position IDs do not need to 048

coincide with physical token positions and the 049

model’s perceived positional information is primar- 050

ily determined by position IDs rather than physical 051

token positions (Vaswani et al., 2017). From this 052

viewpoint, the local inductive biases introduced by 053

position encodings (Devlin et al., 2019; Vaswani 054

et al., 2017; Su et al., 2023; Raffel et al., 2020; 055

Press et al., 2022) weaken the efficacy of con- 056

text compression under the default position layout 057

(DPL), primarily because of the substantial dis- 058

tance between the special tokens and the context 059

tokens, as illustrated in Figure 1 DPL. In this paper, 060

we examine carefully position layout designs and 061

propose Enhanced Position Layout (EPL) for soft 062

prompt architectures, which comprises Uniform 063

Position Layout (UPL) and Consistent Position 064

Layout (CPL). 065

UPL redistributes special tokens’ position IDs to 066

achieve uniform distribution in the context tokens’ 067

position ID space, as exemplified in Figure 1. By 068

uniformly assigning position IDs amongst context 069

token position IDs, a priori, most context tokens 070

would have corresponding special tokens close to 071

them. We assume that such a prior helps the special 072

tokens compress the context. We formalize such 073

intuitions, demonstrating the optimality of the UPL 074

in Section 3.2.1. During compression, because 075

special tokens are inserted and text chunks are reor- 076

ganized, the position IDs between context, special 077

tokens and subsequent tokens (e.g. reconstructed 078

tokens or subsequent tokens such as QA pairs) can 079

become inconsistent compared to their original po- 080

sitions before compression. Our proposed CPL in 081
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Section 3.2.2 guarantees to maintain the position082

ID sequence order for different tokens, between083

different text chunks in their natural causal order.084

We empirically apply EPL to two dominant con-085

text compression frameworks ICAE (Ge et al.,086

2024) and 500xCompressor (Li et al., 2024b). For087

the best model, on the autoencoding (AE) task,088

EPL yields a 1.8 BLEU gain and converges 9.7089

times faster than DPL; on out-of-domain question090

answering (QA) tasks, EPL gives an average 1.9091

ROUGE-1 F1 gain. When extending our applica-092

tion to multimodality with VoCo-LLaMA (Ye et al.,093

2025), EPL yields an average 2.6 accuracy gain on094

multimodal benchmarks. The EPL improvement095

is consistent across base models of different scales.096

Further analysis shows that both UPL (which aims097

for better context compression) and CPL (which098

maintains causal sequence ordering) are essential099

for the final performance improvement across tasks.100

Finally, our UPL attention map visualization con-101

firms the usefulness of our specified prior: UPL102

special tokens indeed focus more on tokens close103

to its assigned position IDs.104

2 Background105

2.1 Local Bias of Position Encodings106

Transformer architectures (Vaswani et al., 2017)107

compute contextual token embeddings through108

position-invariant self-attention. Since natural lan-109

guage semantics crucially depend on token order,110

various position encodings (PEs) have been pro-111

posed to inject positional awareness including Si-112

nusoidal PE (Vaswani et al., 2017), RoPE (Su113

et al., 2023), Learnable PE (Devlin et al., 2019),114

T5 Bias (Raffel et al., 2020) and ALiBi (Press et al.,115

2022), etc. All approaches share the inductive bias116

that adjacent tokens should correlate more strongly.117

Taking the PEs with the trigonometric encoding118

(e.g. Sinusoidal/RoPE) design as examples, the119

position embedding at a certain position is mostly120

similar to its neighbors and the similarity decay as121

the distance increase, see Appendix H.1 for more122

details. ALiBi enforce such inductive bias by apply-123

ing distance-sensitive penalties to attention scores.124

We further show in Section 5.3 that Learnable PE125

and T5-bias learn similar local bias through pre-126

training on natural text.127

2.2 Position Layout128

While the local inductive bias for PEs is well129

known, less is known about the position layout.130

1 2 3 4 5 6 7 8 1 2 3 4 5 6 2 5

Context Token

Memory Token

Position ID

Attention Flow

Figure 1: Comparison of UPL and DPL. In prior work
(DPL), memory tokens are assigned position IDs 7 and
8. Our method (UPL) allocates them to position IDs 2
and 5. Tokens with ID in close proximity tend to exhibit
higher attention scores.

For any given token sequence and model, we re- 131

fer to position layout as the actual position ID se- 132

quence that is assigned by the model to the token 133

sequence. Notably, in this work, we remark that the 134

local inductive bias applies to the position layout, 135

not the physical token positions. 136

This nuance is important but hardly noticeable 137

because the default position layout (DPL) often 138

coincides with the physical token positions as illus- 139

trated in DPL in Figure 1 (see Table 11 for more 140

details on DPL). Such position layout is helpful 141

for language modeling (LM) task since the task 142

has been known to depend largely on its recent 143

context (Hu et al., 2024; Liu et al., 2024a). How- 144

ever, as LLMs are becoming a ubiquitous tool, we 145

hypothesize that careful position layouts for some 146

tasks can inject helpful inductive bias. In the rest 147

of the paper, we focus on LLM compression tasks 148

as our testbed. 149

3 Method 150

In Section 3.1, we review existing LLM compres- 151

sion frameworks and their DPLs; in Section 3.2 we 152

describe our improved position layout. 153

3.1 Soft Prompt Methods 154

ICAE (Ge et al., 2024) is a widely used encoder- 155

decoder soft prompt method. Its encoder com- 156

presses long context into a few memory tokens, 157

after which the decoder performs inference con- 158

ditioned only on the memory tokens to achieve 159

faster inference speed. Left of Figure 3 in Ap- 160

pendix illustrates this process through an example. 161

ICAE can be trained through two stages: continued 162

pretraining and fine-tuning. Continued pretrain- 163

ing trains on a combination of AutoEncoding (AE) 164

tasks and Language Modeling (LM) tasks, which 165

trains the LLM encoder so that the encoded mem- 166

ory tokens enable a frozen LLM to reconstruct 167

losslessly the original context and at the same time 168
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predict the subsequent tokens following the context169

to maintain ICAE’s generation capability. Right of170

Figure 3 illustrates the AE training process. Fine-171

tuning further trains the ICAE encoder to adapt to172

real-word applications such as question answering173

(QA) that we use in this work. We review the AE174

and LM pretraining as well as QA finetuning in the175

next subsections. To handle arbitrarily long con-176

texts, we adopt the multi-chunk version of ICAE,177

which divides any long context into chunks for in-178

dependent compression and then aggregates the179

resulting memory tokens to represent the complete180

long context. 500xCompressor (Ge et al., 2024) is181

similar to ICAE, with the difference of using the182

KV Cache of memory tokens as the compression183

carrier instead of the output of memory tokens.184

3.1.1 Pretraining185

During the pretraining stage, for a token sequence186

X = {x0, x1, . . . , x|X|−1}, we take the first p to-187

kens as the context Xcontext = {x0, x1, . . . , xp−1}188

and the subsequent |X| − p tokens as the com-189

pletion Xcompletion = {xp, xp+1, . . . , x|X|−1}. The190

AE task only uses Xcontext, while the LM task lever-191

ages both Xcontext and Xcompletion.192

Compress Xcontext is partitioned into k = ⌈p/L⌉193

chunks (with chunk size L) where each chunk194

S(i) = {x(i−1)L, x(i−1)L+1, . . . , xiL−1} is ap-195

pended with a set of learnable memory tokens196

M (i) = {m(i)
0 ,m

(i)
1 , . . . ,m

(i)
|M |−1}. A LLM learns197

to encode each chunk into memory output tokens198

M̃ (i) and key-value cache KV (i):199

M̃ (i),KV (i) = LLM([S(i);M (i)] | θLoRA) (1)200

where [; ] denotes concatenation along the se-201

quence dimension. All M (i) share the same learn-202

able parameters M , and θLoRA denotes a set of203

low-rank adapter (Hu et al., 2022) parameters204

for the LLM. The final compressed representa-205

tion is obtained by concatenating the results of206

each chunk: M̃ = [M̃ (1); M̃ (2); . . . ; M̃ (k)] or207

KV = [KV (1);KV (2); . . . ;KV (k)].208

Pretraining AE loss in ICAE is given by:209

LAE = − logP
(
Xcontext | [M̃ ; [AE]]

)
(2)210

where [AE] is a learnable token prompting the211

frozen decoder to generate Xcontext as reconstruc-212

tion. Similar to the AE task, the loss for LM task213

in ICAE is given by:214

LLM = − logP
(
Xcompletion | [M̃ ; [LM]]

)
(3)215

where [LM] is a learnable token that prompts
the LLM to perform completion. We employ a
weighted loss function for joint training2 :

Lpretrain = αLAE + (1− α)LLM, α = 0.5

Position Layout Recall that for encoding, the to- 216

ken sequence starts with text chunk S(i) followed 217

by memory tokens M (i). For decoding, the to- 218

ken sequence starts with memory token outputs M̃ 219

for ICAE or KV for 500xCompressor followed 220

by [LM] or [AE] and then subsequent tokens (i.e. 221

Xcontext or Xcompletion). 222

The ICAE default position layout (DPL) al- 223

ways coincides with their physical token posi- 224

tions. For ICAE encoder for example, this means 225

its DPL starts with position ID 0 and ranges till 226

|S(i) + M (i) − 1|. For 500xCompressor, its en- 227

coder DPL also coincides with physical token posi- 228

tions. However, the position IDs of the decoder’s 229

KV (i) are the same as the position IDs of the 230

encoder’s M (i) (the memory tokens of the i-th 231

chunk)3, which implies that the decoder DPL for 232

the KV 4 consists of k repeated range from |S(i)| 233

to |S(i) + M (i) − 1|. During decoding, DPL for 234

the rest of the tokens (e.g. [AE], Xcontext in AE 235

task) still coincides with their physical token po- 236

sitions. Table 2 and 3 show examples of ICAE 237

and 500xCompressor DPL with Xcontext having two 238

chunks (k=2) under LM and AE task respectively. 239

3.1.2 Fine-tuning 240

ICAE (Ge et al., 2024) allows further fine-tuning 241

to enhance downstream task performance by en- 242

abling memory tokens to learn to focus on con- 243

text that most relate to the task; the training pro- 244

cess is similar to the LM pretraining. Let each 245

training instance consists of a triplet (C,Q,A), 246

where context C is compressed into either M̃ 247

(ICAE) or KV (500xCompressor). The answer 248

A = {a0, a1, ..., a|A|−1} is generated conditioned 249

on the compressed representation and the question 250

Q = {q0, q1, ..., q|Q|−1}. The loss for QA task in 251

ICAE is given by: 252

LQA = − logP
(
A | [M̃ ; [LM];Q]

)
(4) 253

2Unlike Ge et al. (2024)’s per-instance task allocation (AE
with probability α /LM with 1 − α), our joint training pro-
cesses both tasks simultaneously through shared compressed
representations, improving training efficiency by eliminating
redundant context compression operations.

3This is because the KV Cache has already cached the
position information of the key_state, see this code snippet.

4Recall that KV concatenates all KV (i) with KV =
[KV (1);KV (2); . . . ;KV (k)].

3

https://github.com/huggingface/transformers/blob/774dc274ac966f4bccbcd90d55bba23f6cca37ae/src/transformers/models/llama/modeling_llama.py#L247-L252


k = 2, L = 510, |M| = 102, r = 5, |X| = 2040, p = 1020

S(1) S(2)

x0 x1 . . . x509 m
(1)
0 m

(1)
1 . . . m

(1)
101 x510 x511 . . . x1019 m

(2)
0 m

(2)
1 . . . m

(2)
101

DPL(ICAE/500x) 0 1 . . . 509 510 511 . . . 611 0 1 . . . 509 510 511 . . . 611
EPL 1 2 . . . 510 3 8 . . . 508 511 512 . . . 1020 513 518 . . . 1018

Table 1: Position layout of encoder for S(1) and S(2). More details see Appendix A, Table 12.

k = 2, L = 510, |M| = 102, r = 5, |X| = 2040, p = 1020

m̃
(1)
0 /KV

(1)
0 . . . m̃

(1)
101/KV

(1)
101 m̃

(2)
0 /KV

(2)
0 . . . m̃

(2)
101/KV

(2)
101 [AE] x0 x1 . . . x1019

DPL(ICAE) 0 . . . 101 102 . . . 203 204 205 206 . . . 1224
DPL(500x) 510 . . . 611 510 . . . 611 204 205 206 . . . 1224

EPL 3 . . . 508 513 . . . 1018 0 1 2 . . . 1020

Table 2: Position layout example of decoder in AE Task. More details see Appendix A, Table 13.

k = 2, L = 510, |M| = 102, r = 5, |X| = 2040, p = 1020

m̃
(1)
0 /KV

(1)
0 . . . m̃

(1)
101/KV

(1)
101 m̃

(2)
0 /KV

(2)
0 . . . m̃

(2)
101/KV

(2)
101 [LM] x1020 x1021 . . . x2039

DPL(ICAE) 0 . . . 101 102 . . . 203 204 205 206 . . . 1224
DPL(500x) 510 . . . 611 510 . . . 611 204 205 206 . . . 1224

EPL 3 . . . 508 513 . . . 1018 1020 1021 1022 . . . 2040

Table 3: Position layout example of decoder in LM Task. More details see Appendix A, Table 14.

The QA loss for 500xCompressor is similar to254

Eq. (4), with the difference of conditioning on KV255

instead of M̃ .256

Position Layout The DPL for the QA task is sim-257

ilar to the DPL for the LM task and can be derived258

by replacing the Xcompletion in the LM task with the259

concatenation [Q;A]. The resulting DPL for [Q;A]260

coincides with their physical token positions. For261

the detailed DPL, see Table 15 in the appendix.262

3.2 Enhanced Position Layout263

For the DPL in soft prompt methods as described264

in Section 3.1, we identify two limitations:265

Distant Memory Tokens Memory tokens in soft266

prompt framework mainly aim to compress the267

context tokens so that the inference can be solely268

based on them to accelerate inference. However,269

the memory token DPL consists of a continuous270

range (i.e. 510-611 in Table 1) and are all very271

distant from the context token’s range (i.e. 0-509).272

Given the local inductive bias of PEs that we briefly273

review in section 2.1, it would be advantageous to274

have memory token position IDs to be both close275

to context token position IDs and covering the con-276

text token ID range. In Section 3.2.1, we propose277

Uniform Position Layout (UPL) that has memory278

token position layout covering the context token279

ID range while achieving minimum ID distances280

between memory tokens and context tokens.281

Inconsistent Layout Standard Transformer DPL282

coincides with physical token positions, which im-283

Algorithm 1 Generate Uniformly Distributed Com-
pression Position IDs

Require: Memory tokens count |M |, start/end IDs
v1, vL

Ensure: Uniform positions U∗

1: r ← (vL − v1 + 1)/|M |
2: o← r−1

2
3: U∗ ← torch.linspace

(
v1 + o, vL − o, |M |

)
4: return torch.round(U∗)

plies that tokens with larger position IDs follow 284

the tokens with smaller position IDs, reflecting 285

the causal relationship between the tokens through 286

their assigned IDs. However, we observe that 287

some DPL does not comply with such proper- 288

ties. For example, 500xCompressor’s decoder DPL 289

as shown in Table 3 starts with the KV position 290

IDs {510, 511, . . . , 611} but is followed by posi- 291

tion ID sequence {204, 205, . . . , 1224} represent- 292

ing [[LM];Xcompletion]. In Section 3.2.2, we detail 293

our Consistent Position Layout (CPL) design which 294

guarantees the resulting position layout to maintain 295

the causal structure amongst position IDs. We hy- 296

pothesize that aligning the causal structures for 297

position IDs will benefit performance. 298

3.2.1 Uniform Position Layout 299

Recall that for memory token position layout, we 300

aim to achieve two objectives: (1) the memory to- 301

ken position ID should be close to context tokens 302

(2) for any context token, there is some memory 303

token(s) whose IDs are close to it. Figure 1 (b) 304
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Uniform Position Layout (UPL) illustrates such305

design, for any context token position ID, the near-306

est memory token position ID does not deviate307

more than 1, which sets contrast to DPL where the308

position ID of the first context token x1 is far from309

all memory token position IDs. In the following,310

we formalize the desiderata to derive analytically311

the optimal position layout UPL.312

Given a sequence of context token position313

IDs V = {v1, v2, . . . , vL}, vi ∈ N and vi+1 −314

vi = 1 ∀i, we aim to devise an algorithm to315

find position IDs for |M | memory tokens U =316

{u1, u2, . . . , u|M |}, uj ∈ N 5, that minimize the317

following function:318

max
vi∈V

(
min
uj∈U

|vi − uj |
)

319

where minuj∈U |vi − uj | represents the distance320

from the i-th context token to its nearest memory321

token, and maxvi∈V takes the maximum of all min-322

imum distances across context tokens.323

The optimal solution divides V evenly into |M |324

groups, with each group containing at most ⌈r⌉325

tokens (r = L
|M | ), and assigns each memory token326

the middle position of each group. In this case,327

the maximum distance from any context token to328

its nearest memory token is
⌊
⌈r⌉
2

⌋
6. Intuitively,329

the solution spreads memory token position IDs330

uniformly in the range of context token position331

IDs to ensure that no context token position ID is332

too far away. We detail the memory token position333

layout algorithm in Algorithm 1 that we apply for334

each chunk to be compressed. Table 1 EPL row335

shows how the memory token position layout in336

UPL differs from DPL.337

3.2.2 Consistent Position Layout338

In this subsection, we propose consistent position339

layout (CPL) to ensure that the decoder position340

layout maintains the causal sequence order in posi-341

tion IDs between context tokens, [LM]/[AE], and342

the subsequent tokens. As shown in Table 2 and 3343

EPL rows, we keep memory token position layout344

unchanged compared to its encoding stage.345

For tokens in Xcontext and Xcompletion, we simply346

assign their original sequence positions as their po-347

5Although non-integer position IDs are valid in RoPE (Su
et al., 2023), they have not been encountered during pre-
training, making it difficult for the model to effectively utilize
these non-integer position IDs.

6Note that any position layout will have its maximum
distance ≥

⌊
⌈r⌉
2

⌋
, proving the optimality.

sition IDs. For example, in the AE task, the token 348

sequence [[AE];Xcontext] will be equipped with the 349

position layout {0, 1, . . . , p} where p is the context 350

length to reflect the tokens to be reconstructed from 351

memory tokens.7 For the LM task, the position lay- 352

out is {p, p+1, . . . , |X|} for [[LM];Xcompletion] as 353

Xcompletion logically follow Xcontext in the physical 354

token space. Table 2 and 3 EPL rows show concrete 355

CPL during decoding through examples. 356

4 Experimental Results 357

4.1 Experimental Setup 358

Data For continued pretraining, we utilize 359

the SlimPajama-6B (Soboleva et al., 2023) cor- 360

pus. To evaluate model fine-tuning performance, 361

we use MRQA (Fisch et al., 2019a) dataset as our 362

testbed. The dataset contains evaluation on both 363

in-domain scenarios where the validation dataset 364

has its training counterpart used during training and 365

out-of-domain scenarios. We report results from 366

both settings but mainly discuss results for out-of- 367

domain scenarios as it assesses more critically the 368

soft prompt compression effectiveness. 369

Model Configuration We evaluate our method 370

on Llama-3.2-1B (Grattafiori et al., 2024). For effi- 371

cient adaptation, we apply LoRA(Hu et al., 2022) 372

to the query and value projection matrices within 373

the multi-head attention layers of the encoder. The 374

LoRA rank is set to 128, and the LoRA alpha is set 375

to 256. Following ICAE (Ge et al., 2024), we do 376

not train the decoder. In our default configuration, 377

the number of memory tokens is |M | = 102, the 378

chunk size is L = 510 8, implying a r = 5 com- 379

pression ratio. All models are further pretrained 380

and fine-tuned for 20k steps with a batch size of 381

16. Further hyperparameter details can be found in 382

Appendix C, Table 8. 383

4.2 Fine-tuning Results 384

Following ICAE and 500xCompressor, we pre- 385

train then fine-tune Llama-3.2-1B; we integrate 386

our EPL changes described in Section 3.2 into dif- 387

ferent architectures respectively, then follow the 388

same pretraining and finetuning steps. We evaluate 389

the downstream performance using MRQA (Fisch 390

et al., 2019b) for different experiments. We assess 391

7Remark that the procedure is the inverse of memory token
construction presented in Table 1.

8As context often exceeds the chunk size, we exten-
sively evaluate multi-chunk settings, contrary to ICAE and
500xCompressor.

5

https://huggingface.co/datasets/DKYoon/SlimPajama-6B
https://huggingface.co/datasets/mrqa-workshop/mrqa
https://huggingface.co/meta-llama/Llama-3.2-1B


the quality of the model’s answers using ROUGE-1392

F1 (Lin, 2004) and Exact Match (EM) and report393

out-of-domain results in Table 4.394

For both ICAE and 500xCompressor, incorpo-395

rating EPL significantly improves the performance.396

The average ROUGE-1 F1 improves from 39.95397

to 43.87 for ICAE and improves from 45.76 to398

48.03 for 500xCompressor. The improvement was399

observed for most domains, suggesting that the400

method is overall effective. We observe a similar401

improvement for in-domain settings (see Table 16402

in the appendix).403

4.3 Pretraining Results404

Through pretraining LLMs have learned to com-405

press context into memory tokens, allowing eval-406

uation over memory tokens for its reconstruction407

and language modeling capability. The evaluation408

methodology is widely adopted for soft prompt-409

ing (Ge et al., 2024; Li et al., 2024a) and we expect410

EPL to bring a similar improvement to the fine-411

tuning settings since EPL incorporates useful prior412

to reconstruction and language modeling through413

its position layouts. The reconstruction quality414

and language modeling capability are evaluated us-415

ing BLEU-4 (Papineni et al., 2002) and perplexity416

(PPL), respectively9.417

Table 4 confirms the EPL improvement. For418

both ICAE and 500xCompressor architectures, we419

observe better language modeling capability with420

lower perplexity as well as better reconstruction421

capability with higher BLEU. The improvement is422

more significant with the weaker ICAE model but423

significant for both architectures.424

4.4 Applications to Multimodal Models425

As EPL can be applied to all applications that com-426

press context into special tokens, in this subsection,427

we showcase its application in multimodaility. We428

follow VoCo-LLaMA (Ye et al., 2025) for visual429

question-answering tasks. Given a triplet (I,Q,A),430

the model encodes image I into a sequence of431

576 visual tokens V t = {vt0, vt1, ..., vt575}, and432

subsequently compresses V t into the KV values433

of Vision Compression (VoCo) tokens. VoCo-434

LLaMA adopts a single training stage akin to fine-435

tuning stage in 500xCompressor and employs a436

single-forward via an attention mask (see Figure 8437

for the attention mask detail) to prevent Q and A438

from directly accessing V t. VoCo-LLaMA uses439

9Reconstruction texts are generated via greedy search.

DPL and we follow its experimental setup to ex- 440

amine the effect of changing DPL to EPL. The 441

position layout changes are illustrated on top of 442

Figure 8. 443

We evaluate VoCo-LLaMA with 128 VoCo to- 444

kens (i.e. 4.5x compression ratio) and report per- 445

formance on multimodal benchmarks. As shown in 446

Table 5, VoCo-LLaMA combined with EPL signif- 447

icantly outperforms both its DPL counterpart from 448

our reproduction and the results reported by Ye et al. 449

(2025). We observe improvement across all three 450

evaluated tasks, validating again the universality of 451

EPL. 452

4.5 Ablation Studies 453

We conduct ablation studies to analyze the inde- 454

pendent effects of UPL and CPL in EPL (see Sec- 455

tion 3.2 for detailed description of UPL and CPL). 456

LM perplexity and AE BLEU are measured under 457

the same experimental settings as section 4.3 while 458

out-of-domain performance is measured same as 459

section 4.2. We show the results in Table 6 which 460

confirm that: 461

UPL improves performance by injecting com- 462

pression prior For all testing cases (AE and LM 463

during pretraining and MRQA out-of-domain per- 464

formance for fine-tuning) over all architectures 465

(ICAE and 500xCompressor), UPL improves per- 466

formance compared to its counterparts. We note 467

that the improvement is more significant for the 468

weaker ICAE model. For example, the MRQA 469

out-of-domain ROUGE-1 F1 improves 3.72 while 470

the improvement was 1.07 for 500xCompressor. 471

The results confirm that by carefully designing 472

the memory position layout for compression tasks, 473

the memory tokens obtain useful compression in- 474

ductive prior, improves the compression efficiency 475

(i.e. AE task performance) and consequently down- 476

stream task performance as shown by MRQA out- 477

of-domain performance. 478

CPL improves performance by maintaining to- 479

ken sequential orders Similarly, we observe 480

consistent improvement across the board by in- 481

corporating CPL. We note that the performance 482

improvement for CPL on top of UPL is more 483

prominent for the stronger 500xCompressor model; 484

MRQA out-of-domain ROUGE-1 F1 improves 485

1.20 while the improvement is only 0.20 for ICAE. 486

We think this is because ICAE DPL maintains the 487

token sequential orders between Xcontext, [LM], and 488

Xcompletion while 500xCompressor does not. As 489
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LM AE BioASQ DROP DuoRC RACE RE TQA Avg.

PPL BLEU F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

ICAE(DPL) 12.18 31.80 38.39 26.99 37.13 27.28 27.90 18.32 21.67 4.30 76.98 64.45 37.62 22.55 39.95 27.32
ICAE(EPL) 11.42 95.98 42.66 29.19 37.03 26.95 32.50 21.39 26.87 5.34 76.90 64.31 47.25 29.81 43.87 29.50
500x(DPL) 11.22 93.73 44.22 31.38 40.47 29.34 32.20 21.19 27.67 5.93 83.03 71.98 47.00 28.88 45.76 31.45
500x(EPL) 10.80 98.50 46.11 31.91 40.94 29.41 39.07 26.32 31.89 7.27 80.39 67.71 49.80 31.14 48.03 32.29

Table 4: Pretraining and fine-tuning results. For the pretraining results, we report perplexity for completion and
BLEU-4 (Papineni et al., 2002) score for reconstruction calculated on a held-out set of 1k examples. For the
fine-tuning results, we report out-of-domain results, which includes 6 datasets: BioASQ (Tsatsaronis et al., 2015),
DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), Relation Extraction (RE) (Levy et al.,
2017), and TextbookQA (TQA) (Kembhavi et al., 2017). F1 in all the tables is ROUGE-1 F1 (Lin, 2004).

SQA(OOD) MMB(OOD) VQAv2(ID)

DPL* - 61.0 76.9
DPL 64.9 59.9 76.9
EPL 66.5 64.6 78.4

Table 5: Results of VoCo-LLaMA on SQA (Lu et al.,
2022), MMB (Liu et al., 2024b), and VQAv2 (Goyal
et al., 2017). Results marked with * are from (Ye et al.,
2025).

LM AE Out-of-Domain

PPL BLEU F1 EM

ICAE-1B 12.18 31.80 39.95 27.31
+UPL 11.50 72.35 43.67 29.11
+UPL & CPL (i.e. EPL) 11.42 95.98 43.87 29.50

500x-1B 11.22 93.73 45.76 31.45
+UPL 10.94 95.86 46.83 31.64
+UPL & CPL (i.e. EPL) 10.80 98.50 48.03 32.29

Table 6: Ablation study on EPL integration. +UPL
applies only UPL to encoder; UPL & CPL (i.e. EPL)
applies both UPL and CPL. Reported values are aver-
ages. More ablation results in Tables 18 and 19.

illustrated in Table 3, while the ICAE DPL coin-490

cides with physical token sequence positions, the491

500xCompressor DPL exhibits KV position IDs492

larger than the [LM] token position ID (and some493

Xcompletion position IDs), breaking the causal re-494

lationship between {Xcontext,[LM], Xcompletion} in495

the position layout.496

4.6 Scalability Results497

We conduct experiments at 3B and 8B scales from498

the same model family to verify method scalabil-499

ity. Table 7 shows that EPL achieves performance500

improvements at all scales and the improvement501

does not attenuate with larger scale. For example,502

at 8B scale, the MRQA ROUGE-1 F1 increased503

14.03 for ICAE and increased 1.89 for 500xCom-504

pressor, which are similar to the improvement ob-505

served in 1B case in Table 4, holding promise for506

the method’s effectiveness on large-scale language507

models. More detailed results on MRQA can be508

found in Table 16 and 17.509

LM AE Out-of-Domain

PPL BLEU F1 EM

Llama-3.2-3B

ICAE(DPL) 10.33 48.12 42.49 29.87
ICAE(EPL) 9.07 97.05 55.03 38.54
500x(DPL) 9.44 96.86 51.37 36.58
500x(EPL) 8.68 99.34 57.71 40.49

Llama-3.1-8B

ICAE(DPL) 9.22 49.08 43.09 30.01
ICAE(EPL) 7.61 98.82 57.12 39.76
500x(DPL) 7.61 97.68 57.42 40.32
500x(EPL) 7.40 99.49 59.31 41.45

Table 7: Results at Llama-3.2-3B (Grattafiori et al.,
2024), and Llama-3.1-8B. Reported values are averages.

5 Analysis 510

5.1 Training Curve 511

During pretraining, we observe that the adoption 512

of EPL significantly accelerates the convergence 513

speed of the AE loss. In the 8B-500xCompressor 514

setting, for example, EPL reduces the training steps 515

required to achieve an AE loss of 0.01 from 9.7k 516

to 1.0k steps, while effectively mitigating AE loss 517

fluctuations. This suggests that the prior informa- 518

tion that EPL incorporates is well-suited for AE 519

tasks. For more discussion, see Appendix E. 520

5.2 Attention Visualization 521

To verify whether the performance improvement 522

we observe previously is indeed due to more suit- 523

able attention patterns for compression tasks ideal- 524

ized in Figure 1, we visualize the summed attention 525

matrices of all attention heads in the second and 526

final layers of the ICAE-3B model (Figure 6 and 527

Figure 7) after the model has been fine-tuned on 528

MRQA tasks. 529

For the second layer, we observe that the mem- 530

ory token under UPL attends to its surrounding10 531

context tokens, forming a slope (central top of 532

Figure 6), contrast to DPL that only exhibits self- 533

attention among memory tokens, showing that the 534

10In terms of position IDs, not physical token positions.
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attention adheres to our specified prior through EPL535

even after learning11. In the final layer (Figure 7),536

UPL maintains the slope pattern, while DPL over-537

comes the position encoding resistance and attends538

to distant context tokens through learning without539

a clear pattern.540

5.3 Learnable PEs541

Our results rely on local bias of PEs that are ex-542

plicitly defined in (Vaswani et al., 2017; Su et al.,543

2023; Press et al., 2022). We examine in this sec-544

tion empirically the properties of learnable position545

encodings (Devlin et al., 2019; Raffel et al., 2020).546

Figure 9 shows the cosine similarity of547

BERT’s (Devlin et al., 2019) position embeddings548

where we observe significantly higher similarity549

between adjacent position embeddings compared550

to distant tokens. Similarly, The bias values of T5551

Bias (Raffel et al., 2020) decay with increasing rel-552

ative distance as shown in Figure 2, indicating that553

attention is stronger amongst close tokens.554

The BERT’s [CLS] token (position ID 0) shows555

a special pattern as shown in Figure 10: contrast to556

other tokens, its cosine similarities are not higher557

with its adjacent tokens. Given [CLS] token be-558

haves like a compressed memory token trained us-559

ing next sentence prediction, the phenomenon mo-560

tivates our current work, suggesting that different561

priors should be given to special tokens for best562

performance.563

6 Related Work564

Soft Prompt Methods GIST (Mu et al., 2023)565

trained LLMs with modified attention mechanisms566

(similar to Figure 8) to compress prompt infor-567

mation into a few gist tokens. AutoCompres-568

sor (Chevalier et al., 2023) trained an LLM to re-569

cursively compress long prompts by combining570

compressed tokens with new sub-prompts in each571

iteration, ultimately collecting all compressed to-572

kens to form a compact representation. ICAE (Ge573

et al., 2024) introduced an AE task enabling LLMs574

to pre-train compression capabilities on large-scale575

corpora, requiring only minimal parameter tun-576

ing for the encoder while freezing the decoder.577

500xCompressor (Li et al., 2024b) built upon ICAE578

by changing the information carrier from memory579

token outputs to memory tokens’ KV values. Uni-580

ICL (Gao et al., 2024b) and SelfCP (Gao et al.,581

11The angle of the slope is around 11◦ (arctan(1/5) =
11.3◦ at a compression rate of 5), which is consistent with our
UPL conception illustrated in Figure 1.

2024a) freeze both the encoder and decoder, train- 582

ing only a connector module to transform the en- 583

coder’s output memory tokens into decoder inputs. 584

VoCo-LLaMA (Ye et al., 2025) is the first to use 585

LLMs for compressing visual tokens. Similar to 586

GIST, it compresses visual token information into 587

VoCo tokens through modified attention masks, out- 588

performing methods like Q-Former (Li et al., 2023) 589

and average pooling with linear projection (Li et al., 590

2024a). None of these methods discussed the im- 591

pact of position layout and our EPL can be applied 592

to all these soft prompt methods. 593

Position Layout Although we are not aware of 594

position layout work in the compression domain, 595

we find related work in multimodality by consid- 596

ering memory tokens as another modality. Due 597

to images being two-dimensional and text being 598

one-dimensional, handling mixed image-text posi- 599

tional layout remains an open question. Current 600

mainstream approaches in multimodality flatten 2D 601

images into 1D sequences (Liu et al., 2023b,a; Bav- 602

ishi et al., 2023; Lu et al., 2024; Sun et al., 2024). 603

Seeking a more elegant solution, Su (2024) pro- 604

posed RoPE-Tie by placing visual and text tokens 605

along the diagonal (y = x) in 2D space. Although 606

Su (2024) does not thoroughly validate their de- 607

sign, as the approach maintains the sequence order 608

between modalities and the internal locality of im- 609

ages and text respectively, our empirical results 610

suggest that the design can results in better per- 611

formance. Qwen2-VL (Wang et al., 2024) adopt 612

similar designs in video domains. 613

7 Conclusion 614

We examine position layout, an understudied topic 615

in context compression, and propose EPL for soft 616

prompt methods. Our proposed position layout 617

improves over default position layout by bringing 618

memory tokens close to its context and at the same 619

time maintains the logical sequence token ordering 620

amongst context, memory tokens and the subse- 621

quent tokens. Extensive experiments demonstrate 622

that EPL improves the compression efficiency and 623

downstream task performance over different archi- 624

tectures across different modalities. 625

Given LLM’s ubiquitous usage, we believe that 626

carefully examining position layout will give fruits 627

to problems beyond context compression. We hope 628

the success of EPL fosters research in this under 629

explored area. 630
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8 Limitations631

Throughout our experiments, we have tested and632

confirmed EPL effectiveness under 5x compression633

ratio for text reconstruction and QA tasks and 4.5x634

compression ratio for visual QA. There remains635

question if our method is still effective at high com-636

pression ratio. We don’t have a positive outlook on637

this question.638

First, EPL, requiring memory tokens to achieve639

uniform coverage across the context, intrinsically640

aligns with lossless compression scenarios (i.e., au-641

toencoding tasks) which assumes that “all tokens642

in the context are equally important”; however, un-643

der high compression ratio (lossy compression),644

with information carrier capacity being limited, fo-645

cus should be placed on important tokens, which646

violates our “equally important” assumption. Em-647

pirically, Figure 10 shows that the BERT’s [CLS]648

would have higher attention to some tokens without649

a clear pattern. Our preliminary results in Table 10650

on VoCo-LLaMA also shows that EPL does not651

demonstrate any significant gains when used under652

high compression ratio (288x).653

The analysis suggests that high ratio lossy com-654

pression may require compression mechanism that655

goes beyond our current work. At higher level, this656

suggests when adapting position layout methods657

to different application scenarios, the success can658

highly depend on whether the conceived layout cap-659

tures the underlying prior characteristics of specific660

tasks.661
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A Detailed Position Layout962

Detailed position layouts are provided in this sec-963

tion. Table 11 illustrates the position layout for964

LLMs without compression under standard condi-965

tions, reflecting natural language priors. Table 12966

details the encoder’s position layout. For the de-967

coder, position layouts are described in Tables 13,968

14, and 15, with slight variations depending on the969

specific task (AE, LM, or QA). Each of these tables970

(Tables 12, 13, 14, and 15) includes a formula at971

the top representing the generalized layout. Be-972

low the formula, an illustrative example is given973

using a context length |C| = p = 1020, chunk size974

L = 510, compression ratio r = 5, total sequence975

length |X| = 2040, question length |Q| = 50, and976

answer length |A| = 5.977

B Overview of ICAE978

ICAE (Ge et al., 2024) is an autoencoder frame-979

work to compress long contexts into short compact980

memory slots. The method operates by concate-981

nating designated memory tokens to the end of the982

input sequence before an encoder processes the en-983

tire combined sequence. Subsequently, a decoder984

reconstructs the original sequence using only the985

information contained within the memory tokens.986

ICAE is trained in two main phases. It is first pre-987

trained on massive text data using a combination988

of autoencoding and language modeling objectives,989

enabling it to generate memory slots that represent990

the original context. Following pretraining, the991

model is fine-tuned on instruction data for the pur-992

pose of producing desirable responses to various993

prompts. An overview of the ICAE framework is994

shown in Figure 3.995

C Hyperparameters996

For the 1B and 3B models, we perform continued997

pre-training on sequences with lengths |X| rang-998

ing from 510 to 2040. For the 8B model, the in-999

put sequence length |X| ranges from 510 to 40801000

during continued pre-training. We take the first1001

p = ⌊|X|/2⌋ tokens as the context. Additional1002

hyperparameters are listed in Table 8.1003

D Detailed Results1004

In this section, we provide detailed results. Consid-1005

ering the potential risk of data leakage where LLMs1006

may have encountered context information from1007

evaluation datasets during the pretraining phase(Li1008

Hyperparameter Value

Optimizer AdamW
Betas (0.9, 0.95)
Weight decay 0.1
Learning rate 1e-4 (pretrain)

5e-5 (fine-tuning)
Scheduler Constant
Batch size 16
Warmup 300
Training steps 20k (pretrain)

20k (fine-tuning)
Clip norm 2.0

Table 8: Hyperparameters for training

et al., 2024b), we also report on NoContext and 1009

FullContext settings where NoContext performs 1010

inference solely based on the question and Full- 1011

Context utilize the complete context and the ques- 1012

tion for inference. In both cases, we only train 1013

[AE] and [LM] tokens to guide the model execut- 1014

ing corresponding tasks. 1015

Table 9 fully presents the performance of ICAE 1016

and 500xCompressor of different scales on LM 1017

tasks and AE tasks. Table 16 and Table 17 respec- 1018

tively show all results of these models in-domain 1019

and out-of-domain in MRQA. Ablation results in- 1020

domain and out-of-domain in MRQA are presented 1021

in Table 18 and Table 19, respectively. Table 10 1022

shows all results of VoCo-LLaMA on multimodal 1023

benchmarks. 1024

PPL(AE) PPL(LM) BLEU(AE)

Llama-3.2-1B
NoContext 11.56 13.25 0.00
ICAE(DPL) 1.40 12.18 31.80
ICAE(EPL) 1.04 11.42 95.98
500x(DPL) 1.04 11.22 93.73
500x(EPL) 1.01 10.80 98.50
FullContext 1.02 9.90 33.49

Llama-3.2-3B
NoContext 9.58 11.02 0.00
ICAE(DPL) 1.49 10.33 48.12
ICAE(EPL) 1.02 9.07 97.05
500x(DPL) 1.02 9.44 96.86
500x(EPL) 1.00 8.68 99.34
FullContext 1.06 8.25 60.16

Llama-3.1-8B
NoContext 7.79 9.02 0.00
ICAE(DPL) 1.58 9.22 49.08
ICAE(EPL) 1.00 7.61 98.82
500x(DPL) 1.01 7.61 97.68
500x(EPL) 1.00 7.40 99.49
FullContext 1.00 7.30 98.00

Table 9: Perplexity of Xcontext and Xcompletion, and
BLEU score for the reconstruction quality of Xcontext,
calculated on a held-out set of 1k examples.

E Training Curves 1025

This section provides training curves. Figure 4 and 1026

Figure 5 respectively show the training curves of 1027
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voco_num SQA(OOD) MMB(OOD) VQAv2(ID)

Lower Bound* 1 60.7 22.3 41.2

DPL* 2 - 60.1 73.5
DPL 2 66.1 61.5 73.7
EPL 2 67.6 61.4 69.5

DPL* 128 - 61.0 76.9
DPL 128 64.9 59.9 76.9
EPL 128 66.5 64.6 78.4

Upper Bound* 576 66.5 64.0 77.7

Table 10: Results of VoCo-LLaMA on SQA (Lu et al.,
2022), MMB (Liu et al., 2024b), and VQAv2 (Goyal
et al., 2017) from our experiments. Results marked with
* are from (Ye et al., 2025).

ICAE and 500xCompressor of different scales dur-1028

ing pretraining. For AE loss, it can be observed1029

that ICAE(DPL) struggles to decrease to 0, while1030

500xCompressor(DPL) requires a period of oscil-1031

lation before converging near 0. When UPL is1032

applied, their AE loss rapidly converges to around1033

0.1034

F VoCo-LLaMA1035

VoCo-LLaMA (Ye et al., 2025) employs a modi-1036

fied attention mask which restricts text tokens from1037

attending to vision tokens. Figure 8 illustrates this1038

mask, and we have indicated its position layout at1039

the top of the figure.1040

G Attention Visualization1041

Attention maps are presented in this section. Due1042

to the low attention values of memory tokens in1043

the first layer (which appear almost empty in the1044

figure), we present the attention map of the second1045

layer. See Figure 6. We provide a magnified view1046

of the self-attention of memory tokens and their1047

attention to other tokens. It can be observed that1048

in the second layer, memory tokens in DPL only1049

attend to themselves, while in UPL, they are able to1050

attend to the entire context. Additionally, we also1051

present the attention map of the last layer, shown1052

in Figure 7. We use grey dashed lines to indicate1053

the special attention pattern of UPL.1054

H Local bias of Position Encodings1055

H.1 Sinusoidal Position Encoding1056

The sinusoidal position encoding (Vaswani et al.,
2017; Su et al., 2023) is given by:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
PE(pos,2i+1) = cos

( pos

100002i/dmodel

)

Consider two nearby positions, pos and pos+ δ, 1057

where δ is a small number. 1058

For any dimension i, the argument to the 1059

sine/cosine function changes from pos

100002i/dmodel
1060

to pos+δ

100002i/dmodel
. The change in the argument is 1061

δ
100002i/dmodel

. 1062

For small δ, this change in the argument is small 1063

for all dimensions. 1064

Since sine and cosine functions are continuous, 1065

a small change in their input argument results in a 1066

small change in their output value. 1067

sin(x+ ϵ) ≈ sin(x) for small ϵ

cos(x+ ϵ) ≈ cos(x) for small ϵ

Therefore, each dimension of PE(pos+δ) is very 1068

close to the corresponding dimension of PE(pos). 1069

This means the entire vector PE(pos+δ) is very 1070

similar to PE(pos) when δ is small. 1071

This property injects a local inductive bias. 1072

H.2 Learnable Position Encodings 1073

In this section, we present figures related to learn- 1074

able position embeddings. Figure 9 illustrates the 1075

cosine similarity between different positions of 1076

BERT (Devlin et al., 2019). It can be observed 1077

that the cosine similarity between nearby positions 1078

is significantly high. To illustrate the special behav- 1079

ior of the [CLS] token’s position embedding, we 1080

show in Figure 10 the cosine similarity of position 1081

0 (i.e., the position ID of [CLS]), position 100, po- 1082

sition 200, and position 300 with other positions. 1083

Figure 2 illustrates that as the relative distance in- 1084

creases, the learnable bias added by T5 (Raffel 1085

et al., 2020) to the attention scores decreases. 1086

Figure 2: T5 bias.
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x0 x1 . . . x|X|−1 y0 y1 . . . y|Y |−1

Default Position ID 0 1 . . . |X| − 1 |X| |X| + 1 . . . |X| + |Y | − 1

KV (x0) KV (x1) . . . KV (x|X|−1) y0 y1 . . . y|Y |−1

Default Position ID 0 1 . . . |X| − 1 |X| |X| + 1 . . . |X| + |Y | − 1

Table 11: Default position layout of Transformers.

x(i−1)L x(i−1)L+1 . . . xiL−1 m0 m1 . . . m|M|−1

DPL 0 1 . . . L − 1 L L + 1 . . . L + |M| − 1
EPL (i − 1)L + 1 (i − 1)L + 2 . . . iL ⌊b⌉ ⌊b + r⌉ . . . ⌊(b + (|M| − 1)r⌉

i = 1, L = 510, |M| = 102, r = 5
x0 x1 . . . x509 m0 m1 . . . m101

DPL 0 1 . . . 509 510 511 . . . 611
EPL 1 2 . . . 510 3 8 . . . 508

i = 2, L = 510, |M| = 102, r = 5
x510 x511 . . . x1019 m0 m1 . . . m101

DPL 0 1 . . . 509 510 511 . . . 611
EPL 511 512 . . . 1020 513 518 . . . 1018

Table 12: Position Layout of Encoder for S(i). r = L
|M | ; b = (i − 1) ∗ L + 1 + r−1

2 . The notation ⌊·⌉ indicates
rounding to the nearest integer.

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(k)
|M|−1

/KV
(k)
|M|−1

[AE] x0 x1 . . . xp−1

DPL(ICAE) 0 1 . . . k|M| − 1 k|M| k|M| + 1 k|M| + 2 . . . k|M| + p
DPL(500x) L L + 1 . . . L + |M| − 1 k|M| k|M| + 1 k|M| + 2 . . . k|M| + p

EPL ⌊b⌉ ⌊b + r⌉ . . . ⌊b + (k|M| − 1)r⌉ 0 1 2 . . . p

k = 2, L = 510, |M| = 102, r = 5, p = 1020

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(2)
101/KV

(2)
101 [AE] x0 x1 . . . x1019

DPL(ICAE) 0 1 . . . 203 204 205 206 . . . 1224
DPL(500x) 510 511 . . . 611 204 205 206 . . . 1224

EPL 3 8 . . . 1018 0 1 2 . . . 1020

Table 13: Position Layout of Decoder in AE Task. r = L
|M | ; b = 1 + r−1

2 . The notation ⌊·⌉ indicates rounding to
the nearest integer.

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(k)
|M|−1

/KV
(k)
|M|−1

[LM] xp xp+1 . . . x|X|−1

DPL(ICAE) 0 1 . . . k|M| − 1 k|M| k|M| + 1 k|M| + 2 . . . k|M| + |X| − p
DPL(500x) L L + 1 . . . L + |M| − 1 k|M| k|M| + 1 k|M| + 2 . . . k|M| + |X| − p

EPL ⌊b⌉ ⌊b + r⌉ . . . ⌊b + (k|M| − 1)r⌉ p p + 1 p + 2 . . . |X|
k = 2, L = 510, |M| = 102, r = 5, |X| = 2040, p = 1020

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(2)
101/KV

(2)
101 [LM] x1020 x1021 . . . x2039

DPL(ICAE) 0 1 . . . 203 204 205 206 . . . 1224
DPL(500x) 510 511 . . . 611 204 205 206 . . . 1224

EPL 3 8 . . . 1018 1020 1021 1022 . . . 2040

Table 14: Position Layout of Decoder in LM Task. r = L
|M | ; b = 1 + r−1

2 . The notation ⌊·⌉ indicates rounding to
the nearest integer.

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(k)
|M|−1

/KV
(k)
|M|−1

[LM] q0 . . . q|Q|−1 a0 . . . a|A|−1

DPL(ICAE) 0 1 . . . k|M| − 1 k|M| k|M| + 1 . . . t t + 1 . . . t + |A|
DPL(500x) L L + 1 . . . L + |M| − 1 k|M| k|M| + 1 . . . t t + 1 . . . t + |A|

EPL ⌊b⌉ ⌊b + r⌉ . . . ⌊b + (k|M| − 1)r⌉ |C| |C| + 1 . . . t′ t′ + 1 . . . t′ + |A|
k = 2, L = 510, |M| = 102, r = 5, |C| = 1020, |Q| = 50, |A| = 5

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(2)
101/KV

(2)
101 [LM] q0 . . . q49 a0 . . . a4

DPL(ICAE) 0 1 . . . 203 204 205 . . . 254 255 . . . 259
DPL(500x) 510 511 . . . 611 204 205 . . . 254 255 . . . 259

EPL 3 8 . . . 1018 1020 1021 . . . 1070 1071 . . . 1075

Table 15: Position Layout of Decoder in QA Task. r = L
|M | ; b = 1 + r−1

2 ; t = k|M |+ |Q|; t′ = |C|+ |Q|. The
notation ⌊·⌉ indicates rounding to the nearest integer.
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Figure 3: Overview of the ICAE framework proposed by (Ge et al., 2024). Source: ICAE official repository
(CC0-1.0).

SQuAD NewsQA TriQA SearchQA HQA NQ Avg.

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

Llama-3.2-1B
NoContext 9.34 1.92 4.80 0.59 3.04 0.92 14.99 8.71 9.47 3.27 10.88 3.91 8.75 3.22
ICAE(DPL) 54.58 36.99 37.57 21.25 57.96 48.85 68.90 56.68 59.61 43.01 59.40 42.01 56.34 41.47
ICAE(EPL) 59.94 39.39 43.61 24.95 61.50 51.98 69.31 57.11 64.22 46.84 61.21 42.11 59.97 43.73
500x(DPL) 68.26 49.15 43.17 25.31 60.30 51.03 70.33 57.96 66.44 49.45 64.69 46.78 62.20 46.61
500x(EPL) 67.87 47.54 49.23 29.58 64.53 55.16 72.51 60.39 68.51 51.06 65.55 46.97 64.70 48.45
FullContext 58.72 39.20 38.72 16.62 31.82 24.42 49.15 36.27 53.22 39.08 53.47 36.12 47.51 31.95

Llama-3.2-3B
NoContext 15.65 7.09 6.15 1.26 8.68 6.38 42.54 31.83 16.31 9.02 16.43 8.18 17.63 10.63
ICAE(DPL) 58.95 41.53 39.70 23.12 60.49 51.64 66.35 53.81 58.68 42.55 58.55 41.94 57.12 42.43
ICAE(EPL) 73.82 53.67 58.02 36.51 71.22 62.26 71.41 59.90 72.61 55.77 70.19 51.33 69.55 53.24
500x(DPL) 68.28 50.15 50.98 32.15 68.10 59.54 74.16 62.11 70.63 53.57 67.58 50.19 66.62 51.28
500x(EPL) 77.74 58.38 61.19 41.62 71.62 62.66 74.32 62.67 75.06 58.52 72.03 54.07 71.99 56.32
FullContext 74.07 55.43 48.99 24.62 63.92 54.05 67.69 52.31 63.73 48.33 64.32 46.54 63.79 46.88

Llama-3.1-8B
NoContext 21.84 11.74 9.52 3.28 31.58 26.37 59.66 45.49 20.34 12.71 29.62 17.94 28.76 19.59
ICAE(DPL) 56.56 38.87 36.99 20.06 64.54 55.58 71.35 58.92 57.04 41.20 58.04 41.19 57.42 42.64
ICAE(EPL) 78.44 58.90 61.69 40.17 73.92 65.05 80.05 67.65 74.93 58.33 72.43 54.14 73.58 57.37
500x(DPL) 80.56 62.11 60.31 40.65 74.00 65.39 79.60 67.51 76.18 59.62 74.17 56.48 74.14 58.63
500x(EPL) 80.60 61.37 64.43 44.35 74.75 66.04 79.39 67.74 77.17 60.53 74.71 56.16 75.18 59.36
FullContext 80.53 61.97 60.24 40.05 72.65 63.28 76.54 61.99 73.07 57.19 72.25 54.01 72.55 56.42

Table 16: Results on the in-domain validation set, including six QA datasets: SQuAD (Rajpurkar et al., 2016),
NewsQA (Trischler et al., 2017), TriviaQA (TriQA) (Joshi et al., 2017), SearchQA (Dunn et al., 2017), HotpotQA
(HQA) (Yang et al., 2018), and NaturalQuestions (NQ) (Kwiatkowski et al., 2019).

BioASQ DROP DuoRC RACE RE TQA Avg.

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

Llama-3.2-1B
NoContext 10.63 4.52 17.72 10.18 3.93 0.53 6.58 0.30 11.74 3.70 20.50 9.78 11.85 4.83
ICAE(DPL) 38.39 26.99 37.13 27.28 27.90 18.32 21.67 4.30 76.98 64.45 37.62 22.55 39.95 27.32
ICAE(EPL) 42.66 29.19 37.03 26.95 32.50 21.39 26.87 5.34 76.90 64.31 47.25 29.81 43.87 29.50
500x(DPL) 44.22 31.38 40.47 29.34 32.20 21.19 27.67 5.93 83.03 71.98 47.00 28.88 45.76 31.45
500x(EPL) 46.11 31.91 40.94 29.41 39.07 26.32 31.89 7.27 80.39 67.71 49.80 31.14 48.03 32.29
FullContext 45.72 31.45 40.74 30.27 39.20 27.85 29.57 7.72 74.85 64.01 53.31 34.60 47.23 32.65

Llama-3.2-3B
NoContext 24.84 17.22 21.17 13.37 5.87 1.93 8.87 1.19 20.60 13.30 37.34 22.82 19.78 11.64
ICAE(DPL) 41.75 31.65 38.77 29.81 28.40 18.99 21.58 3.56 76.56 64.82 47.85 30.41 42.49 29.87
ICAE(EPL) 50.83 36.70 54.10 43.38 45.66 33.24 38.78 9.35 82.71 71.64 58.13 36.93 55.03 38.54
500x(DPL) 50.20 37.63 48.64 38.32 38.77 26.85 31.86 8.16 83.67 73.71 55.08 34.80 51.37 36.58
500x(EPL) 53.15 39.03 57.00 45.84 50.35 36.51 42.45 10.83 85.20 75.20 58.09 35.53 57.71 40.49
FullContext 59.20 42.82 50.30 35.53 39.09 27.51 36.72 9.20 81.73 73.27 67.50 43.65 55.76 38.66

Llama-3.2-8B
NoContext 43.16 33.64 25.60 18.43 6.15 2.33 7.98 1.63 33.89 25.27 50.27 32.67 27.84 19.00
ICAE(DPL) 47.42 33.98 35.98 27.41 22.54 13.99 21.48 4.60 77.58 65.98 53.55 34.13 43.09 30.01
ICAE(EPL) 53.21 37.90 58.83 47.50 47.26 33.44 40.65 9.64 84.35 73.91 58.39 36.13 57.12 39.76
500x(DPL) 51.50 37.70 59.85 47.64 47.95 34.44 41.17 10.39 85.86 75.85 58.22 35.93 57.42 40.32
500x(EPL) 54.80 39.43 62.46 50.70 51.33 37.38 43.40 11.13 85.77 75.10 58.11 35.00 59.31 41.45
FullContext 59.80 42.95 60.64 47.64 26.91 16.86 42.80 10.53 85.11 74.08 71.68 47.57 57.83 39.94

Table 17: Results on the out-of-domain validation set, including six QA datasets: BioASQ (Tsatsaronis et al., 2015),
DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), Relation Extraction (RE) (Levy et al.,
2017), and TextbookQA (TQA) (Kembhavi et al., 2017).

16

https://github.com/getao/icae


SQuAD NewsQA TriQA SearchQA HQA NQ Avg.

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

Llama-3.2-1B
ICAE(DPL) 54.58 36.99 37.57 21.25 57.96 48.85 68.90 56.68 59.61 43.01 59.40 42.01 56.34 41.47
ICAE(UPL) 62.22 42.25 44.49 26.16 61.35 51.88 70.33 57.73 63.85 46.89 61.71 43.00 60.66 44.65
ICAE(EPL) 59.94 39.39 43.61 24.95 61.50 51.98 69.31 57.11 64.22 46.84 61.21 42.11 59.97 43.73
500x(DPL) 68.26 49.15 43.17 25.31 60.30 51.03 70.33 57.96 66.44 49.45 64.69 46.78 62.20 46.61
500x(UPL) 65.92 46.35 49.33 29.89 63.97 54.98 71.85 59.77 67.04 50.53 64.20 45.66 63.72 47.86
500x(EPL) 67.87 47.54 49.23 29.58 64.53 55.16 72.51 60.39 68.51 51.06 65.55 46.97 64.70 48.45

Table 18: Ablation results on the in-domain validation set, including six QA datasets: SQuAD (Rajpurkar et al.,
2016), NewsQA (Trischler et al., 2017), TriviaQA (TriQA) (Joshi et al., 2017), SearchQA (Dunn et al., 2017),
HotpotQA (HQA) (Yang et al., 2018), and NaturalQuestions (NQ) (Kwiatkowski et al., 2019).

BioASQ DROP DuoRC RACE RE TQA Avg.

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

Llama-3.2-1B
ICAE(DPL) 38.39 26.99 37.13 27.28 27.90 18.32 21.67 4.30 76.98 64.45 37.62 22.55 39.95 27.32
ICAE(UPL) 41.82 29.32 37.77 27.41 33.73 22.45 26.90 4.90 73.61 60.62 48.19 29.94 43.67 29.11
ICAE(EPL) 42.66 29.19 37.03 26.95 32.50 21.39 26.87 5.34 76.90 64.31 47.25 29.81 43.87 29.50
500x(DPL) 44.22 31.38 40.47 29.34 32.20 21.19 27.67 5.93 83.03 71.98 47.00 28.88 45.76 31.45
500x(UPL) 45.71 32.38 40.19 28.81 37.66 26.12 29.02 6.08 78.22 64.55 50.19 31.87 46.83 31.64
500x(EPL) 46.11 31.91 40.94 29.41 39.07 26.32 31.89 7.27 80.39 67.71 49.80 31.14 48.03 32.29

Table 19: Ablation results on the out-of-domain validation set, including six QA datasets: BioASQ (Tsatsaronis
et al., 2015), DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), Relation Extraction
(RE) (Levy et al., 2017), and TextbookQA (TQA) (Kembhavi et al., 2017).

1B-ICAE-DPL 3B-ICAE-DPL 8B-ICAE-DPL

1B-ICAE-EPL 3B-ICAE-EPL 8B-ICAE-EPL

Figure 4: Training Loss of ICAE.

1B-500x-DPL 3B-500x-DPL 8B-500-DPL

1B-500x-EPL 3B-500x-EPL 8B-500x-EPL

Figure 5: Training Loss of 500xCompressor.
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DPL UPL

DPL DPL UPLUPL

Figure 6: Attention Matrix in the 2nd layer of ICAE after MRQA finetuning.

DPL UPL

DPL DPL UPLUPL

Figure 7: Attention Matrix in the last layer of ICAE after MRQA fine-tuning.

Figure 8: Attention mask and position layout of VoCo-LLaMA (Ye et al., 2025). The Position IDs modified by EPL
are marked in green (UPL) and blue (CPL) on top of the figure.
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Figure 9: The cosine similarity of BERT’s positional encodings. To improve readability, we have removed results
beyond the top 10 and zoomed in on the first 50 positions.

Figure 10: The cosine similarity between the positional encoding of the [CLS] token and other positions.

19


	Introduction
	Background
	Local Bias of Position Encodings
	Position Layout

	Method
	Soft Prompt Methods
	Pretraining
	Fine-tuning

	Enhanced Position Layout
	Uniform Position Layout
	Consistent Position Layout


	Experimental Results
	Experimental Setup
	Fine-tuning Results
	Pretraining Results
	Applications to Multimodal Models
	Ablation Studies
	Scalability Results

	Analysis
	Training Curve
	Attention Visualization
	Learnable PEs

	Related Work
	Conclusion
	Limitations
	Detailed Position Layout
	Overview of ICAE
	Hyperparameters
	Detailed Results
	Training Curves
	VoCo-LLaMA
	Attention Visualization
	Local bias of Position Encodings
	Sinusoidal Position Encoding
	Learnable Position Encodings


