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Abstract

Score estimation has led to several state-of-the-art generative models, particularly
in computer vision. Compared to maximum likelihood, one of the key advantages
of score estimation is that it does not require the calculation of a normalization
factor. However, explicit score matching necessitates knowledge of the true score
of the data distribution, which is typically unavailable. To address this challenge,
various approaches have been proposed to approximate the score-matching loss.
The two main approaches are implicit score matching (ISM) and denoising score
matching (DSM), which differ in their bias, making direct comparison difficult.
In this work, we expand the ISM and DSM losses to remove the constant bias
between them. While it is known that they are asymptotically equivalent, we show
empirically that, in finite data regimes, differences in variance make DSM loss
sensitive to the noise scale. ISM does not require noised data to learn and is more
robust than DSM when learning from noised data, particularly when the noise scale
is relatively small.

1 Introduction

Parameter estimation of probabilistic models is usually performed by maximum likelihood estimation.
Given a probabilistic model pθ(x) parametrized by θ and the true data distribution q(x), we seek to
minimize the following loss:

L(θ) = −Eq(x)log (pθ(x)) (1)

Estimating this loss is relatively straightforward, with a sample of data points x ∼ q(x), when the
probabilistic model has a simple form, such as Gaussian or Bernoulli (for regression and classification).
However, the normalization factors of more complex probabilistic models are intractable, making
maximum likelihood estimation usually infeasible, with some exceptions, such as Normalizing Flow
models [1, 6]).

An alternative to maximum likelihood is score matching, which involves minimizing the following
loss function (also called Fisher divergence or relative Fisher information):

LESM(θ) = Eq(x)
1

2
|∇xlog (pθ(x))−∇xlog (q(x))|2 (2)
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Figure 1: The fitting term (inner product) of ISM and DSM evaluated at every training step, where
the model is updated with (left) DSM gradients and (right) ISM gradients.

Score matching aims to find the gradient of the log-likelihood (the score) instead of the log-likelihood
itself, as knowledge of the score is often sufficient for sampling from the probabilistic model [3, 9, 12].
However, the loss in Eq. 2 cannot be directly estimated because the score of the true distribution is
unknown. In particular, the score function cannot be evaluated at sample data points.

Two approaches have been proposed to estimate the loss function in Eq. 2: 1) implicit score matching
(ISM) [3] and 2) denoising score matching (DSM) [9, 11]. The former has led to several generative
models (e.g. [4], [10]). However, ISM is known to be infeasible for large-scale problems, as it requires
the trace of log-likelihood Hessian to compute the loss (Eq. 3). On the other hand, DSM underpins
the diffusion models, which have been extensively studied and are considered state-of-the-art for
generative computer vision tasks (e.g. [2], [7], [8], [9]).

Although ISM and DSM both approximate the score-matching loss (Eq. 2), comparing them is not
straightforward due to their different biases. In this study, we eliminate the bias from the DSM loss
and show that it becomes asymptotically equivalent to ISM loss on noisy data. However, the DSM
loss and gradient variance is sensitive to the noise scale and can explode for low-scale noise. ISM
can be used to learn from noisy or noiseless data, and it is more robust than DSM against the noise
scale. Our results encourage further studies to improve the computational cost of ISM.

2 Methodology

2.1 Implicit score matching

For infinite data and under the following mild assumptions about q(x) and s(x,θ) = ∇xlog (pθ(x)):

Assumption 1. q(x) and s(x,θ) are differentiable, Eq(x)|∇xlog(q(x))|2 is finite, Eq(x)|s(x,θ)|2 is
finite for any θ, and, importantly, lim|x|→∞ q(x)s(x,θ) = 0.

[3] showed that the score-matching loss in Eq. 2, LESM (θ), is asymptotically equivalent to ISM loss
defined in Eq. 3 plus some constant, C1, that does not depend on parameters, θ.

LESM(θ) = LISM(θ) + C1 = Eq(x)

{
Tr

[
∇2

xlog (pθ(x))
]
+

1

2
|s(x,θ)|2

}
+ C1 (3)

Unlike ESM, the ISM loss does not require a regression target depending on q(x) and can be
computed for a dataset of samples from an unknown distribution. The property in Eq. 3 can be
derived from equality in Proposition 1:

Proposition 1. For a distribution, q(x), and its parameterized score, s(x,θ), under the assumption
1, it can be shown that:

Eq(x)

〈
s(x,θ),∇xlog(q(x))

〉
= −Eq(x)Tr

[
∇2

xlog (pθ(x))
]

(4)

The left side of Eq. 4 represents the inner product term from the expansion of quadratic loss in Eq. 2.
The right side of Eq. 4 is the trace of log-likelihood Hessian in ISM loss, Eq. 3. The proof of this
proposition is provided in the appendix A.

2



2.2 Denosing Score Matching

Denoising score matching is another objective for score matching that uses pairs of clean and
corrupted samples, (x, z) [11]. For the joint distribution qσ(x, z) = q(x)qσ(z|x), DSM is defined as:

LDSM(θ) = Eqσ(z,x)
1

2

∣∣s(z,θ)−∇zlog (qσ(z|x))
∣∣2 (5)

DSM uses the score at the corrupted point to move it toward the clean sample. Selecting a Gaussian
density for corruption, qσ(z|x) = N (z;x, σ2I), we can write the second term of DSM loss in Eq. 5
as:

∂logqσ(z|x)
∂z

= −z− x

σ2
= − ϵ

σ
(6)

where ϵ ∼ N (ϵ, 0, I) is standard Gaussian noise. Thus, the DSM loss in Eq. 5 can be expanded as

LDSM(θ) = Eqσ(z)
1

2
|s(z,θ)|2 + Eq(x)EN (ϵ;0,I)⟨s(z,θ),

ϵ

σ
⟩+ EN (ϵ,0,I)

|ϵ|2

2σ2
(7)

2.3 Comparing ISM and DSM for noisy data

Similar to DSM, we can rewrite the ISM loss in Eq. 3 over the distribution of corrupted samples
z ∼ qσ(z) :

LISM(θ) = Eq(z)
1

2
|s(z,θ)|2︸ ︷︷ ︸

Norm

+Eq(z)

∑
i

∂s(z,θ)i
∂zi︸ ︷︷ ︸

Fitting

(8)

The first term in the ISM loss penalizes the score norm, while the second term is responsible for
fitting the score to the noisy data [4]. Similarly, we remove the last term from expanded DSM loss in
eq. 7 to obtain the modified DSM objective, LDSM-S(θ) (DSM-S) 9.

LDSM-S(θ) = Eqσ(z)
1

2
|s(z,θ)|2︸ ︷︷ ︸

Norm

+Eq(x)EN (ϵ;0,I)⟨s(z,θ),
ϵ

σ
⟩︸ ︷︷ ︸

Fitting

(9)

The eliminated term, CDSM = EN (ϵ,0,I)(|ϵ|2/2σ2), does not depend on the parameters, θ, and it is
not expected to affect training dynamics. However, it might still introduce variance to the DSM loss
due to sampling error. Thus, we remove this term in our experiments. The score norm regularization
terms in ISM and DSM-S (Eq. 8 & 9) are equivalent. The difference lies in the fitting term. Using
proposition 4, we can show that the fitting term in ISM and DSM are asymptotically equivalent for
infinite samples.
Proposition 2. For z ∼ qσ(z), where qσ(z) = qσ(z|x)q(x) = N (z;x, σ2I)q(x), if qσ(z) and its
parameterized score s(z,θ) satisfy the assumptions 1, we have:

Eq(z)

∑
i

∂s(z,θ)i
∂zi

= Eq(x)EN (ϵ,0,I)⟨s(z,θ),
ϵ

σ
⟩ (10)

where ϵ ∼ N (ϵ; 0, I).

We derive the proposition in appendix B. Although the fitting terms in both ISM and DSM are
expected to be equal for infinite sample, their variances are not the same. Thus, the sampling error
arising from the finite data and mini-batch size can result in significantly different fitting behavior
for DSM and ISM. Notably, the variance of the fitting term in ISM is zero for Gaussian data, i.e.
z̃ ∼ N (z̃;µ,Σ), as the Hessian of the log-likelihood is constant (i.e. −Σ−1). On the other hand, the
DSM variance for Gaussian data is non-zero and depends on the sample variance. Therefore, ISM
has better stability and robustness to the noise for Gaussian data than DSM. However, their learning
behavior for non-Gaussian data is not clear. In this study, we investigate this with simple experiments.
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Figure 2: Top: fitting term (inner product) of the loss for training with DSM-S (left) and ISM (right)
losses in Eq. 8, 9. Both objectives are trained on the data corrupted by Gaussian noise for a range
of noise variance. However, ISM is also trained without any data corruption. Bottom: The gradient
norm of the loss for each experiment on the top row.

3 Results & Discussion

Experimental setup & dataset We use the half-moon synthetic dataset [5] to compare ISM
and DSM on non-Gaussian data distribution. The corruption kernel is a Gaussian centered around
samples, and the noise scale is adjusted by choosing the standard deviation σ = 0.01. AdamW with a
learning rate of 10−3 is used to optimize ISM and DSM-S losses (Eq. 8 & Eq. 9) with their respective
gradients. We use N = 1000 data samples (in full batch) and 500 noise samples to approximate the
EN (ϵ;0,I) in Eq. 7. The model is a 3-layer multi-layer perception (MLP) with 16, 32, and 2 neurons
and tanh activations.

Fitting the data with ISM & DSM To compare ISM and DSM-S, we train two separate models.
One model is trained with ISM loss, but we also calculate the DSM-S loss in every training step
(Fig. 1 left). The second model is trained using DSM-S loss gradients while also recording the ISM
loss for every training step (Fig. 1 left). We show the variation of the fitting term for both losses (Eq.
8 & Eq. 9) during the training in Fig. 1. The mean of fitting term is the same for ISM and DSM
in both cases and every training step. However, we show in the next section that results may differ
significantly when using smaller values of the noise σ.

Sensitivity of DSM to the noise scale σ The above experiments demonstrate the convergence of
ISM and DSM-S losses for a fixed noise scale, i.e. σ = 10−2. Next, we exponentially vary the noise
scale by setting the standard deviation of Gaussian corruption to σ ∈ {0.0001, 0.001, 0.01, 0.1, 0}.
Note that ISM loss can be trained without noise (i.e. σ = 0). When trained on the noisy data, the
ISM treats the noise as part of the data and does not explicitly depend on the corruption scheme.
Fig. 2 shows the resilience of ISM training dynamic to the varying noise scale. On the other hand,
DSM explicitly relies on the added noise (Eq. 6). Thus, noiseless training is not feasible (i.e. σ ̸= 0
in eq. 9). Fig. 2 shows that for low noise scale, σ = 10−3, the DSM loss gradient and its variance is
increasing rapidly. In the case of σ = 10−4, the loss barely decreases and the score is not fitted to the
data. This suggests a large enough noise scale is required for DSM to be feasible. However, when the
noise scale is too large, i.e. σ = 10−1, the learned score is far away from the score of the data. Our
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results indicate that an intermediate noise scale is required to ensure stability and convergence of
DSM loss.

4 Conclusion and Perspective

ISM and DSM are two approaches for score matching, each with their derivative methods. In this
study we recount the theory behind these two methods to highlight their similarities and differences.
Then, we experimentally compare ISM and DSM data-fitting behaviors for a simple non-Gaussian
dataset. Unlike DSM, ISM does not require noise to learn the data distribution. ISM is stable and
robust against changing noise variance, while DSM requires nuanced adjustment of the noise scale.
Nevertheless, ISM has often been overlooked due to the cost of computing the Hessian (Eq. 3). Our
study emphasizes the advantages of ISM and motivates further efforts to improve its computational
costs.
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A Proposition 1. derivation

Proposition A.1. For a distribution, q(x), and its parameterized score, s(x,θ), under the assumption
1, it can be shown that:

Eq(x)

〈
s(x,θ),∇xlog(q(x))

〉
= Eq(x)Tr

[
∇2

xlog (pθ(x))
]

(11)

Proof. We use partial derivative notation and start from the left side of eq. A.1:

Eq(z)

〈
s(z,θ),

∂logq(z)
∂z

〉
=

∫
z

s(z,θ)T
∂logq(z)

∂z
q(z)dz

=

∫
z

s(z,θ)T
∂q(z)

∂z

q(z)

q(z)
dz

=

∫
z

s(z,θ)T
∂q(z)

∂z
dz

Now, using integration by parts and the assumption lim|x|→∞ q(x)s(x,θ) = 0, we can simplify the
integral.

Eq(z)

〈
s(z,θ),

∂logq(z)
∂z

〉
=

∫
z

s(z,θ)T
∂logq(z)

∂z
q(z)dz

= −
∑
i

∫
z

∂s(z,θ)i
∂zi

q(z)dz

= −Eq(z)

∑
i

∂s(z,θ)i
∂zi

= −Eq(z)Tr
[
∇2

zlogpθ(z)
]

which proves the proposition.

B Proposition 2. derivation

Proposition B.2. For z ∼ qσ(z), where qσ(z) = qσ(z|x)q(x) = N (z;x, σ2I)q(x), if qσ(z) and its
parameterized score s(z,θ) satisfy the assumptions 1, we have:

Eq(z)

∑
i

∂s(z,θ)i
∂zi

= Eq(x)EN (ϵ,0,I)⟨s(z,θ),
ϵ

σ
⟩ (12)

where ϵ ∼ N (ϵ; 0, I).

Instead of directly proving proposition B.2, we derive the following equality:

Eq(z)

〈
s(z,θ),

∂logq(z)
∂z

〉
= Eq(x)EN (ϵ,0,I)⟨s(z,θ),

ϵ

σ
⟩ (13)

6



Proof.

Eq(z)

〈
s(z,θ),

∂logq(z)
∂z

〉
=

∫
z

s(z,θ)T
∂logq(z)

∂z
q(z)dz

=

∫
z

s(z,θ)T
∂q(z)

∂z

q(z)

q(z)
dz

=

∫
z

s(z,θ)T
∂q(z)

∂z
dz

=

∫
z

s(z,θ)T
∂

∂z

[∫
x

q(z|x)q(x)dx
]
dz

=

∫
z

∫
x

s(z,θ)T
∂q(z|x)

∂z
q(x)dxz

=

∫
z

∫
x

s(z,θ)T
∂log(q(z|x))

∂z
q(z|x)q(x)dxdz

= Eq(x)Eq(z|x)
〈
s(z,θ),

∂log(q(z|x))
∂z

〉
For q(z|x) = qσ(z|x) = N (z;x, σ2I) and ϵ ∼ N (ϵ; 0, I), we continue the proof as:

Eq(z)

〈
s(z,θ),

∂logq(z)
∂z

〉
= Eq(x)Eq(z|x)

〈
s(z,θ),

∂log(q(z|x))
∂z

〉
= −Eq(x)EN (z;x,σ2I)

〈
s(z,θ),

z− x

σ2

〉
= −Eq(x)EN (ϵ;0,I)

〈
s(z,θ),

ϵ

σ

〉

This proves equality 13. Equality 13 and proposition A.1 prove proposition B.2.

Figure 3: (left) learned score field, (center) norm and fitting terms of ISM and DSM, and (right) the
gradient similarity between ISM and DSM loss for steps during training with ISM loss.
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